
XU, X., LI, G., XIE, G., REN, J. and XIE, X. 2019. Weakly supervised deep semantic segmentation using CNN and ELM 
with semantic candidate regions. Complexity [online], 2019: complex deep learning and evolutionary computing 

models in computer vision, article 9180391. Available from: https://doi.org/10.1155/2019/9180391  

 
 
 
 

Copyright © 2019 Xinying Xu et al. This is an open access article distributed under the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited. 

This document was downloaded from 
https://openair.rgu.ac.uk 

Weakly supervised deep semantic segmentation 
using CNN and ELM with semantic candidate 

regions. 

XU, X., LI, G., XIE, G., REN, J. and XIE, X. 

2019 

https://doi.org/10.1155/2019/9180391


Research Article
Weakly Supervised Deep Semantic Segmentation Using CNN and
ELM with Semantic Candidate Regions

Xinying Xu,1 Guiqing Li,1 Gang Xie ,1,2 Jinchang Ren ,1,3 and Xinlin Xie1

1College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, China
2College of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, China
3University of Strathclyde, Department of Electronic and Electrical Engineering, Glasgow, UK

Correspondence should be addressed to Gang Xie; xiegang@tyut.edu.cn and Jinchang Ren; jinchang.ren@strath.ac.uk

Received 15 November 2018; Revised 3 February 2019; Accepted 25 February 2019; Published 14 March 2019

Guest Editor: Jungong Han

Copyright © 2019 Xinying Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The task of semantic segmentation is to obtain strong pixel-level annotations for each pixel in the image. For fully supervised
semantic segmentation, the task is achieved by a segmentation model trained using pixel-level annotations. However, the pixel-
level annotation process is very expensive and time-consuming. To reduce the cost, the paper proposes a semantic candidate regions
trained extreme learning machine (ELM) method with image-level labels to achieve pixel-level labels mapping. In this work, the
paper casts the pixel mapping problem into a candidate region semantic inference problem. Specifically, after segmenting each
image into a set of superpixels, superpixels are automatically combined to achieve segmentation of candidate region according to
the number of image-level labels. Semantic inference of candidate regions is realized based on the relationship and neighborhood
rough set associated with semantic labels. Finally, the paper trains the ELM using the candidate regions of the inferred labels to
classify the test candidate regions. The experiment is verified on the MSRC dataset and PASCAL VOC 2012, which are popularly
used in semantic segmentation. The experimental results show that the proposed method outperforms several state-of-the-art
approaches for deep semantic segmentation.

1. Introduction

Image semantic segmentation is the understanding of the
semantic information contained in images. It uses the com-
puter to extract semantic information of the captured scene
from the image for understanding its contents, which can
be applied in image recognition, classification, and analysis
[1]. Semantic segmentation has been widely used in intelli-
gent robot scene understanding, automatic driving system
streetscape recognition, and medical image detection [2].
However, semantic segmentation has become one of the most
challenging computer vision tasks due to the scale, position,
illumination, and texture changes of objects in the image
[3].

Inmost cases, image semantic segmentation is established
as a fully supervised task. The fully supervised methods
require using strong pixel-level annotations, which is very
limited, expensive, and time-consuming in the labeling pro-
cess, and it is different due to the subjective understanding

of the labeling personnel [4]. However, weakly supervised
semantic segmentation only requires image labels at the
image-level, which ismuch cheaper and less time-consuming
than pixel-level annotations. Weakly supervised semantic
segmentation can be divided into three categories that
included bounding box [5], partial marking [6], and image-
level labels. At present, with the increasing popularity of
image sharing websites (for example, Flickr) and providing
a large number of user-labeled images, many studies have
focused on image-level labels for weakly supervised semantic
segmentation.

Therefore, the semantic segmentation of weakly super-
vised images based on image-level labels has gradually
increased recently. According to the different methods
of semantic label inference, the weakly supervised image
semantic segmentation can be roughly divided into clas-
sifier, multigraph model, and deep convolutional neural
network based methods. Among them, the first classifier-
based method uses the superpixels or the candidate regions
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Figure 1: Flow chart of algorithm framework.

generated by superpixel as the basic processing unit to infer
semantic label and then selects various classifier models to
learn the inferred label. The main idea is that the superpixels
or candidate regions with the same semantic label have
similar appearance [7]. However, semantic label inference
based on superpixel contains more redundant information,
which can interfere with the accuracy. Although the methods
based on candidate regions contain less redundant informa-
tion, it is difficult to completely and accurately segment the
number of image objects equaling the number of the labels by
the current image segmentation techniques. Then the based
multigraph model method uses all pixels or superpixels in
the image as graph model nodes. And graph model is estab-
lished with relationship between pixels or superpixels. But
this method calculates a one-dimensional potential energy
function for each superpixel and the algorithm complexity
is high [8]. Fortunately, sparse representation and image
hashing are powerful tools for data representation and the
combinations of these two tools for scalable image retrieval.
It is possible to replace the high-dimensional features with
a low-dimensional Hamming space with preserving the
similarity between features, which will reduce the computa-
tional complexity of the energy function, thereby reducing
the complexity of the algorithm [9–14]. In addition, the
deep convolutional neural network based method uses a
pretrained classification network to obtain objects of the
image and then fine tunes by segmentation networks and
image-level labels. The methods are sensitive to the accuracy
and dataset of the pretrained classification network. And the
classification network can only identify small and discernible
regions, which is insufficient for the inference of large-scale
image-level semantic labels [15].

Although the weakly supervised image semantic segmen-
tation based on the image-level labels is proposed constantly,
its segmentation accuracy has a large room for refinement
compared with the fully supervised image semantic seg-
mentation. The main obstacles and difficulties lie in how to
accurately implement the semantic label inference, that is, the
accurate mapping from the image-level labels to image pixel
positions. In addition, as a dense pixel-level label prediction
task, not all features are equally important and discriminative
for learning classification models [16]. Therefore, how to
construct an effective model to infer semantic labels is also
meaningful for improving the accuracy of weakly supervised
image semantic segmentation.

Under the condition of weak supervision, this paper
proposes a deep semantic segmentation using CNN and
ELMwith semantic candidate regions. The proposedmethod
uses candidate region instead of the superpixel as the basic
processing unit, and the neighborhood rough set combines
with the semantic associated relationship between image-
level labels to infer semantic label. In addition, the ELM is
trained by candidate region contained semantic information
to classify test candidate regions. The algorithm flow chart
is shown in Figure 1 and the main contributions of this
paper are as follows: (1) A method for merging superpixel
into candidate regions is proposed. The method guides
superpixel merging with the number of image-level labels as
supervised information and generates candidate region with
high precision, which can solve the problem that multiple
instances are not adjacent in an image. And merging process
can reduce complexity of subsequent processing practically.(2) An inference method of candidate region semantic label
is proposed. The method uses the neighborhood rough set
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to generate different neighborhood particles and starts from
the highest frequency semantic label to infer. Then the other
candidate regions semantic labels are inferred based on the
strongest associated relationship, which solves the problem
of semantic label mapping difficultly. (3) An ELM training
method is proposed. It uses candidate region with semantic
labels to train ELM, which can reduce the introduction of
negative sample pixels in the training data and improve
accuracy of classification.

2. Related Work

As the simplest and most effective form of weak supervision,
image-level labels are widely used in weakly supervised
image semantic segmentation. It is difficult to correspond
to image objects if only image-level labels data is used for
training, since image-level labels cannot provide accurate
information to describe boundaries and locations of objects
due to inherent ambiguity of image-level labels. According to
the different methods of semantic label inference, the paper
divides the weakly supervised image segmentation algorithm
into three categories: classifier, multigraph model, and deep
convolutional neural network based methods.

The classifier based method uses image-level labels as
supervised information and divides all pixels or superpixels
in the image contained target label into positive samples and
other negative samples without target label. Then classifier
is trained directly and the best classifier is obtained by
iteratively optimizing loss function. For example, Wei et
al. [23] trained a multilabel classification network, where
pictures are classified through the network, and finally
matched the classification information with higher confi-
dence to the original picture to obtain association between
semantic labels and locations. However, this method directly
introduces the pixel points of target image block as object
regions into many negative sample pixels, such as pixels
belonging to the background. Subsequently, Wei et al. [19, 22]
proposed a simple to complex framework (STC) in 2017,
which firstly trains an initial segmentation network using
simple images and then predicts the labels of simple images
using the network and uses these labels to enhance train-
ing semantic segmentation network. Finally, the enhanced
network is used to predict labels of more complex images
and train a better semantic segmentation network. However,
this method requires collecting a large number of simple
pictures; otherwise it is difficult to train a higher performance
initialization network and continue to improve, and it has
many training samples and long training time. Zhang et al.
[18] proposed to use the spatial sparse reconstruction method
to obtain an effective SVM classifier, which trains classifier
by training data with noise, and to use method of subspace
reconstruction to denoising and find optimal SVM classi-
fier by iterative optimization. The methods iterate between
generating temporary segmentation masks and learning with
interim supervision. These methods benefit from pixel-level
supervision; but errors easily accumulate in iterations.

The multigraph model based method uses all pixels or
superpixels in the image as graph model nodes. And graph
model is established with relationship between pixels or

superpixels. Vezhnevets et al. [8] proposed a multi-instance
learning (MIL) framework for weakly supervised images
segmentation. The algorithm regards each superpixel as an
instance; each image is represented as a series of instance
sets. Only labels of instance set are known, so image seg-
mentation is converted to instance label inference. But the
algorithm lacks the labels between superpixel pairs. In order
to solve this problem, Vezhnevets et al. [17] proposed amulti-
image model (MIM) based on the graph model and built
a common probability graph model on the training set and
test set using conditional random fields for each superpixel.
The one-dimensional potential energy function establishes
a binary potential energy function between superpixel pairs
and finally approximates parameters of conditional random
field by method of graph division. However, this method
calculates a one-dimensional potential energy function for
each superpixel and the algorithm complexity is high. In
order to enrich the description of superpixel features, Vezh-
nevets et al. [24] further proposed a series of parameterized
structuredmodels in which potential energy pairs are formed
bymultichannel visual features, and weight of each channel is
determined byminimizing to distinguish different superpixel
labels of trained segmentation model. The above graph-
based algorithm has improved segmentation performance
in weakly supervised environment, but it is limited by the
low descriptiveness of the unary or binary potential energy
function.

The method of deep convolutional neural network is
based on DCNN framework, which is trained to obtain the
object position. Oquab et al. [25] applied DCNN framework
to generate a single point to infer the location of the object,
but this method cannot detect multiple objects of same class
in an image. Pinheiro et al. [21] and Pathak et al. [20] added
segmentation constraints to final cost function to optimize
parameters of DCNN image-level labels. However, the two
methods generate coarse prediction because the algorithms
generally do not use low-level cues.

3. The Proposed Method

The paper proposes a weakly supervised image semantic
segmentation framework based on candidate regions and
ELM. The framework of the paper consists of two phases
of learning and testing. Among them, there are three basic
steps in the learning phase: (1) candidate region segmentation
using superpixel; (2) candidate region semantic inference
using semantic label association; (3) candidate regions clas-
sification using ELM. In the testing phase, the paper first
performs superpixel segmentation and merging on the test
image and then predicts the semantic label of each pixel with
the candidate region as the basic processing unit.

3.1. Segmentation of Candidate Regions Using Superpixels.
Compared with superpixels, the number of candidate regions
in the image is smaller, which is more helpful for improving
the accuracy of semantic label inference. Therefore it is
necessary to merge oversegmented superpixels to obtain
candidate regions library. In addition, the several low-level
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Input: Data set, image-level label number 𝑙.
Output: Cluster center for each target superpixel 𝐶 = {𝑐𝑖}𝑛𝑖=1, the number of target superpixels in the image 𝑛.
Step 1. SLIC superpixel segmentation,𝑋 = [𝑥1, . . . , 𝑥𝑛].
Step 2. While 𝑛 ≥ 3𝑙

(a) Extract visual features of each superpixel: LAB(3 dim), Gabor(65 dim), Sift(64 dim), Surf(64 dim);
(b) The adjacency relationship between superpixels is counted and stored in matrix 𝐷;
(c) The superpixel similarity 𝑆 is calculated according to formula (1);
(d) Combine the most similar superpixel pairs with considering the adjacency;
(e) Calculate the mean of the merged superpixel clustering centers as a new clustering center;
(f) Update 𝑛.

End
Step 3. Reclassify disconnected areas.

Algorithm 1: Superpixel merging process.

visual features are extracted to preserve the boundary infor-
mation of each superpixel as much as possible during the
merging process. Therefore the paper selects the colour,
texture, sift, and surf features representing each superpixel.
Specifically, due to the wide colour gamut of the LAB, this
paper chooses the LAB as the colour feature. And this paper
selects the Gabor filters to represent the texture feature of
each superpixel, because the Gabor filter has the capability
of dealing with spatial transformations [26].

First, the initial image is divided into superpixels based on
the simple linear iterative clustering algorithm (SLIC). And
comparedwith other superpixel segmentationmethods, SLIC
algorithm has the following advantages [27]: (a) the size of
formed superpixels is basically the same; (b) the number of
superpixels can be controlled by adjusting the parameter k;
(c) the speed is fast and boundary fit between block and target
boundary is high; d) the difference of features between pixels
within each block is small.

Then, the 196-dimensional visual features are extracted
to describe each superpixel, including colour features (3-
dimension), texture features (65-dimension), Sift features
(64-dimension), and Surf features (64-dimension). Finally,
on the basis of superpixel spatial position adjacency, the
most similar superpixels are merged by statistical superpixel
similarity, and the number of superpixels is combined to
be no more than three times of image labels, as shown in
Figure 2.

Suppose an image contains n superpixels 𝑋 = [𝑥1, . . . ,𝑥𝑛] ∈ 𝑅𝑚×𝑛, and any superpixel 𝑥𝑖 has 196 dimensional visual
features to describe, image labels 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑙], and l is
the number of image semantic labels. Then similarity of any
superpixels 𝑥𝑖 and 𝑥𝑗 is described as

𝑆𝑖,𝑗
= 𝑚∑
𝑖=1,𝑗=1, 𝑎𝑛𝑑 𝑖 ̸=𝑗

[𝛿1𝑑𝑖𝑗𝑙𝑎𝑏 + 𝛿2𝑑𝑡𝑒𝑥𝑖𝑗 + 𝛿3𝑑𝑠𝑖𝑓𝑡𝑖𝑗 + 𝛿4𝑑𝑠𝑢𝑟𝑓𝑖𝑗 ]
× 𝐷𝑖,𝑗

(1)

where𝛿 is weight factor of adjusting distance and satisfies 𝛿1+𝛿2+⋅ ⋅ ⋅+𝛿4 = 1;𝑑𝑙𝑎𝑏𝑖𝑗 ,𝑑𝑡𝑒𝑥𝑖𝑗 ,𝑑𝑠𝑖𝑓𝑡𝑖𝑗 ,𝑑𝑠𝑢𝑟𝑓𝑖𝑗 are the Euclideandistance
to represent the color, texture, Sift, and Surf distance of the

superpixels 𝑖 and 𝑗; 𝐷 stores adjacency relationship between
superpixels.

𝐷𝑖,𝑗 = {{{
1, if ci is adjacent to cj
0, otherwise

(2)

The specific steps of superpixel merging algorithm are as
shown in Algorithm 1.

3.2. Candidate Region Semantic Inference Using Semantic
Label Association. The inference from image-level to pixel-
level semantic label is the key of the whole weakly supervised
image semantic segmentation algorithm. In the process, the
classification of candidate regions directly affects the seman-
tic label inference results; it is necessary to extract rich visual
features. Therefore the paper adopts CNN to extract features
to ensure effective classification results. However, extracting
multilayer visual features increases the data dimension; it
will bring great difficulties to subsequent label clustering.The
neighborhood classifier [28] has an important advantage in
that it can get a subset of the features that are important for
decision making through attribute reduction; that is, it can
obtain discriminative features that are important for semantic
label inference.

As for the candidate region as the basic processing
unit, the paper regards the semantic label inference as the
most similar neighborhood particle extraction problem; the
uniqueness of the program is as follows: (1) The paper
stars inferring the semantic label from the semantic label
with the most images, as much as possible to ensure the
accuracy of prediction of the semantic labels; (2) According
to the image-level label number and the proportion of the
images corresponding to the semantic label to be inferred,
the number of candidate regions is included in each semantic
label to be inferred; (3) The inference of each semantic label
is based on semantic label association relationship, which
reduces the interference of the noise. The detailed steps are
as follows:

First, semantic labels can be represented as 𝐿 =[𝑙1, 𝑙2, . . . , 𝑙𝑘]; k is the total number of semantic labels cate-
gories. According to image-level labels, each semantic label
corresponding to the number of images is expressed as 𝑁 =
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Figure 3: Image semantic correlation intensity map.

[𝑁(𝑡), 𝑡 = 1, 2, . . . , 𝑘]. According to the relationship between
L and N, it can obtain a semantic label containing the most
images in the data set. Then the number of candidate region
set corresponding to the semantic label i can be expressed as

𝑅𝑖 = 𝑛𝑁 (𝑖) , 𝑛 ∈ 𝑅+ (3)

where 𝑛 is a proportional parameter. It depends on the multi-
ple of the number of image-level labels and the complexity
of the training set image. Therefore, the proportion of the
candidate region set corresponding to the semantic label 𝑖 in
the entire candidate region library can be expressed as

𝐹𝑖 = 𝑅 (𝑖)
∑𝑘𝑡=1 𝑅 (𝑡) (4)

Therefore, this paper obtains the range of the proportion
of candidate regions set. And the inference of the semantic
label is transformed into finding the proportion of candidate
region corresponding to the semantic label.

Second, given a set of semantic labels that need to be
associated, the semantic association relationship between
labels is obtained by calculating the semantic association
strength. And the association relationship is saved in a
diagonal relationship matrix 𝑊 expressed as

𝑊𝑘×𝑘 = {{{
𝐿 𝑖,𝑗, (𝑖 > 𝑗)
0, (𝑖 ≤ 𝑗) (5)

𝐿 𝑖,𝑗 = 𝑐𝑜𝑚𝑖,𝑗𝑐𝑜𝑓𝑖,𝑗 (6)

where 𝐿 𝑖,𝑗 is connection strength of two labels 𝑖 and 𝑗 in the
data set, 𝑐𝑜𝑚𝑖,𝑗 is frequency of simultaneous occurrence of
labels 𝑖 and 𝑗, and 𝑐𝑜𝑓𝑖,𝑗 is frequency of any one occurrence
of labels 𝑖 and 𝑗. Semantic association strength is shown
in Figure 3. The color from blue to red indicates that
association strength is fromweak to strong in the figure. And
image semantic self-association is the strongest degree that is
expressed as red.

As can be seen from Equation (4) and (5), this paper
encourages inference from semantic labels that appear simul-
taneously in multiple images. Then the sematic labels are
inferred from the strongest association. According to the
semantic label association relationship and its corresponding
semantic label, the proportion of the semantic label can be
obtained.

In order to fully extract the features of each candidate
region in the candidate region library, the paper adopts
CNN to extract features. And the CNN network structure
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Table 1: Network structure of CNN.

structure input operate output
convolution Nonlinear mapping Pooling

Conv1 27×27×3 64×3×3 ×3 stride 1 ReLU 27×27×64
Conv2 27×27×64 256×5×5×64 stride 1 ReLU 2×2 pool 13×13×256
Conv3 13×13×256 256×3×3×256 stride 1 ReLU 13×13×256
Conv4 13×13×256 256×3×3×256 stride 1 ReLU 13×13×256
Conv5 13×13×256 512×3×3×256 stride 1 ReLU 2×2 pool 6×6×512
Fc6 6×6×512 4096 ReLU 4096
Fc7 4096 4096 ReLU 4096
Fc8 1000 1000 1000

is shown in Table 1. It consists of five convolutional layers
(cov1∼cov5) and three fully connected layers (fc6∼fc8). In this
paper, five convolutional layers and two full convolutional
layers are used for learning. After cov2 and cov5 convolution
operations, the max pooling method is used to operate, and
finally 4096-dimensional feature vector of fc7 layer is used
as an image feature vector output. For CNN input data
preparation phase, the sample patch uses an image block of
27×27 pixels in size, and the sampling center is candidate
region center. For CNN output, feature extraction model
chooses directly to use 4096-dimensional feature vector of fc7
layer as visual feature of candidate region.

According to the feature vector of the candidate region,
we construct an information table 𝐼𝑆 = ⟨𝑈,𝐶, 𝑉, 𝑓⟩, where
the sample set of candidate regions 𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑘},
which is described by a series of features. Where 𝑘 is the
number of candidate regions in the candidate region library,𝐶 is feature set describing𝑈,𝑉 is a set of attribute values, and𝑓 is information function. And the neighborhood particles𝛿(𝑥𝑖) of each candidate region are constructed:

𝐹𝑥𝑖 = 𝛿 (𝑥𝑖)𝑈 (7)

𝛿 (𝑥𝑖) = {𝑥𝑗 | 𝑥𝑗 ∈ 𝑈,Δ (𝑥𝑖, 𝑥𝑗) ≤ 𝛿} (8)

Δ(𝑥𝑖, 𝑥𝑗) = ( 𝑚∑
𝑖=1

𝑓 (𝑥𝐼, 𝐶) − 𝑓 (𝑥𝐽, 𝐶)𝑃)
1/𝑃

(9)

where𝛿 ≥ 0; 𝛿(𝑥𝑖) is called generated neighborhood informa-
tion particle, which determines the size of the neighborhood
particle. 𝑃 is the norm, Δ is called the similarity measure, and𝑚 is dimension of attribute matrix 𝑉. According to nature of
metric, it can be known that

𝛿 (𝑥𝑖) ̸= ⌀ (10)

𝑘∑
𝑖=1

𝛿 (𝑥𝑖) = 𝑈 (11)

If the size of the neighborhood particle is fixed, the neigh-
borhood particle with the most similar candidate regions
can be obtained. And 𝑓𝑖 can determine the size of the
neighborhood particle.Then the paper can get neighborhood
thresholds 𝛿 = {𝛿1, 𝛿2, . . . , 𝛿𝑘} and get the smallest threshold

𝛿V = min(𝛿). Therefore, the candidate regions corresponding
to the most similar neighborhood particles with the mini-
mum threshold are determined.

Finally, the paper obtains the candidate region corre-
sponding to the semantic label to be inferred and its neigh-
boring particles and completes the inference of the semantic
label. After that, the inferred candidate region is removed
from the candidate region library, iterating until all inferences
of the rest of semantic labels are completed.

3.3. Candidate Regions Classification Using ELM. After com-
pleting the inference of all semantic labels, the paper selects
the ELM to learn the inferred candidate regions. The main
reason is that ELM is a new type of fast machine learning
algorithm, which is a supervised algorithm based on single
hidden layer feed forward neural network [29]. In addition,
ELM trains parameters without iterating, which can improve
algorithm efficiency.

First, the ELM is trained based on candidate regions
with semantic labels and get trained ELM to classify in
the training stage. And the candidate region is still used
as the basic processing unit of semantic label prediction.
The reason is that the candidate region is well close to the
boundary of the target and is not susceptible to noise. In
order to obtain the candidate regions corresponding to the
test images, the paper first performs superpixel segmenta-
tion and superpixel merging to generate candidate regions
under the same parameter setting and implementation steps.
Then 4096-dimensional features are extracted on the can-
didate regions corresponding to the test images to ensure
the consistency between the testing stage and the training
stage.

After that, given an image candidate region 𝑥𝑖 ={𝑥1, 𝑥2, . . . , 𝑥𝑙} in the ELM testing stage, 𝑙 is the number of
the test candidate regions. The candidate region is directly
used as the input of the ELM; then the semantic label
is predicted by the ELM. The specific steps of the ELM
classification algorithm are shown in Algorithm 2.

4. Experiment

4.1. Dataset and Evaluation. The performance of our algo-
rithm was evaluated on the MSRC [30] dataset, which
has 591 images, including natural scenes (such as trees),
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Input: Given 𝑁 training samples (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, . . . ,𝑁; The number of semantic label categories 𝑘;
Activation function 𝑔(𝑥); The number of hidden layer nodes is l 𝑙, Test sample 𝑥.

Output: Predicted result 𝑦.
Step 1. Initialize the weight and bias between the input layer and the hidden layer, Randomly set

the value of 𝑤 and 𝑏, given the value of 𝑙.
Step 2. Select the activation function of the hidden layer 𝑔(𝑥) and calculating the output matrix𝐻.
Step 3. Calculate the output weight of the network 𝛽: 𝛽 = 𝐻𝑇𝑇 (where𝐻𝑇 is the transpose of 𝐻).
Step 4. The output weights of the test samples 𝑥: 𝑂𝑖 = 𝐻(𝑤1, . . . , 𝑤𝑙, 𝑥, 𝑏1, . . . , 𝑏𝑙)𝛽.
Step 5. the output of the predicted result 𝑦: 𝑦 = 𝑙𝑎𝑏𝑒𝑙(𝑥) = argmax(𝑂𝑖), (1 ≤ 𝑖 ≤ 𝑘).

Algorithm 2: ELM classification algorithm.

structured scenes (such as buildings and roads), and other
structures scenes.The dataset provides pixel-level annotation
semantic images, and all images corresponding to pixel-level
annotations maps are 213×320 pixels in size. And the scene
contains a total of 23 semantic categories of objects. The same
rules are followed in use of dataset, ignoring the classes of the
horse and mountain image type. This article uses 276 images
for training and 256 images for testing.

In addition, our method is also evaluated on the PASCAL
VOC2012 segmentation benchmark dataset [31], which is one
of the most widely used benchmark datasets for semantic
segmentation. It contains one background category and 20
object categories. It consists of three parts: training set (1464
images), validation set (1449 images), and test set (1456
images). In our experiments, our work is also based on the
training images (10582 images) amplified by Harry Harlan et
al. [32] as a training set, which provides image-level labels for
training.

In this paper, evaluation index selects pixel accuracy (PA),
mean pixel accuracy (MPA), and mean intersection over
union (mIoU). Calculation formula is as follows:

𝑃𝐴 = ∑𝑖 𝑛𝑖𝑖∑𝑖 𝑡𝑖 (12)

𝑀𝑃𝐴 = 1𝑛𝑐𝑙∑𝑖
𝑛𝑖𝑖𝑡𝑖 (13)

𝑚𝐼𝑜𝑈 = 1𝑛𝑐𝑙∑𝑖
𝑛𝑖𝑖(𝑡𝑖 + ∑𝑗 𝑛𝑗𝑖 − 𝑛𝑖𝑖) (14)

where 𝑛𝑐𝑙 is the number of categories included in true value,𝑛𝑗𝑖 is the pixel of category 𝑖 divided into category 𝑗, and 𝑡𝑖 is
the total number of pixels of category 𝑖 in ground truth.

4.2. Parameter Settings. Theparameter setting of CNNmodel
is given as follows. The learning rate was set to 0.001, and
the performance of three CNN visual features in image clus-
tering is analyzed and compared. The last 3 fully connected
extracted visual characteristics of candidate regions, whose
outputs are 4096, 4096, and 1000, respectively, are considered
feature representations of image. Figure 4 shows comparison
of three visual features on MSRC dataset. It can be seen that
visual features are selected as output of fc7 layer for image
clustering, whose precision is the highest.

The parameter setting of ELM algorithm is given as
follows. When designing ELM, the cross-validation method

fc7
fc6
fc8
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0.5

0.6

0.7

Te
st 

ac
cu

ra
cy

2000 100
L

Figure 5: Relationship between L and test accuracy.

is generally used to determine optimal hidden layer node
number L within preset range of K value. The simulation
is performed on MSRC-21 data. It is assumed that L is
increasing from 1 to 200, and classification accuracy of test
set is sequentially obtained as shown in Figure 5. It can be
seen fromFigure 5 thatwhenL value reaches 64, test accuracy
is the highest. However, with L value continuing to increase,
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Image PredictionGround truth Image PredictionGround truth

Figure 6: Examples of predicted segmentations (the left are the examples of MSRC and the right are the examples of PASCAL VOC 2012
dataset).

themeasurement accuracy of ELM is generally decreasing. So
when 60≤L≤68, ELM has a good test accuracy.

4.3. Experimental Results. In order to evaluate the perfor-
mance of the proposed weakly supervised image semantic
segmentation method, the experiments were compared with
the current weakly supervised image semantic segmentation
algorithm on the MSRC-21 dataset and PASCAL VOC 2012
dataset. These comparison algorithms include STC [19],
AE [22], SR [18], MIM [17], MIL+ILP+SP-sppxly [21], and
CCNN [20], and these weakly supervised image semantic
segmentation comparison algorithms are based on image-
level labels.

First, the IoU of per-image label and the average IoU
(mIoU) of all image labels are as in Tables 2 and 3, respec-
tively, for the proposed method and the current weakly
supervised image semantic segmentation algorithm on the
MSRC-21 dataset and the PASCAL VOC 2012 dataset. And
each column represents different algorithm accuracy of each
semantic class on MSRC-21 and PASCAL VOC 2012 dataset,
and the last column is average accuracy of all classes. The
bold values in the table represent the best segmentation
performance.

As shown in Tables 2 and 3, the proposed algorithm
obtains comparable and competitive results on the IoU of
per-image label and the average IoU (mIoU) of all semantic
labels compared with the existing image-level labels weakly
supervised image semantic segmentation algorithm method.
Although the IoU on some semantic classes is lower than
the compared algorithm on the MSCR and the PASCAL
VOC 2012 validation set, the proposed algorithm achieves

the best segmentation performance on themIoU. In addition,
the segmentation accuracy for the weakly supervised image
semantic segmentation algorithm on the MSRC dataset is
significantly higher than that of the PASCAL VOC 2012
dataset. The reason is that the images on the PASCAL VOC
2012 dataset contain more complex objects and backgrounds
than the images on theMSRCdataset. Althoughmanyweakly
supervised image semantic segmentation algorithms have
been proposed, the segmentation accuracy of each semantic
class on the entire dataset still has a relatively large room for
improvement.

Then, in order to more intuitively display the segmenta-
tion performance of the proposed algorithm, somequalitative
segmentation examples of MSRC and PASCAL VOC 2012
dataset are given.The specific segmentation results are shown
in Figure 6.

As shown in Figure 6, the weakly supervised deep seman-
tic segmentation using CNN and ELM with semantic candi-
date regions can achieve better segmentation performance.
Moreover, the segmentation result based on the candidate
region level can retain the edge information of the object in
the image. However, the proposed method relies on semantic
label inference and classifier learning at the candidate region
level for an object that contains multiple regions with large
contrast, which may be misclassified.

5. Conclusions

In this paper, a weakly supervised semantic segmentation
method using ELM with semantic candidate regions is
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proposed. By merging superpixels into candidate regions
instead of using a large number of superpixels in an image, the
semantic associated relationship and neighborhood rough
set are effectively combined to solve the difficulty of map-
ping from semantic labels into image objects. The image
semantic labels quantity information is used as a condition
to terminate superpixel merging, which avoids problem of
manually set parameters and hence helps to solve the problem
of nonadjacent multiple instances. The candidate regions
are classified based on neighborhood rough set, where the
candidate regions are inferred by using semantic associated
relationship. As a result, more reliable candidate region
semantic labels can be obtained to improve the classification
accuracy. Future works can be extended to combine saliency
detection [33, 34] and heuristic optimization in a data fusion
framework [35–38].
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[32] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik,
“Semantic contours from inverse detectors,” in Proceedings of
the IEEE International Conference on Computer Vision, ICCV
2011, pp. 991–998, Barcelona, Spain, November 2011.

[33] Z.Wang, J. Ren,D.Zhang,M. Sun, and J. Jiang, “Adeep-learning
based feature hybrid framework for spatiotemporal saliency
detection inside videos,” Neurocomputing, vol. 287, pp. 68–83,
2018.

[34] J. Han, D. Zhang, X. Hu, L. Guo, J. Ren, and F.Wu, “Background
prior based salient object detection via deep reconstruction
residual,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 8, pp. 1309–1321, 2015.

[35] Y. Yan, J. Ren, H. Zhao et al., “Cognitive fusion of thermal
and visible imagery for effective detection and tracking of

pedestrians in videos,” Cognitive Computation, vol. 10, no. 1, pp.
94–104, 2018.

[36] A. Zhang, G. Sun, J. Ren et al., “A dynamic neighborhood
learning-based gravitational search algorithm,” IEEE Transac-
tions on Cybernetics, vol. 48, no. 1, pp. 436–447, 2018.

[37] J. Tschannerl, J. Ren, P. Yuen et al., “MIMR-DGSA: unsu-
pervised hyperspectral band selection based on information
theory and a modified discrete gravitational search algorithm,”
Information Fusion, vol. 51, pp. 189–200, 2019.

[38] F. Cao, Z. Yang, and J. Ren, “Local block multilayer sparse
extreme learning machine for effective feature extraction and
classification of hyperspectral images,” IEEE Trans. Geoscience
and Remote Sensing, 2019.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

	coversheet_template
	9180391.pdf

