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Abstract

The vehicle license plate recognition (VLPR) system analyzes and monitors the speed of vehicles, theft of
vehicles, the violation of traffic rules, illegal parking, etc., on the motorway. The VLPR consists of three major
parts: license plate detection (LPD), license plate character segmentation (LPCS), and license plate character
recognition (LPCR). This paper presents an efficient method for the LPCS and LPCR of Korean vehicle
license plates (LPs). LP tilt adjustment is a very important process in LPCS. Radon transformation is used to
correct the tilt adjustment of LP. The global threshold segmentation method is used for segmented LP
characters from two different types of Korean LPs, which are a single row LP (SRLP) and double row LP
(DRLP). The cross-correlation matching method is used for LPCR. Our experimental results show that the
proposed methods for LPCS and LPCR can be easily implemented, and they achieved 99.35% and 99.85%
segmentation and recognition accuracy rates, respectively for Korean LPs.
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1. Introduction

The number of vehicles is increasing tremendously day by day. Vehicle license plate recognition
(LPR) plays an important role in traffic surveillance in today’s world. LPR is a technology that analyzes
the images obtained from video or surveillance cameras and obtains the information about these
vehicles via computer using computer vision algorithms. The LPR system consists of three key parts:
license plate detection (LPD), license plate character segmentation (LPCS), and license plate character
recognition (LPCR).

LPD is the initial step of a LPR system. The detection rate of LPD influences the accuracy of the LPR
system. We used background subtraction based on an adaptive GMM (Gaussian Mixture Model) and a
cascade of boosted classifiers [1] for LPD because our research has been proven to have higher accuracy
than other methods. In recent years, researchers have proposed various techniques for LPD, such as the
edge-based method [2,3], wind-based method [4], line segments [5], and so on. Recently, learning-

based algorithms are widely used for LPD, support vector machines [6], neural network [7], etc. The
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performance of our proposed method for LPD [1] is significantly faster than other existing methods.

After LPD, most of the LP images are detected with rotation. The accuracy of the LPR system relates
to the efficiency of the LPCS. Currently, several algorithms have been developed for LPCS, such as the
character projection-based method [8], the pixel distribution density and region pixel concentration-
based method [9,10], and the combination of the multimethod binarization method [11], are presented.
In this paper, we introduce a new algorithm that combines different image processing algorithms for
LPCS, such as image average filtering, visibility restoration, vertical edge-emphasizing, thresholding,
morphological operations, and connected component analysis. LPCR is the final and major step after
LPCS has been completed in the LPR system Recently, various kinds of optical character recognition
(OCR) algorithms have been used for LPCR, such as the template matching technique [12], which is
common and very easy to implement; neural networks [13] and support vector machines [14], which
are strong and fast classifiers for real-time classification and have significant accuracy; and other least
squares-support vector machine (LS-SVM) [15] methods have also been presented for the LPCR
process. In this paper, we combined the statistical correlation matching method with the concept of
template matching for LPCR. The proposed method is simple and easy to implement, and it has a high
recognition rate.

This paper is organized as follows: Section 2 explains the proposed LPCS and LPCR methods. In
Section 3, the experimental results show that our proposed method is able to achieve higher segmentation
and recognition accuracy than other existing methods. Finally, we present out conclusions in Section 4.

2. Proposed System

The workflow of our proposed system is illustrated in Fig. 1. The procedure consists of four distinct
phases: input detected LP images (from our previous work [1]), LPCS, LPCR, output LP numbers, and
saved the vehicle information. The details of our system procedures are explained in the next

Output
LPCS LP Number and Save
Vehicle Information

Fig. 1. The workflow of proposed system.

subsection.

2.1 Input Detected LP image

The initial step of our proposed system, LPD, has already been done by using background subtraction
and a cascade of boosted classifiers in [1], and the result of the LPD is used in this stage as an input
image for the next processing step. The accuracy of our proposed LPD system achieved 99.14%, which

is higher than other existing methods.

2.2 License Plate Character Segmentation (LPCS)

LPCS is the process of extracting a small region from the LP image, which represents the character of
LP. LPCS is a very important part of the LPR system. The accuracy of LPCR is totally dependent on how
well the LPCS has been executed. The procedure for our proposed LPCS system is shown in Fig. 2.
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Fig. 2. The procedure of proposed LPCS.

2.2.1 Image pre-processing

The image pre-processing methods for LPCS are described below.

2.2.1.1 Tilt correction

After LPD, the LP image might appear to be tilted due to the vehicle’s location with respect to the
camera. There are two common types of tilts that exits based on the direction and orientation of LP

images [16], as shown in Figs. 3 and 4.

Fig. 3. Horizontal tilt.

(a) 8>0 (b) 6<0

Fig. 4. Vertical tilt.
To solve the LP rotation problem, we used the Radon transform (RT), which is similar to the Hough

transform [17]. We applied the RT on image f (x,y) for a given set of angles ¢, and the result is a new
image R(o,0) obtained by following:
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@ =x%*cos(@)+ y*sin(0) (1)
R(4,0)= ﬁ £(x,1)5(¢— xsin @ — y cos O)dxdy )

The RT of an image is the sum of the RTs of each individual pixel. The algorithm first divides pixels

in the image into four subpixels and projects each subpixel separately, as shown in Fig. 5.

Projections

Image

Fig. 5. The basic concept of Radon transform of an image.

Each subpixel's contribution is proportionally split into the two nearest bins, according to the
distance between the projected location and the bin centers. If the subpixel projection hits the center
point of a bin, the bin on the axes gets the full value of the subpixel, or one-fourth the value of the pixel.
If the subpixel projection hits the border between two bins, the subpixel value is split evenly between
the bins. The interpolation method specified by bilinear interpolation [18] to rotate the R(g,6) image

and to obtained the tilt-corrected images, as shown in Fig. 6(e).

Fig. 6. Results of Radon transformation. (a) Original LP images, (b) edge LP images, (c) RT of original
LP images, (d) edge images after tilt correction, and (e) LP images after tilt correction.

2.2.1.2 Filtering

Mean filtering is a method of smoothing LP images, and it is simple and easy to implement. It reduces

the amount of intensity variation between one pixel and the next. We used the mean filter to reduce the
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noise in our original LP images after tilt correction. The main idea of mean filtering is to replace each
pixel value in an image with the mean (average) value of its neighbors, including itself [19]. This has the

effect of eliminating pixel values that are unrepresentative of their surroundings.

o) =~ 3 fTkd) @)

(k,))eN

where, M is the total number of pixels in the neighborhood N. We used a 3x3 neighborhood of [x,y]
that yielded.

x+l y+l

h(x,y) %2 > [Tk (4)

k=xIl=y-1

Now, if g[x,y] = 1/9 for every [x,y] in the convolution mask, the convolution operation reduces the
local averaging operation, as shown in Fig. 7. This result shows that a mean filter can be implemented as

a convolution operation with equal weights in the convolution mask (Fig. 8).

(a) LP images after tilt correction (b) LP images after mean filtering

Fig. 7. The results of mean filtering of LP images. (a) LP images after tilt correction, (b) LP images after
mean filtering.

1/1]1 IR ]
1 AP e
- x| 1 1 1 Py| Ps|Pg
9 Ps| Pg|Pg| 1|
1(1]1 T T

Fig. 8. The convolution operation of mean filtering.

2.2.1.3 Visibility restoration

The difficulty of processing LP images is due to the presence of haze, fog, or smoke, which fades the
colors and reduces the contrast of the LP image characters. To overcome this problem, we used a
visibility restoration [20] algorithm to enhance the LP image visibility in this step. The algorithm is
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controlled by only a few parameters and consists of: atmospheric veil inference, image restoration,

smoothing, and tone mapping. In [21] Koschmieder’s law is presented as:
L(x,y)=L,(h,v)e ™" + Ly (1-e ") 5)

where, L(x,y) is the apparent luminance and d(x,y) is the distance of the object with intrinsic luminance
Lo(x,y) at pixel (x,y). Ls is the luminance of the sky and k denotes the extinction coefficient of the

atmosphere. The intensity of the atmospheric veil is:
V(x,p)=1;(1—e™* ") (6)
Koschmieder’s law [21] can be rewritten in gray and colors levels as:

I(x,7) = (R(x, y)(1 - @) Y (xy) 7)

N

where, I(x,y) is the observed image intensity (gray level or RGB) at pixel (x,y) and R(x,y) is the reference
image intensity without haze, fog, or smoke. As a consequence, instead of seeking to infer the depth-
map d(x,y), we equivalently inferred the atmospheric veil V(x,y). The visibility restoration algorithm
can thus be decomposed into several steps: estimation of Is, inference of V(x,y) from I(x,y), estimation
of R(x,y) by inversing Eq. (5), smoothing to handle noise amplification, and final tone mapping. The

restoration of the filtered LP image colors can be performed by solving Eq. (5) with respect to R:

I(x’y)_ V(x’y)
V) ®
IS

R(x,y)=

Fig. 9 shows the results of filtered LP images that have been restored in regards to visibility.

) ]

‘ *- -
® 4

(a) LP images after mean filtering (b) LP images after visibility restoration

(1) 2

€]

Fig. 9. The result of visibility restoration of LP images. (a) LP images after mean filtering, (b) LP images
after visibility restoration.

2.2.1.4 Vertical edge-emphasizing

For vertical edge-emphasizing, we used the Sobel vertical edge-emphasizing filter with a 2-D order-
statistic filter. The Sobel filter uses two 3x3 kernels, which are convolved with the LP image to estimate
the derivatives—one for horizontal changes and one for vertical. If we define R as the source image after
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visibility restoration, and Gx and G, are the two images that contain the horizontal and vertical
derivative estimation at each point, the computations are as follows:

-1 0 +1 -1 -2 -1
G, =[-2 0 +2 G,=l0 0 0 )

-1 0 +1 +1 +2 +1

where, * denotes the 2-D convolution operation. Here, the kernel G: is to make changes in the x
direction or edges that run vertically or have a vertical component. Similarly, the kernel G, is to make
changes in the y direction or edges that run horizontally or have a horizontal component [22]. We used
the kernel G; to create our desired vertical edge-emphasizing filter.

\ tﬁ"?’n‘. "»’S"») ]

FHsu 6563
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(a) LP images after visibility restoration (b) LP images after vertical edge-emphasizing

(3)

Fig. 10. The result of vertical edge-emphasizing. (a) LP images after visibility restoration, (b) LP images
after vertical edge-emphasizing.

The 2-D order-statistics filters are nonlinear spatial filters whose changes are based on ordering or the
position of the pixels contained in the image area included by the filter, and then replacing the value of
the center pixel with the value determined by the ordering result. For the 2-D order-statistic filtering of
a vertical edge-emphasized LP image, a maximum (Max) filter of the kernel size 6x6 is used. The Max
filter that selects the intensity of output pixel is equal to the maximum value in the neighborhood of
input pixels (kernels) [23]. The domain is equivalent to the structuring element used for binary image
operations. It is a matrix that only contains 1’s and 0’s, and the 1’s define the neighborhood for the

filtering operation.

H 33‘.‘&\, 55 585 g

P8 6865+

@
e

@GORY

2500}

3 (4)
(a) LD images after vertical cdge-cmphasizing (b) LD images after 2D order-statistic filtering

i

Fig. 11. The result of 2-D order-statistic filtering. (a) LP images after vertical edge-emphasizing, (b) LP
images after 2-D order statistic filtering.

2.2.1.5 ROI detection

The projection of a binary image onto a line may be obtained by partitioning the line into bins and
finding the number of 1 pixels that are on lines perpendicular to each bin. Projections are compact

representations of images, since much useful information is retained in the projection. Horizontal and
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vertical projections can be easily obtained by finding the number of 1 pixels for each bin in the vertical
and horizontal directions. The projection H[x] along the horizontal (rows) and the projection V[y]

along the vertical (columns) of a binary image are given by:

H[X]:ER(x,y) (10)
Viy] =§R(x,y) (11

There are many characters in a LP image. The vertical projection information is very useful to obtain
only the character region in a LP image. So, the threshold segmentation is used for detecting the region
of interest (ROI) with the vertical projection information. A global thresholding algorithm is proposed
for a segmented number of possible ROIs from the LP image. The global threshold algorithm is defined

by:

MT(x,y):{ 0 ¥V<In (12)
R(x,y) otherwise

where, R(x,y) is the image after 2-D order-statistic filtering, V(y) is the intensity value of the vertical
projection image, and the threshold is Th. We used different threshold values and found that the
maximum threshold value is Th=80 for achieving the best segmentation of ROIs. When Th=_80 is used
V(y) is defined by:

{(ZV(y)Jxl+max(maxV(y))x40} (13)
nxV(y) "
Viy)=

100

where, # is the number of pixels of V(y). Now, we can obtain the possible number of ROIs by using Egs.
(12) and (13).

2.2.2 Verify the type of LP

Two types of LPs are available in Korea based on LP character position information, which are a
single row LP (SRLP) and double row LP (DRLP). For justifying the type of LP we used the condition
based on Eq. (12). The algorithm is as shown below:

Algorithm I:
1. If the number of detected ROI=1
2. LP Type = SRLP;
3. Else, if the number of detected ROI=2
4.LP Type = DRLP;
5.End
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(1) Single ROT detected

( 2) Single ROI detected

*E

3) Double ROI detected

. ) . : |
| N I
M 1 ]
) ;/\/ \ ) (4) Double ROI detected

(a) TP images after 2D order- B — (c) LP images after (d) LP mmages after ROIL
- thresholding detected

statistic filiering (b) LP images vertical projection

Fig. 12. The results of ROI detection. (a) LP images after 2-D order-statistic filtering, (b) LP images
vertical projection, (c) LP images after thresholding, and (d) LP images after ROI detected.

2.2.2.1 Single plate segmentation of SRLP

The detected single ROI defines the type of LP as a SRLP, as shown in Fig. 12(d) 1-2. We extracted
the single ROI from the original image and do the post-processing for LPCR in the next.

2.2.2.2 Upper and lower plate segmentation of DRLP

The detected double ROIs define the type of LP as a DRLP, as shown in Fig. 12(d) 3-4. We extracted
the two ROIs from the original image and do the post-processing for LPCR in the next.

0o

Fig. 13. The size and character orientation of Korean LP. (a) The size of SRLP is 520 mmx110 mm, (b)
the size of DRLP is 440 mmx220 mm.
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2.2.3 Image post-processing

After obtaining the ROIs of SRLP and DRLP, image post-processing techniques were performed and

described in the next.

2.2.3.1 Resize the segmented image

After ROI detection, the segmented ROI is resized based on prior knowledge. The Korean LP size and
character orientation are shown in Fig. 13.

The size of the SRLP is 520 mmx110 mm, and with the information about the character orientation
of LP image (in Fig. 13) we were able to resize our ROI images. First, we had to normalize all single ROI
images to the SRLP size, and then we could eliminate the pixels with a width of 1 to 30 from the left side
and from the right side for those with a width of 490 to 520 because no character position exists in that
pixel range. The size of the DRLP is 440 mmx2,200 mm, and it has two parts. We detected these two
parts as upper plate ROI and lower plate ROI images. First, we had to normalize all double ROI images
to the DRLP size, and then we could remove the pixels for those with a width of 1 to 80 from the left
side of the upper plate and from the right side of the upper plate with a width of 360 to 440. We could
also do so from the left side of the lower plate for those with a width 1 to 10 and from the right side of
the lower plate for those with a width of 430 to 440 because no character position exists in that pixel

range. Fig. 14 shows the resized ROI images.

‘B1% 5352 [53HIGE63!

(1) Single ROT detected (2) Single ROI detected
60 @ | 2 228 7
‘ 6 o ! l Upper plate Upper plate
2300 2500
Lower plate Lower plate
(3) Double ROI detected (4) Double ROT detected 3) @
(a) LP images after ROI detected (b) ROI images after resized

Fig. 14. The result of ROI image resizing. (a) LP images after ROI detected, (b) ROI images after resized.

2.2.3.2 Thresholding

For the ROI of SRLP and DRLP images, images should be converted into a binary image based on the
global threshold using Otsu’s method [24], which chooses the threshold to minimize the intra-class
variance of the thresholded black and white pixels. The threshold operation is regarded as the
partitioning of the pixels of an image into two classes of O. and B. (objects and background) at grey level
n, where, O = {0, 1, 2,.., n} and B. = { n + 1, n +2,...., L-1}. Suppose &w” is the within-class variance, & is
the between-class variance, and 8+7is the total variance. An optimal threshold can be determined by

minimizing one of the equivalent principle functions with respect to n [25] as:

2
_673>

S} 57
oa=— =2 andy:i (14)
Oy

7 5

B
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With the three principle functions, 3 is the simplest. So the optimal threshold # is defined as:

n=argmin f (15)

L-1 L-1_, n
where, 5T2 = Z[:O[l_'uT]z > Hr :zizo[l[)i] > 5; =W, W1(,Uolul)2 - W ZZ[:OR » Wi=1=-W,
o=y =, V=W, g =, /Wy, Ha = ZLO (iP.), P, =N, /n, P;is the probability of occurrence and
N, is the number of pixels with grey level i, and # is the total number of pixels in a given image:
L-1

n=yn, (16)

i=0

Fig. 15 shows the results of Otsu thresholding (OT).

IBAE 5352 [DUHNGE6E| aEmELv] LRUNETH
M B @ @

[ SO 2 | Lo O SS - Hy 2B
Upper plate Upper plate , Upps_T plate Upper plate
- *
. o 2 500N 7 3755
Lower plate B Lower plate Lower plate Lower plate
) @ ® O]
(a) ROI images after resized (b) ROI images after OT

Fig. 15. The result of Otsu thresholding. (a) ROI images after resized, (b) ROI images after Otsu thresholding.

2.2.3.3 Morphological operation

Morphological opening and closing are necessary to use since there are is a lot of noise right after ROI
image thresholding [1]. The main morphological operations are dilation (€)) and erosion (©). Both
dilation and erosion are produced by the interaction of a set known as a structuring element [26] with a
set of pixels of interest in the image. The translation of a binary image A by a pixel p shifts the origin of
A to p. If B is the structuring element then the dilation, A@B, and erosion, AOB, is the set of all shifts
that satisfy the following:

A@B:p‘((é)p NA)c A (17)
A®B=p|(B), c 4 (18)
Erosion followed by dilation creates a morphological opening operation and is defined as:
AoB=(AGB)® B (19)
Dilation followed by erosion creates a morphological closing operation and is defined as:

AeB=(4A® B)®B (20)
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After using the morphological opening and closing operation for the threshold images all noises are

eliminated from the ROI image.

M) o M

@

| SO N | Binvin | OO | [ £ 28 |

. Uppe_r plate Upper plate - Upper plate Upper plate

2 SO O 3956 2500 3256
Lower plate Lower plate Lower plate Lower plate

® ) ® ®
(a) ROI images after OT

(b) ROI images after morphological operation

Fig. 16. The result of ROI images after morphological operation. (a) ROI images after Otsu thresholding,
(b) ROI images after morphological operation.

2.2.3.4 CCA or blob labeling

The character regions in a segmented LP image after morphological operations are grouped into a
connected component and we used blob labeling or connected component analysis (CCA) to detect the
connected regions in a binary segmented LP image [1]. The procedure for blob labeling or CCA is
defined as described below.

Suppose that A is a binary image and that:
A(x, y) = A(x', y') =u (21)

where, either =0 or u=1. The pixel (x,y) is connected to the pixel (x,y") with respect to value u if there
is a sequence of pixels (x,%)=(x0,Y0),(X1,¥1)..,(Xmyn)= (x’y") in which A(x,y:)=u, i=0,...,n and (x;y:)
neighbors (xi1,y:1) for every i=0,...,n. The sequence of pixels (x0,0),...,(x»y») forms a connected path
from (x,y) to (x,y). A connected component of value u is a set of pixels C, each having value u, and is
such that every pair of pixels in the set are connected with respect to u. Fig. 17(a) shows a binary
segmented LP image with connected components of 1's, and these components are actually connected

with respect to the four neighborhood definition [27].

S 12 nall D3H 6363 MIEN UZELASEZIN SIS 6LS
1)

M @ o

ST AT ool HiIoR
23500 IO IDIL]A

Fig. 17. The result of (a) blob labeling and (b) character extraction.

2.2.3.5 Character extraction

After using the CCA, we were able to find the connected component as a character image and the 2-D
bounding box bound each component. Hence, we were able to obtain the character region, as shown in

Fig. 17(b), and save it for LPCR processing step.
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2.3 License Plate Character Recognition (LPCR)

LPCR is the most significant and crucial step of the LPR system. The procedure of the LPCR is to
identify the characteristics of the character from the input LP image. After the LPCS stage, normalized
the extracted character images are to recognize extracted characters through a robust classifier, leading
to the final output of the LPCR system.

Input Extracted Train Korean and Numerical
Character Image Character Image Character Images

Fig. 18. The procedure of proposed LPCR.

2.3.1 Input extracted character image

Input segmented or extracted character images from LPCS (in Subsection 2.2) and will do the next

processing for LPCR.

2.3.2 Normalized character image

It is very difficult to deal with the exact size of character images. The performance of LPCR is affected
by the different sizes of characters and so we had to make the character images the same size. The size of
a trained character is 24x42 pixels (widthxheight). As such, we had to make our extracted character
from LPCS the same size (24x42 pixels).

Sl RSO IO SIOLS ST UAISESIOTROISIHIOISION

RolOK EIL IO OO iﬂiﬂ'ﬂ;}()
SOOI 15105 BN OO DEL

2) @
Fig. 19. Normalized character image. (a) before normalization, and (b) after normalization.

(®)

2.3.3 Train Korean and numerical character images

There are two types of characters are available in Korean LPs, Korean alphabetic (Hangul) characters
and numerical characters. There are 48 Hangul characters and 10 numerical characters that are used for

Korean LPs. The Hangul and numerical characters that are used for Korean LPs are presented in Table 1.

Table 1. List of Hangul and numerical characters are used in Korean LP

Type Characters
T A . T I I A
et G0l 9,9 A, 2 F B, A, W ) A B2, 9,9, % AL,
Numerical 0,1,2,3,4,5,6,7,8,9
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In DRLP, the upper plate has the name of the city and where the vehicle was registered (see Fig.
13(b)) in Korea. In Korea, the Surface Transportation Bureau of the Ministry of Land, Infrastructure
and Transport (MOCT) oversees the design and issuing of license plates (Korean: ¥ % It) for motor
vehicles. There are sixteen area offices that provide vehicle registration numbers in Korea, as listed in
Table 2.

Table 2. List of area offices are provided vehicle registration number in Korea

City type Name
Province Gyeonggi A7, Gangwon 7, Chungbuk (F5), Chungnam ),
(&) Jeonbuk (%5), Jeollanam ('), Gyeongbuk (74 &), Gyeongnam (73 '2), Jeju (A 5+)

Metropolitan city

A Busan (}-4F), Daegu (T-), Incheon ($13), Gwangju (*85%), Daejeon (tH4), Ulsan (&4F)
o 1

Special city

(EHA)) Seoul (A]-&) (capital)

ROljojoo}
*n HHEL!
212]202[2
P13
gl falAla
gol15505

+ WM~ AL - niRp R - NEREE

- hENTY - EEEEE - RERRE - 2ERG
-NEEEN - ERTEE - RBERE R3E0
~LEO0n - fHOUE - nEEEE - SRE6EE
+ DD - sQANE - SEERE - JEEEE
-+ SEIAHE - 3ZEEE - 3EEEE" 2888

- RODET- NANAR - 25850 0 E
- ARAE - SBEET - WADND - 4BER
-2BH5E 0D « A4 - 8L~ By
EE - B8 B <Y - AU -BE 1
< -

{b) Korean alphabetic (Iangul} characters

JQololo 1616
a/717717
HEHEE
“viklEriE

(a) Numerical characlers

o

Fig. 20. Some examples of Hangul and numerical character training samples images. (a) Numerical
characters, (b) Korean alphabetic (Hangul) characters.

There are 42 common Hangul characters and 6 other characters that are specially used for provinces
and cities in Korea. We extracted 1,000 different characters (Hangul and numerical) from Korean LP
images. We normalized and binarized them to be the same size of extracted characters (24x42 pixels)
and trained them for our LPCR. Fig. 20 shows some examples of Hangul and numerical character

training sample images.
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2.3.4 Matching and character recognition

The template-based method is used for matching with trained and extracted characters. Suppose the
template of a trained character is g[x,y] and it needs to be matched with an extracted character image of
flx,y]. An obvious thing to do would be to place the template of a training character at a location in an
image and to match its presence at that point by comparing the intensity values in the template of the
training character with the corresponding values in the extracted character image. Since it is unusual for
intensity values to match exactly, we needed a measure of dissimilarity between the intensity values of
the template of a training character and the corresponding values of the extracted character image.
Several measures can be defined as:

max|f — g| (22)
2| -4 (23)
[x,y]eR
D9’ (24)
[x,yJeR

where R is the region of the template of a training character. The sum of the squared errors is the most
common measure. In the case of template-based matching, this measure can be computed indirectly
and the computational cost can be reduced. We can simplify:

D(Uf-)=D+ Deg -2 fg (25)

[x.y]eR [x.y]eR [x.y]eR [x.yleR

Now, if we assume that fand g are fixed, then Xfg gives a measure of mismatch. A reasonable strategy
for obtaining all locations and instances of the template is to shift the template and use the match

measure at every point in the image. Thus, for a mxn template of a train character, we compute:

m_ n

Mlx,y]1=Y.> glk, N fx+k,y+1] (26)

k=1 I=1

where, k and [ are the displacements with respect to the template of a train character in the extracted
character image. This operation is called the cross-correlation between fand g. The main goal is to find
the locations that are local maxima and are above a certain threshold value. However, a minor problem
in the above computation was introduced when we assumed that f and g are constant. When applying
this computation to images, the template g is constant, but the value of f will vary. The value of M will
then depend on f, and, hence, will not give a correct indication of the match at different locations. This
problem can be solved by using normalized cross-correlation. The match measure M then can be
computed using:

n

Cfg[an]: g[k5l]f[x+k,y+l] (27)

m
k=1 I=1

Mlx.y]= Cplx ¥l

(28)

n

p
fZ[X+k,y+1]}

=~
I

M=

1=1
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It can be shown that M takes the maximum value for [x,y], at which g=cf. According to this method,
the LP character is recognized. The results of matching and the recognition of extracted character

images based on template are shown in Fig. 21.

——— =
B Extraction Success —l Bl extraction Success —
, (1 @
Number Plate Estraction successful Number Plate Extraction successful
Extracted SRLP Number plate:- 8125352 Extracted SRLP Number plate:- 530 6363 .
See the SRLP.txt file to see the stored number. See the SRLP.b file to see the stored number,
| —_—
-
- Extraction Success == . Extraction Success L=JL =
, ) ‘ (4)
Number Plate Extraction successful. Number Plate Extraction successful.
Extracted Upper Number plate:- E0& . Extracted Upper Number plate:- 25528 .
See the DRLP.txt file to see the stored number. See the DRLP.txt file to see the stored number.
L -

. Extraction Success == . Extraction Success _=' —
Number Plate E straction successful Number Plate Extraction successiul
E stracted Lower Number plate:- 2300 . Estracted Lower Number plate:- 713266
See the DRLP.txt file to see the stored number. See the DRLP.txt file to see the stored number.

(4) L y
(a) Original LP images (b} Results of Character Recognition

Fig. 21. The results of character recognition. (a) Original LP images, (b) results of character recognition.

2.4 Output LP Number and Save Vehicle Information

After the LP images are identified the information obtained from them will be important for future
use. As such, we stored the vehicle LP information in a file and saved our information into a .txt file for
SRLP and DRLP separately. Fig. 22 shows all of the vehicle LP information that was saved in a .txt file.

7 SRLp - Notepsa _E@l‘i
File Edit Format View Help
Date:-08-Apr-2015 -

SRLP Number Plate:-81=z5352
bate:-08-Apr-2015
SRLP Number Plate:-32:18945
08-Apr-2015

umber Plate:-341]1080

08-Apr-2015
ber Plate

Date:-08-Apr-2015
SRLP Number Plate:-54=4752

loate:-08-apr-2ots
SRLP Number Plate:-3521508
08-Apr-2015

umber Plate:-95c47271
08-Apr-2015
umber Plate

pate:-08-Apr-2015
SRLP Number Plate
pate:-08-Apr-2015
SRLP Number Plate
08-Apr-2015
umber Plate:

e:-08-Apr-2015
Number Plate

< (b)Save vehicle SRLP information's " (¢) Original SRLP

i & It e Images i a (XL e

(a) Original SRIP images

Fig. 22. Some examples of saving the vehicle LP information in a .txt file. (a) SRLP original images, (b)
SRLP .txt file, (c) DRLP original images, and (d) DRLP .txt file.
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3. Experimental Results

The experiments for our proposed LPCS and LPCR methods were based on a PC with CPU 3.40-GHz
Intel Core i7-2600 and 8.00GB of RAM and implemented the core algorithms in MATLAB R2013a. The
database of 1,000 SRLP and 1,000 DRLP images with a resolution of 520x110 and 440x220 pixels was
obtained from the success of our LPD from [1], and these images were captured at different times and
weather conditions. The combination of different algorithms and proposed a global thresholding (GT)
technique and also verified LP type with the prior knowledge were applied in our LPCS process. The
cross-correlation matching algorithm was used for LPCR, which is very simple and fast. Our matching
performance obtained significant results because our LPCS has high accuracy. Once the characters were
extracted from a LP image then the recognition rate also had a high accuracy. Table 3 shows the
performance comparison of different LPCS and LPCR techniques with our proposed methods. Our

proposed methods show the best performance compared to other existing methods.

Table 3. Performance comparison of different LPCS and LPCR techniques

thods CERNE T
LPCS
(8] Projection based method 310 15 95.2
[28] Morphological and partition based method 150 9 94
[29] Combination of projection and inherent characteristics of 232 6 97
the character based method
[30] CCA and Euclidean distance based method 2,000 19 99.05
Our proposed GT and prior knowledge 2,000 13 99.35
method
LPCR
[13] Multi-layer perceptron (MLP) neural network and back- 600 21 96.5
propagation (BP) based method
[14] Support vector machine (SVM) based method 500 39 92.2
[15] BP neural network method and RBF kernel LS-SVM 500 9 98.2
method
[31] Local line binary pattern (LLBP) based method 1,000 26 97.74
Our proposed The cross-correlation based matching method 1,987 3 99.85
method

4. Conclusions

In this paper, a combination of LPCS and LPCR systems has been proposed for Korean LP
recognition in real-time processing even when the LP image quality is bad. The LPCS procedure
presented in this paper that we combined with multiple image processing algorithms, GT, and prior
knowledge of Korean LPs is especially useful for robustness and accuracy if the proposed system. We
also used the cross-correlation matching algorithm based on the template of LP characters for the
LPCR. The proposed LPCS and LPCR methods achieved 99.35% and 99.85% accuracy, which is

significantly more efficient than other existing methods.
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