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ABSTRACT Automated detection of motorcycle helmet use through video surveillance can facilitate
efficient education and enforcement campaigns that increase road safety. However, existing detection
approaches have a number of shortcomings, such as the inabilities to track individual motorcycles through
multiple frames, or to distinguish drivers from passengers in helmet use. Furthermore, datasets used to
develop approaches are limited in terms of traffic environments and traffic density variations. In this
paper, we propose a CNN-based multi-task learning (MTL) method for identifying and tracking individual
motorcycles, and register rider specific helmet use. We further release the HELMET dataset, which includes
91,000 annotated frames of 10,006 individual motorcycles from 12 observation sites in Myanmar. Along
with the dataset, we introduce an evaluation metric for helmet use and rider detection accuracy, which can be
used as a benchmark for evaluating future detection approaches. We show that the use of MTL for concurrent
visual similarity learning and helmet use classification improves the efficiency of our approach compared
to earlier studies, allowing a processing speed of more than 8 FPS on consumer hardware, and a weighted
average F-measure of 67.3% for detecting the number of riders and helmet use of tracked motorcycles. Our
work demonstrates the capability of deep learning as a highly accurate and resource efficient approach to
collect critical road safety related data.

INDEX TERMS Deep learning, traffic surveillance, motorcycle safety, helmet use detection, tracking.

I. INTRODUCTION
Nowadays, drivers’ adherence to traffic laws is mainly
monitored and enforced by traffic police officers through
direct observation. Yet implementations of road surveillance
infrastructure are increasingly being used to automatically
identify safety related behaviors through traffic video anal-
ysis. Approaches have been developed to register relatively
simple variables, such as traffic flow and density [1], [2],
speed [3]–[5], traffic light violations [6], or collisions [7].
More recently, computer vision has been used to register more
complex road user behaviors, such as driver mobile phone
use [8] and unauthorized use of car-pooling lanes [9]. Since
for many developing countries the main form of motorized
transport consists of motorcycles, the detection of motorcycle
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helmet use of riders through machine learning has also been
explored [10], [11]. The availability of exact and concurrent
data about motorcycle helmet use on the street is crucial to
injury prevention, as it can be used for targeted enforcement
and effective education campaigns.

The registration of helmet use through human observers
naturally consists of four basic elements, that any automated
detection method must also possess to produce comparably
detailed helmet use estimates. (1) Detection: Initially, active
motorcycles need to be detected. (2) Tracking: Individual
motorcycles need to be tracked through the road environment,
to ensure that eachmotorcycle is only registered once, regard-
less of how long it is observed. (3) Rider differentiation:
For an accurate calculation of motorcycle helmet use and
to produce position-specific helmet use data, rider numbers
and positions (i.e. distinguishing the driver and passenger(s))
per motorcycle need to be registered. (4) Site-diversity:
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Helmet use numbers need to be accurately registered,
independent of the road environment at an observation
site. Hence, automated approaches need to show accuracy
for more than one road environment. While these four
basic elements of motorcycle helmet use observation come
naturally to humans observers, existing automated detection
approaches, either do not include all four elements or
have low performance on some of them (see Section II).
In particular the lack of rider differentiation is a crucial
element for the application of automated helmet use detection
in the field. Researchers repeatedly find evidence of an
influence of rider position and rider number on helmet use on
individual motorcycles [12]–[15]. Hence, the differentiation
of rider helmet use for drivers and passengers is a crucial
metric, that should not be omitted in automated detection
approaches. The lack of broad applicability and robustness
prevents the substitution of human observers through auto-
mated approaches in helmet use observation.

Hence, we present a deep learning based automatic
detection approach that contains all four basic elements
of human-observer helmet use registration, i.e. detection,
tracking, rider differentiation, and site-diversity. The pro-
posed work builds on and extends a previous approach
for frame-based helmet use detection [10], which did not
include tracking of motorcycles and in which the dataset was
not made public. To encourage the development of diverse
detection approaches, we make this dataset available with the
publication of this article. In addition, we further propose a
benchmark metric for the assessment of automated detection
approaches.

In summary, our main contributions are twofold:
• We propose a comprehensive CNN-based approach for
helmet use detection of tracked motorcycles, contain-
ing all basic elements utilized by human observers.
A multi-task learning (MTL) framework is developed
for both visual similarity learning and patch-based hel-
met use classification, which increases computational
efficiency as well as detection accuracy. The source code
and pre-trained model are available in [16].

• We publish a diverse, large-scale, annotated dataset
for motorcycle detection, called HELMET. It contains
10,006 annotated motorcycles in 910 video clips,
recorded throughout the country of Myanmar, con-
taining 12 observation sites across 7 cities. To the
best of our knowledge, it is the largest and most
diverse motorcycle helmet use detection dataset. Based
on the dataset, we propose a metric to evaluate the
performance of helmet use detection algorithms, which
takes account of both spatial and temporal detection. The
dataset, together with the source code for performance
evaluation, are available in [17].

II. RELATED WORK
To date, a number of approaches for the automated detection
of motorcycle helmet use in recorded video data have been
proposed [10], [11], [18]–[24], details of which can be

found in Table 1. For the initial step of active motorcycle
detection, approaches can be broadly categorized into
conventional methods [18]–[21] and deep-learning-based
methods [10], [11], [22]–[24].

For the detection of active motorcycles, most conventional
methods follow similar procedures. First, a background
subtraction method is used to extract moving objects/vehicles
from the video data. After this, a binary classifier (e.g.
a support vector machine (SVM)) is used to detect motor-
cycles. In another step, the head region of the motorcyclists
is localized, and an additional classifier is used to distinguish
helmet use from non-helmet use. To improve the performance
of the binary classifier, hand-crafted features are used,
a common one is to extract a histogram of oriented gradients
(HOG) [25] from the detected head regions of riders.
Such methods, however, do not work well when there are
many motorcycles and/or there is more than one rider on
a motorcycle. Instead of designing hand-crafted features,
deep learning based methods strive to automatically develop
representations from raw image data that are most suitable for
the helmet use detection task. In [24], helmet use is classified
in the detected head regions of riders using a convolutional
neural network (CNN). In [22] and [11], two independent
CNNs are trained, one is used to distinguishmotorcycles from
other vehicles, the other to classify helmet and non-helmet in
the head region of riders. Since it is time-consuming to detect
motorcycles and helmet use through two separate CNNs, [10]
and [23] use one single CNN to detect motorcycles and
helmet use simultaneously.

The tracking of individual motorcycles through single
frames of a recorded video is only included in half of existing
approaches presented in Table 1. While video data recorded
with traffic surveillance infrastructure is inherently frame-
based, helmet use data produced through automatic detection
must be projected onto individual motorcycles, to allow a
valid appraisal of helmet use. Hence, frame-based detection
results for motorcycle and rider counts, as well as helmet use
must be remapped to individual motorcycles which appear
in multiple frames. This can only be achieved by approaches
that link frame-based detection to cross-frame tracking.
This tracking is missing in some approaches (e.g. [11]).
To compensate for this lack of tracking, it is necessary to
either use single frame detection at a fixed point/line in
the frame to prevent the repeated detection of the same
motorcycle) (e.g. [20]) or to collect helmet use data in
every video frame without tracking, leading to the loss of
information on the number of motorcycles registered at an
observation site (e.g. [10]). Both of these shortcuts lead to a
decrease in helmet use data quality and in addition prevent the
use of multiple frames of an individual motorcycle for helmet
use and rider detection.

For rider number and position detection, only one of the
approaches listed in (Table 1) generates detailed information
on this [10]. And while other approaches (e.g. [20]) use
head counts on the motorcycle as a substitute for rider
numbers, this information is not mapped on rider positions
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TABLE 1. Existing helmet use detection studies and related datasets.

(i.e. driver vs. passenger). As the specific position and num-
ber of riders on a motorcycle directly relates to their helmet
use [12]–[15], the lack of this critical information presents
a clear barrier for the application of automated helmet use
detection approaches in the field.

On the element of site-diversity, the existing datasets
used to develop automated motorcycle helmet use detection
approaches (Table 1) show a critical lack of diverse observa-
tion sites and a general lack of detailed information on road
environments used. Five of the datasets [19]–[21], [23], [24]
only contain data from one recording site, prohibiting robust
evaluation of the developed solutions in diverse traffic envi-
ronments. The two datasets which contain more recording
sites do not distinguish helmet use between motorcycle
drivers and passengers [11], [22]. This lack of data diversity
and level of annotation detail in existing datasets hinders the
development of widely applicable detection solutions.

FIGURE 1. An illustration of the proposed approach for helmet use
detection of tracked motorcycles.

III. THE PROPOSED APPROACH
Our proposed approach for helmet use detection of tracked
motorcycles consists of the three steps, which are visualized
in Fig. 1. In the first step of our approach, we use a
fine-tuned pre-trained RetinaNet [26] for the detection of
active motorcycles, i.e. motorcycles with at least one rider

on them, on a single frame level. In the second step,
each detected active motorcycle is tracked through adjacent
frames, using both the motion state of the motorcycle as well
as the visual similarity between detected active motorcycles.
In the last step, when a track terminates, i.e. an individual
motorcycle leaves the view of the video camera, the helmet
use class of the tracked motorcycle is predicted, i.e. rider
number, their position, and their helmet use are identified. All
three steps are described in detail in the following sections.

A. MOTORCYCLE DETECTION
Detecting a motorcycle in a single frame is a classic object
detection task. To this end we trained a state-of-the-art object
detection algorithm to detect motorcycles in the dataset.
Today’s prevalent algorithms for object detection can be
subdivided in two broad approaches: one-stage and two-
stage. While the two-stage algorithms have overall higher
accuracies in object detection, they are comparably slower,
as frames are processed twice, once for identifying potential
object locations in a frame, and once more for detecting
the actual objects. Single-stage methods combine the steps
of localizing potential objects and object detection into a
single processing stage, which results in a small decrease
in accuracy, but a large decrease in the processing time.
A relatively new single-stage method is RetinaNet [26],
which uses amulti-scale feature pyramid combinedwith focal
loss to successfully overcome detection accuracy limitations.
RetinaNet achieves faster detection than two-stage methods,
while having a higher detection accuracy than comparable
single-stage methods such as YOLO [27]. We therefore
applied a RetinaNet model for detecting motorcycles.

Since motorcycle detection is very similar to other
object detection tasks, instead of training from scratch,
we fine-tuned a RetinaNet model with pre-trained weights
obtained by the COCO dataset [28].

B. MULTIPLE MOTORCYCLE TRACKING
To clarify the procedure of motorcycle tracking, let V =

{v(1), . . . , v(k)} be the set of existing tracks at time t .
Using the notations in Table 2, a track is denoted by
v(i) = (B(i), s(i)t−1,P

(i)
t−1), where B

(i) is a buffer to store the
measurements that are assigned to the track v(i), s(i)t−1 andP

(i)
t−1
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TABLE 2. Notations for multiple motorcycle tracking.

denote the state vector and the state covariance matrix of a
Kalman filter [29]. Meanwhile, let M = {m(1)

t , . . . ,m
(n)
t }

be newly arrived measurements at time t . Each measurement
is denoted as m(j)

t = (b(j)t , x
(j)
t ), where b(j)t is the predicted

bounding box, and x(j)t is the cropped image patch from the
predicted bounding box. Each image patch is re-scaled to
192 × 192. Furthermore, we normalize the bounding box
by the frame width and height so that all the numbers fall
between 0 and 1. Given a bounding box (l, u,w, h), its
centroid z is computed as z = (l + w/2, u+ h/2).
For an existing track v(i), we first predict its new state ŝ(i)t

and new state covariance P̂(i)t using the estimated state s(i)t−1
and estimated state covariance P(i)t−1 at time t − 1:

ŝ(i)t = As(i)t−1,

P̂(i)t = AP(i)t−1A
T
+ Q. (1)

Next, we compute the distance between all tracks and
measurements, yielding a distance matrix D, where Dij
denotes the distance between track v(i) and measurement
m(j)
t . With matrix D, the measurement-to-track association is

solved by the Munkres assignment algorithm [30].
To measure the distance Dij, the conventional way

is to compute the motion distance, namely, the squared
Mahalanobis distance [31] between the predicted Kalman
state of track v(i) and the centroid of the predicted bounding
box z(j)t :

DM
ij = (z(j)t − Hŝ

(i)
t )T (HP̂(i)t H

T
+ R)−1(z(j)t − Hŝ

(i)
t ). (2)

While the motion distance is a suitable association metric
whenmoving objects are sparse, the density of motorcycles in
our dataset is very high, which results in a poor measurement-
to-track association whenmultiple motorcycles are very close
to each other. To address this limitation, in addition to the
motion distance, we compute visual dissimilarity:

DV
ij =

1
N

N∑
n=1

‖φ(x(n); θ )− φ(x(j)t ; θ )‖2, (3)

where x(n) denotes the N cropped image patches that are
assigned to track v(i), and φ(·; θ ) corresponds to the feature
vector learned by a InceptionV3 deep neural network model,
to be defined later in Section III-D.

Hence, we have a combined distance as the product of the
motion distance and the visual dissimilarity:

Dij = DM
ij · D

V
ij . (4)

To sum up, Eq. (4) indicates any track and measurement
are similar only if they have similar visual appearances and
similar motions.

Applying the Munkres assignment algorithm to the dis-
tance matrix D, any new measurement can either be assigned
to an existing track or initiate a new track. If a measurement
m(j)
t is assigned to an existing track v(i), the track is updated

as:

K = P̂(i)t H
T (HP̂(i)t H

T
+ R)−1,

s(i)t = ŝ(i)t + K (z(j)t − Hŝ
(i)
t ),

P(i)t = (I − KH )P̂(i)t ,

B(i) = B(i) ∪ m(j)
t , (5)

where K is Kalman gain; otherwise it initiates a new track
v(i+1), with track information updated by:

s(i+1)t =


l(j)t + w

(j)
t /2

0
u(j)t + h

(j)
t /2

0

 ,

P(i+1)t =


0.100 0 0 0
0 0.025 0 0
0 0 0.100 0
0 0 0 0.025

 ,
B(i+1) = m(j)

t . (6)

If nomeasurement is assigned to an existing track, the track
is updated as:

s(i)t = ŝ(i)t ,

P(i)t = P̂(i)t , (7)

which allows temporary occlusion or missing detection.
We close an existing track if no new measurement is

assigned to it for more than 8 consecutive frames. We only
keep closed tracks with a duration greater than 5 frames
and a proportion of visible frames in a track greater than
60%. While the lack of new information after 8 consecutive
frames reliably closes tracks of motorcycles that drive out
of the camera’s view, it also helps to close tracks that were
incorrectly started by a false positive detection. The rule for
a 5 frame minimum to keep a track then reliably leads to the
deletion of these false positive tracks.

C. HELMET USE CLASSIFICATION
For a closed track of sufficient length, its helmet use is
estimated by pooling the helmet use prediction of cropped
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image patches within the track. More specifically, let
(x(n))Nn=1 be the cropped image patches that are assigned to
a tracked motorcycle, then the track’s helmet use class is
estimated as:

ŷ = argmax
y∈{1,2,...,C}

1
N

N∑
n=1

g(x(n);W ), (8)

where g(·;W ) is a deep convolutional neural network (CNN),
parameterized byW .

FIGURE 2. The proposed architecture for patch-based helmet use
classification and visual similarity learning.

D. MTL FOR PATCH-BASED HELMET USE CLASSIFICATION
AND VISUAL SIMILARITY LEARNING
In our approach, apart from fine-tuning RetinaNet for
motorcycle detection, we need to train CNNs for two
purposes. One is visual similarity learning. That is, we want
the distance between two image patches to be small if they are
in the same track, but large if they belong to different tracks.
The other purpose is patch-based helmet use classification,
i.e. we want to predict the helmet use class (rider number,
position, and helmet use) given a cropped image patch. In our
approach, instead of training two separate CNNs which is
time-consuming, we applymulti-task learning (MTL) to learn
both tasks simultaneously.

The architecture of the proposed deep learning model is
illustrated in Fig. 2. A given pair of image patches x(a)

and x(b) with 192 × 192 resolution, is feed into a Siamese
network [32] that uses an InceptionV3 [33] CNN body
with shared weights θ . The network body is truncated, such
that the global average pooling layer (GAP) and the final
fully-connected (FC) layer are removed. Each image patch x
is transformed into a 2048-dimensional feature vector φ(x; θ )
after passing the output of InceptionV3 CNN body to a GAP
layer.

With these two 2048-dimensional feature vectors,
the model has three tasks to learn:

1) Given the feature vector φ(x(a); θ ), predict the helmet
use class p(a) = f

(
φ(x(a); θ);w(a)

)
, where f (·) is a

softmax regression model, parameterized by weight
w(a).

2) Compute the Euclidean distance between the trans-
formed feature vectors of image patch x(a) and image

patch x(b):

d(x(a), x(b)) = ‖φ(x(a); θ )− φ(x(b); θ )‖2, (9)

3) Given φ(x(b); θ ), predict helmet use class p(b) =
f
(
φ(x(b); θ );w(b)

)
, with the softmax regression model

f (·) parameterized by weight w(b).

Using the MTL model, the helmet use classification model
in Eq. (8) can be rewritten as g(·;W ) = f (φ(·; θ );w),
where the visual similarity learning task and the helmet use
classification task shares the weights θ in the training and
predicting process, which not only significantly decreases the
computational cost, but also improves generalization by using
the domain information contained in the related tasks [34].

For the first and third tasks, we use the cross-entropy loss
for optimization:

L1(x(a), y(a)) = −
K∑
i=1

y(a)i log(p(a)i )

L3(x(b), y(b)) = −
K∑
i=1

y(b)i log(p(b)i ) (10)

where y is a one-hot vector that encodes the ground truth
helmet use class, and K is the number of annotated helmet
use classes. In the HELMET dataset, K = 36.

For the second task, we consider the contrastive loss [35]:

L2(x(a), x(b)) =
∑

(a,b)∈S

max
(
d(x(a), x(b))− τ1, 0

)
+

∑
(a,b)∈D

max
(
τ2 − d(x(a), x(b)), 0

)
, (11)

where S is an index set consisting of image pairs that come
from the same track, andD is an index set consisting of image
pairs that come from different tracks.

By minimizing the contrastive loss function, we expect the
distance d(x(a), x(b)) of an image pair in the same track is less
than a threshold τ1 and that of an image pair in different tracks
is larger than a threshold τ2. In this work, τ1 and τ2 are set as
1 and 5 empirically.

The loss function of the MTL framework is defined as:

L =
3∑

k=1

γkLk , (12)

where γk corresponds to the weight of task k . In our work,
we assume each task has equal weight, namely γk = 1/3.

IV. HELMET DATASET
The HELMET dataset is an extension of our previous work
[10], [12]. Here we give a brief introduction how we create
and annotate the dataset, as well as how to evaluate the
performance of helmet use detection approaches based on the
dataset.
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A. DATASET CREATION AND ANNOTATION
The source data for the HELMET dataset consists
of 385 hours of traffic video, recorded in 2016 over a
two month period in the country of Myanmar. Video data
collection was planned and conducted in close consultation
with the Myanmar Traffic Police Force, to ensure adherence
to local laws and regulation. Using two video-cameras built
from a Raspberry Pi 3 mini-computer and a Raspberry Pi
camera module, 13 observation sites around seven cities in
Myanmar were recorded at a rate of 10 frames per second,
with a resolution of 1920 × 1080 pixels. The recorded data
include diverse road environments, various traffic densities
and different weather conditions. Before selecting video data
for the HELMET dataset, the underlying source data was
cleaned up, and video sections were removed when they
contained motion blur due to cloudy weather or rain, which
would have prohibited their detailed annotation. After this
pre-processing, video clips of 242 hours length taken at
12 observation sites remained.

To most efficiently utilize the available annotation
resources, it was decided to preferentially annotate video
sections that contain a high number of motorcycles. After
splitting up the video data from each observation site into
10 second video clips (100 frames per clip), the pre-trained
YOLO9000 [27] object detection algorithm was applied to
identify the number of motorcycles in each clip. Broadly
maintaining the share of individual observation sites in the
source data, 910 video clips with the highest number of
motorcycles (identified through YOLO9000) were chosen
for annotation. The resulting distribution of the 910 sampled
video clips (91,000 frames) is presented in Table 3.

TABLE 3. Properties of the HELMET Dataset.

Data in the HELMET dataset was annotated by drawing
a rectangular bounding box around motorcycles, and adding
information on the number of riders, their positions, and
rider specific helmet use. The structure for rider position
annotation is shown in Figure 3, distinguishing between the
driver (D), multiple passengers (P1-P3), and a child passenger
(P0) standing on the floorboard of the motorcycle in front
of the driver. Bounding boxes of individual motorcycles are
linked over subsequent frames in the annotation process,
i.e. the identification of bounding boxes belonging to
individual motorcycles is possible in the HELMET dataset,

FIGURE 3. Rider position encoding.

forming the basis of the developed tracking approach. This
track of motorcycle bounding boxes belonging to a single
motorcycle, imprinted with information on rider number,
rider position, and helmet use, is defined as a continuous
helmet use event (CHUE). The number of CHUEs is
identical with the number of individual motorcycles observed
(Table 3).

All annotation was conducted using the program Beaver-
Dam [36] and each annotation was verified by a second
annotator. The 91,000 annotated frames from 12 observation
sites form the HELMET dataset, which can be accessed
by researchers free of charge with the publication of this
article [17].

B. EVALUATION METRIC
To facilitate a consistent evaluation of the performance of
approaches for helmet use detection of tracked motorcycles,
we adapt a metric for continuous visual event recognition
proposed in [37] for use with CHUE.

Let a CHUE be a tuple E = (L,T ), where L is helmet
use class, and T is motorcycle track. The motorcycle track T
is defined as T = (fi, bi)Ni=1, where fi is the frame number,
and bi = (li, ui,wi, hi) is the bounding box defined by
location information within the frame: left (li), upper (ui),
width (wi), and height (hi), and N is the duration of the
track.

A detected helmet use event EDetect is regarded as a correct
detection w.r.t. a ground truth event EGT only if it satisfies the
following conditions:
• Given a bounding box pair from EDetect and EGT in
an individual frame fi, a correct frame detection is
defined as an intersection over union (IoU) of above 50%
between EDetect and EGT infi.

• Given a number of correct frame detections, a correct
track detection is registered if the ratio of correct
individual detections in EDetect in relation to the track
duration N of EGT is above 50%.

• Given a predicted helmet use class LDetect, a correct
detection is registered if LDetect is identical to the labeled
class LGT.

Following these criteria, we are able to measure the
performance of an approach by the following metrics:
precision, recall, and weighted aggregate F-measure.
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• Precision is the ratio of the number of correct EDetect to
the total number of EDetect (correct and incorrect) in the
i-th class.

• Recall is the ratio of the number of correct EDetect to the
number of correct EDetect combined with missed EGT in
i-th class.

• For i-th class, the F-measure is the harmonic mean of
precision and recall:

Fi = 2 ·
Precision× Recall
Precision+ Recall

(13)

• Since samples across all helmet use classes LGT are
imbalanced, we use a weighted aggregate F-measure in
the dataset, defined as:

Fweighted =
1

wi ×
∑C

i=1
1
Fi

(14)

where C is the number of helmet use classes, and the
weight on the i-th class wi is proportional to the number
of samples in the i-th class; wi’s sum to one.

TABLE 4. Segmentation of video clips in the dataset for performance
evaluation, the training-validation-test split ratio is 70%, 10%, and 20%.

V. EXPERIMENTAL RESULTS
A. TRAINING SETUP
To evaluate our proposed method, the 910 annotated video
clips were randomly divided into three non-overlapping
subsets: a training set (70%), a validation set (10%),
and a test set (20%) according to each individual site,
as shown in Table 4. We used the training set to train our
proposed method, and used the validation set to find the
best generalizing model. Given the best generalizing model,
we report the final model performance on the test set.

For multiple motorcycle tracking, the parameters A, H , Q,
and R of Kalman filter are predefined and given by:

A =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


H =

[
1 0 0 0
0 0 1 0

]

Q =


0.1 0 0 0
0 0.25 0 0
0 0 0.1 0
0 0 0 0.25


R =

[
0.05 0
0 0.05

]
To train and evaluate theMTLmodel, we first generated all

pairs of image patches in each video clip. Next we randomly
sampled 2,000,000, 100,000, and 200,000 pairs from training,
validation, and test sets respectively. In each subset, 50%
image pairs come from the same tracks and 50% image pairs
come from different tracks. In our work, the CNN body was
initialized with the pre-trained weights on ImageNet [38] and
all FC layers were initialized with random weights.

For both deep learning models, i.e. the motorcycle detec-
tion model and theMTLmodel, the Adam optimizer [39] was
used with the default parameters β1 = 0.9, β2 = 0.999,
and a custom learning rate α. In our experiments, we tried
α = 10−2, 10−3, . . . , 10−5 and chose the value that gives
the best validation result. Considering the large size of data,
we only trained for 10 epochs with a batch size of 2 for the
motorcycle detection model and 128 for the MTL model.
In the training process, we saved the best model that gave
the minimum loss on the validation set and reported its final
performance on the test set.

B. RESULTS AND ANALYSIS FOR MOTORCYCLE
DETECTION
The first step in our approach is the detection of active
motorcycles (Step 1 in Fig. 1). As described in section III-A,
a fine-tuned RetinaNet was used for this task.1 To evaluate the
performance of our model, we use the average precision (AP)
metric [40]. The AP on the test set is very high, achieving
95.3% for the detection of motorcycles. Fig. 4 visualizes the
motorcycle detection results for four sampled frames. It can
be observed that the motorcycle detection through RetinaNet
is very close to the human annotation despite the occlusions
occurring to some motorcycles and riders.

C. RESULTS AND ANALYSIS FOR MULTI-TASK LEARNING
As helmet use detection and visual similarity are two tasks in
the MTL procedure, their results are presented separately.

For helmet use classification, as there are two such tasks
in MTL, we selected the output with a lower loss on the
validation set. Using thismodel resulted in an 80.6% accuracy
for the detection of motorcycle helmet use classes on all
54,529 annotated bounding boxes in the test set. In other
words, in 80.6% of all detected active motorcycles in the test
set, our approach correctly classified the number of riders,
their position, and their helmet use.

For visual similarity learning, two types of errors can
occur, different motorcycles can be falsely classified as
belonging to the same track, or the same motorcycle can be
falsely classified as belonging to different tracks. To evaluate

1Implemented using https://github.com/fizyr/keras-retinanet
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FIGURE 4. Motorcycle detection results on sampled frames, where the top row corresponds to the ground truth human annotation (green bounding
boxes), and the bottom row corresponds to the results (yellow bounding boxes), predicted by fine-tuned RetinaNet.

FIGURE 5. Examples of the output distances of the MTL model between image pairs of the same track (vertical comparison) and different tracks
(horizontal comparison), with smaller numbers showing higher visual similarity.

the performance of visual similarity learning we draw the
receiver operating characteristic (ROC) curve and compute
the area under the ROC curve (AUC), as shown in Fig. 6.
We tune the threshold on the result of visual similarity
learning of 200,000 pairs, where axis x and y correspond to
false positive rate (FPR) and true positive rate (TPR), defined
as:

FPR =
false positive

false positive+ true negative
,

TPR =
true positive

true positive+ false negative
, (15)

where ‘‘true positive’’ and ‘‘true negative’’ corresponds
to the number of correctly detected pairs from the same
motorcycle track and correctly detected pairs from different
tracks respectively. ‘‘False negative’’ describes the number of
pairs from the same trackwhichwere detected as belonging to
a different track, and ‘‘false positive’’ describes the number of
pairs that are falsely detected as belonging to the same track.
The proposed model applied to visual similarity learning
resulted in an AUC of 0.967. Fig. 5 shows the output visual
distances of the MTL model between sampled image pairs of
the same and different tracks. For these examples, a threshold
of 2.0 would classify every image pair correctly.

D. ABLATION STUDY
To investigate the effectiveness of the key components
of our approach, we conduct six ablation experiments,

FIGURE 6. The ROC curve of visual similarity learning on the test set
(20,000 image pairs).

in which different components of our approach are removed
or replaced to learn more about their contribution to detection
accuracy and computational efficiency.

As shown in Table 5, for the first two ablation experiments,
we use frame-based motorcycle and helmet use detection
from a single CNN (YOLOv2 or RetinaNet), as the basis for
detection, adding motorcycle tracking through motion dis-
tance from our approach. The motorcycle class is determined
by the majority of predicted helmet use classes of a track.
For the additional four ablation experiments, we used the
approach presented in this paper, but use different networks,
i.e., YOLOv2 or RetinaNet, for motorcycle detection and
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TABLE 5. Results of ablation study on the test set of HELMET dataset.

FIGURE 7. Helmet use detection of tracked motorcycles on sampled frames in three observation sites. Each column corresponds to the frames
sampled (every 5th frame) from a video clip. where different bounding box colors corresponds to different predicted classes. The predicted helmet
use class and track id are labelled at the top of bounding boxes.

different schemes, motion-based or hybrid, for motorcycle
tracking.

For computational speed, it can be observed that the
first two approaches are achieving the highest number of
processed frames per second (25.12 and 13.42 FPS), as they
only use one network to simultaneously predict motorcycle
and helmet use class. However, it can be observed that this
high speed is achieved at the expense of detection accuracy,
as the two approaches are prone to producemissing detections
due to the imbalanced helmet use classes. This in turn
decreases tracking performance. Comparing RetinaNet and
YOLOv2, the advantage of the multi-scale feature pyramid
with focal loss is apparent, as RetinaNet has a higher accuracy
than YOLOv2, at the expense of processing speed. This
difference is present for detecting motorcycle and helmet
use simultaneously or separately. Finally, combining motion
similarity with visual similarity during tracking (our hybrid
tracking approach) improves the F-measure value with little
additional computational cost.

E. RESULTS AND ANALYSIS OF HELMET USE DETECTION
Detailed results of our proposed approach for helmet use
detection of tracked motorcycles in each individual class
are presented in Table 6. We achieved a 67.3% weighted
F-measure on the test set of the HELMET dataset. Our
approach works well on common classes of up to two riders
per motorcycle. Considering only these common classes,
the weighted F-measure improves to 70.6%. Fig. 7 shows
detection results on some sampled frames. For more detailed
results, we have attached video samples of our approach as
supplementary files.

In addition we present the location-wise performance
in Fig. 8, which shows the weighted F-measure for each
observation site in the HELMET dataset. Video clips from
the test set for all sites can be found in the supplementary
files of this article. It can be observed that the approach works
well for most locations, with nine of the observation sites
showing an F-measure of around 70% and above. However,
comparatively low accuracy can be observed for Bago_urban
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TABLE 6. Performance evaluation in each individual class.

FIGURE 8. Performance evaluation in each observation site.

and NyaungU_urban, with F-measures slightly below 60%,
and Yangon_II with an F-measure of only 39.1%. Looking at
the video clips in the test dataset (see supplementary files),
it becomes apparent, that the three sites with the lowest

F-measures have properties that can be linked to the low
accuracy of our approach in these environments. Bago_urban
and Yangon_II contain a crossroad, i.e. motorcycles appear in
the observation camera’s view in unusual angles compared to
the other sites. The observation site NyaungU_urban contains
a large number of parked motorcycles, on which riders rest.
Our approach detects and registers these motorcycles, leading
to an inaccurate detection, since parked motorcycles were not
annotated in the annotation process, as they are not actively
used.

F. COMPUTATIONAL COST
Our approach was implemented using the Python Keras
library with Tensorflow as a backend and ran on two NVIDIA
Titan Xp GPUs. In our implementation, instead of keeping
every cropped image patch in a track, we retain its visual
feature and helmet use prediction output only, which reduces
both computational space and time.

The overall processing speed of our method is 8.32 FPS.
More specifically, the computational time for motorcycle
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detection is 0.059 seconds per frame; the computational time
for visual feature extraction and patch-based helmet use clas-
sification is 0.058 seconds per frame; and the computational
time for tracking is negligible, merely 0.003 seconds per
frame.

VI. CONCLUSION
In this paper, we have proposed a deep learning based
method to automatically perform three elements of human
observer motorcycle helmet use registration, i.e. detection
and tracking of active motorcycles, as well as identification of
rider number per motorcycle, rider position, and rider specific
helmet use. In addition, we have applied our approach to
video data from diverse road environments, which included
adverse factors such as occlusion, differences in camera
angle, an imbalanced number of coded classes, as well as
differing rider numbers per motorcycle and varying traffic
densities. All of these elements make our approach more
comprehensive than earlier approaches for the automated
detection of motorcycle helmet use (see Table 1). Our results
show a generally high accuracy of our approach. For the
element of frame-based detection of motorcycles, we achieve
an average precision of 95.3%. The visual similarity element
of motorcycle tracking of our approach achieves 0.967 AUC,
in this first application of CNN-based tracking of active
motorcycles. For the element of detection of helmet use
class, i.e. the registration of rider number, position, and
rider specific helmet use, we achieve an accuracy of 80.6%
on a frame based level. Especially the imbalanced number
of classes in the HELMET dataset contribute to wrong
classifications. For the comprehensive application of our
approach, all its elements are combined, i.e. motorcycle
detection, tracking, and helmet use class prediction are jointly
applied. Our results show a weighted F-measure of 67.3% for
the helmet use detection of tracked motorcycles, showing that
our approach can be used to generate reliable motorcycle,
rider number, and position specific helmet use estimates.
The results of our ablation study show that our approach
achieves a comparatively high accuracy against ablation
experiments. While this high accuracy comes at the expense
of computational efficiency, our approach can process more
than 8 FPS on consumer hardware, which is close to real-time
speed for 10 FPS video data. Overall, our work shows that all
four basic elements of helmet use registration through human
observers can be implemented in a CNN-based approach
that is computationally efficient on consumer hardware.
Furthermore, the inclusion of detailed rider differentiation
is an enhancement of existing approaches. In addition to
presenting our helmet use detection approach, we publish
the HELMET dataset with this paper, which includes diverse
traffic video data that can be used to train and evaluate
similar approaches. Since existing datasets have a number
of shortcomings and are not readily available to researchers,
we hope that the publication of the HELMET dataset
will advance the development and evaluation of detection
approaches similar to the one in this paper.

There are some limitations to our work. The detection
accuracy can be much compromised when dealing with
uncommon traffic environments, or street scenes with
parked motorcycles. Hence, the current approach is partly
constrained in real-world applicability, as observation site
specific elements could decrease detection accuracy. And
while the HELMET dataset is a first step towards using more
diverse datasets for the development of automated helmet
detection approaches, further data needs to be collected to
make approaches universally applicable.

For future research, we intend to enhance the HELMET
dataset by incorporating scenes with more diverse traffic
infrastructure, e.g. crossroads, to ensure more robust appli-
cation of the approach. Also, more training data that contains
parked motorcycles will be acquired and used for training,
so that these objects will not be detected as false positive.
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