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Abstract: Traditional industry is seeing an increasing demand for more autonomous and flexible
manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where
robots perform predefined actions repetitively. This work presents a case study in which a robotic
manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such
as vision and adaptive reasoning for real-time collision avoidance and online path planning in
dynamically-changing environments. A machine vision module based on low-cost cameras and
color detection in the hue, saturation, value (HSV) space is developed to make the robot aware
of its changing environment. Therefore, this vision allows the detection and localization of a
randomly moving obstacle. Path correction to avoid collision avoidance for such obstacles with
robotic manipulator is achieved by exploiting an adaptive path planning module along with a
dedicated robot control module, where the three modules run simultaneously. These sensing/smart
capabilities allow the smooth interactions between the robot and its dynamic environment, where the
robot needs to react to dynamic changes through autonomous thinking and reasoning with the
reaction times below the average human reaction time. The experimental results demonstrate that
effective human-robot and robot-robot interactions can be realized through the innovative integration
of emerging sensing techniques, efficient planning algorithms and systematic designs.

Keywords: adaptive reasoning; dynamic environments; human-robot interaction; path planning;
robot control; smart sensing

1. Introduction

The recent developments in robotics [1] and autonomous systems [2] have produced new and
world-changing possibilities of integrating robotic systems into many different human activities
and engineering practices. From domestic settings [3] to outer space exploration [4], and spanning
across an endless number of applications in areas such as healthcare [5], non-destructive testing [6],
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agriculture [7], human recognition [8] and firefighting [9], there is a wide range of smart algorithms
enabling the introduction of robotic systems for advanced activities previously undertaken only by
humans. Indeed, smart robotic systems have the potential to perform faster and more accurately,
to learn and adapt to its environment, and to make intelligent decisions [10].

However, the vast majority of existing industrial robotic systems operate with a predefined series
of tasks that are planned offline. In the case of industrial robotic manipulators, the path taken by the
end effector within a given workspace has proven effective for traditional mass-production processes
based on repetition, but they lack intelligence or perception capability for adapting to changes in the
environment [11]. Consequently, additional research and development efforts are necessary to deploy
smart robotic solutions into dynamically-changing or unstructured environments, particularly for
workspaces shared by independent robots and/or human workers [12].

Therefore, there is a great opportunity for industries to gain a competitive edge through the
implementation of collaborative robotic systems able to interact with humans [13,14]. New and
robust sensing capabilities are needed to provide robotic systems with reasoning and autonomous
thinking [15,16], where these capabilities have to reliably perceive the robot workspace under real
working conditions. There are numerous sensing techniques that can be adopted to perceive the
robot’s surroundings, such as ultrasonic [17] and laser [18]. Nevertheless, machine vision [15] is an
approachable strategy with satisfactory performance and affordable cost, based on the use of optical
cameras with real-time image processing. Additionally, the introduction of new sensing capabilities
requires an appropriate methodology to integrate with other robotic modules such as trajectory
tracking and path planning [19] to effectively process sensing information at the decision-making level,
leading to autonomous reasoning, flexibility and adaptability.

A number of existing implementations of robotic manipulators able to adapt to its environment
to some degree can be found in literatures [10,20,21]. For example, in [20], the mobile robot platform
Care-O-bot 3 was combined with a time-of-flight sensor, working with point clouds. On a different
note, a multisensory system was proposed in [10], including industrial camera, laser and temperature
sensor, where the multiple input was processed by artificial neural networks to control an industrial
robot. Furthermore, in [21], they focused on the path generation in a pre-defined environment
using a Lego Mindstorms EV3 manipulator arm. However, research in this area is still at its infancy,
and opportunities for significant improvements exist for the development of robust manipulator
systems for environments with real working conditions, beyond laboratory settings. For instance,
researchers tend to select expensive sensors [20] for satisfactory accurate measurements, ignoring that
this accuracy can be achieved at signal processing level. Additionally, the introduction of sensing
capabilities in such systems are rough, lacking a smooth integration into the overall system [20,21].
Finally, it is also common to observe a lack of modularity in these integrated systems, where the
designs are focused on particular cases and the different strategies for sensing, operation and control
are linked among them. Consequently, individual functions are not easily interchangeable with other
state-of-the-art technologies without significant implications on the rest of the system.

Following previous work presented in [22], an extension including more detailed analysis and
evaluations is provided for a case study on the development of a robotic manipulator for interactions
with a dynamically-changing environment. The robotic system is provided with sensing capabilities by
means of a low-cost machine vision module, such that it is able to perform pick-and-place operations
through path planning [19] with collision avoidance in real time. The overall system comprises of three
independent and changeable modules: (i) machine vision, (ii) path planning and (iii) robot control,
running in parallel for efficient performance. This design leads to an effectively integrated system with
wide modularity.

The KUKA QUANTEC KR90 R3100 [23], an industrial robotic manipulator found in many
factories, is used for the case study. Nevertheless, the proposed system is transferable to other robots
and industrial applications (e.g., the approach was also tested successfully on a small KUKA KR06
R900 robot [24]). From the experiments, the proposed system is able to efficiently operate under
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dynamic conditions, with reaction times faster than the average human reaction time, estimated at
180ms [20]. The results demonstrate the feasibility of the proposed approach for the deployment of
industrial robots into unstructured, frequently changing environments with positive implications for
human-robot interactions. Hence, the main contribution of this work can be stated as the development
of a highly integrated system built up from independent and easily interchangeable modules, leading
to wide modularity for future extensions, implemented, tested and validated on an industrial robot,
which performance has been proven effective with reaction times faster than the human reaction time.

The present manuscript is organized as follows: Section 2 gives an overview of the proposed
system and its design. Sections 3–5 present the machine vision, path planning and robot control
modules, respectively. Then, Section 6 describes the experimental setup and Section 7 evaluates the
performance achieved by the proposed system through simulations and a physical demonstrator,
with concluding remarks drawn in Section 8.

2. System Overview

In this work, an integrated system based on a robotic manipulator is proposed, where the robot
can perform operations in real time under dynamic conditions. Online planning is made to enable
a robotic end effector to perform pick-and-place tasks within a given workspace. Such an online
planning consists of moving the robot to a start (pick) position, pick a given object, transport it to a
given goal (place) position and release it.

Traditionally, this is a manufacturing operation carried out through predefined tasks programmed
offline, as the workspace (environment of the robot) is well structured and fixed. However, the aim
here is to design a system able to work in a dynamic scenario, where the workspace can change
unpredictably at any time. To simulate a dynamic scenario in the experiments, a given obstacle
moving within the workspace is introduced such that it can intercept the trajectory of the robot during
operation. Consequently, the system is required to perceive changes in the environment accurately and
re-plan the robot’s trajectory in real-time in response to potential collisions. This behavior is critical to
robots that must interact with freely changing environments in which other agents (such as humans
and robots) act within the robot workspace.

Advanced perception of the world in robots is made possible by giving them the required sensing
capabilities. This is possible by a sensing module that is responsible for acquiring environmental
information through peripheral devices and data processing. In this work, the sensing strategy adopted
is based on machine vision [15], where optical cameras are used in conjunction with image processing
techniques. The resulting geometric information of the world is then interpreted and applied to
decision-making processes. Here, an online path planner retrieves the geometric obstacle information
and re-plans a valid collision-free path to complete the required pick-and-place task. Finally, the output
from this reasoning process is sent to a controller to execute the path on the physical robot. Trajectory
generation that obeys kinematic constraints of the robot is performed locally within the controller
through an add-on interfacing software.

The proposed system consists of three independent modules: (i) machine vision, (ii) path planning
and (iii) robot control, linked in parallel to form an efficient integrated system with wide modularity
(see Figure 1). All modules work in real-time, and communications maintained across modules.
The machine vision module performs obstacle detection, where dynamically-moving obstacles are
tracked in the robot workspace. The decision-making process is derived from the path planning
module, where the search for optimal, feasible paths for pick-and-place operations is performed based
on input obtained from the machine vision to update the current geometric representation of the
environment. These two modules communicate by TCP/IP sockets [25], where the machine vision
software acts as a server, and the path planning module acts as a client. Finally, the resulting geometric
paths are sent to the robot control module to drive the physical robot along the specified paths through
Dynamic Link Libraries (DLLs). In the following sections, each of these modules will be given in detail.
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Figure 1. Overview of the proposed system. Three modules running simultaneously in parallel:
(i) machine vision (smart sensing), (ii) path planning (reasoning, decision making), and (iii) robot
control (movement coordination).

3. Machine Vision Module

Machine vision is used to provide the robotic system with sensory attributes. This module
is based on optical cameras acquiring frames in real time. The images are processed to extract
relevant information about the robot environment, particularly the position of a moving obstacle in its
workspace to avoid collisions.

The machine vision is based on three independent stages: (i) frames acquisition, (ii) image
processing and (iii) data communication (see Figure 2). Firstly, the acquisition stage controls the
optical cameras for capturing the video stream, stating the acquisition frame rate, resolution and
related parameters. Secondly, the image processing stage computes the acquired frames to perform
obstacle detection. In this work, the obstacle detection is based on color with some additional filtering
(by size). Finally, the last stage extracts the obstacle location obtained from image processing as
information packages ready to be sent from the machine vision module when requested by the path
planning module. This data transmission is based on TCP/IP sockets [25]. These three stages are
implemented by three independent threads running in parallel. Consequently, the computation times
for acquisition, image processing and communication do not accumulate. These are explained in the
following subsections.
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3.1. Data Acquisition

Among the different acquisition devices available for this case study, low-cost webcams were
adopted to conceptually demonstrate that the enhancement of sensing capabilities can be achieved at
the image processing level. In this particular case study, two cameras were placed off-board in fixed
locations, instead of being mounted on the robot as in other works [26]. Off-board cameras simplify the
computation of spatial coordinates in real-time and enable perception of the environment. However,
this scheme can create situations in which the robotic arm invades the camera’s field of view and
would hide potentially moving obstacles. For this reason, two cameras were used, and are henceforth
denoted as Cam-1 and Cam-2. The main camera, Cam-1, was placed overhead, capturing a wide view
of the workspace. Cam-2 was installed as a complementary camera at the side, and oriented in an
orthogonal direction to Cam-1. This ensured that any moving obstacle would always be detected by
at least one of the cameras, solving the robot intrusion problem for a single-camera setup. The exact
location of the two low-cost cameras, as well as other considerations are discussed in the experimental
setup (Section 6).

3.2. Image Processing

The frame(s) from the cameras acquired in the previous stage are then processed to perform
obstacle detection in 2D (a constant height is assumed for 3D). However, initial offline calibration is
required to configure the machine vision parameters. This offline calibration (see Figure 3) is carried
out during the system setup, with an expected low frequency for re-calibration as lighting conditions
in the workspace (and related industrial environments) are constant over time. It includes three
steps. First, a given contour is defined for masking the frames, removing any information beyond
the robot workspace. Then, several calibration points are measured within the workspace and taken
as a reference for the computation of spatial locations. This step is necessary for the extraction of a
given obstacle’s location via a projection algorithm, which translates pixel coordinates in the image to
2D real-world spatial coordinates. Finally, fine-tuning of parameters (described below) for obstacle
detection is performed using a manual adjustment tool (Figure 3b), with resulting effects shown in
real-time. This real-time adjustment allows an easy tuning to control a wide range of noise level hence
leading to robust obstacle detection.
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different stages; (b) Control panel window for adjustment of parameters in real time.

There is a remarkable number of potential solutions to implement obstacle (object) detection. In the
up-to-date research, it is possible to find contours, descriptors and their combination [27], extensions
of the correlation filter for object tracking [28], combination of color and depth (3D) images [29],
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probabilistic approaches to fuse multiple cameras information [30], alignment of hybrid visual features
to register visible and infrared images [31], and even smart calibration procedures [32,33]. However,
these techniques tend to be complex with expensive computational cost not suitable for this work.

Therefore, the obstacle detection in this work is performed by color discrimination [34]. Unlike
the traditional Red-Green-Blue (RGB) color space, the Hue-Saturation-Value (HSV) approach involves
parametrization including not only true color (hue) but also color depth (saturation) and color darkness
(value) [34], as can be seen in Figure 4. As a result, the HSV color space is much more suited for
addressing real-world environments consisting of light reflections, shadows and darkened regions etc.
Therefore, the real-time image processing workflow involves the following steps: (i) transformation
from RGB image to HSV image, (ii) transformation from HSV image to binary image, by means of
applying the selected HSV color range thresholds (one step binarization), and (iii) posterior treatment
of the binary image, including size and tracking filtering, to avoid the detection of unrelated objects.
This post-processing filtering is optional (HSV binarization already solves obstacle detection) and
simply discards the potential presence of unrelated elements in the binary image based on their size
(number of pixels in the detected region) and position in relation to threshold values empirically
obtained. Figure 4 shows an example including this filtering step.
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3.3. Communication

The communication thread is responsible for sending the latest extracted obstacle information
from the machine vision module to other modules by request. As the different modules in the
robotic system run in parallel simultaneously, the communication thread stores the latest information
obtained from the image processing into a package and prepares it for sending as per any request by
TCP/IP sockets [25]. The information package is shown in Figure 5, where it is defined by several
bytes containing the position coordinates in 2D of the detected obstacle (x, y) and the approximated
dimensions of the bounding box containing it. The units are in cm.
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Finally, an important consideration here is how to achieve sensor fusion, given that two cameras
are used, with slight differences in extracted information due to sensing accuracy. The strategy shown
in Figure 6 addresses sensor fusion at the output level: information from Cam-1 is always used if this
camera detects the moving obstacle. When Cam-1 cannot detect an obstacle (possibly due to robot
intrusion), then the information from Cam-2 is used instead. While simple, this strategy has proven
effective for real-time applications.
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4. Pick-and-Place Path Planning Module

Pick-and-place tasks are most common industrial operations in manufacturing, where a
component/product is moved between predefined start (pick) and goal (place) locations within
the workspace of the robot. This automation task is traditionally programmed offline, computing
predefined paths which link start and goal points. However, this only works well in structured and
static conditions.

By providing the robotic system with sensory attributes such as machine vision, the system is
now able to interact better with its environment, adapting to dynamic and changing conditions such
as a moving obstacle in the robot workspace. This interaction is enabled via a path planning algorithm
that is able to interpret the sensing information and (re-) plan a globally optimal, collision-free path for
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pick-and-place operations in real time. Hence, when a moving obstacle invalidates an initially planned
path, this path can be updated quickly and effectively.

The pick-and-place path planning approach implemented here uses the method of dynamic
roadmaps, which is a sampling-based real-time variation of the Probabilistic Road Maps (PRMs)
method, proven effective in motion planning within changing environments [35]. The dynamic
roadmaps method is characterized by an offline pre-processing phase and an online planning
and computation.

4.1. Pre-Processing Phase

In this phase, the algorithm creates a mapping between the states sampled in the configuration
space (C-space for short) with the cells in a discretized workspace, and the sampled states are connected
with their neighboring states as characterized by PRMs. This phase is carried out as follows.

Firstly, the robot C-space is sampled. This involves randomly sampling the entire C-space to
obtain nodes of the roadmap, and this is performed assuming a completely obstacle-free space. Then,
pairs of neighboring nodes are connected to form the edges of the roadmap. Neighboring nodes are
defined as all those that lie within a predefined radius (r) from a given node (Figure 7). A single node
within this roadmap represents a single robot configuration. Thus a connecting edge between two
nodes corresponds to a valid motion path between two configurations.
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The geometric representation of the workspace is then discretized into uniform cells, where the
spatial resolution available is dependent on the cell size, with a subsequent trade-off between finer
resolution and faster computation. Increasing the number of cells increases the computation time of
the mapping stage (described below) exponentially.

Given the sampled C-space and discretized Cartesian space, a mapping between the two domains
is performed. This mapping is obtained by iteratively checking every robot configuration associated
with all the sampled nodes and along each edge of the roadmap. All workspace cells that collide with
the robot at these configurations are mapped to the associated nodes and edges. Hence during online
execution, the roadmap can be updated based on the cells which are occupied by obstacles, producing
a graph representation of valid motions between robot configurations across the entire workspace.
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4.2. Online Phase

During the online phase, the algorithm retrieves the perceived obstacle information from the
machine vision module by TCP/IP sockets [25]. The path planning module requests and receives
immediately the 80-bit package shown in Figure 5 with the latest information about the position of the
moving obstacle. From this package, the algorithm knows the obstacle (x, y) coordinates within the
workspace and the size of a rectangular bounding box containing it. Therefore, the obstacle is treated
as a box object, providing enhanced clearance between the robot and obstacle for collision avoidance.
This information is combined with the mapping computed offline to create a graph representation of
the collision-free regions in the C-space.

The desired start and goal configuration (which can change at any time) is connected to the
nearest node in the roadmap. Then, two steps are used to build the new path for the robot. First,
the A* algorithm [36] (an extension of the Dijkstra’s algorithm for graph search) is implemented to
search for the shortest route within the graph, finding a path that guarantees no collision with the
moving obstacle. Then, B-splines smoothing [37] is used to smoothen the obtained path and achieve a
continuous smooth motion.

Once the robot computes the initially planned path, the path planner continues to monitor the
obstacle in the workspace. If any detected change in the environment invalidates a previously planned
path, then a new updated path is computed using the steps described above. In this implementation,
the algorithm is assessed for real-time performance based on its ability to plan paths faster than human
reaction time, which is approximately 180ms [20]. Human reaction time is taken as reference as robots
must react to changes in the environment quicker than that for a safe interaction with human workers.
A high-level flowchart representing this real-time path planner is given in Figure 8.
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5. Robot Control Module

So far, a machine vision module has been introduced for providing the robotic system with
sensory capabilities, while a path planner module for decision making in pick-and-place tasks has been
described. However, a third module for robot control is necessary to interface the planning results
with real-time position tracking and actuator control.
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Robots have been quite successful in accomplishing tasks in well-known environments like a
work cell within a factory. The much harder problem of a robot acting in unstructured and dynamic
environments, like those humans normally act and live in, is still an open research area [38]. In such
situations, robots need to adapt their tasks after beginning an initial sequence. In this work, a novel
toolbox, the Interfacing Toolbox for Robotic Arms (ITRA) [39], was used.

5.1. ITRA Toolbox and RSI Interface

ITRA is a cross-platform software toolbox, designed to facilitate the integration of robotic
arms with sensors, actuators and software modules through the use of an external server computer.
It contains fundamental functionalities for robust connectivity, real-time control and auxiliary functions
to set or get key functional variables. ITRA is a C++ based DLL of functions. Due to platform
availability during its development, it is currently focused around KUKA hardware, but can be
extended to handle real-time interfaces on ABB [40] and Stäubli [41] robots. As such, it runs on a
remote computer connected with KRC4 robots through a User Datagram Protocol (UDP/IP) socket.

All the embedded functions can be used through high-level programming language platforms
(e.g., MATLAB, Simulink and LabVIEW) or implemented into low-level language (e.g., C, C# and C++)
applications, providing the opportunity to speed-up flexible and robust integration of robotic systems.
The ITRA is currently compatible with all KUKA KRC4 robots equipped with a KUKA software add-on
known as Robot Sensor Interface (RSI) [42], which was purposely developed by KUKA to enable
the communication between the robot controller and an external system (e.g., a sensor system or a
server computer).

Cyclical data transmission from the robot controller to the external system (and vice-versa) takes
place in parallel to the execution of the KUKA Robot Language (KRL) program. Using RSI makes it
possible to influence the robot motion or the execution of the KRL program by processing external
data. The robot controller communicates with the external system via the Ethernet UDP/IP protocol.
The ITRA takes advantage of the fundamental functionalities of RSI and allows achieving external
control of robotic arms through three different approaches.

5.2. Real-Time Robot Motion Control

Real-time robot motion control can be divided into two sub-problems: (i) the specification of the
control points of the geometric path (path planning), and (ii) the specification of the time evolution
along this geometric path (trajectory planning). Whereas the path-planning sub-problem is always
dealt with by the computer hosting the ITRA, where processing of machine vision data and/or other
sensor data can take place to compute the robot target position, the trajectory planning sub-problem
can be managed by different actors of the system.

In the first approach, referred as KRL-based approach, the trajectory planning takes place at the
KRL module level within the robot controller. The second approach has trajectory planning performed
within the external computer, soon after path-planning, and is referred as Computer-based approach.
The third approach relies on a real-time trajectory planning algorithm implemented into the RSI
configuration. Therefore, trajectory planning is managed by the RSI context and the approach is named
as RSI-based approach.

The KRL-based and the Computer-based approaches enable basic robot external control
capabilities, where the robot has to wait until the current target position is reached in order to go for
the next one. This means that, if a new target point C is stated while the robot is moving from a point
A to a point B, the robot cannot adapt to this change until B is reached, becoming a major problem.

Unlike the KRL-based and the computer-based approaches, the RSI-based approach enables true
real-time path control of KUKA robots based on KRC4 controllers. This approach, which is used
for this work, permits fast online modifications to a planned trajectory, allowing robots to adapt to
changes in the dynamic environment and react to unforeseen obstacles. Whereas the path-planning
takes place in the server computer, trajectory planning has been implemented as an RSI configuration,
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employing the second-order trajectory generation algorithm presented in [43]. The approach can
operate in Cartesian-space and in joint-space. While the robot is static or is travelling to a given
position, the computer can send a new target position (together with the maximum preferred speed
and acceleration) through a specific ITRA function. The target coordinates, received by the robot
controller, are used to compute the optimal coordinates of the set point to send to the robot arm drives
through a two-fold algorithm.

On the one hand, the set point is generated to guarantee a smooth transition from the initial
conditions (starting coordinates, velocity and acceleration) towards the final target position. On the
other hand, the algorithm makes sure the evolution of the robot motion is constrained within the given
maximum velocity and acceleration. Thanks to this approach, the robot motion can be quickly updated
in response to the path planning module (e.g., the robot can adapt to any changes in the workspace
interfering its operation). This implementation is herein referred as a robot control module and is
schematically represented in Figure 9.
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6. Experimental Setup

In this section, the experimental setup is described, defining all the components of the system
including the robotic manipulator, workspace, optical cameras and moving obstacle, among others.

The experiments and related discussion in this section are specific to one case study. Nevertheless,
one of the main advantages of the proposed system is its modularity and can be generally applied to
different applications with no constraints on the type of robot manipulator or sensory devices used or
the environment in which they are deployed in.

6.1. Robotic Manipulator and Pick-and-Place Elements

The KR90 R3100 produced by KUKA was used in this case study [23]. This robot is a 6-axis serial
manipulator, with characteristics shown in Table 1 and Figure 10 [23]. This robot was chosen as it is
commonly found in industrial applications. However, the proposed system can be implemented with
any other serial manipulator (robots not manufactured by KUKA would require their accompanying
controllers). Indeed, the KR06 R900 [24] was also employed during preliminary experiments.
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Table 1. Robot characteristics for the KUKA KR90 R3100.

Characteristics Values

Working envelope 66 m3

Weight 1121 kg
Axis 1 (speed) ±185 º (105 º/s)
Axis 2 (speed) −5 º to −140 º (101 º/s)
Axis 3 (speed) +155 º to −120 º (107 º/s)
Axis 4 (speed) ±350 º (292 º/s)
Axis 5 (speed) ±125 º (258 º/s)
Axis 6 (speed) ±350 º (284 º/s)
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Figure 10. KUKA KR90 R3100 robot: (a) General aspect of the robotic arm manipulator; (b) Working
envelope with dimensions comprised during operation. Images obtained from [23].

This robot was given the task to perform a series of pick-and-place actions guided by a
collision-free motion plan. In order to perform the pick-and-place operations, a simple box and
hook (Figure 11) were produced using laser-cutting technology, with the hook acting as a simple
gripper. Start and goal box poses were defined for which the planner was used to plan paths to transfer
the box across various targets.
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6.2. Workspace and Moving Obstacles

A workspace for the KR90 R3100 robot can be defined according to its dimensions and disposition.
In the experiments, the workspace was limited to a table with dimensions 160 cm × 110 cm × 85 cm
(width-breadth-height) located next to the base of the robot (see Figure 12). The table was covered by
an old, rough tablecloth, containing different textile traces and rusty/dirty patches. This, along with
strong reflections and inconsistent light, simulated a noisy environment. Finally, barriers were placed
along the table perimeter to constrain the moving obstacle inside the workspace.
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covered table, pick-and-place box and moving obstacle; (b) Moving obstacle covered in yellow color
with a 30 cm ‘spike’ on its top.

The moving obstacle was mocked by using a remote controlled car of dimensions 20 cm × 10 cm
× 5 cm covered by yellow cardboard (Figure 12b), with a speed estimated at 1 m/s. This color was
chosen due to its similar tonality to the orange color of the robot, which further increases the challenge
on image processing. Nevertheless, this was effectively addressed by the approach to configuring
HSV parameters during calibration (Figure 3), which subsequently enables any color differences to be
identified. Operator safety regulations prevented human entry into the workspace of the robot, hence
the use of the remote controlled car provides reasonable dynamics within the environment. A ‘spike’
of 30 cm was placed on top to virtually extend the height of the obstacle, which contributes to greater
demands on path correction. This experimental setup illustrates the robustness of the proposed system
to various environmental challenges that may be present in various real-world scenarios.

6.3. Cameras and Location

Two HD Pro AWCAMHD15 cameras (Advent) were chosen for Cam-1 and Cam-2 (Figure 13).
These are low-cost webcams able to capture images with an original resolution of 640 × 480 pixels and
a frame rate of 30 fps.
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7. Experiments Evaluation and Discussion 

In this section, the proposed system with the three described modules: (i) machine vision, (ii) 
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real-world physical demonstrator. Then, a performance evaluation is presented. 

Figure 13. Disposition of the cameras for experiments: (a) Relative location of cameras with relation to
the robot workspace; (b) Close-up view of cameras attached to cell caging.

The main camera, Cam-1, was placed in an overhead location (Figure 13), 3 m over the ground,
capturing images of the workspace table from a landscape perspective. The complementary camera
Cam-2 was placed at a much lower height of 1.5 m, orthogonal in direction to Cam-1, and therefore
capturing table from a portrait perspective. The selected disposition for Cam-2 was intended for the
recovery of any blind points in Cam-1 should the robot intrude Cam-1′s field of view.

6.4. Host Computer and Related Software

An Inspiron 15 7000 (quad-core Intel i7) laptop (DELL, Round Rock, TX, USA) with 16 GB RAM
(Windows 10 operating system) was used in conjunction with a KR C4 controller to implement the
proposed system. The laptop possesses 2 USB ports, one for each camera, and an Ethernet port for
connection to the controller.

Both the path planner, implemented in MATLAB (MathWorks, Natick, MA, USA), and the machine
vision, implemented in C++ and called from MATLAB through executable files, were executed on the
remote PC. Actuation signals for to the controller were sent through a robot control DLL to interface
with the KR C4. The integrated system was run from a friendly Graphical User Interface (GUI) also
developed on MATLAB (Figure 14).
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7. Experiments Evaluation and Discussion

In this section, the proposed system with the three described modules: (i) machine vision,
(ii) pick-and-place path planning and (iii) robot control is applied to both software simulations and to
a real-world physical demonstrator. Then, a performance evaluation is presented.

The proposed system was assessed in two ways. Firstly, simulations were carried out through a
simulation platform developed on MATLAB and interfaced via a custom GUI. The system was then
evaluated on the real-world physical demonstrator. In both cases the system performance was assessed
according to its behavior in responding to the presence of dynamic obstacles and the computation time
required to (re-)plan scenarios. As the obstacle detection is implemented in 2D, a constant height for
the moving obstacle is assumed (30 cm ‘spike’ on its top).

7.1. Simulation Tool Analysis

Prior to deployment to the real-world system, a study based on simulations was undertaken to
validate the behaviors of the individual components and the overall performance of the proposed
integrated system. To this end, a platform for simulations, developed in MATLAB, was integrated
into a GUI for human-computer interactions (Figure 15). The simulated environment is built to exactly
match the real-world setup of the physical system, where the robot performs pick-and-place path
planning with motion constrained to a limited workspace around a table.
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Figure 15. MATLAB GUI showing simulation of real-world environment for the KR90 R3100 robot
performing pick-and-place tasks across table.

The simulation provided a platform to validate the behavior of the planner to respond to
dynamic obstacles by considering several pick-and-place scenarios. Several unknown moving obstacle
trajectories were captured using the machine vision module and used to simulate the dynamic obstacle
in these simulations. The visualisation capability of the GUI enabled tracking of the changes to planned
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motion paths. An example is shown in Figure 16. These simulations were also used to provide an
initial benchmark of the system according to its computational efficiency. Table 2 shows three different
motion path problems for which the computational performance was measured and the corresponding
computation times are reported in Table 3. These times are broken down according to various functions
used in path planning along with the total time. Five trials for each planning problem were performed
to provide statistical significance. As shown in Table 3, the computation is different for each path, even
presenting some oscillations within a given path. Overall, the computation times are less than 50 ms
for all trials, which meets the requirements to perform faster than the average human reaction time
(180 ms) [20] by several folds.
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time instance. 

Figure 16. An instance of dynamic path planning simulation: (a) Lateral view; (b) Front view.
The obstacle (red block) moves inwards towards the robot (path shown as a series of green crosses) as
it begins executing an initially planned path (blue line). As the obstacle obstructs this plan, the planner
continues to find a new feasible path, which results in the final executed trajectory shown as red circles
(indicating the time evolution of the trajectory).

Table 2. Three planning problems used to assess the computational efficiency of the planner.

ID Length
(mm)

Start x
(mm)

Start y
(mm)

Start z
(mm)

End x
(mm)

End y
(mm)

End z
(mm)

1 1643.5 10500 -6400 975 10500 -5200 975
2 1994.9 11000 -6400 975 10300 -5200 975
3 1981.9 10200 -5700 975 11200 -5700 975

Table 3. Computation time (ms) for path planning in simulations.

ID Collision
Checking

A* path
planning

Path
smoothing

Convert
Cartesian Total

1 30.3 ± 1.6 1.64 ± 0.4 3.06 ± 0.5 3.12 ± 0.2 38.1 ± 2.5
2 17.8 ± 1.3 8.00 ± 0.3 3.62 ± 0.4 3.72 ± 0.4 33.1 ± 2.3
3 38.5 ± 3.3 1.36 ± 0.6 2.42 ± 0.2 2.7 ± 0.5 45.0 ± 4.0

7.2. Physical Demonstrator Performance

Trials on the physical robot showed that the integrated system provided correct behavior in
response to dynamic obstacles. In all cases the robotic arm successfully performed the pick-and-place
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operation without collision. Two videos are provided as Supplementary files S1 and S2. Where possible,
the system plans a new path to achieve the task without colliding with the obstacle. Where this is
not possible (for example, when the obstacle would collide with the goal configuration of the robot),
the robot waits until the obstacle is cleared away. Figure 17 provides a real video frame capturing
the configurations of the objects in the environment acquired during experimentation, as well as the
acquired frames from the machine vision cameras for the same time instance.
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frames was generated from the image of Cam-2. 

Figure 17. Synchronized video frames captured during operation [22]: (a) A real video frame taken
from the safety area showing all object configurations in the environment; (b) Acquired frames by
Cam-1 (top) and Cam-2 (bottom) from machine vision.

Smooth transition at switching of paths during re-planning was observed at all times. This was
achieved as a result of the real-time trajectory generation implemented within the real-time control
module. The successful avoidance of obstacles in all instances also validates the effectiveness of
the machine vision module where, for this environmental setup, its resolution was measured to be
approximately 0.3 cm per pixel. This gives an estimated error of ±3 cm in perceiving the obstacle
pose, which proved sufficient for the experiments conducted. Larger image resolutions can reduce
the localization error at the cost of increasing computation complexity, and this trade-off is adjustable
depending on the application aims. Additionally, the speed of the moving obstacle can also affect the
localization error, although no issues were found with the current setup.

Indeed, the machine vision was able to track the moving obstacle continuously, regardless of
any challenging and dynamic conditions such as reflections, shadows and motion blur. Moreover,
the issues relating to the robot intruding the field of view of Cam-1 were effectively handled by
the complementary Cam-2. Figure 18 shows matching frames from Cam-1 and Cam-2 during
demonstrations, showing a particular instance in which the robot intrudes the field of view in Cam-1
and completely covers the dynamic obstacle. As shown in the figure, Cam-2 was able to detect the
obstacle when Cam-1 could not. Hence, the information package (Figure 6) corresponding to these
frames was generated from the image of Cam-2.
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Figure 18. Frames from a particular moment during demonstration in which the robotic arm blocks
the vision of Cam-1 (top) but Cam-2 (bottom) is able to keep tracking the obstacle.

7.3. Computing Performance

The main evaluation in this work is based on the computation time of the system and how this
affects the system response. In particular, two aspects of performance are evaluated: the working
cycle and system reaction time. Working cycle here refers to the time it takes for the system to
update its output (refresh rate). As the different modules in the system run in parallel, the working
cycle is simply determined by the module with the highest computation time. On the other hand,
the reaction time can be stated as the time it takes for the system to start reacting after a given stimulus.
Therefore, the reaction time requires strictly sequential execution through all stages, from initial
cameras acquisition to final robot movement. In this section, the computation time per working cycle
of each module and the whole integrated system is presented. Then, in the next section, an evaluation
on the system reaction time is provided.

Approximated average computation times for the machine vision and path planning modules
are provided in Figure 19. For machine vision, the main bottleneck was frame acquisition, which took
approximately 45ms to obtain a frame from the cameras. This is due to the frame rate limitations
imposed by hardware. However, the image processing took only 14ms and the communication
(information package preparation) was negligible. It is worth mentioning that the individual
computation times in each stage of the machine vision module do not accumulate as they are
implemented in parallel threads, leading to a working cycle of 45ms. On the other hand, each stage
of the path planning module (Figure 19b) are executed in cascade so the total time is the sum of the
individual function costs. Note that the reported computation time for path planning corresponds to
the total time required from receiving sensory information to outputting a new motion plan. Finally,
in relation to the robot control module, the time required for sending command positional packets was
negligible as the update rate of the RSI-based approach is equal to the running frequency of the RSI
context. Consequently, a new target position can be set every 4ms if necessary.

The total time required for a working cycle of the system is provided in Figure 20, including the
time for the machine vision (45 ms), path planning (57 ms) and robot control (negligible) modules.
As these modules run simultaneously, these times do not accumulate and the working cycle was
estimated at 57 ms. The modularity of the proposed system allows a reduction in the working cycle
with relation to other similar systems [20] (Figure 20b). In other words, the response of the system can
be updated at a higher frequency. However, note that the working cycle frequency is not the same as
the reaction time, which is evaluated in the next section.
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Figure 19. Approximated average computation times for: (a) Machine vision module with acquisition,
image processing and communication stages running simultaneously (times do not accumulate);
(b) Path planning module with read package, check collision and re-planning stages running in cascade,
where the total time is the sum of the three stages.
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Figure 20. Approximated average computation times involved in: (a) Working cycle of the proposed
system including machine vision, path planning and robot control modules running simultaneously
(times do not accumulate); (b) Working cycle comparison between the proposed system and a different
system developed in [20], including the human reaction time as a reference.

7.4. Reaction Time for Human Interaction

Reaction time is the most important parameter in real-time control, since it measures the
promptness of the system, and it can be defined as the latency between the stimulus and the very
start of the reaction. Therefore, reaction time is crucial for robots that must possess real-time adaptive
behaviors to respond to dynamic changes and/or to interact with humans. Determining the average
reaction time for humans is something not straightforward, and different values are suggested in
literature. Indeed, according to [44], the average reaction time for humans depends on the stimulus,
being 250 ms for a visual stimulus, 170 ms for an auditory stimulus, and 150 ms for a haptic stimulus.
Other references such as [20] state a general value of 180 ms for the average human reaction time.
In this work, the sensing capabilities come from a machine vision implemented by means of optical
cameras, so it seems reasonable to adopt as reference the time related to visual stimulus (250 ms).
However, the more challenging reaction time of 180 ms [20] is also referred to as reference.

Reaction time has to be measured from the stimulus to the start of the reaction. Therefore, unlike
the previously evaluated working cycle, it includes the whole computational sequence consisting
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of perception and related processing, motion planning and actuation such that their individual
computational costs accumulate. Additionally, the reaction time for robotic systems is not only
dependent on the computation times from the different stages but also on the inherent mechanical
reaction time of the physical robot (intrinsic latency). While this issue is usually not addressed in
literature [10,20,21], it has been taken into consideration in this work for a more complete evaluation.

Indeed, the reaction time (robot latency) of the RSI-based external control used in this work
was measured 100 times through commanding the robot to move to a target from a static position
(with ITRA running within MATLAB and saving robot feedback positions through the saving thread).
The timestamp of the first robot feedback positional packet, reporting a deviation greater or equal to
0.01 mm from the original home position, was compared with the timestamp taken just before sending
the target position to the robot. It was found that the resulting reaction time was 30 ms (±3 ms).

After analyzing the robot intrinsic latency, the reaction time of the proposed system was measured
to be 146 ms, which consists of frames acquisition (45 ms) and image processing (14ms), path
(re-)planning (57 ms), and robot latency (30 ms). This is shown in Figure 21, where the system
reaction time is clearly below both the reaction time to a visual stimulus (250ms) and the reference for
general human reaction time (180 ms).
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Figure 21. Approximated average reaction times: (a) The proposed system including machine vision
(acquisition, processing), path planning and robot latency in sequential implementation (times do
accumulate); (b) A comparison between the proposed system, the general human reaction time [20] and
the visual human reaction time [44].

8. Conclusions

Robotic systems are becoming more widely adopted by industries for their manufacturing
processes. However, these are typically traditional systems consisting of robots following predefined
tasks planned offline. A need for a strong technological shift has become apparent within industry to
move towards more intelligent and autonomous systems, able to interact with their environment.

In this work, a flexible and autonomous intelligent system with environmental awareness
ready for human/robot interaction is proposed and trialed on a physical demonstrator. It is
based on the integration of three independent modules working in real time: (i) machine vision
(smart sensing), (ii) path planning (reasoning, decision making), and (iii) robot control (movement
coordination). Machine vision is based on two webcams placed off-board in fixed locations,
where their frames are processed to detect obstacles by color in the HSV space. During path planning,
this information is retrieved from the machine vision and used to (re-)plan a series of motion paths to
enable pick-and-place operations while interacting with a dynamically-moving obstacle in the robot
workspace. The planner is based on the dynamic roadmaps method, with the A* algorithm used for
subsequent graph search and B-splines for path smoothing. Finally, a novel approach using RSI was
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developed for real-time robot control, where the target position of the robot can be updated every 4ms
whilst enabling real-time trajectory modifications.

With these modules running simultaneously and communicating to each other by TCP/IP sockets,
an effectively integrated system was achieved that is low-cost, highly integrated and modular. Both
simulations and physical experimentation based on the KUKA KR90 R3100 robot were used to evaluate
the system. From conducted trials, the system consistently executed all computations for a given
working cycle in under 60 ms, which is an improvement to similar cases in literature. Similarly,
the system’s overall reaction time was experimentally determined to be on average 146 ms, which is
indeed below the average human reaction time (180 ms). For future applications, any of the modules
can be easily interchanged with other implementations for perception, planning and acting. A more
dedicated image processing could be implemented for the machine vision, for example, techniques
based on saliency detection and/or deep learning [45–47]. Additionally, obstacle detection can be
extended to 3D, while other sensing capabilities can be adopted (such as laser or ultrasound) and
applied to robotic tasks as required by the application whilst maintaining the modularity and advantage
of the designed system.

Supplementary Materials: The following are available online at https://doi.org/10.15129/4df22803-2cc4-4cce-
9cea-509f88f1b504, Video S1: pick place1.mp4, Video S2: pick place2.mp4.
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