
ZABALZA, J., FEI, Z., WONG, C., YAN, Y., MINEO, C., YANG, E., RODDEN, T., MEHNEN, J., PHAM, Q.-C. and REN, J. 2019.
Smart sensing and adaptive reasoning for enabling industrial robots with interactive human-robot capabilities in

dynamic environments: a case study. Sensors [online], 19(6), article 1354. Available from:
https://doi.org/10.3390/s19061354

© 2019 by the authors. Licensee MDPI, Basel, Switzerland.

This document was downloaded from
https://openair.rgu.ac.uk

Smart sensing and adaptive reasoning for
enabling industrial robots with interactive

human-robot capabilities in dynamic
environments: a case study.

ZABALZA, J., FEI, Z., WONG, C., YAN, Y., MINEO, C., YANG, E., RODDEN,
T., MEHNEN, J., PHAM, Q.-C. and REN, J.

2019

https://doi.org/10.3390/s19061354

sensors

Article

Smart Sensing and Adaptive Reasoning for Enabling
Industrial Robots with Interactive Human-Robot
Capabilities in Dynamic Environments—A
Case Study

Jaime Zabalza 1, Zixiang Fei 2, Cuebong Wong 2 , Yijun Yan 1 , Carmelo Mineo 1 ,
Erfu Yang 2,*, Tony Rodden 3, Jorn Mehnen 2, Quang-Cuong Pham 4 and Jinchang Ren 1

1 Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK;
j.zabalza@strath.ac.uk (J.Z.); yijun.yan@strath.ac.uk (Y.Y.); carmelo.mineo@strath.ac.uk (C.M.);
jinchang.ren@strath.ac.uk (J.R.)

2 Department of Design, Manufacture and Engineering Management, University of Strathclyde,
Glasgow G1 1XJ, UK; zixiang.fei@strath.ac.uk (Z.F.); cuebong.wong@strath.ac.uk (C.W.);
jorn.mehnen@strath.ac.uk (J.M.)

3 Advanced Forming Research Centre, University of Strathclyde, Renfrewshire PA4 9LJ, UK;
tony.rodden@strath.ac.uk

4 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore; cuong@ntu.edu.sg

* Correspondence: erfu.yang@strath.ac.uk; Tel.: +44-141-574-5279

Received: 31 January 2019; Accepted: 8 March 2019; Published: 18 March 2019
����������
�������

Abstract: Traditional industry is seeing an increasing demand for more autonomous and flexible
manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where
robots perform predefined actions repetitively. This work presents a case study in which a robotic
manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such
as vision and adaptive reasoning for real-time collision avoidance and online path planning in
dynamically-changing environments. A machine vision module based on low-cost cameras and
color detection in the hue, saturation, value (HSV) space is developed to make the robot aware
of its changing environment. Therefore, this vision allows the detection and localization of a
randomly moving obstacle. Path correction to avoid collision avoidance for such obstacles with
robotic manipulator is achieved by exploiting an adaptive path planning module along with a
dedicated robot control module, where the three modules run simultaneously. These sensing/smart
capabilities allow the smooth interactions between the robot and its dynamic environment, where the
robot needs to react to dynamic changes through autonomous thinking and reasoning with the
reaction times below the average human reaction time. The experimental results demonstrate that
effective human-robot and robot-robot interactions can be realized through the innovative integration
of emerging sensing techniques, efficient planning algorithms and systematic designs.

Keywords: adaptive reasoning; dynamic environments; human-robot interaction; path planning;
robot control; smart sensing

1. Introduction

The recent developments in robotics [1] and autonomous systems [2] have produced new and
world-changing possibilities of integrating robotic systems into many different human activities
and engineering practices. From domestic settings [3] to outer space exploration [4], and spanning
across an endless number of applications in areas such as healthcare [5], non-destructive testing [6],

Sensors 2019, 19, 1354; doi:10.3390/s19061354 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6541-6125
https://orcid.org/0000-0003-0224-0078
https://orcid.org/0000-0002-5086-366X
https://orcid.org/0000-0001-6116-3194
http://www.mdpi.com/1424-8220/19/6/1354?type=check_update&version=1
http://dx.doi.org/10.3390/s19061354
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1354 2 of 23

agriculture [7], human recognition [8] and firefighting [9], there is a wide range of smart algorithms
enabling the introduction of robotic systems for advanced activities previously undertaken only by
humans. Indeed, smart robotic systems have the potential to perform faster and more accurately,
to learn and adapt to its environment, and to make intelligent decisions [10].

However, the vast majority of existing industrial robotic systems operate with a predefined series
of tasks that are planned offline. In the case of industrial robotic manipulators, the path taken by the
end effector within a given workspace has proven effective for traditional mass-production processes
based on repetition, but they lack intelligence or perception capability for adapting to changes in the
environment [11]. Consequently, additional research and development efforts are necessary to deploy
smart robotic solutions into dynamically-changing or unstructured environments, particularly for
workspaces shared by independent robots and/or human workers [12].

Therefore, there is a great opportunity for industries to gain a competitive edge through the
implementation of collaborative robotic systems able to interact with humans [13,14]. New and
robust sensing capabilities are needed to provide robotic systems with reasoning and autonomous
thinking [15,16], where these capabilities have to reliably perceive the robot workspace under real
working conditions. There are numerous sensing techniques that can be adopted to perceive the
robot’s surroundings, such as ultrasonic [17] and laser [18]. Nevertheless, machine vision [15] is an
approachable strategy with satisfactory performance and affordable cost, based on the use of optical
cameras with real-time image processing. Additionally, the introduction of new sensing capabilities
requires an appropriate methodology to integrate with other robotic modules such as trajectory
tracking and path planning [19] to effectively process sensing information at the decision-making level,
leading to autonomous reasoning, flexibility and adaptability.

A number of existing implementations of robotic manipulators able to adapt to its environment
to some degree can be found in literatures [10,20,21]. For example, in [20], the mobile robot platform
Care-O-bot 3 was combined with a time-of-flight sensor, working with point clouds. On a different
note, a multisensory system was proposed in [10], including industrial camera, laser and temperature
sensor, where the multiple input was processed by artificial neural networks to control an industrial
robot. Furthermore, in [21], they focused on the path generation in a pre-defined environment
using a Lego Mindstorms EV3 manipulator arm. However, research in this area is still at its infancy,
and opportunities for significant improvements exist for the development of robust manipulator
systems for environments with real working conditions, beyond laboratory settings. For instance,
researchers tend to select expensive sensors [20] for satisfactory accurate measurements, ignoring that
this accuracy can be achieved at signal processing level. Additionally, the introduction of sensing
capabilities in such systems are rough, lacking a smooth integration into the overall system [20,21].
Finally, it is also common to observe a lack of modularity in these integrated systems, where the
designs are focused on particular cases and the different strategies for sensing, operation and control
are linked among them. Consequently, individual functions are not easily interchangeable with other
state-of-the-art technologies without significant implications on the rest of the system.

Following previous work presented in [22], an extension including more detailed analysis and
evaluations is provided for a case study on the development of a robotic manipulator for interactions
with a dynamically-changing environment. The robotic system is provided with sensing capabilities by
means of a low-cost machine vision module, such that it is able to perform pick-and-place operations
through path planning [19] with collision avoidance in real time. The overall system comprises of three
independent and changeable modules: (i) machine vision, (ii) path planning and (iii) robot control,
running in parallel for efficient performance. This design leads to an effectively integrated system with
wide modularity.

The KUKA QUANTEC KR90 R3100 [23], an industrial robotic manipulator found in many
factories, is used for the case study. Nevertheless, the proposed system is transferable to other robots
and industrial applications (e.g., the approach was also tested successfully on a small KUKA KR06
R900 robot [24]). From the experiments, the proposed system is able to efficiently operate under

Sensors 2019, 19, 1354 3 of 23

dynamic conditions, with reaction times faster than the average human reaction time, estimated at
180ms [20]. The results demonstrate the feasibility of the proposed approach for the deployment of
industrial robots into unstructured, frequently changing environments with positive implications for
human-robot interactions. Hence, the main contribution of this work can be stated as the development
of a highly integrated system built up from independent and easily interchangeable modules, leading
to wide modularity for future extensions, implemented, tested and validated on an industrial robot,
which performance has been proven effective with reaction times faster than the human reaction time.

The present manuscript is organized as follows: Section 2 gives an overview of the proposed
system and its design. Sections 3–5 present the machine vision, path planning and robot control
modules, respectively. Then, Section 6 describes the experimental setup and Section 7 evaluates the
performance achieved by the proposed system through simulations and a physical demonstrator,
with concluding remarks drawn in Section 8.

2. System Overview

In this work, an integrated system based on a robotic manipulator is proposed, where the robot
can perform operations in real time under dynamic conditions. Online planning is made to enable
a robotic end effector to perform pick-and-place tasks within a given workspace. Such an online
planning consists of moving the robot to a start (pick) position, pick a given object, transport it to a
given goal (place) position and release it.

Traditionally, this is a manufacturing operation carried out through predefined tasks programmed
offline, as the workspace (environment of the robot) is well structured and fixed. However, the aim
here is to design a system able to work in a dynamic scenario, where the workspace can change
unpredictably at any time. To simulate a dynamic scenario in the experiments, a given obstacle
moving within the workspace is introduced such that it can intercept the trajectory of the robot during
operation. Consequently, the system is required to perceive changes in the environment accurately and
re-plan the robot’s trajectory in real-time in response to potential collisions. This behavior is critical to
robots that must interact with freely changing environments in which other agents (such as humans
and robots) act within the robot workspace.

Advanced perception of the world in robots is made possible by giving them the required sensing
capabilities. This is possible by a sensing module that is responsible for acquiring environmental
information through peripheral devices and data processing. In this work, the sensing strategy adopted
is based on machine vision [15], where optical cameras are used in conjunction with image processing
techniques. The resulting geometric information of the world is then interpreted and applied to
decision-making processes. Here, an online path planner retrieves the geometric obstacle information
and re-plans a valid collision-free path to complete the required pick-and-place task. Finally, the output
from this reasoning process is sent to a controller to execute the path on the physical robot. Trajectory
generation that obeys kinematic constraints of the robot is performed locally within the controller
through an add-on interfacing software.

The proposed system consists of three independent modules: (i) machine vision, (ii) path planning
and (iii) robot control, linked in parallel to form an efficient integrated system with wide modularity
(see Figure 1). All modules work in real-time, and communications maintained across modules.
The machine vision module performs obstacle detection, where dynamically-moving obstacles are
tracked in the robot workspace. The decision-making process is derived from the path planning
module, where the search for optimal, feasible paths for pick-and-place operations is performed based
on input obtained from the machine vision to update the current geometric representation of the
environment. These two modules communicate by TCP/IP sockets [25], where the machine vision
software acts as a server, and the path planning module acts as a client. Finally, the resulting geometric
paths are sent to the robot control module to drive the physical robot along the specified paths through
Dynamic Link Libraries (DLLs). In the following sections, each of these modules will be given in detail.

Sensors 2019, 19, 1354 4 of 23

Sensors 2018, 18, x FOR PEER REVIEW 3 of 24

dynamic conditions, with reaction times faster than the average human reaction time, estimated at
180ms [20]. The results demonstrate the feasibility of the proposed approach for the deployment of
industrial robots into unstructured, frequently changing environments with positive implications for
human-robot interactions. Hence, the main contribution of this work can be stated as the
development of a highly integrated system built up from independent and easily interchangeable
modules, leading to wide modularity for future extensions, implemented, tested and validated on an
industrial robot, which performance has been proven effective with reaction times faster than the
human reaction time.

The present manuscript is organized as follows: Section 2 gives an overview of the proposed
system and its design. Sections 3, 4 and 5 present the machine vision, path planning and robot control
modules, respectively. Then, Section 6 describes the experimental setup and Section 7 evaluates the
performance achieved by the proposed system through simulations and a physical demonstrator,
with concluding remarks drawn in Section 8.

2. System Overview

In this work, an integrated system based on a robotic manipulator is proposed, where the robot
can perform operations in real time under dynamic conditions. Online planning is made to enable a
robotic end effector to perform pick-and-place tasks within a given workspace. Such an online
planning consists of moving the robot to a start (pick) position, pick a given object, transport it to a
given goal (place) position and release it.

Traditionally, this is a manufacturing operation carried out through predefined tasks
programmed offline, as the workspace (environment of the robot) is well structured and fixed.
However, the aim here is to design a system able to work in a dynamic scenario, where the workspace
can change unpredictably at any time. To simulate a dynamic scenario in the experiments, a given
obstacle moving within the workspace is introduced such that it can intercept the trajectory of the
robot during operation. Consequently, the system is required to perceive changes in the environment
accurately and re-plan the robot’s trajectory in real-time in response to potential collisions. This
behavior is critical to robots that must interact with freely changing environments in which other
agents (such as humans and robots) act within the robot workspace.

Figure 1. Overview of the proposed system. Three modules running simultaneously in parallel: (i)
machine vision (smart sensing), (ii) path planning (reasoning, decision making), and (iii) robot control
(movement coordination).

Advanced perception of the world in robots is made possible by giving them the required
sensing capabilities. This is possible by a sensing module that is responsible for acquiring
environmental information through peripheral devices and data processing. In this work, the sensing
strategy adopted is based on machine vision [15], where optical cameras are used in conjunction with
image processing techniques. The resulting geometric information of the world is then interpreted
and applied to decision-making processes. Here, an online path planner retrieves the geometric
obstacle information and re-plans a valid collision-free path to complete the required pick-and-place

Figure 1. Overview of the proposed system. Three modules running simultaneously in parallel:
(i) machine vision (smart sensing), (ii) path planning (reasoning, decision making), and (iii) robot
control (movement coordination).

3. Machine Vision Module

Machine vision is used to provide the robotic system with sensory attributes. This module
is based on optical cameras acquiring frames in real time. The images are processed to extract
relevant information about the robot environment, particularly the position of a moving obstacle in its
workspace to avoid collisions.

The machine vision is based on three independent stages: (i) frames acquisition, (ii) image
processing and (iii) data communication (see Figure 2). Firstly, the acquisition stage controls the
optical cameras for capturing the video stream, stating the acquisition frame rate, resolution and
related parameters. Secondly, the image processing stage computes the acquired frames to perform
obstacle detection. In this work, the obstacle detection is based on color with some additional filtering
(by size). Finally, the last stage extracts the obstacle location obtained from image processing as
information packages ready to be sent from the machine vision module when requested by the path
planning module. This data transmission is based on TCP/IP sockets [25]. These three stages are
implemented by three independent threads running in parallel. Consequently, the computation times
for acquisition, image processing and communication do not accumulate. These are explained in the
following subsections.

Sensors 2018, 18, x FOR PEER REVIEW 4 of 24

task. Finally, the output from this reasoning process is sent to a controller to execute the path on the
physical robot. Trajectory generation that obeys kinematic constraints of the robot is performed
locally within the controller through an add-on interfacing software.

The proposed system consists of three independent modules: (i) machine vision, (ii) path
planning and (iii) robot control, linked in parallel to form an efficient integrated system with wide
modularity (see Figure 1). All modules work in real-time, and communications maintained across
modules. The machine vision module performs obstacle detection, where dynamically-moving
obstacles are tracked in the robot workspace. The decision-making process is derived from the path
planning module, where the search for optimal, feasible paths for pick-and-place operations is
performed based on input obtained from the machine vision to update the current geometric
representation of the environment. These two modules communicate by TCP/IP sockets [25], where
the machine vision software acts as a server, and the path planning module acts as a client. Finally,
the resulting geometric paths are sent to the robot control module to drive the physical robot along
the specified paths through Dynamic Link Libraries (DLLs). In the following sections, each of these
modules will be given in detail.

3. Machine Vision Module

Machine vision is used to provide the robotic system with sensory attributes. This module is
based on optical cameras acquiring frames in real time. The images are processed to extract relevant
information about the robot environment, particularly the position of a moving obstacle in its
workspace to avoid collisions.

Figure 2. Implementation architecture for machine vision. Three different threads running in parallel
for acquisition, image processing and communication. The input comes from the camera devices,
while the output is stored in an information package to be sent to other modules in the system.

The machine vision is based on three independent stages: (i) frames acquisition, (ii) image
processing and (iii) data communication (see Figure 2). Firstly, the acquisition stage controls the
optical cameras for capturing the video stream, stating the acquisition frame rate, resolution and
related parameters. Secondly, the image processing stage computes the acquired frames to perform
obstacle detection. In this work, the obstacle detection is based on color with some additional filtering
(by size). Finally, the last stage extracts the obstacle location obtained from image processing as
information packages ready to be sent from the machine vision module when requested by the path
planning module. This data transmission is based on TCP/IP sockets [25]. These three stages are

Figure 2. Implementation architecture for machine vision. Three different threads running in parallel
for acquisition, image processing and communication. The input comes from the camera devices,
while the output is stored in an information package to be sent to other modules in the system.

Sensors 2019, 19, 1354 5 of 23

3.1. Data Acquisition

Among the different acquisition devices available for this case study, low-cost webcams were
adopted to conceptually demonstrate that the enhancement of sensing capabilities can be achieved at
the image processing level. In this particular case study, two cameras were placed off-board in fixed
locations, instead of being mounted on the robot as in other works [26]. Off-board cameras simplify the
computation of spatial coordinates in real-time and enable perception of the environment. However,
this scheme can create situations in which the robotic arm invades the camera’s field of view and
would hide potentially moving obstacles. For this reason, two cameras were used, and are henceforth
denoted as Cam-1 and Cam-2. The main camera, Cam-1, was placed overhead, capturing a wide view
of the workspace. Cam-2 was installed as a complementary camera at the side, and oriented in an
orthogonal direction to Cam-1. This ensured that any moving obstacle would always be detected by
at least one of the cameras, solving the robot intrusion problem for a single-camera setup. The exact
location of the two low-cost cameras, as well as other considerations are discussed in the experimental
setup (Section 6).

3.2. Image Processing

The frame(s) from the cameras acquired in the previous stage are then processed to perform
obstacle detection in 2D (a constant height is assumed for 3D). However, initial offline calibration is
required to configure the machine vision parameters. This offline calibration (see Figure 3) is carried
out during the system setup, with an expected low frequency for re-calibration as lighting conditions
in the workspace (and related industrial environments) are constant over time. It includes three
steps. First, a given contour is defined for masking the frames, removing any information beyond
the robot workspace. Then, several calibration points are measured within the workspace and taken
as a reference for the computation of spatial locations. This step is necessary for the extraction of a
given obstacle’s location via a projection algorithm, which translates pixel coordinates in the image to
2D real-world spatial coordinates. Finally, fine-tuning of parameters (described below) for obstacle
detection is performed using a manual adjustment tool (Figure 3b), with resulting effects shown in
real-time. This real-time adjustment allows an easy tuning to control a wide range of noise level hence
leading to robust obstacle detection.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 24

implemented by three independent threads running in parallel. Consequently, the computation times
for acquisition, image processing and communication do not accumulate. These are explained in the
following subsections.

3.1. Data Acquisition

Among the different acquisition devices available for this case study, low-cost webcams were
adopted to conceptually demonstrate that the enhancement of sensing capabilities can be achieved at
the image processing level. In this particular case study, two cameras were placed off-board in fixed
locations, instead of being mounted on the robot as in other works [26]. Off-board cameras simplify
the computation of spatial coordinates in real-time and enable perception of the environment.
However, this scheme can create situations in which the robotic arm invades the camera’s field of
view and would hide potentially moving obstacles. For this reason, two cameras were used, and are
henceforth denoted as Cam-1 and Cam-2. The main camera, Cam-1, was placed overhead, capturing
a wide view of the workspace. Cam-2 was installed as a complementary camera at the side, and
oriented in an orthogonal direction to Cam-1. This ensured that any moving obstacle would always
be detected by at least one of the cameras, solving the robot intrusion problem for a single-camera
setup. The exact location of the two low-cost cameras, as well as other considerations are discussed
in the experimental setup (Section 6).

3.2. Image Processing

The frame(s) from the cameras acquired in the previous stage are then processed to perform
obstacle detection in 2D (a constant height is assumed for 3D). However, initial offline calibration is
required to configure the machine vision parameters. This offline calibration (see Figure 3) is carried
out during the system setup, with an expected low frequency for re-calibration as lighting conditions
in the workspace (and related industrial environments) are constant over time. It includes three steps.
First, a given contour is defined for masking the frames, removing any information beyond the robot
workspace. Then, several calibration points are measured within the workspace and taken as a
reference for the computation of spatial locations. This step is necessary for the extraction of a given
obstacle’s location via a projection algorithm, which translates pixel coordinates in the image to 2D
real-world spatial coordinates. Finally, fine-tuning of parameters (described below) for obstacle
detection is performed using a manual adjustment tool (Figure 3b), with resulting effects shown in
real-time. This real-time adjustment allows an easy tuning to control a wide range of noise level hence
leading to robust obstacle detection.

(a)

(b)

Figure 3. Calibration used in the machine vision module: (a) Main procedures for overall calibration
at different stages; (b) Control panel window for adjustment of parameters in real time.

There is a remarkable number of potential solutions to implement obstacle (object) detection. In
the up-to-date research, it is possible to find contours, descriptors and their combination [27],

Figure 3. Calibration used in the machine vision module: (a) Main procedures for overall calibration at
different stages; (b) Control panel window for adjustment of parameters in real time.

There is a remarkable number of potential solutions to implement obstacle (object) detection. In the
up-to-date research, it is possible to find contours, descriptors and their combination [27], extensions
of the correlation filter for object tracking [28], combination of color and depth (3D) images [29],

Sensors 2019, 19, 1354 6 of 23

probabilistic approaches to fuse multiple cameras information [30], alignment of hybrid visual features
to register visible and infrared images [31], and even smart calibration procedures [32,33]. However,
these techniques tend to be complex with expensive computational cost not suitable for this work.

Therefore, the obstacle detection in this work is performed by color discrimination [34]. Unlike
the traditional Red-Green-Blue (RGB) color space, the Hue-Saturation-Value (HSV) approach involves
parametrization including not only true color (hue) but also color depth (saturation) and color darkness
(value) [34], as can be seen in Figure 4. As a result, the HSV color space is much more suited for
addressing real-world environments consisting of light reflections, shadows and darkened regions etc.
Therefore, the real-time image processing workflow involves the following steps: (i) transformation
from RGB image to HSV image, (ii) transformation from HSV image to binary image, by means of
applying the selected HSV color range thresholds (one step binarization), and (iii) posterior treatment
of the binary image, including size and tracking filtering, to avoid the detection of unrelated objects.
This post-processing filtering is optional (HSV binarization already solves obstacle detection) and
simply discards the potential presence of unrelated elements in the binary image based on their size
(number of pixels in the detected region) and position in relation to threshold values empirically
obtained. Figure 4 shows an example including this filtering step.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 24

extensions of the correlation filter for object tracking [28], combination of color and depth (3D) images
[29], probabilistic approaches to fuse multiple cameras information [30], alignment of hybrid visual
features to register visible and infrared images [31], and even smart calibration procedures [32,33].
However, these techniques tend to be complex with expensive computational cost not suitable for
this work.

Therefore, the obstacle detection in this work is performed by color discrimination [34]. Unlike
the traditional Red-Green-Blue (RGB) color space, the Hue-Saturation-Value (HSV) approach
involves parametrization including not only true color (hue) but also color depth (saturation) and
color darkness (value) [34], as can be seen in Figure 4. As a result, the HSV color space is much more
suited for addressing real-world environments consisting of light reflections, shadows and darkened
regions etc. Therefore, the real-time image processing workflow involves the following steps: (i)
transformation from RGB image to HSV image, (ii) transformation from HSV image to binary image,
by means of applying the selected HSV color range thresholds (one step binarization), and (iii)
posterior treatment of the binary image, including size and tracking filtering, to avoid the detection
of unrelated objects. This post-processing filtering is optional (HSV binarization already solves
obstacle detection) and simply discards the potential presence of unrelated elements in the binary
image based on their size (number of pixels in the detected region) and position in relation to
threshold values empirically obtained. Figure 4 shows an example including this filtering step.

(a)

(b)

Figure 4. Image processing used in the machine vision module: (a) Main workflow for image
processing; (b) HSV color space used for obstacle detection (scales available in OpenCV-3.1 library).

3.3. Communication

The communication thread is responsible for sending the latest extracted obstacle information
from the machine vision module to other modules by request. As the different modules in the robotic
system run in parallel simultaneously, the communication thread stores the latest information
obtained from the image processing into a package and prepares it for sending as per any request by
TCP/IP sockets [25]. The information package is shown in Figure 5, where it is defined by several
bytes containing the position coordinates in 2D of the detected obstacle (x, y) and the approximated
dimensions of the bounding box containing it. The units are in cm.

Figure 4. Image processing used in the machine vision module: (a) Main workflow for image
processing; (b) HSV color space used for obstacle detection (scales available in OpenCV-3.1 library).

3.3. Communication

The communication thread is responsible for sending the latest extracted obstacle information
from the machine vision module to other modules by request. As the different modules in the
robotic system run in parallel simultaneously, the communication thread stores the latest information
obtained from the image processing into a package and prepares it for sending as per any request by
TCP/IP sockets [25]. The information package is shown in Figure 5, where it is defined by several
bytes containing the position coordinates in 2D of the detected obstacle (x, y) and the approximated
dimensions of the bounding box containing it. The units are in cm.

Sensors 2019, 19, 1354 7 of 23
Sensors 2018, 18, x FOR PEER REVIEW 7 of 24

Figure 5. Schematic representation of the information package sent out from the machine vision
module. The heading is used to avoid communication errors. Each 16-bit element is sent by two 8-bit
units: Most Significant Bits (MSBs) plus Less Significant Bits (LSBs).

Finally, an important consideration here is how to achieve sensor fusion, given that two cameras
are used, with slight differences in extracted information due to sensing accuracy. The strategy shown
in Figure 6 addresses sensor fusion at the output level: information from Cam-1 is always used if this
camera detects the moving obstacle. When Cam-1 cannot detect an obstacle (possibly due to robot
intrusion), then the information from Cam-2 is used instead. While simple, this strategy has proven
effective for real-time applications.

Figure 6. Flowchart for sensor fusion in real time [22]. Complementary camera (Cam-2) takes control
when main camera (Cam-1) is not able to detect the obstacle.

4. Pick-and-Place Path Planning Module

Pick-and-place tasks are most common industrial operations in manufacturing, where a
component/product is moved between predefined start (pick) and goal (place) locations within the
workspace of the robot. This automation task is traditionally programmed offline, computing
predefined paths which link start and goal points. However, this only works well in structured and
static conditions.

By providing the robotic system with sensory attributes such as machine vision, the system is
now able to interact better with its environment, adapting to dynamic and changing conditions such
as a moving obstacle in the robot workspace. This interaction is enabled via a path planning algorithm
that is able to interpret the sensing information and (re-) plan a globally optimal, collision-free path

Figure 5. Schematic representation of the information package sent out from the machine vision
module. The heading is used to avoid communication errors. Each 16-bit element is sent by two 8-bit
units: Most Significant Bits (MSBs) plus Less Significant Bits (LSBs).

Finally, an important consideration here is how to achieve sensor fusion, given that two cameras
are used, with slight differences in extracted information due to sensing accuracy. The strategy shown
in Figure 6 addresses sensor fusion at the output level: information from Cam-1 is always used if this
camera detects the moving obstacle. When Cam-1 cannot detect an obstacle (possibly due to robot
intrusion), then the information from Cam-2 is used instead. While simple, this strategy has proven
effective for real-time applications.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 24

Figure 5. Schematic representation of the information package sent out from the machine vision
module. The heading is used to avoid communication errors. Each 16-bit element is sent by two 8-bit
units: Most Significant Bits (MSBs) plus Less Significant Bits (LSBs).

Finally, an important consideration here is how to achieve sensor fusion, given that two cameras
are used, with slight differences in extracted information due to sensing accuracy. The strategy shown
in Figure 6 addresses sensor fusion at the output level: information from Cam-1 is always used if this
camera detects the moving obstacle. When Cam-1 cannot detect an obstacle (possibly due to robot
intrusion), then the information from Cam-2 is used instead. While simple, this strategy has proven
effective for real-time applications.

Figure 6. Flowchart for sensor fusion in real time [22]. Complementary camera (Cam-2) takes control
when main camera (Cam-1) is not able to detect the obstacle.

4. Pick-and-Place Path Planning Module

Pick-and-place tasks are most common industrial operations in manufacturing, where a
component/product is moved between predefined start (pick) and goal (place) locations within the
workspace of the robot. This automation task is traditionally programmed offline, computing
predefined paths which link start and goal points. However, this only works well in structured and
static conditions.

By providing the robotic system with sensory attributes such as machine vision, the system is
now able to interact better with its environment, adapting to dynamic and changing conditions such
as a moving obstacle in the robot workspace. This interaction is enabled via a path planning algorithm
that is able to interpret the sensing information and (re-) plan a globally optimal, collision-free path

Figure 6. Flowchart for sensor fusion in real time [22]. Complementary camera (Cam-2) takes control
when main camera (Cam-1) is not able to detect the obstacle.

4. Pick-and-Place Path Planning Module

Pick-and-place tasks are most common industrial operations in manufacturing, where a
component/product is moved between predefined start (pick) and goal (place) locations within
the workspace of the robot. This automation task is traditionally programmed offline, computing
predefined paths which link start and goal points. However, this only works well in structured and
static conditions.

By providing the robotic system with sensory attributes such as machine vision, the system is
now able to interact better with its environment, adapting to dynamic and changing conditions such
as a moving obstacle in the robot workspace. This interaction is enabled via a path planning algorithm
that is able to interpret the sensing information and (re-) plan a globally optimal, collision-free path for

Sensors 2019, 19, 1354 8 of 23

pick-and-place operations in real time. Hence, when a moving obstacle invalidates an initially planned
path, this path can be updated quickly and effectively.

The pick-and-place path planning approach implemented here uses the method of dynamic
roadmaps, which is a sampling-based real-time variation of the Probabilistic Road Maps (PRMs)
method, proven effective in motion planning within changing environments [35]. The dynamic
roadmaps method is characterized by an offline pre-processing phase and an online planning
and computation.

4.1. Pre-Processing Phase

In this phase, the algorithm creates a mapping between the states sampled in the configuration
space (C-space for short) with the cells in a discretized workspace, and the sampled states are connected
with their neighboring states as characterized by PRMs. This phase is carried out as follows.

Firstly, the robot C-space is sampled. This involves randomly sampling the entire C-space to
obtain nodes of the roadmap, and this is performed assuming a completely obstacle-free space. Then,
pairs of neighboring nodes are connected to form the edges of the roadmap. Neighboring nodes are
defined as all those that lie within a predefined radius (r) from a given node (Figure 7). A single node
within this roadmap represents a single robot configuration. Thus a connecting edge between two
nodes corresponds to a valid motion path between two configurations.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 24

for pick-and-place operations in real time. Hence, when a moving obstacle invalidates an initially
planned path, this path can be updated quickly and effectively.

The pick-and-place path planning approach implemented here uses the method of dynamic
roadmaps, which is a sampling-based real-time variation of the Probabilistic Road Maps (PRMs)
method, proven effective in motion planning within changing environments [35]. The dynamic
roadmaps method is characterized by an offline pre-processing phase and an online planning and
computation.

4.1. Pre-Processing Phase

In this phase, the algorithm creates a mapping between the states sampled in the configuration
space (C-space for short) with the cells in a discretized workspace, and the sampled states are
connected with their neighboring states as characterized by PRMs. This phase is carried out as
follows.

Firstly, the robot C-space is sampled. This involves randomly sampling the entire C-space to
obtain nodes of the roadmap, and this is performed assuming a completely obstacle-free space. Then,
pairs of neighboring nodes are connected to form the edges of the roadmap. Neighboring nodes are
defined as all those that lie within a predefined radius (r) from a given node (Figure 7). A single node
within this roadmap represents a single robot configuration. Thus a connecting edge between two
nodes corresponds to a valid motion path between two configurations.

Figure 7. Illustration of nodes that are considered neighbors of a node being considered, with current
node (red color), nodes lying within a specified radius r (black color) and all other nodes in the C-
space (gray color).

The geometric representation of the workspace is then discretized into uniform cells, where the
spatial resolution available is dependent on the cell size, with a subsequent trade-off between finer
resolution and faster computation. Increasing the number of cells increases the computation time of
the mapping stage (described below) exponentially.

Given the sampled C-space and discretized Cartesian space, a mapping between the two
domains is performed. This mapping is obtained by iteratively checking every robot configuration
associated with all the sampled nodes and along each edge of the roadmap. All workspace cells that
collide with the robot at these configurations are mapped to the associated nodes and edges. Hence
during online execution, the roadmap can be updated based on the cells which are occupied by
obstacles, producing a graph representation of valid motions between robot configurations across the
entire workspace.

Figure 7. Illustration of nodes that are considered neighbors of a node being considered, with current
node (red color), nodes lying within a specified radius r (black color) and all other nodes in the C-space
(gray color).

The geometric representation of the workspace is then discretized into uniform cells, where the
spatial resolution available is dependent on the cell size, with a subsequent trade-off between finer
resolution and faster computation. Increasing the number of cells increases the computation time of
the mapping stage (described below) exponentially.

Given the sampled C-space and discretized Cartesian space, a mapping between the two domains
is performed. This mapping is obtained by iteratively checking every robot configuration associated
with all the sampled nodes and along each edge of the roadmap. All workspace cells that collide with
the robot at these configurations are mapped to the associated nodes and edges. Hence during online
execution, the roadmap can be updated based on the cells which are occupied by obstacles, producing
a graph representation of valid motions between robot configurations across the entire workspace.

Sensors 2019, 19, 1354 9 of 23

4.2. Online Phase

During the online phase, the algorithm retrieves the perceived obstacle information from the
machine vision module by TCP/IP sockets [25]. The path planning module requests and receives
immediately the 80-bit package shown in Figure 5 with the latest information about the position of the
moving obstacle. From this package, the algorithm knows the obstacle (x, y) coordinates within the
workspace and the size of a rectangular bounding box containing it. Therefore, the obstacle is treated
as a box object, providing enhanced clearance between the robot and obstacle for collision avoidance.
This information is combined with the mapping computed offline to create a graph representation of
the collision-free regions in the C-space.

The desired start and goal configuration (which can change at any time) is connected to the
nearest node in the roadmap. Then, two steps are used to build the new path for the robot. First,
the A* algorithm [36] (an extension of the Dijkstra’s algorithm for graph search) is implemented to
search for the shortest route within the graph, finding a path that guarantees no collision with the
moving obstacle. Then, B-splines smoothing [37] is used to smoothen the obtained path and achieve a
continuous smooth motion.

Once the robot computes the initially planned path, the path planner continues to monitor the
obstacle in the workspace. If any detected change in the environment invalidates a previously planned
path, then a new updated path is computed using the steps described above. In this implementation,
the algorithm is assessed for real-time performance based on its ability to plan paths faster than human
reaction time, which is approximately 180ms [20]. Human reaction time is taken as reference as robots
must react to changes in the environment quicker than that for a safe interaction with human workers.
A high-level flowchart representing this real-time path planner is given in Figure 8.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 24

4.2. Online Phase

During the online phase, the algorithm retrieves the perceived obstacle information from the
machine vision module by TCP/IP sockets [25]. The path planning module requests and receives
immediately the 80-bit package shown in Figure 5 with the latest information about the position of
the moving obstacle. From this package, the algorithm knows the obstacle (x, y) coordinates within
the workspace and the size of a rectangular bounding box containing it. Therefore, the obstacle is
treated as a box object, providing enhanced clearance between the robot and obstacle for collision
avoidance. This information is combined with the mapping computed offline to create a graph
representation of the collision-free regions in the C-space.

The desired start and goal configuration (which can change at any time) is connected to the
nearest node in the roadmap. Then, two steps are used to build the new path for the robot. First, the
A* algorithm [36] (an extension of the Dijkstra’s algorithm for graph search) is implemented to search
for the shortest route within the graph, finding a path that guarantees no collision with the moving
obstacle. Then, B-splines smoothing [37] is used to smoothen the obtained path and achieve a
continuous smooth motion.

Once the robot computes the initially planned path, the path planner continues to monitor the
obstacle in the workspace. If any detected change in the environment invalidates a previously
planned path, then a new updated path is computed using the steps described above. In this
implementation, the algorithm is assessed for real-time performance based on its ability to plan paths
faster than human reaction time, which is approximately 180ms [20]. Human reaction time is taken
as reference as robots must react to changes in the environment quicker than that for a safe interaction
with human workers. A high-level flowchart representing this real-time path planner is given in
Figure 8.

Figure 8. Flowchart for dynamic path planning [22]. The dashed box indicates re-planning capability.

5. Robot Control Module

So far, a machine vision module has been introduced for providing the robotic system with
sensory capabilities, while a path planner module for decision making in pick-and-place tasks has
been described. However, a third module for robot control is necessary to interface the planning
results with real-time position tracking and actuator control.

Robots have been quite successful in accomplishing tasks in well-known environments like a
work cell within a factory. The much harder problem of a robot acting in unstructured and dynamic

Figure 8. Flowchart for dynamic path planning [22]. The dashed box indicates re-planning capability.

5. Robot Control Module

So far, a machine vision module has been introduced for providing the robotic system with
sensory capabilities, while a path planner module for decision making in pick-and-place tasks has been
described. However, a third module for robot control is necessary to interface the planning results
with real-time position tracking and actuator control.

Sensors 2019, 19, 1354 10 of 23

Robots have been quite successful in accomplishing tasks in well-known environments like a
work cell within a factory. The much harder problem of a robot acting in unstructured and dynamic
environments, like those humans normally act and live in, is still an open research area [38]. In such
situations, robots need to adapt their tasks after beginning an initial sequence. In this work, a novel
toolbox, the Interfacing Toolbox for Robotic Arms (ITRA) [39], was used.

5.1. ITRA Toolbox and RSI Interface

ITRA is a cross-platform software toolbox, designed to facilitate the integration of robotic
arms with sensors, actuators and software modules through the use of an external server computer.
It contains fundamental functionalities for robust connectivity, real-time control and auxiliary functions
to set or get key functional variables. ITRA is a C++ based DLL of functions. Due to platform
availability during its development, it is currently focused around KUKA hardware, but can be
extended to handle real-time interfaces on ABB [40] and Stäubli [41] robots. As such, it runs on a
remote computer connected with KRC4 robots through a User Datagram Protocol (UDP/IP) socket.

All the embedded functions can be used through high-level programming language platforms
(e.g., MATLAB, Simulink and LabVIEW) or implemented into low-level language (e.g., C, C# and C++)
applications, providing the opportunity to speed-up flexible and robust integration of robotic systems.
The ITRA is currently compatible with all KUKA KRC4 robots equipped with a KUKA software add-on
known as Robot Sensor Interface (RSI) [42], which was purposely developed by KUKA to enable
the communication between the robot controller and an external system (e.g., a sensor system or a
server computer).

Cyclical data transmission from the robot controller to the external system (and vice-versa) takes
place in parallel to the execution of the KUKA Robot Language (KRL) program. Using RSI makes it
possible to influence the robot motion or the execution of the KRL program by processing external
data. The robot controller communicates with the external system via the Ethernet UDP/IP protocol.
The ITRA takes advantage of the fundamental functionalities of RSI and allows achieving external
control of robotic arms through three different approaches.

5.2. Real-Time Robot Motion Control

Real-time robot motion control can be divided into two sub-problems: (i) the specification of the
control points of the geometric path (path planning), and (ii) the specification of the time evolution
along this geometric path (trajectory planning). Whereas the path-planning sub-problem is always
dealt with by the computer hosting the ITRA, where processing of machine vision data and/or other
sensor data can take place to compute the robot target position, the trajectory planning sub-problem
can be managed by different actors of the system.

In the first approach, referred as KRL-based approach, the trajectory planning takes place at the
KRL module level within the robot controller. The second approach has trajectory planning performed
within the external computer, soon after path-planning, and is referred as Computer-based approach.
The third approach relies on a real-time trajectory planning algorithm implemented into the RSI
configuration. Therefore, trajectory planning is managed by the RSI context and the approach is named
as RSI-based approach.

The KRL-based and the Computer-based approaches enable basic robot external control
capabilities, where the robot has to wait until the current target position is reached in order to go for
the next one. This means that, if a new target point C is stated while the robot is moving from a point
A to a point B, the robot cannot adapt to this change until B is reached, becoming a major problem.

Unlike the KRL-based and the computer-based approaches, the RSI-based approach enables true
real-time path control of KUKA robots based on KRC4 controllers. This approach, which is used
for this work, permits fast online modifications to a planned trajectory, allowing robots to adapt to
changes in the dynamic environment and react to unforeseen obstacles. Whereas the path-planning
takes place in the server computer, trajectory planning has been implemented as an RSI configuration,

Sensors 2019, 19, 1354 11 of 23

employing the second-order trajectory generation algorithm presented in [43]. The approach can
operate in Cartesian-space and in joint-space. While the robot is static or is travelling to a given
position, the computer can send a new target position (together with the maximum preferred speed
and acceleration) through a specific ITRA function. The target coordinates, received by the robot
controller, are used to compute the optimal coordinates of the set point to send to the robot arm drives
through a two-fold algorithm.

On the one hand, the set point is generated to guarantee a smooth transition from the initial
conditions (starting coordinates, velocity and acceleration) towards the final target position. On the
other hand, the algorithm makes sure the evolution of the robot motion is constrained within the given
maximum velocity and acceleration. Thanks to this approach, the robot motion can be quickly updated
in response to the path planning module (e.g., the robot can adapt to any changes in the workspace
interfering its operation). This implementation is herein referred as a robot control module and is
schematically represented in Figure 9.

Sensors 2018, 18, x FOR PEER REVIEW 11 of 24

by the robot controller, are used to compute the optimal coordinates of the set point to send to the
robot arm drives through a two-fold algorithm.

Figure 9. Robot Sensor Interface (RSI) for real-time computing in 4ms interpolation cycle. While
moving from point A to point B, the robot can update its target position from current B to a new point
C in real time.

On the one hand, the set point is generated to guarantee a smooth transition from the initial
conditions (starting coordinates, velocity and acceleration) towards the final target position. On the
other hand, the algorithm makes sure the evolution of the robot motion is constrained within the
given maximum velocity and acceleration. Thanks to this approach, the robot motion can be quickly
updated in response to the path planning module (e.g., the robot can adapt to any changes in the
workspace interfering its operation). This implementation is herein referred as a robot control module
and is schematically represented in Figure 9.

6. Experimental Setup

In this section, the experimental setup is described, defining all the components of the system
including the robotic manipulator, workspace, optical cameras and moving obstacle, among others.

The experiments and related discussion in this section are specific to one case study.
Nevertheless, one of the main advantages of the proposed system is its modularity and can be
generally applied to different applications with no constraints on the type of robot manipulator or
sensory devices used or the environment in which they are deployed in.

6.1. Robotic Manipulator and Pick-and-Place Elements

The KR90 R3100 produced by KUKA was used in this case study [23]. This robot is a 6-axis serial
manipulator, with characteristics shown in Table 1 and Figure 10 [23]. This robot was chosen as it is
commonly found in industrial applications. However, the proposed system can be implemented with
any other serial manipulator (robots not manufactured by KUKA would require their accompanying
controllers). Indeed, the KR06 R900 [24] was also employed during preliminary experiments.

Table 1. Robot characteristics for the KUKA KR90 R3100.

Characteristics Values
Working envelope 66 m3

Weight 1121 kg

Figure 9. Robot Sensor Interface (RSI) for real-time computing in 4ms interpolation cycle. While moving
from point A to point B, the robot can update its target position from current B to a new point C in
real time.

6. Experimental Setup

In this section, the experimental setup is described, defining all the components of the system
including the robotic manipulator, workspace, optical cameras and moving obstacle, among others.

The experiments and related discussion in this section are specific to one case study. Nevertheless,
one of the main advantages of the proposed system is its modularity and can be generally applied to
different applications with no constraints on the type of robot manipulator or sensory devices used or
the environment in which they are deployed in.

6.1. Robotic Manipulator and Pick-and-Place Elements

The KR90 R3100 produced by KUKA was used in this case study [23]. This robot is a 6-axis serial
manipulator, with characteristics shown in Table 1 and Figure 10 [23]. This robot was chosen as it is
commonly found in industrial applications. However, the proposed system can be implemented with
any other serial manipulator (robots not manufactured by KUKA would require their accompanying
controllers). Indeed, the KR06 R900 [24] was also employed during preliminary experiments.

Sensors 2019, 19, 1354 12 of 23

Table 1. Robot characteristics for the KUKA KR90 R3100.

Characteristics Values

Working envelope 66 m3

Weight 1121 kg
Axis 1 (speed) ±185 º (105 º/s)
Axis 2 (speed) −5 º to −140 º (101 º/s)
Axis 3 (speed) +155 º to −120 º (107 º/s)
Axis 4 (speed) ±350 º (292 º/s)
Axis 5 (speed) ±125 º (258 º/s)
Axis 6 (speed) ±350 º (284 º/s)

Sensors 2018, 18, x FOR PEER REVIEW 12 of 24

Axis 1 (speed) ±185 º (105 º/s)
Axis 2 (speed) −5 º to −140 º (101 º/s)
Axis 3 (speed) +155 º to −120 º (107 º/s)
Axis 4 (speed) ±350 º (292 º/s)
Axis 5 (speed) ±125 º (258 º/s)
Axis 6 (speed) ±350 º (284 º/s)

This robot was given the task to perform a series of pick-and-place actions guided by a collision-
free motion plan. In order to perform the pick-and-place operations, a simple box and hook (Figure
11) were produced using laser-cutting technology, with the hook acting as a simple gripper. Start and
goal box poses were defined for which the planner was used to plan paths to transfer the box across
various targets.

(a)
(b)

Figure 10. KUKA KR90 R3100 robot: (a) General aspect of the robotic arm manipulator; (b) Working
envelope with dimensions comprised during operation. Images obtained from [23].

Figure 11. Hook and box with handle for pick-and-place tasks. The box dimensions are 10 cm × 5 cm
× 5 cm and was produced using laser-cutting technology.

6.2. Workspace and Moving Obstacles

A workspace for the KR90 R3100 robot can be defined according to its dimensions and
disposition. In the experiments, the workspace was limited to a table with dimensions 160 cm × 110
cm × 85 cm (width-breadth-height) located next to the base of the robot (see Figure 12). The table was
covered by an old, rough tablecloth, containing different textile traces and rusty/dirty patches. This,

Figure 10. KUKA KR90 R3100 robot: (a) General aspect of the robotic arm manipulator; (b) Working
envelope with dimensions comprised during operation. Images obtained from [23].

This robot was given the task to perform a series of pick-and-place actions guided by a
collision-free motion plan. In order to perform the pick-and-place operations, a simple box and
hook (Figure 11) were produced using laser-cutting technology, with the hook acting as a simple
gripper. Start and goal box poses were defined for which the planner was used to plan paths to transfer
the box across various targets.

Sensors 2018, 18, x FOR PEER REVIEW 12 of 24

Axis 1 (speed) ±185 º (105 º/s)
Axis 2 (speed) −5 º to −140 º (101 º/s)
Axis 3 (speed) +155 º to −120 º (107 º/s)
Axis 4 (speed) ±350 º (292 º/s)
Axis 5 (speed) ±125 º (258 º/s)
Axis 6 (speed) ±350 º (284 º/s)

This robot was given the task to perform a series of pick-and-place actions guided by a collision-
free motion plan. In order to perform the pick-and-place operations, a simple box and hook (Figure
11) were produced using laser-cutting technology, with the hook acting as a simple gripper. Start and
goal box poses were defined for which the planner was used to plan paths to transfer the box across
various targets.

(a)
(b)

Figure 10. KUKA KR90 R3100 robot: (a) General aspect of the robotic arm manipulator; (b) Working
envelope with dimensions comprised during operation. Images obtained from [23].

Figure 11. Hook and box with handle for pick-and-place tasks. The box dimensions are 10 cm × 5 cm
× 5 cm and was produced using laser-cutting technology.

6.2. Workspace and Moving Obstacles

A workspace for the KR90 R3100 robot can be defined according to its dimensions and
disposition. In the experiments, the workspace was limited to a table with dimensions 160 cm × 110
cm × 85 cm (width-breadth-height) located next to the base of the robot (see Figure 12). The table was
covered by an old, rough tablecloth, containing different textile traces and rusty/dirty patches. This,

Figure 11. Hook and box with handle for pick-and-place tasks. The box dimensions are 10 cm × 5 cm
× 5 cm and was produced using laser-cutting technology.

Sensors 2019, 19, 1354 13 of 23

6.2. Workspace and Moving Obstacles

A workspace for the KR90 R3100 robot can be defined according to its dimensions and disposition.
In the experiments, the workspace was limited to a table with dimensions 160 cm × 110 cm × 85 cm
(width-breadth-height) located next to the base of the robot (see Figure 12). The table was covered by
an old, rough tablecloth, containing different textile traces and rusty/dirty patches. This, along with
strong reflections and inconsistent light, simulated a noisy environment. Finally, barriers were placed
along the table perimeter to constrain the moving obstacle inside the workspace.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 24

along with strong reflections and inconsistent light, simulated a noisy environment. Finally, barriers
were placed along the table perimeter to constrain the moving obstacle inside the workspace.

The moving obstacle was mocked by using a remote controlled car of dimensions 20 cm × 10 cm
× 5 cm covered by yellow cardboard (Figure 12b), with a speed estimated at 1 m/s. This color was
chosen due to its similar tonality to the orange color of the robot, which further increases the challenge
on image processing. Nevertheless, this was effectively addressed by the approach to configuring
HSV parameters during calibration (Figure 3), which subsequently enables any color differences to
be identified. Operator safety regulations prevented human entry into the workspace of the robot,
hence the use of the remote controlled car provides reasonable dynamics within the environment. A
‘spike’ of 30 cm was placed on top to virtually extend the height of the obstacle, which contributes to
greater demands on path correction. This experimental setup illustrates the robustness of the
proposed system to various environmental challenges that may be present in various real-world
scenarios.

(a)

(b)

Figure 12. Workspace table implemented for the robot: (a) General overview including robot base,
covered table, pick-and-place box and moving obstacle; (b) Moving obstacle covered in yellow color
with a 30 cm ‘spike’ on its top.

6.3. Cameras and Location

Two HD Pro AWCAMHD15 cameras (Advent) were chosen for Cam-1 and Cam-2 (Figure 13).
These are low-cost webcams able to capture images with an original resolution of 640 × 480 pixels
and a frame rate of 30 fps.

Figure 12. Workspace table implemented for the robot: (a) General overview including robot base,
covered table, pick-and-place box and moving obstacle; (b) Moving obstacle covered in yellow color
with a 30 cm ‘spike’ on its top.

The moving obstacle was mocked by using a remote controlled car of dimensions 20 cm × 10 cm
× 5 cm covered by yellow cardboard (Figure 12b), with a speed estimated at 1 m/s. This color was
chosen due to its similar tonality to the orange color of the robot, which further increases the challenge
on image processing. Nevertheless, this was effectively addressed by the approach to configuring
HSV parameters during calibration (Figure 3), which subsequently enables any color differences to be
identified. Operator safety regulations prevented human entry into the workspace of the robot, hence
the use of the remote controlled car provides reasonable dynamics within the environment. A ‘spike’
of 30 cm was placed on top to virtually extend the height of the obstacle, which contributes to greater
demands on path correction. This experimental setup illustrates the robustness of the proposed system
to various environmental challenges that may be present in various real-world scenarios.

6.3. Cameras and Location

Two HD Pro AWCAMHD15 cameras (Advent) were chosen for Cam-1 and Cam-2 (Figure 13).
These are low-cost webcams able to capture images with an original resolution of 640 × 480 pixels and
a frame rate of 30 fps.

Sensors 2019, 19, 1354 14 of 23Sensors 2018, 18, x FOR PEER REVIEW 14 of 24

(a)

(b)

Figure 13. Disposition of the cameras for experiments: (a) Relative location of cameras with relation
to the robot workspace; (b) Close-up view of cameras attached to cell caging.

The main camera, Cam-1, was placed in an overhead location (Figure 13), 3 m over the ground,
capturing images of the workspace table from a landscape perspective. The complementary camera
Cam-2 was placed at a much lower height of 1.5 m, orthogonal in direction to Cam-1, and therefore
capturing table from a portrait perspective. The selected disposition for Cam-2 was intended for the
recovery of any blind points in Cam-1 should the robot intrude Cam-1′s field of view.

6.4. Host Computer and Related Software

An Inspiron 15 7000 (quad-core Intel i7) laptop (DELL, Round Rock, TX, USA) with 16 GB RAM
(Windows 10 operating system) was used in conjunction with a KR C4 controller to implement the
proposed system. The laptop possesses 2 USB ports, one for each camera, and an Ethernet port for
connection to the controller.

Both the path planner, implemented in MATLAB (MathWorks, Natick, MA, USA), and the
machine vision, implemented in C++ and called from MATLAB through executable files, were
executed on the remote PC. Actuation signals for to the controller were sent through a robot control
DLL to interface with the KR C4. The integrated system was run from a friendly Graphical User
Interface (GUI) also developed on MATLAB (Figure 14).

Figure 14. Main controls in the MATLAB GUI for the real-world physical demonstrator.

7. Experiments Evaluation and Discussion

In this section, the proposed system with the three described modules: (i) machine vision, (ii)
pick-and-place path planning and (iii) robot control is applied to both software simulations and to a
real-world physical demonstrator. Then, a performance evaluation is presented.

Figure 13. Disposition of the cameras for experiments: (a) Relative location of cameras with relation to
the robot workspace; (b) Close-up view of cameras attached to cell caging.

The main camera, Cam-1, was placed in an overhead location (Figure 13), 3 m over the ground,
capturing images of the workspace table from a landscape perspective. The complementary camera
Cam-2 was placed at a much lower height of 1.5 m, orthogonal in direction to Cam-1, and therefore
capturing table from a portrait perspective. The selected disposition for Cam-2 was intended for the
recovery of any blind points in Cam-1 should the robot intrude Cam-1′s field of view.

6.4. Host Computer and Related Software

An Inspiron 15 7000 (quad-core Intel i7) laptop (DELL, Round Rock, TX, USA) with 16 GB RAM
(Windows 10 operating system) was used in conjunction with a KR C4 controller to implement the
proposed system. The laptop possesses 2 USB ports, one for each camera, and an Ethernet port for
connection to the controller.

Both the path planner, implemented in MATLAB (MathWorks, Natick, MA, USA), and the machine
vision, implemented in C++ and called from MATLAB through executable files, were executed on the
remote PC. Actuation signals for to the controller were sent through a robot control DLL to interface
with the KR C4. The integrated system was run from a friendly Graphical User Interface (GUI) also
developed on MATLAB (Figure 14).

Sensors 2018, 18, x FOR PEER REVIEW 14 of 24

(a) (b)

Figure 13. Disposition of the cameras for experiments: (a) Relative location of cameras with relation
to the robot workspace; (b) Close-up view of cameras attached to cell caging.

The main camera, Cam-1, was placed in an overhead location (Figure 13), 3 m over the ground,
capturing images of the workspace table from a landscape perspective. The complementary camera
Cam-2 was placed at a much lower height of 1.5 m, orthogonal in direction to Cam-1, and therefore
capturing table from a portrait perspective. The selected disposition for Cam-2 was intended for the
recovery of any blind points in Cam-1 should the robot intrude Cam-1′s field of view.

6.4. Host Computer and Related Software

An Inspiron 15 7000 (quad-core Intel i7) laptop (DELL, Round Rock, TX, USA) with 16 GB RAM
(Windows 10 operating system) was used in conjunction with a KR C4 controller to implement the
proposed system. The laptop possesses 2 USB ports, one for each camera, and an Ethernet port for
connection to the controller.

Both the path planner, implemented in MATLAB (MathWorks, Natick, MA, USA), and the
machine vision, implemented in C++ and called from MATLAB through executable files, were
executed on the remote PC. Actuation signals for to the controller were sent through a robot control
DLL to interface with the KR C4. The integrated system was run from a friendly Graphical User
Interface (GUI) also developed on MATLAB (Figure 14).

Figure 14. Main controls in the MATLAB GUI for the real-world physical demonstrator.

7. Experiments Evaluation and Discussion

In this section, the proposed system with the three described modules: (i) machine vision, (ii)
pick-and-place path planning and (iii) robot control is applied to both software simulations and to a
real-world physical demonstrator. Then, a performance evaluation is presented.

Figure 14. Main controls in the MATLAB GUI for the real-world physical demonstrator.

Sensors 2019, 19, 1354 15 of 23

7. Experiments Evaluation and Discussion

In this section, the proposed system with the three described modules: (i) machine vision,
(ii) pick-and-place path planning and (iii) robot control is applied to both software simulations and to
a real-world physical demonstrator. Then, a performance evaluation is presented.

The proposed system was assessed in two ways. Firstly, simulations were carried out through a
simulation platform developed on MATLAB and interfaced via a custom GUI. The system was then
evaluated on the real-world physical demonstrator. In both cases the system performance was assessed
according to its behavior in responding to the presence of dynamic obstacles and the computation time
required to (re-)plan scenarios. As the obstacle detection is implemented in 2D, a constant height for
the moving obstacle is assumed (30 cm ‘spike’ on its top).

7.1. Simulation Tool Analysis

Prior to deployment to the real-world system, a study based on simulations was undertaken to
validate the behaviors of the individual components and the overall performance of the proposed
integrated system. To this end, a platform for simulations, developed in MATLAB, was integrated
into a GUI for human-computer interactions (Figure 15). The simulated environment is built to exactly
match the real-world setup of the physical system, where the robot performs pick-and-place path
planning with motion constrained to a limited workspace around a table.

Sensors 2018, 18, x FOR PEER REVIEW 15 of 24

The proposed system was assessed in two ways. Firstly, simulations were carried out through a
simulation platform developed on MATLAB and interfaced via a custom GUI. The system was then
evaluated on the real-world physical demonstrator. In both cases the system performance was
assessed according to its behavior in responding to the presence of dynamic obstacles and the
computation time required to (re-)plan scenarios. As the obstacle detection is implemented in 2D, a
constant height for the moving obstacle is assumed (30 cm ‘spike’ on its top).

7.1. Simulation Tool Analysis

Prior to deployment to the real-world system, a study based on simulations was undertaken to
validate the behaviors of the individual components and the overall performance of the proposed
integrated system. To this end, a platform for simulations, developed in MATLAB, was integrated
into a GUI for human-computer interactions (Figure 15). The simulated environment is built to
exactly match the real-world setup of the physical system, where the robot performs pick-and-place
path planning with motion constrained to a limited workspace around a table.

Figure 15. MATLAB GUI showing simulation of real-world environment for the KR90 R3100 robot
performing pick-and-place tasks across table.

The simulation provided a platform to validate the behavior of the planner to respond to
dynamic obstacles by considering several pick-and-place scenarios. Several unknown moving
obstacle trajectories were captured using the machine vision module and used to simulate the
dynamic obstacle in these simulations. The visualisation capability of the GUI enabled tracking of
the changes to planned motion paths. An example is shown in Figure 16. These simulations were
also used to provide an initial benchmark of the system according to its computational efficiency.
Table 2 shows three different motion path problems for which the computational performance was
measured and the corresponding computation times are reported in Table 3. These times are broken
down according to various functions used in path planning along with the total time. Five trials for
each planning problem were performed to provide statistical significance. As shown in Table 3, the

Figure 15. MATLAB GUI showing simulation of real-world environment for the KR90 R3100 robot
performing pick-and-place tasks across table.

The simulation provided a platform to validate the behavior of the planner to respond to
dynamic obstacles by considering several pick-and-place scenarios. Several unknown moving obstacle
trajectories were captured using the machine vision module and used to simulate the dynamic obstacle
in these simulations. The visualisation capability of the GUI enabled tracking of the changes to planned

Sensors 2019, 19, 1354 16 of 23

motion paths. An example is shown in Figure 16. These simulations were also used to provide an
initial benchmark of the system according to its computational efficiency. Table 2 shows three different
motion path problems for which the computational performance was measured and the corresponding
computation times are reported in Table 3. These times are broken down according to various functions
used in path planning along with the total time. Five trials for each planning problem were performed
to provide statistical significance. As shown in Table 3, the computation is different for each path, even
presenting some oscillations within a given path. Overall, the computation times are less than 50 ms
for all trials, which meets the requirements to perform faster than the average human reaction time
(180 ms) [20] by several folds.

Sensors 2018, 18, x FOR PEER REVIEW 16 of 24

computation is different for each path, even presenting some oscillations within a given path.
Overall, the computation times are less than 50 ms for all trials, which meets the requirements to
perform faster than the average human reaction time (180 ms) [20] by several folds.

(a)

(b)

Figure 16. An instance of dynamic path planning simulation: (a) Lateral view; (b) Front view. The
obstacle (red block) moves inwards towards the robot (path shown as a series of green crosses) as it
begins executing an initially planned path (blue line). As the obstacle obstructs this plan, the planner
continues to find a new feasible path, which results in the final executed trajectory shown as red circles
(indicating the time evolution of the trajectory).

Table 2. Three planning problems used to assess the computational efficiency of the planner.

ID length (mm) start x (mm) start y (mm) start z (mm) end x (mm) end y (mm) end z (mm)
1 1643.5 10500 -6400 975 10500 -5200 975
2 1994.9 11000 -6400 975 10300 -5200 975
3 1981.9 10200 -5700 975 11200 -5700 975

Table 3. Computation time (ms) for path planning in simulations.

ID Collision
checking A* path planning Path smoothing Convert Cartesian Total

1 30.3 ± 1.6 1.64 ± 0.4 3.06 ± 0.5 3.12 ± 0.2 38.1 ± 2.5
2 17.8 ± 1.3 8.00 ± 0.3 3.62 ± 0.4 3.72 ± 0.4 33.1 ± 2.3
3 38.5 ± 3.3 1.36 ± 0.6 2.42 ± 0.2 2.7 ± 0.5 45.0 ± 4.0

7.2. Physical Demonstrator Performance

Trials on the physical robot showed that the integrated system provided correct behavior in
response to dynamic obstacles. In all cases the robotic arm successfully performed the pick-and-place
operation without collision. Where possible, the system plans a new path to achieve the task without
colliding with the obstacle. Where this is not possible (for example, when the obstacle would collide
with the goal configuration of the robot), the robot waits until the obstacle is cleared away. Figure 17
provides a real video frame capturing the configurations of the objects in the environment acquired
during experimentation, as well as the acquired frames from the machine vision cameras for the same
time instance.

Figure 16. An instance of dynamic path planning simulation: (a) Lateral view; (b) Front view.
The obstacle (red block) moves inwards towards the robot (path shown as a series of green crosses) as
it begins executing an initially planned path (blue line). As the obstacle obstructs this plan, the planner
continues to find a new feasible path, which results in the final executed trajectory shown as red circles
(indicating the time evolution of the trajectory).

Table 2. Three planning problems used to assess the computational efficiency of the planner.

ID Length
(mm)

Start x
(mm)

Start y
(mm)

Start z
(mm)

End x
(mm)

End y
(mm)

End z
(mm)

1 1643.5 10500 -6400 975 10500 -5200 975
2 1994.9 11000 -6400 975 10300 -5200 975
3 1981.9 10200 -5700 975 11200 -5700 975

Table 3. Computation time (ms) for path planning in simulations.

ID Collision
Checking

A* path
planning

Path
smoothing

Convert
Cartesian Total

1 30.3 ± 1.6 1.64 ± 0.4 3.06 ± 0.5 3.12 ± 0.2 38.1 ± 2.5
2 17.8 ± 1.3 8.00 ± 0.3 3.62 ± 0.4 3.72 ± 0.4 33.1 ± 2.3
3 38.5 ± 3.3 1.36 ± 0.6 2.42 ± 0.2 2.7 ± 0.5 45.0 ± 4.0

7.2. Physical Demonstrator Performance

Trials on the physical robot showed that the integrated system provided correct behavior in
response to dynamic obstacles. In all cases the robotic arm successfully performed the pick-and-place

Sensors 2019, 19, 1354 17 of 23

operation without collision. Two videos are provided as Supplementary files S1 and S2. Where possible,
the system plans a new path to achieve the task without colliding with the obstacle. Where this is
not possible (for example, when the obstacle would collide with the goal configuration of the robot),
the robot waits until the obstacle is cleared away. Figure 17 provides a real video frame capturing
the configurations of the objects in the environment acquired during experimentation, as well as the
acquired frames from the machine vision cameras for the same time instance.

Sensors 2018, 18, x FOR PEER REVIEW 17 of 24

(a)

(b)

Figure 17. Synchronized video frames captured during operation [22]: (a) A real video frame taken
from the safety area showing all object configurations in the environment; (b) Acquired frames by
Cam-1 (top) and Cam-2 (bottom) from machine vision.

Smooth transition at switching of paths during re-planning was observed at all times. This was
achieved as a result of the real-time trajectory generation implemented within the real-time control
module. The successful avoidance of obstacles in all instances also validates the effectiveness of the
machine vision module where, for this environmental setup, its resolution was measured to be
approximately 0.3 cm per pixel. This gives an estimated error of ±3 cm in perceiving the obstacle pose,
which proved sufficient for the experiments conducted. Larger image resolutions can reduce the
localization error at the cost of increasing computation complexity, and this trade-off is adjustable
depending on the application aims. Additionally, the speed of the moving obstacle can also affect the
localization error, although no issues were found with the current setup.

Indeed, the machine vision was able to track the moving obstacle continuously, regardless of
any challenging and dynamic conditions such as reflections, shadows and motion blur. Moreover,
the issues relating to the robot intruding the field of view of Cam-1 were effectively handled by the
complementary Cam-2. Figure 18 shows matching frames from Cam-1 and Cam-2 during
demonstrations, showing a particular instance in which the robot intrudes the field of view in Cam-
1 and completely covers the dynamic obstacle. As shown in the figure, Cam-2 was able to detect the
obstacle when Cam-1 could not. Hence, the information package (Figure 6) corresponding to these
frames was generated from the image of Cam-2.

Figure 17. Synchronized video frames captured during operation [22]: (a) A real video frame taken
from the safety area showing all object configurations in the environment; (b) Acquired frames by
Cam-1 (top) and Cam-2 (bottom) from machine vision.

Smooth transition at switching of paths during re-planning was observed at all times. This was
achieved as a result of the real-time trajectory generation implemented within the real-time control
module. The successful avoidance of obstacles in all instances also validates the effectiveness of
the machine vision module where, for this environmental setup, its resolution was measured to be
approximately 0.3 cm per pixel. This gives an estimated error of ±3 cm in perceiving the obstacle
pose, which proved sufficient for the experiments conducted. Larger image resolutions can reduce
the localization error at the cost of increasing computation complexity, and this trade-off is adjustable
depending on the application aims. Additionally, the speed of the moving obstacle can also affect the
localization error, although no issues were found with the current setup.

Indeed, the machine vision was able to track the moving obstacle continuously, regardless of
any challenging and dynamic conditions such as reflections, shadows and motion blur. Moreover,
the issues relating to the robot intruding the field of view of Cam-1 were effectively handled by
the complementary Cam-2. Figure 18 shows matching frames from Cam-1 and Cam-2 during
demonstrations, showing a particular instance in which the robot intrudes the field of view in Cam-1
and completely covers the dynamic obstacle. As shown in the figure, Cam-2 was able to detect the
obstacle when Cam-1 could not. Hence, the information package (Figure 6) corresponding to these
frames was generated from the image of Cam-2.

Sensors 2019, 19, 1354 18 of 23Sensors 2018, 18, x FOR PEER REVIEW 18 of 24

Figure 18. Frames from a particular moment during demonstration in which the robotic arm blocks
the vision of Cam-1 (top) but Cam-2 (bottom) is able to keep tracking the obstacle.

7.3. Computing Performance

The main evaluation in this work is based on the computation time of the system and how this
affects the system response. In particular, two aspects of performance are evaluated: the working
cycle and system reaction time. Working cycle here refers to the time it takes for the system to update
its output (refresh rate). As the different modules in the system run in parallel, the working cycle is
simply determined by the module with the highest computation time. On the other hand, the reaction
time can be stated as the time it takes for the system to start reacting after a given stimulus. Therefore,
the reaction time requires strictly sequential execution through all stages, from initial cameras
acquisition to final robot movement. In this section, the computation time per working cycle of each
module and the whole integrated system is presented. Then, in the next section, an evaluation on the
system reaction time is provided.

(a)

(b)

Figure 19. Approximated average computation times for: (a) Machine vision module with acquisition,
image processing and communication stages running simultaneously (times do not accumulate); (b)
Path planning module with read package, check collision and re-planning stages running in cascade,
where the total time is the sum of the three stages.

Approximated average computation times for the machine vision and path planning modules
are provided in Figure 19. For machine vision, the main bottleneck was frame acquisition, which took
approximately 45ms to obtain a frame from the cameras. This is due to the frame rate limitations

45

< 1

14

45

0 20 40 60
Computation time (ms)

TOTAL

Communication

Processing

Acquisition

57

30

15

12

0 20 40 60
Computation time (ms)

TOTAL

Replanning

Check collision

Read package

Figure 18. Frames from a particular moment during demonstration in which the robotic arm blocks
the vision of Cam-1 (top) but Cam-2 (bottom) is able to keep tracking the obstacle.

7.3. Computing Performance

The main evaluation in this work is based on the computation time of the system and how this
affects the system response. In particular, two aspects of performance are evaluated: the working
cycle and system reaction time. Working cycle here refers to the time it takes for the system to
update its output (refresh rate). As the different modules in the system run in parallel, the working
cycle is simply determined by the module with the highest computation time. On the other hand,
the reaction time can be stated as the time it takes for the system to start reacting after a given stimulus.
Therefore, the reaction time requires strictly sequential execution through all stages, from initial
cameras acquisition to final robot movement. In this section, the computation time per working cycle
of each module and the whole integrated system is presented. Then, in the next section, an evaluation
on the system reaction time is provided.

Approximated average computation times for the machine vision and path planning modules
are provided in Figure 19. For machine vision, the main bottleneck was frame acquisition, which took
approximately 45ms to obtain a frame from the cameras. This is due to the frame rate limitations
imposed by hardware. However, the image processing took only 14ms and the communication
(information package preparation) was negligible. It is worth mentioning that the individual
computation times in each stage of the machine vision module do not accumulate as they are
implemented in parallel threads, leading to a working cycle of 45ms. On the other hand, each stage
of the path planning module (Figure 19b) are executed in cascade so the total time is the sum of the
individual function costs. Note that the reported computation time for path planning corresponds to
the total time required from receiving sensory information to outputting a new motion plan. Finally,
in relation to the robot control module, the time required for sending command positional packets was
negligible as the update rate of the RSI-based approach is equal to the running frequency of the RSI
context. Consequently, a new target position can be set every 4ms if necessary.

The total time required for a working cycle of the system is provided in Figure 20, including the
time for the machine vision (45 ms), path planning (57 ms) and robot control (negligible) modules.
As these modules run simultaneously, these times do not accumulate and the working cycle was
estimated at 57 ms. The modularity of the proposed system allows a reduction in the working cycle
with relation to other similar systems [20] (Figure 20b). In other words, the response of the system can
be updated at a higher frequency. However, note that the working cycle frequency is not the same as
the reaction time, which is evaluated in the next section.

Sensors 2019, 19, 1354 19 of 23

Sensors 2018, 18, x FOR PEER REVIEW 18 of 24

Figure 18. Frames from a particular moment during demonstration in which the robotic arm blocks
the vision of Cam-1 (top) but Cam-2 (bottom) is able to keep tracking the obstacle.

7.3. Computing Performance

The main evaluation in this work is based on the computation time of the system and how this
affects the system response. In particular, two aspects of performance are evaluated: the working
cycle and system reaction time. Working cycle here refers to the time it takes for the system to update
its output (refresh rate). As the different modules in the system run in parallel, the working cycle is
simply determined by the module with the highest computation time. On the other hand, the reaction
time can be stated as the time it takes for the system to start reacting after a given stimulus. Therefore,
the reaction time requires strictly sequential execution through all stages, from initial cameras
acquisition to final robot movement. In this section, the computation time per working cycle of each
module and the whole integrated system is presented. Then, in the next section, an evaluation on the
system reaction time is provided.

(a)

(b)

Figure 19. Approximated average computation times for: (a) Machine vision module with acquisition,
image processing and communication stages running simultaneously (times do not accumulate); (b)
Path planning module with read package, check collision and re-planning stages running in cascade,
where the total time is the sum of the three stages.

Approximated average computation times for the machine vision and path planning modules
are provided in Figure 19. For machine vision, the main bottleneck was frame acquisition, which took
approximately 45ms to obtain a frame from the cameras. This is due to the frame rate limitations

45

< 1

14

45

0 20 40 60
Computation time (ms)

TOTAL

Communication

Processing

Acquisition

57

30

15

12

0 20 40 60
Computation time (ms)

TOTAL

Replanning

Check collision

Read package

Figure 19. Approximated average computation times for: (a) Machine vision module with acquisition,
image processing and communication stages running simultaneously (times do not accumulate);
(b) Path planning module with read package, check collision and re-planning stages running in cascade,
where the total time is the sum of the three stages.

Sensors 2018, 18, x FOR PEER REVIEW 19 of 24

imposed by hardware. However, the image processing took only 14ms and the communication
(information package preparation) was negligible. It is worth mentioning that the individual
computation times in each stage of the machine vision module do not accumulate as they are
implemented in parallel threads, leading to a working cycle of 45ms. On the other hand, each stage
of the path planning module (Figure 19b) are executed in cascade so the total time is the sum of the
individual function costs. Note that the reported computation time for path planning corresponds to
the total time required from receiving sensory information to outputting a new motion plan. Finally,
in relation to the robot control module, the time required for sending command positional packets
was negligible as the update rate of the RSI-based approach is equal to the running frequency of the
RSI context. Consequently, a new target position can be set every 4ms if necessary.

The total time required for a working cycle of the system is provided in Figure 20, including the
time for the machine vision (45 ms), path planning (57 ms) and robot control (negligible) modules.
As these modules run simultaneously, these times do not accumulate and the working cycle was
estimated at 57 ms. The modularity of the proposed system allows a reduction in the working cycle
with relation to other similar systems [20] (Figure 20b). In other words, the response of the system
can be updated at a higher frequency. However, note that the working cycle frequency is not the
same as the reaction time, which is evaluated in the next section.

(a)

(b)

Figure 20. Approximated average computation times involved in: (a) Working cycle of the proposed
system including machine vision, path planning and robot control modules running simultaneously
(times do not accumulate); (b) Working cycle comparison between the proposed system and a
different system developed in [20], including the human reaction time as a reference.

7.4. Reaction Time for Human Interaction

Reaction time is the most important parameter in real-time control, since it measures the
promptness of the system, and it can be defined as the latency between the stimulus and the very
start of the reaction. Therefore, reaction time is crucial for robots that must possess real-time adaptive
behaviors to respond to dynamic changes and/or to interact with humans. Determining the average
reaction time for humans is something not straightforward, and different values are suggested in
literature. Indeed, according to [44], the average reaction time for humans depends on the stimulus,
being 250 ms for a visual stimulus, 170 ms for an auditory stimulus, and 150 ms for a haptic stimulus.
Other references such as [20] state a general value of 180 ms for the average human reaction time. In
this work, the sensing capabilities come from a machine vision implemented by means of optical
cameras, so it seems reasonable to adopt as reference the time related to visual stimulus (250 ms).
However, the more challenging reaction time of 180 ms [20] is also referred to as reference.

Reaction time has to be measured from the stimulus to the start of the reaction. Therefore, unlike
the previously evaluated working cycle, it includes the whole computational sequence consisting of
perception and related processing, motion planning and actuation such that their individual

57

<1

57

45

0 20 40 60
Computation time (ms)

TOTAL

Robot control

Path planning

Machine vision

57

90

180 (*)

Proposed
system

System
in [18]

Human reaction
(general)

0

50

100

150

200

tim
e

(m
s)

(*) just for reference

Figure 20. Approximated average computation times involved in: (a) Working cycle of the proposed
system including machine vision, path planning and robot control modules running simultaneously
(times do not accumulate); (b) Working cycle comparison between the proposed system and a different
system developed in [20], including the human reaction time as a reference.

7.4. Reaction Time for Human Interaction

Reaction time is the most important parameter in real-time control, since it measures the
promptness of the system, and it can be defined as the latency between the stimulus and the very
start of the reaction. Therefore, reaction time is crucial for robots that must possess real-time adaptive
behaviors to respond to dynamic changes and/or to interact with humans. Determining the average
reaction time for humans is something not straightforward, and different values are suggested in
literature. Indeed, according to [44], the average reaction time for humans depends on the stimulus,
being 250 ms for a visual stimulus, 170 ms for an auditory stimulus, and 150 ms for a haptic stimulus.
Other references such as [20] state a general value of 180 ms for the average human reaction time.
In this work, the sensing capabilities come from a machine vision implemented by means of optical
cameras, so it seems reasonable to adopt as reference the time related to visual stimulus (250 ms).
However, the more challenging reaction time of 180 ms [20] is also referred to as reference.

Reaction time has to be measured from the stimulus to the start of the reaction. Therefore, unlike
the previously evaluated working cycle, it includes the whole computational sequence consisting

Sensors 2019, 19, 1354 20 of 23

of perception and related processing, motion planning and actuation such that their individual
computational costs accumulate. Additionally, the reaction time for robotic systems is not only
dependent on the computation times from the different stages but also on the inherent mechanical
reaction time of the physical robot (intrinsic latency). While this issue is usually not addressed in
literature [10,20,21], it has been taken into consideration in this work for a more complete evaluation.

Indeed, the reaction time (robot latency) of the RSI-based external control used in this work
was measured 100 times through commanding the robot to move to a target from a static position
(with ITRA running within MATLAB and saving robot feedback positions through the saving thread).
The timestamp of the first robot feedback positional packet, reporting a deviation greater or equal to
0.01 mm from the original home position, was compared with the timestamp taken just before sending
the target position to the robot. It was found that the resulting reaction time was 30 ms (±3 ms).

After analyzing the robot intrinsic latency, the reaction time of the proposed system was measured
to be 146 ms, which consists of frames acquisition (45 ms) and image processing (14ms), path
(re-)planning (57 ms), and robot latency (30 ms). This is shown in Figure 21, where the system
reaction time is clearly below both the reaction time to a visual stimulus (250ms) and the reference for
general human reaction time (180 ms).

Sensors 2018, 18, x FOR PEER REVIEW 20 of 24

computational costs accumulate. Additionally, the reaction time for robotic systems is not only
dependent on the computation times from the different stages but also on the inherent mechanical
reaction time of the physical robot (intrinsic latency). While this issue is usually not addressed in
literature [10,20–21], it has been taken into consideration in this work for a more complete evaluation.

Indeed, the reaction time (robot latency) of the RSI-based external control used in this work was
measured 100 times through commanding the robot to move to a target from a static position (with
ITRA running within MATLAB and saving robot feedback positions through the saving thread). The
timestamp of the first robot feedback positional packet, reporting a deviation greater or equal to 0.01
mm from the original home position, was compared with the timestamp taken just before sending
the target position to the robot. It was found that the resulting reaction time was 30 ms (±3 ms).

After analyzing the robot intrinsic latency, the reaction time of the proposed system was
measured to be 146 ms, which consists of frames acquisition (45 ms) and image processing (14ms),
path (re-)planning (57 ms), and robot latency (30 ms). This is shown in Figure 21, where the system
reaction time is clearly below both the reaction time to a visual stimulus (250ms) and the reference
for general human reaction time (180 ms).

(a)

(b)

Figure 21. Approximated average reaction times: (a) The proposed system including machine vision
(acquisition, processing), path planning and robot latency in sequential implementation (times do
accumulate); (b) A comparison between the proposed system, the general human reaction time [20]
and the visual human reaction time [44].

8. Conclusions

Robotic systems are becoming more widely adopted by industries for their manufacturing
processes. However, these are typically traditional systems consisting of robots following predefined
tasks planned offline. A need for a strong technological shift has become apparent within industry to
move towards more intelligent and autonomous systems, able to interact with their environment.

In this work, a flexible and autonomous intelligent system with environmental awareness ready
for human/robot interaction is proposed and trialed on a physical demonstrator. It is based on the
integration of three independent modules working in real time: (i) machine vision (smart sensing),
(ii) path planning (reasoning, decision making), and (iii) robot control (movement coordination).
Machine vision is based on two webcams placed off-board in fixed locations, where their frames are
processed to detect obstacles by color in the HSV space. During path planning, this information is
retrieved from the machine vision and used to (re-)plan a series of motion paths to enable pick-and-
place operations while interacting with a dynamically-moving obstacle in the robot workspace. The
planner is based on the dynamic roadmaps method, with the A* algorithm used for subsequent graph
search and B-splines for path smoothing. Finally, a novel approach using RSI was developed for real-
time robot control, where the target position of the robot can be updated every 4ms whilst enabling
real-time trajectory modifications.

45

59

116

146

0 50 100 150
time (ms)

Robot latency

Path planning

Processing

Acquisition

146

180

250

System
reaction

Human reaction
(general)

Human reaction
(visual)

0

50

100

150

200

250

tim
e

(m
s)

Figure 21. Approximated average reaction times: (a) The proposed system including machine vision
(acquisition, processing), path planning and robot latency in sequential implementation (times do
accumulate); (b) A comparison between the proposed system, the general human reaction time [20] and
the visual human reaction time [44].

8. Conclusions

Robotic systems are becoming more widely adopted by industries for their manufacturing
processes. However, these are typically traditional systems consisting of robots following predefined
tasks planned offline. A need for a strong technological shift has become apparent within industry to
move towards more intelligent and autonomous systems, able to interact with their environment.

In this work, a flexible and autonomous intelligent system with environmental awareness
ready for human/robot interaction is proposed and trialed on a physical demonstrator. It is
based on the integration of three independent modules working in real time: (i) machine vision
(smart sensing), (ii) path planning (reasoning, decision making), and (iii) robot control (movement
coordination). Machine vision is based on two webcams placed off-board in fixed locations,
where their frames are processed to detect obstacles by color in the HSV space. During path planning,
this information is retrieved from the machine vision and used to (re-)plan a series of motion paths to
enable pick-and-place operations while interacting with a dynamically-moving obstacle in the robot
workspace. The planner is based on the dynamic roadmaps method, with the A* algorithm used for
subsequent graph search and B-splines for path smoothing. Finally, a novel approach using RSI was

Sensors 2019, 19, 1354 21 of 23

developed for real-time robot control, where the target position of the robot can be updated every 4ms
whilst enabling real-time trajectory modifications.

With these modules running simultaneously and communicating to each other by TCP/IP sockets,
an effectively integrated system was achieved that is low-cost, highly integrated and modular. Both
simulations and physical experimentation based on the KUKA KR90 R3100 robot were used to evaluate
the system. From conducted trials, the system consistently executed all computations for a given
working cycle in under 60 ms, which is an improvement to similar cases in literature. Similarly,
the system’s overall reaction time was experimentally determined to be on average 146 ms, which is
indeed below the average human reaction time (180 ms). For future applications, any of the modules
can be easily interchanged with other implementations for perception, planning and acting. A more
dedicated image processing could be implemented for the machine vision, for example, techniques
based on saliency detection and/or deep learning [45–47]. Additionally, obstacle detection can be
extended to 3D, while other sensing capabilities can be adopted (such as laser or ultrasound) and
applied to robotic tasks as required by the application whilst maintaining the modularity and advantage
of the designed system.

Supplementary Materials: The following are available online at https://doi.org/10.15129/4df22803-2cc4-4cce-
9cea-509f88f1b504, Video S1: pick place1.mp4, Video S2: pick place2.mp4.

Author Contributions: Conceptualization, E.Y. and C.M.; methodology, J.Z., Z.F., C.W., Y.Y. and C.M.; software,
J.Z., Z.F., C.W., Y.Y. and C.M.; investigation, J.Z., Z.F., C.W., Y.Y. and C.M.; writing—original draft preparation,
J.Z., C.W. and C.M.; writing—review and editing, J.Z., Z.F., C.W., Y.Y., C.M., E.Y., T.R., J.M., Q.-C.P. and J.R.;
supervision, E.Y., T.R., J.M., Q.-C.P. and J.R.; project administration, E.Y.; funding acquisition, E.Y. and C.M.

Funding: This research was supported by the Advanced Forming Research Centre (AFRC) under its Route to
Impact Programme 2017–2018 funded by Innovate UK High Value Manufacturing Catapult.

Acknowledgments: We would like to thank Remi Christopher Zante, Wenjuan Wang (AFRC, University of
Strathclyde), Stephen Gareth Pierce, Gordon Dobie, and Charles MacLeod (Centre for Ultrasonic Engineering,
University of Strathclyde), and Francisco Suarez-Ruiz (Nanyang Technological University, Singapore) for their
contribution and support towards the completion of this project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, R.; Gu, D.; Liu, Q.; Long, Z.; Hu, H. Semantic scene mapping with spatio-temporal deep neural network
for robotic applications. Cogn. Comput. 2018, 10, 260–271. [CrossRef]

2. Zhao, F.; Zeng, Y.; Wang, G.; Bai, J.; Xu, B. A brain-inspired decision making model based on top-down biasing
of prefrontal cortex to basal ganglia and its application in autonomous UAV explorations. Cogn. Comput.
2018, 10, 296–306. [CrossRef]

3. McGinn, C.; Cullinan, M.; Holland, D.; Kelly, K. Towards the design of a new humanoid robot for domestic
applications. In Proceedings of the 2014 IEEE International Conference on Technologies for Practical Robot
Applications (TePRA), Woburn, MA, USA, 14–15 April 2014.

4. Liu, Y.; Tian, Z.; Liu, Y.; Li, J.; Fu, F.; Bian, J. Cognitive modeling for robotic assembly/maintenance task in
space exploration. In Proceedings of the AHFE 2017 International Conference on Neuroergonomics and
Cognitive Engineering, Los Angeles, CA, USA, 17–21 July 2017.

5. Zhang, S.; Ahn, H.S.; Lim, J.Y.; Lee, M.H.; MacDonald, B.A. Design and implementation of a device
management system for healthcare assistive robots: Sensor manager system version 2. In Proceedings of the
9th International Conference on Social Robotics (ICSR), Tsukuba, Japan, 22–24 November 2017.

6. Mineo, C.; Pierce, S.G.; Nicholson, P.I.; Cooper, I. Robotic path planning for non-destructive testing—A
custom MATLAB toolbox approach. Robot. Comput. Integr. Manuf. 2016, 37, 1–12. [CrossRef]

7. Jasinski, M.; Maczak, J.; Szulim, P.; Radkowski, S. Autonomous agricultural robot—Testing of the vision
system for plants/weed classification. In Automation 2018; Szewczyk, R., Zielinski, C., Kaliczynska, M., Eds.;
Springer: Cham, Switzerland, 2018; Volume 743, pp. 473–483. ISBN 978-3-319-77179-3.

8. Finzgar, M.; Podrzaj, P. Machine-vision-based human-oriented mobile robots: A review. J. Mech. Eng. 2017,
63, 331–348. [CrossRef]

https://doi.org/10.15129/4df22803-2cc4-4cce-9cea-509f88f1b504
https://doi.org/10.15129/4df22803-2cc4-4cce-9cea-509f88f1b504
http://dx.doi.org/10.1007/s12559-017-9526-9
http://dx.doi.org/10.1007/s12559-017-9511-3
http://dx.doi.org/10.1016/j.rcim.2015.05.003
http://dx.doi.org/10.5545/sv-jme.2017.4324

Sensors 2019, 19, 1354 22 of 23

9. Podrzaj, P.; Hashimoto, H. Intelligent space as a framework for fire detection and evacuation. Fire Technol.
2008, 44, 65–76. [CrossRef]

10. Lopez-Juarez, I. Skill acquisition for industrial robots: From stand-alone to distributed learning.
In Proceedings of the 2016 IEEE International Conference on Automatica (ICA-ACCA), Curico, Chile,
19–21 October 2016.

11. Dixit, U.S.; Hazarika, M.; Davim, J.P. Emergence of production and industrial engineering. In A Brief History
of Mechanical Engineering; Dixit, U.S., Hazarika, M., Davim, J.P., Eds.; Springer: Cham, Switzerland, 2017;
pp. 127–146. ISBN 978-3-319-42916-8.

12. Anand, G.; Rahul, E.S.; Bhavani, R.R. A sensor framework for human-robot collaboration in industrial robot
work-cell. In Proceedings of the 2017 International Conference on Intelligent Computing, Instrumentation
and Control Technologies (ICICICT), Kannur, India, 6–7 July 2017.

13. Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical
human–robot interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [CrossRef]

14. Wu, Y.; Chan, W.L.; Li, Y.; Tee, K.P.; Yan, R.; Limbu, D.K. Improving human-robot interactivity for
tele-operated industrial and service robot applications. In Proceedings of the 2015 IEEE 7th International
Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and
Mechatronics (RAM), Siem Reap, Cambodia, 15–17 July 2015.

15. Perez, L.; Rodriguez, I.; Rodriguez, N.; Usamentiaga, R.; Garcia, D.F. Robot guidance using machine vision
techniques in industrial environments: A comparative review. Sensors 2016, 16, 335. [CrossRef] [PubMed]

16. Miyata, C.; Chisholm, K.; Baba, J.; Ahmadi, M. A limb compliant sensing strategy for robot collision reaction.
IEEE Asme Trans. Mechatron. 2016, 21, 674–682. [CrossRef]

17. Lee, H.-W.; Wong, C.-Y. The study of the anti-collision system of intelligent wheeled robot. In Proceedings of
the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017.

18. Ponte, H.; Queenan, M.; Gong, C.; Mertz, C.; Travers, M.; Enner, F.; Hebert, M.; Choset, H. Visual sensing for
developing autonomous behavior in snake robots. In Proceedings of the 2014 IEEE International Conference
on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014.

19. Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path planning and trajectory planning algorithms:
A general overview. In Motion and Operation Planning of Robotic Systems; Carbone, G., Gomez-Bravo, F., Eds.;
Springer: Cham, Switzerland, 2015; Volume 29, pp. 3–27. ISBN 978-3-319-14705-5.

20. Kunz, T.; Reiser, U.; Stilman, M.; Verl, A. Real-time path planning for a robot arm in changing environments.
In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei,
Taiwan, 18–22 October 2010.

21. Wall, D.G.; Economou, J.; Goyder, H.; Knowles, K.; Silson, P.; Lawrance, M. Mobile robot arm trajectory
generation for operation in confined environments. J. Syst. Control Eng. 2015, 229, 215–234. [CrossRef]

22. Zabalza, J.; Fei, Z.; Wong, C.; Yan, Y.; Mineo, C.; Yang, E.; Rodden, T.; Mehnen, J.; Pham, Q.-C.; Ren, J. Making
industrial robots smarter with adaptive reasoning and autonomous thinking for real-time tasks in dynamic
environments: A case study. In Proceedings of the 9th International Conference on Brain Inspired Cognitive
Systems (BICS), Xi’an, China, 7–8 July 2018.

23. KR QUANTEC Extra HA Specifications. Available online: https://www.kuka.com/en-de/products/robot-
systems/industrial-robots/kr-quantec-extra (accessed on 16 October 2018).

24. KR AGILUS Specifications. Available online: https://www.kuka.com/en-de/products/robot-systems/
industrial-robots/kr-agilus (accessed on 16 October 2018).

25. Donahoo, M.J.; Calvert, K.L. TCP/IP Sockets in C Practical Guide for Programmers, 2nd ed.; Morgan Kaufmann
Publishers: San Francisco, CA, USA, 2009; ISBN 9780080923215.

26. Mutlu, M.; Melo, K.; Vespignani, M.; Bernardino, A.; Ijspeert, A.J. Where to place cameras on a snake robot:
Focus on camera trajectory and motion blur. In Proceedings of the 2015 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), West Lafayette, IN, USA, 18–20 October 2015.

27. Astua, C.; Barber, R.; Crespo, J.; Jardon, A. Object detection techniques applied on mobile robot semantic
navigation. Sensors 2014, 14, 6734–6758. [CrossRef] [PubMed]

28. Ding, G.; Che, W.; Zhao, S.; Han, J.; Liu, Q. Real-time scalable visual tracking via quadrangle kernelized
correlation filters. IEEE Trans. Intell. Transp. Syst. 2018, 19, 140–150. [CrossRef]

http://dx.doi.org/10.1007/s10694-007-0021-9
http://dx.doi.org/10.1016/j.rcim.2015.12.007
http://dx.doi.org/10.3390/s16030335
http://www.ncbi.nlm.nih.gov/pubmed/26959030
http://dx.doi.org/10.1109/TMECH.2015.2496553
http://dx.doi.org/10.1177/0959651814559760
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/kr-quantec-extra
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/kr-quantec-extra
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/kr-agilus
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/kr-agilus
http://dx.doi.org/10.3390/s140406734
http://www.ncbi.nlm.nih.gov/pubmed/24732101
http://dx.doi.org/10.1109/TITS.2017.2774778

Sensors 2019, 19, 1354 23 of 23

29. Han, J.; Pauwels, E.J.; de Zeeuw, P.M.; de With, P.H.N. Employing a RGB-D sensor for real-time tracking of
humans across multiple re-entries in a smart environment. IEEE Trans. Consum. Electron. 2012, 58, 255–263.
[CrossRef]

30. Coates, A.; Ng, A.Y. Multi-camera object detection for robotics. In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010.

31. Han, J.; Pauwels, E.J.; de Zeeuw, P. Visible and infrared image registration in man-made environments
employing hybrid visual effects. Pattern Recognit. Lett. 2013, 34, 42–51. [CrossRef]

32. Ilonen, J.; Kyrki, V. Robust robot-camera calibration. In Proceedings of the 15th International Conference on
Advanced Robotics, Tallinn, Estonia, 20–23 June 2011.

33. Shu, F. High-Precision Calibration Approaches to Robot Vision Systems. Ph.D. Thesis, University of
Hamburg, Hamburg, Germany, 2009.

34. Abu, P.A.; Fernandez, P. Performance comparison of the Teknomo-Fernandez algorithm on the RGB and
HSV color spaces. In Proceedings of the 2014 International Conference on Humanoid, Nanotechnology,
Information Technology, Communication and Control, Environment and Management (HNICEM),
Palawan, Philippines, 12–16 November 2014.

35. Leven, P.; Hutchinson, S. A framework for real-time path planning in changing environments. Int. J.
Robot. Res. 2002, 21, 999–1030. [CrossRef]

36. Cui, S.G.; Wang, H.; Yang, L. A simulation study of A-star algorithm for robot path planning. In Proceedings of
the 16th International Conference on Mechatronics Technology (ICMT), Tianjin, China, 16–19 October 2012.

37. Boor, C. A Practical Guide to Splines, 1st ed.; Springer: New York, NY, USA, 1978; ISBN 978-0-387-95366-3.
38. Kunz, T. Real-Time Motion Planning for a Robot Arm in Dynamic Environments. Master’s Thesis, University

of Stuttgart, Stuttgart, Germany, 2009.
39. Mineo, C.; Vasilev, M.; MacLeod, C.N.; Su, R.; Pierce, S.G. Enabling robotic adaptive behaviour capabilities

for new industry 4.0 automated quality inspection paradigms. In Proceedings of the 57th Annual British
Conference on Non-Destructive Testing, East Midlands, UK, 10–12 September 2018.

40. ABB, Application Manual—Robot Reference Interface. Available online: https://us.v-cdn.net/5020483/
uploads/editor/aw/bkkb1ykmrxsj.pdf (accessed on 14 November 2018).

41. Stäubli, uniVAL Drive. Available online: https://www.staubli.com/en/robotics/product-range/robot-
software/val3-robot-programming/unival-solutions/unival-plc/ (accessed on 14 November 2018).

42. KUKA. RobotSensorInterface 3.2 Documentation—Version: KST RSI 3.2 V1; KUKA: Augsburg, Germany, 2013.
43. Haschke, R.; Weitnauer, E.; Ritter, H. On-line planning of time-optimal, jerk-limited trajectories.

In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Nice, France, 22–26 September 2008.

44. Grice, G.R.; Nullmeyer, R.; Spiker, V.A. Human reaction time: Toward a general theory. J. Exp. Psychol. General
1982, 111, 135–153. [CrossRef]

45. Liu, Y.; Han, J.; Zhang, Q.; Wang, L. Salient object detection via two-stage graphs. IEEE Trans. Circuits Syst.
Video Technol. 2018. [CrossRef]

46. Zhang, D.; Han, J.; Han, J.; Shao, L. Cosaliency detection based on intrasaliency prior transfer and deep
intersaliency mining. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1163–1176. [CrossRef] [PubMed]

47. Luan, S.; Chen, C.; Zhang, B.; Han, J.; Liu, J. Gabor convolutional networks. IEEE Trans. Image Process. 2018,
27, 4357–4366. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCE.2012.6227420
http://dx.doi.org/10.1016/j.patrec.2012.03.022
http://dx.doi.org/10.1177/0278364902021012001
https://us.v-cdn.net/5020483/uploads/editor/aw/bkkb1ykmrxsj.pdf
https://us.v-cdn.net/5020483/uploads/editor/aw/bkkb1ykmrxsj.pdf
https://www.staubli.com/en/robotics/product-range/robot-software/val3-robot-programming/unival-solutions/unival-plc/
https://www.staubli.com/en/robotics/product-range/robot-software/val3-robot-programming/unival-solutions/unival-plc/
http://dx.doi.org/10.1037/0096-3445.111.1.135
http://dx.doi.org/10.1109/TCSVT.2018.2823769
http://dx.doi.org/10.1109/TNNLS.2015.2495161
http://www.ncbi.nlm.nih.gov/pubmed/26571541
http://dx.doi.org/10.1109/TIP.2018.2835143
http://www.ncbi.nlm.nih.gov/pubmed/29870353
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	coversheet_template
	ZABALZA 2019 Smart sensing and adaptive (VOR).pdf
	Introduction
	System Overview
	Machine Vision Module
	Data Acquisition
	Image Processing
	Communication

	Pick-and-Place Path Planning Module
	Pre-Processing Phase
	Online Phase

	Robot Control Module
	ITRA Toolbox and RSI Interface
	Real-Time Robot Motion Control

	Experimental Setup
	Robotic Manipulator and Pick-and-Place Elements
	Workspace and Moving Obstacles
	Cameras and Location
	Host Computer and Related Software

	Experiments Evaluation and Discussion
	Simulation Tool Analysis
	Physical Demonstrator Performance
	Computing Performance
	Reaction Time for Human Interaction

	Conclusions
	References

