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Abstract

Over the last few years the number of interconnected devices has increased dramatically, gener-
ating zettabytes of traffic each year. In order to cater to the requirements of end-users, operators
have deployed network services to enhance their infrastructure. Nowadays, telecommunica-
tions service providers are making use of virtualised, flexible, and cost-effective network-wide
services, under what is known as Network Function Virtualisation (NFV). Future network and
application requirements necessitate services to be delivered at the edge of the network, in close
proximity to end-users, which has the potential to reduce end-to-end latency and minimise the
utilisation of the core infrastructure while providing flexible allocation of resources. One class of
functionality that NFV facilitates is the rapid deployment of network security services. However,
the urgency for assuring connectivity to an ever increasing number of devices as well as their
resource-constrained nature, has led to neglecting security principles and best practices. These
low-cost devices are often exploited for malicious purposes in targeting the network infrastruc-
ture, with recent volumetric Distributed Denial of Service (DDoS) attacks often surpassing 1
terabyte per second of network traffic.

The work presented in this thesis aims to identify the unique requirements of security modules
implemented as Virtual Network Functions (VNFs), and the associated challenges in providing
management and orchestration of complex chains consisting of multiple VNFs The work pre-
sented here focuses on deployment, placement, and lifecycle management of microservice-based
security VNFs in resource-constrained environments using contextual information on device
behaviour. Furthermore, the thesis presents a formulation of the latency-optimal placement of
service chains at the network edge, provides an optimal solution using Integer Linear Program-
ming, and an associated near-optimal heuristic solution that is able to solve larger-size problems
in reduced time, which can be used in conjunction with context-based security paradigms.

The results of this work demonstrate that lightweight security VNFs can be tailored for, and
hosted on, a variety of devices, including commodity resource-constrained systems found in
edge networks. Furthermore, using a context-based implementation of the management and
orchestration of lightweight services enables the deployment of real-world complex security
service chains tailored towards the user’s performance demands from the network. Finally, the
results of this work show that on-path placement of service chains reduces the end-to-end latency
and minimise the number of service-level agreement violations, therefore enabling secure use
of latency-critical networks.
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Chapter 1

Introduction

1.1 Overview

Telecommunication Service Provider (TSP) infrastructures have been growing constantly to
cater to subscriber demands since the early 2000s. The services offered, which are now ubiqui-
tous, include Voice over IP (VoIP), Video on Demand (VoD), and modern online services and
platforms. The increased demand is driven by the increase of connected end-users and wide-
spread availability of new mobile devices (e.g., smartphones, wearables, tablets, sensors, and
more). However, the increase in network sizes causes a phenomenal increase in operational
cost for service providers. Today’s service providers experience poor infrastructure utilisation,
tight coupling with hardware services, and poor infrastructure control interfaces which fail to
adapt to the requirements of emerging mobile applications and services. To combat the loss of
revenue and subscribers, research has been motivated towards different aspects of infrastructure
management, such as resource management, energy efficiency, networking, and security.

To cater to the requirements and expectations of end-users, operators have been using net-
work services to enhance their infrastructure. Such services (e.g., firewalls, intrusion detectors,
caches, proxies, load balancers, WAN accelerators, etc.) have been deployed as specialised
hardware appliances physically hardwired into the network infrastructure. Surveys show that
the number of hardware appliances (also called middleboxes) is at least equal to the number of
routers for all network sizes, the capital expenses incurred from the acquisition of middleboxes
for enterprise networks (between 10,000 and 100,000 hosts) reached $1m every 5 years [130].
To save on the capital and operational expenses, providers have begun adopting virtualised net-
work services. This transition, referred to as Network Function Virtualisation (NFV), changes

1
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how network operators design their infrastructure to decouple network functionality from physi-
cal locations. Since its emergence in 2012, NFV has gained significant attention from providers,
resulting in many deployments in Data Centre environments.

The increase in the number of devices has directly led to a considerable surge in traffic volume
traversing TSP networks. Operators rely on infrastructure network security services to ensure
resilience, which are considered as critical, but require specialised hardware to operate in large
networks. For example, many Intrusion Detection and Prevention Systems (IDPS) are unable to
function in real-time, with modern deployments detecting undesired network behaviour hours
after an event has occurred. Due to the complexity of the services, operators have difficulty
deploying scalable security services to ensure resilience, while minimising the impact on end-
users [45].

At the same time, a new concept called Multi-Access Edge Computing (MEC) or fog comput-
ing, has emerged to better support the presence of mobile network-connected devices. These
concepts present an IT service environment with cloud computing capabilities at the edge of the
home, enterprise, IoT, or mobile network, within close proximity to the end users [95]. Utilising
the edge network inherently provides low-latency connectivity to services, allowing operators to
offload the utilisation of their core network. Use of NFV at the network edge has, to the best of
our knowledge, focused on delivery of user-oriented services (e.g., caches, video transcoders),
while operators maintain functionality related to network resilience within their core infrastruc-
ture. Considerations for the distinct requirements and constraints related to the use of security
services at the network edge are not taken into account.

This dissertation investigates how the newly emerging technologies can be applied to cyber-
security functionality, with the objective of minimising impact on end users’ Quality of Ex-
perience with minimal trade-offs to security best practices employed by network operators.
It proposes the design and implementation of an NFV platform tailored towards rapid de-
ployment, reconfiguration, and high availability of security services in distributed, heteroge-
neous, and resource-constrained networks. Building on top of the Glasgow Network Function
principles [34], it presents the considerations for chaining multiple Virtualised Network Func-
tions (VNFs) to provide complex network services. As network security is paramount to pre-
venting and mitigating increasingly frequent attacks, deployment of such services in resource-
constrained environments (e.g., 5G, IoT, Autonomous Vehicle Networks) is crucial for network
operators. A series of lightweight, microservice-based security network functions are presented
that can be composed into complex services.

Furthermore, this thesis advocates on-path deployment to reduce resource consumption and la-
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tency overhead, with a non-sharing strategy for enhanced management and reduced complexity.
Combined with SDN and NFV, this work enables service operators to provide resource-efficient,
on-demand customised security services for end users by chaining and deploying network func-
tions close to end users. Moreover, this work provides an optimal solution for the placement of
security services problem based on Integer Linear Programming, and a heuristic solution target-
ing real-time allocation capabilities, saving the infrastructure’s computing and communication
resources.

1.2 Thesis Statement

The deployment of VNFs introduces flexibility and dynamism in response to the increased de-

mand for network-enhanced services in modern and next-generation networks. Network opera-

tors’ enforcement of cyber-security policies needs to respond to the temporal variations within

the network, while providing service-level agreements to end-users. This work asserts that cre-

ating, dynamically managing, and monitoring lightweight security modules in edge networks

(for example public wireless LANs, 5G cell clusters, Autonomous Vehicle networks) will allow

operators to provide assurances on device-to-device communication. The work focuses on net-

work functions that, through behaviour and placement within the network, lead to low traffic

latency overhead in edge network paths. The flexible nature of security best practices requires

that the work not limit the expression of security service composition and placement.

1.3 Contributions

The thesis contributes to the development, management and orchestration, and placement nec-
essary for security functions to operate in edge networks through:

• A comprehensive review of past and current approaches that aim to introduce programma-
bility within the network.

• An in-depth analysis on the current network security functions, their operational con-
straints, and resulting limitations in dynamic placement, management and orchestration
when applied on edge networks.

• The design of management mechanisms required for operation in resource-constrained
environments, in agreement with established NFV design standards.
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• A formulation for latency-optimal placement of on-path Network Service Chains problem
and an exact solution using Integer Linear Programming and the Gurobi solver.

• The implementation of management and orchestration modules tailored for use in edge
networks, where the availability of high-performance middleboxes is scarce.

• Proof-of-concept implementation of common security network functions in a lightweight,
composable fashion to minimise packet processing overhead.

• The design and implementation of a heuristic, Minimal Path Deviation Allocator, to solve
the placement problem in highly dynamic, roaming user environments.

• An evaluation of the benefits of lightweight security network functions compared to mono-
lithic architectures and traditional hardware appliances.

• An evaluation of the performance benefits of dynamically creating and managing security
network functions in roaming user environments.

• An evaluation of the heuristic placement algorithm over a nation-wide, simulated network
topology consisting of edge and cloud servers.

1.4 Organisation of the Thesis

The work presented in this thesis is structured as follows:

Chapter 2 discusses the need and evolution of virtualised, software-based network infrastruc-
tures and introduces the emerging requirements of today’s network users. It outlines the concepts
of Network Function Virtualisation (NFV) and Software Defined Networking (SDN). It then de-
scribes the challenges that large-scale telecommunication networks face and the incentive for
adoption of the newly available edge architecture alongside the existing infrastructure. This
chapter presents the challenges in assuring infrastructure resilience through security services
and the evolution of these solutions. It depicts the limitations of current approaches and shows
how device-centric paradigms can be integrated for enhancing networks. The chapter discusses
current solutions for network-wide deployment of security services and existing management
solutions for them.

Chapter 3 critically discusses the limitations of previous network security paradigms and or-
chestration algorithms, and motivates the need for a modular, device-centric approach. After
introducing the most important design considerations, this chapter compares different security
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architectures (e.g., microservices, monoliths, and hardware-accelerated) and their suitability for
the network edge. Furthermore this chapter identifies the challenges for a responsive orchestra-
tion mechanism and presents a latency-optimal in-line service chain placement algorithm.

Chapter 4 details the technical aspects of the implementation for the design presented in Chap-
ter 3. A bottom-up framework is presented, detailing modular security service implementations,
their placement and lifecycle management strategies, and the network traffic in several deploy-
ment scenarios. It considers real-world constraints in providing allocation of complex service
chains, and proposes a heuristic approach that conforms to the dynamic behaviour of roaming
clients.

Chapter 5 provides a comprehensive evaluation of the proposed framework. First, it shows
some characteristics of modular security services that are important for operational reliability
(e.g. overhead, instantiation time, delay, throughput). It then presents how the lifecycle man-
agement performs in environments with roaming clients (e.g., Autonomous Vehicle networks,
Sensor Networks). Finally, this chapter presents an evaluation of the latency-optimal in-line
service chain placement orchestration and its heuristic approximation over a simulated network
topology with real-world latency characteristics.

Chapter 6 summarises the work and impact of this thesis. It also presents future research
directions on the topic.



Chapter 2

Background and Related Work

2.1 Overview

The ARPANET, the foundation upon which the Internet is constructed, was designed 50 years
ago as a way for a limited number of researchers to transmit electronic messages and scientific
results [120]. Since its inception, the Internet has seen a tremendous increase in the number
of users and traffic traversing it. This has prompted network operators to investigate strategies
for how to manage network infrastructures and provide increased resilience [122]. However,
the management of such widespread infrastructure in the face of malicious intent (e.g., interfer-
ing with normal operation, bypassing security and privacy mechanisms, or limiting expansion
capabilities by oversubscribing resources) is an ongoing challenge [9] [49] [159].

In order to facilitate efficient resilience mechanisms and their management and orchestration,
both academia and industry have made considerable efforts since the early 1990s, when the
Internet and its diverse applications had started becoming widespread among general users.
Contributions have been focused around enhancement of network programmability, with early
ideas including the Active Networking paradigm [145] [136]. The recent widespread adoption
of general-purpose commodity and resource-constrained hardware located at the edge of the
network [90] (e.g., Internet of Things, Smart Sensors, Fog Computing, etc.), coupled with the
Network Function Virtualisation concept [91], have enabled the use of advanced, programmable
network services in close proximity to the users with minimal modification of the underlying
network infrastructure [36]. Recent advances have enabled a shift from legacy networking,
where services are tightly coupled with their network location (and, by extension, difficult to
expand upon), to a delivery model for user and location-specific network services.

6
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In this chapter, the background and related work of this thesis are outlined. First, in Section 2.2
research leading to network programmability and virtualisation through SDN and NFV is pre-
sented starting from research beginning in 1990s. Then, in Section 2.3, an overview of how
moving network services closer to the user, at the network edge, is achieved and highlights
some of the benefits of the approach. Particular attention is given to orchestration challenges
in Section 2.5 with details on next-generation, edge-based services. Section 2.4 describes the
advances made in the management and orchestration of security services for enhanced network
resilience, with a focus on how paradigms have shifted with the growth of the Internet. Finally,
Section 2.6 summarises the key findings of this chapter.

2.2 Virtualisation of Network Infrastructure using SDN and
NFV

In this section, the work leading up to network programmability through Software Defined Net-
working (SDN) and Network Function Virtualisation (NFV) is reviewed. A timeline, starting
from the 1990s, when the Internet started gaining popularity, is established. This review presents
highlighted works (e.g., active networking, ForCES, Ethane) and how they paved the way to-
wards current paradigms of SDN and NFV, the state-of-the-art mechanisms for delivery and
management of softwarised network services in an automated manner.

2.2.1 Towards network programmability

In the 1990s, many new applications beyond the transfer of messages and data between scientists
have started making use of the Internet [46]. Many such applications have been built on top of
existing network protocols, but the improvement and refinement of network services and their
behaviour became a significant challenge. This is due to the multi-vendor, distributed nature of
networks and slow protocol adoption coordinated by standards bodies (e.g. IETF).

A clean-slate approach was proposed in the 1990s [135] through Active Networking, that aimed
to evolve networks at a large scale. This paradigm aimed at exposing through an application
programming interface the storage, processing resources, and control of packet queues of various
network devices [21]. Using the given API enabled the dynamic alteration of the behaviour
of individual network nodes to implement specific network functions for a subset of packets
passing through the node. The operations proposed were carried in-band, encapsulated within
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data packets [145]. The envisioned applications for this new approach included fine-grained
control over packet forwarding mechanisms and dynamic network support for new applications.
The evolution of Active Networking offered the vision of unified middlebox control instead of
ad-hoc approaches [136].

Disagreement within the research community on the behaviour of the network, with no consen-
sus reached between simple packet forwarding or processing for enhanced functionality, proved
to be a major challenge in adoption of the technology. Privacy and safety concerns were raised
on the ability to run executable code within the network, with these aspects mostly overlooked
by the wider research community. The proposed flexibility through the encapsulated applica-
tions brought into question the performance of the entire system, leading to further challenges in
adoption. Finally, the lack of viable commercial deployments, as there was no need for network
programmability at the time, restricted the adoption beyond research projects [46].

2.2.2 Separation of Control and Data Planes

In the early 2000s, with a mostly established Internet infrastructure, the demand for higher
performance and increased reliability shifted the primary focus of service providers. With the
number of devices connected to the Internet passing 1 billion in 20051, the need for network
management functions, known as Traffic Engineering (TE), became apparent. Network oper-
ators and researchers started investigating methods for controlling the physical path used to
deliver traffic [141]. Initially, this was only possible through conventional, but primitive, routing
protocols which restricted and tied into conventional routers and switches, leading to complex
and extremely difficult network management tasks (e.g., customised routing, telemetry, and de-
bugging).

The continual improvement in speed of commodity and general purpose computers, with new
processors and high speed memory being released yearly, quickly outpaced the control planes
of networks [46]. These limitations led to two major innovations in the field: open interfaces

between the control and data planes, and logical centralisation of the control plane.

The resulting ForCES (Forwarding and Control Element Separation) working group at the IETF
proposed a standardised interface between control and data planes [152]. Logical centralisation
of control was proposed using protocols such as the Routing Control Platform [19]. These con-
cepts, while novel within IP networks, have been already known in the other industries for some
time. For telecommunications, SS7 proposed signalling plane separation in the early 1990s [99].

1https://ourworldindata.org/internet Retrieved April 2020
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The concepts saw little adoption, as it exposed internal properties of networks and dissuaded
vendors from providing implementations. In order to appease hardware providers and provide
an incentive for widespread adoption, SANE and Ethane proposed a logically centralised flow-
level approach for access control [23] [22]. Ethane abstracted the switch into a set of flow tables,
with entries populated by a high-level controller [22]. Over time, with industry support and a
well-defined control protocol, Ethane evolved into OpenFlow [94], the project which shaped the
modern networking industry.

2.2.3 Improvement of the Control Plane

Success of experimental infrastructures in the mid-to-late 2000s (e.g., [26]) led to increased
interest in large scale network experimentation. Example research projects included the Euro-
pean funded Future Internet Research and Experimentation (FIRE) initiative [51] and its US
counterpart, Global Environment for Network Innovations (GENI) [15], which investigated how
networks could be managed at scale. These projects pushed forward the concept of Software
Defined Networking (SDN), where the desire was to provide programmability into the network
for better infrastructure management and operation. The networking community has been split
between the desire for highly-programmable networks and the realistic limitations of current
infrastructure equipment that is costly to replace.

2.2.4 The OpenFlow Protocol

OpenFlow [94] was proposed by researchers at Stanford as an incentive that aimed to balance
programmability and pragmatism. The switch design, inherited from Ethane [22], leverages ex-
isting packet-processing hardware present in commodity switches. The programmability aspect,
compared to earlier proposals, is greatly enhanced. Because of the design decision to achieve
balance between the two major factors mentioned above, OpenFlow saw a rapid rise in adoption
within both research and industry.

The principle of operation is straightforward, and brings innovation in the network control plane.
It defines clear separation of the network control plane, which specifies routing policies and route
finding algorithms, from the data plane hardware that forwards packets, as seen in Figure 2.1.
Furthermore, the control plane is logically centralised within a well-defined SDN controller that
maintains a global view of the network and all associated data plane elements. This logical
centralisation greatly facilitates the deployment of new control procedures (e.g. routing, engi-
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Network Control Plane

SDN ControllerRouting
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(e.g., OpenFlow)

Application

Northbound API

Figure 2.1: An overview of the Software-Defined Networking architecture

neering, services) in a single place [94] [10] [4], instead of individual modification of all network
devices involved. The shift towards SDN allows the network to be treated as ’one big switch’.

In implementing SDN, the OpenFlow specification [61] defines a data forwarding pipeline along
with a TCP-based communication protocol that is used between the SDN Controller and the data
plane devices located within the network.

The data forwarding plane is based on multiple match-action tables that hold a fixed number
of flow entries that describe a matching pattern and the associated actions (e.g., forwarding,
dropping, modifying field headers). This is enhanced with a set of counters to track the number
of bytes and packets matched, along with priority information that is used when a packet matches
multiple entries.

The associated OpenFlow communication protocol, built on top of TCP, allows creation, re-
moval and modification of flow entries, alongside queries related to flow statistics. While mul-
tiple revisions of the OpenFlow protocol have been developed since its inception, the following
three can be considered prominent: OpenFlow 1.0 (the initial released, used even today), Open-
Flow 1.3 (the de-facto standard in current hardware implementations), and OpenFlow 1.5 (the
most up-to-date version which has started gaining popularity at the time of writing).

From a service provider’s perspective, the short timescales required for application of new poli-
cies, coupled with the highly scalable control plane, permitted the rapid adoption of the tech-
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nology. Research has made use of the resulting network programmability to implement a range
of functions such as Quality of Service enforcement [10], network virtualisation [4], flow-based
routing [4], to management of Virtual Machine placement in cloud Data Centres [33].

2.2.4.1 SDN Deployments, Switches and Controllers

The introduction of SDN concepts was rapidly adopted by various large-scale network and data
centre operators. One of the first deployments was reported by Google in 2013 [70], being used
to interconnect private DC’s at a global scale. Known as B4, it allows setting up bandwidth
guarantees between any two hosts regardless of their location. The paper describes how mul-
tiple routing protocols are supported simultaneously and how centralised traffic engineering is
performed.

Many switch vendors have provided hardware implementations that align with the SDN vision.
Well-established equipment vendors such as Cisco and Juniper Networks added OpenFlow capa-
bilities to a range of devices alongside their own control protocols. Examples include the Cisco
Nexus 9000 series2 or Juniper Networks MX series edge routers3. New manufacturers, such
as Barefoot Networks and Noviflow, have started manufacturing devices for the sole purpose
of SDN, with high-speed programmable pipelines and more recent versions of the OpenFlow
protocol. Such an example is NoviFlow’s NoviSwitch 211004, which offers up to 512Gbps
and 360Mpps switching capacity, support for all OpenFlow 1.3 and OpenFlow 1.4 match fields,
as well as key OpenFlow 1.5 features. Alongside hardware solutions, software switches have
been designed for SDN, with notable examples being Open vSwitch [109], Pisces [129], and
mSwitch [63].

Network operators benefit from a wide variety of SDN Controllers. Popular alternatives include
OpenDaylight [96], ONOS [14], and NOXPOX [54], all of which are used by many enterprise
network providers (e.g., Huawei, AT&T, Vodafone). Research projects have also made use of
the Ryu 5 controller for its lightweight nature, ease of development and support for the latest
versions of the OpenFlow protocol.

2https://www.cisco.com/c/en_uk/products/switches/nexus-9000-series-switches/index.html Retrieved April
2020

3https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/junos-sdn-
openflow-supported-platforms.html Retrieved April 2020

4https://noviflow.com/wp-content/uploads/2019/11/NoviSwitch-21100-Datasheet-400_V5.pdf Retrieved April
2020

5http://osrg.github.io/ryu/ Retrieved November 2020
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2.2.4.2 Beyond OpenFlow

SDN offers a vision of centralised, virtualised control plane working alongside a lightweight
data plane. The technology allows centralisation of previously-distributed control applications,
such as access control management, network topology management. It allows separation-of-
concerns, delimiting the control plane (with well-defined messages) from the data plane.

On the other hand, SDN design is outside the scope of data-intensive operations, with the con-
troller incurring significant overheads and delays on the network in these scenarios. If every
packet within the network were to be redirected to the controller for inspection, the benefits of
a logically centralised controller would be overshadowed by the resulting performance degrada-
tion.

This limitation has inspired new research directions in the field of programmable data planes.
Researchers started to investigate how data planes could be defined in a programmatic fashion.
Examples include P4 [16], which aims to define switch pipelines, and BPFabric [74], which uses
a platform-independent instruction set for data-plane functions.

Another approach is to use Network Function Virtualisation to perform data-plane processing.
Details of this paradigm are presented in the next section.

2.2.5 Benefits of the Programmable Control Plane - Network Function
Virtualisation

The concept of Network Function Virtualisation (NFV) is used to extend network service avail-
ability. The paradigm proposed by NFV is to replace hardware-based specialised appliances,
that implement high-level packet-processing functionality within the data plane, with virtu-
alised software artifacts. The resulting Virtual Network Functions (VNFs) are able to run on
Off-The-Shelf hardware by using widely available programming languages, frameworks and
virtualisation concepts [98].

Decoupling the network functions from the underlying hardware enables faster development,
deployment, and provisioning of network service functions. As a result, network services can
be decomposed into multiple VNFs running on physical or virtual machines and addresses the
compatibility with vendor-specific hardware and control mechanisms [11].



CHAPTER 2. BACKGROUND AND RELATED WORK 13

VNF VNF VNF

Compute Storage Network

NFV Infrastructure

Virtual Network Functions

Virtualisation Layer

Virtualised Resources

NFV OrchestratorNFV Orchestrator

VNF Manager

VNF 
Store

NFV Orchestrator

Virtual
Infrastructure

Manager

Management and
Orchestration

Service Request

Figure 2.2: The proposed ESTI NFV Architecture

2.2.5.1 NFV Reference Architecture

To accelerate adoption of NFV and help in development of coherent and inter-operable VNF
implementations, the European Telecommunications Standards Institute (ETSI), the standardi-
sation body for NFV, has put forward a reference architecture of an NFV platform [42]. Since
the first release in 2012, the proposed architecture has been the basis for most NFV frameworks.
At a high-level, the architecture is composed of three distinct components: the Management and
Orchestration block (MANO), the NFV Infrastructure (NFVI) and the Virtual Network Func-
tions themselves, with Figure 2.2 illustrating how they interact.

Management and Orchestration (MANO): The MANO component is responsible for overall
control of the NFV system [116]. It receives as input a VNF Service Request, and outputs
instructions for the VNF Infrastructure for provisioning and allocation, as well as configuration
messages to the instantiated VNFs.
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The NFV Orchestrator (NFVO) has high-level control over the NFV process, parsing the Service
Requests and determining the respective instructions for other sub-modules. According to the
orchestration strategy used, it determines allocation of the requested VNFs, reacts to events
impacting performance, and monitors the overall health of the system. It communicates directly
with the VIM and VNFM components.

The VNF Manager (VNFM) is responsible for setting up the software implementing the VNF
functionality within the virtualised resource. It typically links up with a database or VNF Cata-
logue that describes how particular VNFs are to be configured.

Finally, the Virtual Infrastructure Management (VIM) component communicates with the phys-
ical infrastructure to determine resource availability and handle creation and destruction of vir-
tual resources to be used by VNFs. It is also responsible for performing the health check of the
physical infrastructure.

NFV Infrastructure (NFVI): The NFV Infrastructure (NFVI) block of the ETSI Architecture
consists of the physical resources employed in the operation of VNFs. It abstracts the hardware
resources available (e.g., compute, storage, IO, network availability, etc.) through virtualisa-
tion (e.g. x86 virtualisation using Virtual Machines processor support). The result is a logical
segmentation of resources for use by multiple VNFs.

The NFVI component communicates directly with VNFs, controlled by the virtual infrastruc-
ture manager (VIM) of the MANO module. NFVI enables the use of commodity hardware for
multiple network services, a critical component in achieving the economic benefits that NFV
proposes.

Virtual Network Functions (VNFs): The Virtual Network Functions (VNFs or NFs), are the
software artifacts that implement network services. They are encapsulated in a virtualisation
framework (e.g. Xen, Docker, Linux Containers, etc) and can be deployed on a specific server
in the infrastructure. Similar to other virtualisation technologies it enables migration between
servers and deployment and shutdown in short time frames (seconds or minutes) [91] [36].

The implementation of VNFs can be done using virtual compute, storage IO and network re-
sources. Management is done by the VNFM component of the system.
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2.2.5.2 Relationship between SDN and NFV

The ETSI NFV Specification and Architecture does not include SDN, but the two technologies
are often used in tandem. Many different ways of enabling integration have been proposed.

In general, NFV provides the desired programmability to application layers of the network stack,
while SDN enables control over the lower layers of the network. For example, NFV allows
the rapid creation of a firewall VNF allowing only web traffic, while SDN would be used to
automatically re-route traffic to this new service.

In achieving this synergy, researchers identified and overcame several challenges. Foremost is
the transparent routing of network traffic through VNFs. In 2013, Zhang et al. proposed StEER-
ING [155], an SDN approach for routing traffic destined for network services. The paper led
to a plethora of related research of ’flow steering’, the technique which redirects unidirectional
network flows. This work evolved with specialised applications for Optical Networks [150],
Multi-Tenant Data-Centre Networks [139], and Cloud-based Edge Networks [36].

Another challenge related to the synergy between SDN and NFV is the dynamic encapsulation
of packets for transparent routing and processing of packets for traversal of multiple VNFs.
FlowTags is one of the first initiatives to attempt this [45], by using IPv4 headers to encode
information regarding VNF processing. OpenSCaaS [45] investigates the use of existing tags
and fields, or the use of a new network header and implications on network switches, middle-
boxes, as well as impact on scalability and conflicts with existing network services (e.g., VLAN
IDs). The IETF has proposed the Network Service Header (NSH) [115], a new field inserted
into packets that can be used to realise service function paths. Use of NSH allows the exchange
of metadata between different VNFs.

2.2.6 NFV Packet Capture and Processing

A key component that enabled the rapid research, development, and adoption of Network Func-
tion Virtualisation as an essential paradigm is the development of rapid, yet portable, packet
processing frameworks. By definition, NFV requires I/O-intensive operations, as opposed to the
traditional compute-bound tasks, which affects the design of memory access, cache locality, and
synchronisation primitives utilised.

To facilitate development of network I/O-centric applications, such as VNFs, several frame-
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works have been proposed. Although the scope of the thesis is to provide a general-purpose
solution, its implementation is inspired by, or benefits from, some of the notable works pre-
sented below.

Click: The Click Modular Router proposal [78] was first introduced in 2000 as a new soft-
ware architecture for building flexible and configurable routers. Aiming at the development and
deployment of routers to experiment with new networking technologies, Click proposes a com-
bination of individual packet-processing modules, called elements, that implement simple router
functions. Behaviour of the Click router is defined by a directed graph, with element vertices,
and packet flow described as graph edges. The authors propose an IP Router implementation
that comprises of 16 elements and evaluate the solution’s performance on commodity hardware.
The popularity of Click has been expanded with ClickOS [91], a lightweight, Xen-compatible6

implementation that is able to deploy Click dataplane processing middleboxes. ClickOS has
proven to be able to run multiple Click middleboxes on commodity hardware, and being able to
achieve high throughput.

netmap: Rizzo [119] proposed netmap as an alternative for user-space applications to gain
fast network packet receive and transmit capabilities. In order to achieve this result netmap
uses pre-allocated packet buffers (which eliminate per-packet memory management), zero-copy
mechanisms using protected access to said buffers, and batching of system calls. Furthermore,
data structures which replicate hardware features (such as netmap rings, which behave as a
circular rings for Tx and Rx) allow for better utilisation of the underlying hardware.

extended Berkeley Packet Filter (eBPF): BPF [93] is a technology that allows for rapid ac-
cess to raw network interfaces, and allows analysis and modification of network traffic. It is
widely available on most Unix-like systems, with Linux and Microsoft Windows, providing
an extended implementation which supports Just-In-Time (JIT) compilation of eBPF programs.
The programming model of BPF is oriented towards traffic matching and filtering, being repre-
sented as a high-level description of intent. Extensions to GCC and LLVM compilers allow for
compilation of a subset of C code into eBPF bytecode. Because of wide adoption, the paradigm
is encountered in notable works, e.g., Jouet et al. [74] proposed a programmable switch building
on eBPF technology.

eXpress DataPath (XDP): XDP feature7, part of the Linux kernel as of version 4.8, allows for
deployment of eBPF programs early within the kernel packet processing path, before memory

6Xen is a popular virtualisation hypervisor within Data Centre environments. https://xenproject.org Retrieved
September 2021

7https://www.redhat.com/en/blog/capturing-network-traffic-express-data-path-xdp-environment Retrieved
September 2021
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allocation occurs. The eBPF programs supplied have verification checks to ensure there are no
loops, no global variables, and no out-of-bounds accesses. Programs within XDP are allowed
to modify the packet and output packet actions, such as dropping the packet, ingressing into the
network stack, or redirecting to a NIC. The main limitation of XDP is the associated support
provided by the NIC driver; a fallback driver is available which performs processing within the
network stack with lower performance.

Data Plane Development Kit (DPDK): Originally released by Intel in 2010, DPDK [48] offers
a set of primitives that help creating efficient I/O-oriented NFs. These primitives include mem-
ory management (e.g., rte_malloc, or rte_mempool), and IPC (rte_ring) primitives, and allow
for cache-local, NUMA-socket allocation of resources. The recommended development model
requires each process to be allocated one full CPU core, and the number of concurrent pro-
cesses is limited by the hardware architecture. Multi-process applications are supported through
IPC and resource sharing (rte_ring and rte_mempool, respectively). Finally, DPDK requires the
use of a PollMode Driver library to interface with the physical Network Interface Cards (NIC)
without the overhead of an operating system networking stack.

2.2.7 Implementations of NFV Architectures

Many NFV platforms have been proposed, both in academia and industry. The frameworks
put forward are usually targeted towards specific network environments (e.g., ISP Core infras-
tructures, Data Centre networks, telecommunications networks, etc). The following paragraphs
provide details on prominent NFV frameworks, with some of their unique aspects.

OSM: Open Source MANO (OSM)8 is the ETSI-hosted project that aims to provide an Open
Source NFV Management and Orchestration (MANO) software stack aligned with ETSI NFV.
Many corporations, including Amazon, Intel, BT, Telefonica and T-Mobile back the initiative.

In order to facilitate widespread adoption of the NFV paradigm, and ensure that the above-
mentioned specification is followed, OSM offers a VIM-independent, production-quality soft-
ware stack that integrates with different management software. The design decisions are made to
increase interoperability among multiple NFV implementations with a well-defined model. As a
result, the proposed framework has rapidly seen deployment within core network infrastructures.

OpenStack: OpenStack9 is designed to control and manage large pools of compute, storage,

8https://osm.etsi.org Retrieved May 2020
9https://www.openstack.org Retrieved May 2020
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and network resources. Management is performed through a dashboard or the OpenStack API.
The project is free and open-source, with over 500 companies contributing to its development.
It has gained popularity over the past decade, being adopted by many datacentre operators and
cloud providers (e.g., RackSpace, Tencent Cloud, Huawei, etc.).

The main advantage of OpenStack is the large-scale resource pools available for management,
being able to control thousands of hosting servers running tens of thousands of Virtual Machines.
As a result, many NFV platforms have been developed on top of OpenStack, but it is limited
with respect to the orchestration component and integration with network controllers.

The VM placement algorithm used to determine physical location of VNFs is implemented in
the nova-scheduler module. The algorithm involves host weighting (e.g., based on available
resources on hosts) and filtering (removal of hosts that are not supposed to run a VM) pipelines
before allocating the VM to the least-loaded host.

OpenMANO: OpenMANO [87] is an open-source project led by Spanish telecommunications
operator Telefonica, with the goal of implementing the ETSI NFV MANO specifications. The
implementation focuses on providing enhancements in performance and portability. The core
OpenMANO framework consists of the openmano, openvim, and graphical interface.

openvim is a lightweight reference implementation of the NFV Virtual Infrastructure Manager.
Some of the features include NUMA, CPU, memory affinities (assignment of specific hardware
resources to VNFs). The main innovation is combining OpenStack integration for resource
management with SDN Controller communication to perform the required network service con-
figurations.

openmano is a reference implementation that offers creation and deletion of VNF templates and
instances, as well as network service templates and instances. It interfaces with openvim through
its API, and provides a northbound API for integration with Graphical User Interfaces.

Orchestration is done using one of three VM providers that OpenMANO integrates. If used
with OpenStack, the default placement with nova-scheduler is performed, as described above.
Integration with VMware’s vCloud Director [24] is possible, using the provided proprietary
placement algorithm that optimises for balanced load hosts and high availability. Finally, Open-
MANO can be used with public cloud systems (e.g., Amazon AWS) where physical placement
of VNFs can only be controlled at a high-level.
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Kubernetes: Kubernetes10 is an open-source production-grade container orchestrator designed
to automate deployment, scaling, and management of containerised applications. Initial devel-
opment was performed at Google, and is currently maintained by the Cloud Native Computing
Foundation, a partnership between Google and the Linux Foundation. The system was designed
to support multiple container frameworks, most notable of these being Docker.

The reference Kubernetes scheduler (the component responsible for container placement) takes
available resources from hosting nodes into account. Additional hints can be provided for host
affinity. As with other general-purpose orchestrators, there is little-to-no integration of network
information (e.g., link-layer latencies, hop counts) to provide enhanced placement.

Design decisions that influenced Kubernetes development limit the existing networking capabil-
ities required for effective NFV implementation. Support for multiple, distinct virtual networks
and use of high-performance network IO features is currently scarce, with extensive modifica-
tions and workarounds required for use in NFV scenarios [27]. On the other hand, Kubernetes
does provide core Management and Orchestration functionality [52] that enables large-scale
NFV deployments.

Cloud4NFV: Cloud4NFV [111] is one of the earliest NFV platforms, with origins in academia.
The work focuses specifically on data modelling that allows for VNF description (e.g., VNF im-
ages, VM instances, storage, ports and network io requirements) as well as virtual infrastructure
availability (e.g., cores, memory, ports, available VMs). The authors provide an implementation
that allows VNFs to be mapped to physical resources using the presented data model.

Cloud4NFV is built on top of OpenStack, by default using the placement algorithm provided by
nova-scheduler, as described before.

GNF: The Glasgow Network Functions (GNF) [35] framework is one of the first research-
oriented NFV-centric projects that aims to use containers for hosting VNFs. The work proposes
the use of commodity off-the-shelf software components to provide VNF hosting functionality.
The main components of the framework are the GNF Router, GNF Manager, and GNF Agent,
with a graphical user interface also provided.

The GNF Agent provides the operational logic and provides the NFV Virtual Infrastructure
Management functionality. It resides on the servers hosting network functions and provides
the necessary functionality for retrieving, instantiating and running VNFs on hosts. Addition-
ally, it implements host-level traffic routing functionality for management of service chains and

10https://kubernetes.io Retrieved May 2020
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provides information on the temporal resources and status of hosts.

The GNF Manager module is used to perform MANO of VNFs within the network. It is respon-
sible for global control of VNF lifecycles, and communicates traffic routing requirements to the
GNF Router, with which it is collocated. The component provides a southbound connection to
the GNF Agent to retrieve host information and delegate container allocation, and a northbound
REST API for basic VNF control primitives (e.g., creation, deletion, starting, and stopping) and
global network overview.

For orchestration, a latency-optimal VNF placement scheme is used to minimise end-to-end la-
tency. Physical VNF placement takes into account host resource availability, individual VNF
requirements, and network-level information. The orchestrator implements dynamic VNF mi-
gration based on temporal network-wide latency fluctuations using optimal stopping theory to
improve critical network parameters (e.g., latency, bandwidth) [32].

2.2.8 Composition of VNFs

Creating complex Virtual Network Functions from smaller components has been proposed as a
method of achieving flexibility in service deployment [82]. Separating the behavioural elements
into three overarching primitives — Reception, Processing, Transmission — proposes min-
imising the repeated operations (e.g., packet parsing) that take place on a singular middlebox in
order to improve performance.

One of the first proposals towards this goal took the form of SoftNIC [60], which provided an
enhanced hardware abstraction layer between the physical network interface and multiple VNFs
operating on the same middlebox. The framework proposes the separation of network-specific
operations (e.g. packet reception, decoding, encoding, and transmission) from VNF functional-
ity. As a result a high-level VNF can be composed from multiple sub-functions, each of which
operating only with the required information for adequate functionality. The architecture re-
quires a multi-core middlebox, which allocates the SoftNIC component to one processing core,
and subsequent VNFs to the remaining unused cores. Furthermore, each VNF requires commu-
nication with the SoftNIC component both for receiving and sending the relevant data, which
increases overall processing delays.

Laufer et al. [82] proposed the consolidation of multiple Click VNFs [78] into a singular in-
stance in order to reduce system-level Input/Output (e.g., from memory transfers, or cross-core
communication). Aimed at providing operator-driven optimisation of VNFs, it provides multi-
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ple Application Programming Interfaces for enhancing the OS Network Stack (as the base Click
implementation features limited high-level network processing abilities), and providing Block-
ing I/O Operations. The work is however limited by the explicit requirement for operators to
implement and optimise the CliMB extensions for each of their VNFs, and no clear separation
between the three primitive operations mentioned above, limiting the composition of VNFs in
highly dynamic environments.

Building on these principles, SNF [76], and later Metron [75], propose the use of composition of
high-level VNFs through a clear separation of the three primitives involved. Support for hosting
multiple primitives onto the same processing core provides minimal overheads from hardware-
related data transfer, and provisions for dynamic composition of VNFs are made through group-
ing of multiple VNF processing classes and using internal ring buffers to interconnect with
blackbox VNFs (the behaviour of which cannot be modified).

2.3 The Network Edge

As outlined in Section 2.2, the introduction and adoption of network programmability and vir-
tualisation has shaped the landscape of the networking field. Modern networks are now able to
leverage SDN and NFV in order to programmatically control, manage and automate operation.

This section introduces the evolving infrastructure located in close proximity to end-users and
investigates the advantages of provisioning services on these networks.

2.3.1 Benefits of the Network Edge

Distribution of intelligent services throughout the network is the cornerstone of next-generation
network implementations. By 2025, a Huawei Report estimates that there will be more than 100
billion connected devices, and mobile network coverage will reach over 6.5 billion people, an
estimated 80% of the global population [151]. The new devices include smart mobile phones,
wearables (e.g., smart watches, fitness trackers), networked household electronics, large-scale
sensor networks, actuators, unmanned vehicles, etc.

The growth of mobile and smart devices pose new challenges for network operators. The amount
of data generated by these devices is predicted to increase exponentially, and networks will be
required to efficiently transfer the information [154]. Operators are aiming to provide new,
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high-performance on-demand services to their users to be considered viable. Example services
include always-on connectivity, high-definition video streaming, and rapid content delivery [90].

To achieve the customised services that operators are targeting, distributed network-wide intel-
ligence is proposed by Mahmud et al. [90]. By expanding the network infrastructure close to the
end users (the Network Edge), operators can meet performance goals and minimise unnecessary
utilisation of the core network. The key benefits are summarised below.

Low Latency: Latency for a service is the temporal delay incurred by propagation, transmis-
sion, queuing, and processing of information. Propagation delay is the time required for a packet
to travel from the sender to its intended destination over the medium, and is influenced by the
distance travelled. For general network edge environments, these distances range between a
few meters (in the case of dense small-cell networks: e.g., 5G, WiFi [7]) to a few kilometres
(for customer-provided equipment connected to a demarcation point). The short distance results
in reduced propagation delays and can be leveraged when services are hosted on edge devices.
Predictable low latency can be used to increase network reaction times in response to events, im-
prove user experience, and enable delay-sensitive applications (e.g., augmented/virtual reality,
unmanned vehicles) [107] [111] [128].

Proximity to Data Origin: Being near to the source of data is essential in minimising network
congestion and reducing unneeded utilisation of upstream networks. Proximity to data sources
is a key factor in capturing information intended for real-time processing or analytics. To illus-
trate this concept, Wang et al. [146] proposes a network edge-based architecture for real-time
live video analytics and processing that significantly reduces bandwidth demand with minimal
impact on accuracy.

Location Awareness: If devices are connected to wireless networks (e.g., 5G, WiFi) they can
extrapolate low-level signalling information to accurately determine the location of other users.
A prime use-case for this is in an unmanned vehicle environment where sensor information
can be used in conjunction with wireless location to accurately determine the position of other
equipment [133].

Contextual Information: Contextual information offered by edge devices can enhance user
experience and enable monetisation. New applications that aid users in identifying products,
provide health information, or help retailers in analytics can emerge [25].

On-Premise Protection: Edge devices can be located on-premises, and isolated from the public
Internet. This is crucial with health-related sensitive data, as it has to be managed and processed
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without being sent over the to cloud services [131].

2.3.2 Trends in Edge Computing Research

The topic of Edge Computing is currently being investigated from different perspectives. These
trending research directions and topics have a unique convergence: an intermediate layer of
computation and storage between the user and the cloud. This section expands on the most
popular approaches in Edge Computing.

2.3.2.1 Multi-access Edge Computing

In one of the early and defining works regarding edge computing, the term cloudlets has been
coined by Satyanarayanan et al [125]. Their work aims to bring cloud functionality to mobile
users by leveraging computational resources located in close proximity to network users. By
avoiding WAN delays, jitter, and network congestion, the authors present an initial framework
for low-latency end-to-end services. This architecture has been influential in the refinement of
the field and suggests offloading of computationally-intensive tasks from mobile devices to the
cloud or nearby computational nodes, guiding the development of the modern network edge
infrastructure.

Subsequent works on multi-access edge computing focus primarily on delivering a multitude of
in-network services to several users simultaneously [66].

2.3.2.2 Fog Computing

The adoption of the cloud was supported by advancements in networking. Despite this, the in-
herent issues related to unpredictable latency, lack of mobility, and location-awareness remained
unsolved. In an attempt to address these challenges, fog computing was devised to provide flex-
ible services at the network edge [154]. The distributed network intelligence proposed by fog
computing is a core component of next-generation IoT networks. Below are some of the advan-
tages presented by the architecture:

Data distribution: Collection of data at a centralised location presents scalability issues when
billions of IoT sensors are employed. By distributing information throughout the network in-
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frastructure, faster data processing can be achieved [90].

Bandwidth conservation: Transferring data across the core of the network to the cloud leads to
increased demand in infrastructure capacity. By placing data processing functionality closer to
IoT devices, the load on the network infrastructure is reduced [134].

Real-time operation: For a number of applications, IoT device information has to be integrated
and acted upon rapidly. Some sensors (e.g., environment sensors) provide feedback that requires
action in short timescales. Unpredictable latencies due to transferring information to and from
the cloud is a limiting factor in new applications, which can be mitigated through processing
capabilities at the edge of the network [142].

2.3.2.3 Edge Network Services

In-network services are a cornerstone for modern networks (e.g., 5G). This functionality is en-
abled by deployment and operation of VNFs at the network edge. The NetFATE (Network
Functions At The Edge) architecture is a representative example [86]. The work allows simpli-
fication of function deployment and reduction of operational costs. The solution is limited to
devices with specialised virtualisation support, and does not present orchestration algorithms.

Similarly, the GNF (Glasgow Network Functions) framework [34] is another example of achiev-
ing in-network function deployment. Use of lightweight containers (e.g., Linux containers,
Docker) allows for deployment on a wide variety of devices. However the orchestration mecha-
nism used relies on a computationally intensive optimisation model.

2.3.2.4 Examples of Edge Network Devices

Equipment vendors have begun to offer industrial solutions tailored for the network edge. For
example, OnLogic 11 specialises in Edge Servers based on Intel processor technology that al-
low accessible hosting of VNFs within the network infrastructure. Another provider, Veea12

builds upon the ARM architecture to offer a wide range of network boxes that can be deployed
throughout the network, that can run services close to end users.

The availability of commercial hardware that can enable heterogeneous NFV support at the net-

11https://www.onlogic.com Retrieved May 2020
12https://www.veea.com Retrieved May 2020
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Device Release Architecture CPU RAM
Residential CPE Routers

BT Smart Hub 2 2018 ARM Cortex-A9 2x1GHz N/A
Virgin Hub 4 2020 Intel Puma 2GHz 1GB DDR3L

Google Fiber Network
Box GFRG 210 2016 ARM v5 1.6GHz 512MB

Commodity Routers
NetGear D7000 2016 ARM 2x1GHz 256MB
Ubiquiti Dream Machine 2019 ARM Cortex-A57 1.7GHz 2GB

IoT Gateways
Dell Edge Gateway 3003 2017 Intel Atom 1.46GHz 2GB DDR3
HPE EdgeLine EL4000 2016 Intel Xeon 4x3GHz 64GB

Table 2.1: A selection of Edge Network Devices according to [36]

work edge indicates a shift from cloud and data centre-based services towards services located in
close proximity to end-users. Further evidence for this is the evolution of customer edge devices,
with their functionality expanded to provide added value for customers. Advanced services, such
as parental control filters, bandwidth management, network storage, and network-wide Virtual
Private Networks are being provided.

Customer Premises Equipment (CPE) provided by Internet Service Providers, as well as com-
modity Routers, give access to advanced hardware functionality that can be applied to in-
network service provisioning. We enumerate a selection of these devices in Table 2.3.2.4.

The majority of residential CPE and commodity home routers include multi-core ARM or Intel
processors, up to 2GB of RAM, have support for Linux-based Operating Systems (e.g., Open-
WRT [43], DD-WRT13) and have been shown able to operate simple network functions [36].

Furthermore, commercial IoT Gateways, which connect multiple physical sensors to the wider
Internet, are becoming widespread. With a wide range of Intel-based processors and ample
RAM, devices such as Dell Edge Gateway 3003 or Hewlett-Packard Enterprises EdgeLine
EL4000 can be used for in-network analytics of network data and provide security services
for the IoT devices connected.

We expect all of the devices presented above can be used alongside network-wide VNF servers
as part of the infrastructure required for distributed network service provisioning.

13https://dd-wrt.com Retrieved November 2020
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Figure 2.3: A typical security deployment (e.g., for an enterprise network)

2.4 Network Cybersecurity Principles and Applications

As presented in Sections 2.2 and § 2.3, modern networks have evolved to play an important role
in modern infrastructure. Being of critical importance, they are increasingly prone to misuse
and exploitation. Common purposes of network infrastructure attacks are related to accessing,
gathering, manipulating user data, or affecting the availability of the overall system [79] [138].

For example, a Denial of Service attack aims to disrupt normal operation of services by over-
consuming of computational or network resources [97]. In today’s networks, it is one of the
most encountered types of attacks, with a substantial increase in frequency and volume [79]. In
order to mitigate such threats, operators have been employing network security measures.

In this section, we look at the evolution of security services with respect to the virtualisation
of networks and provide an overview of the current challenges encountered in securing modern
networks.

2.4.1 Traditional In-Network Hardware Boxes

From the beginning of the widespread adoption of the Internet, providers have been using a
combination of prevention, detection and mitigation techniques to enhance resilience of their
operational infrastructure [30]. A typical deployment of these services [97] is presented in
Figure 2.3.
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Prevention has been achieved by limiting access through the network. For example, it can be
done through restricting undesired or unsupported applications. Detection of attacks is done
through dedicated security components throughout the network that can inspect network traffic
for known malicious behaviour. System administrators frequently employ Intrusion Detection
or Prevention Systems (IDS/IPS) or anti-malware services that usually perform Deep Packet
Inspection (DPI) within the network to achieve this [12]. Finally, mitigation techniques are
done based on filtering malicious network traffic [56], but do not guarantee the elimination of an
attack. A common technique is upstream router mitigation of detected attack traffic [67]. The
high-level network functions required to implement the network behaviour are presented below:

• Packet Header Inspectors: A packet header inspector function (e.g., firewall, access
control list, or network address translator) is used to allow or deny traffic based on sim-
ple network header information, such as IP address, protocol, or port. It is commonly
applied at the network boundary to examine all egress and ingress traffic through the net-
work [159]. Frequently it is employed for both prevention and mitigation of network
attacks.

• Deep Packet Inspection (DPI): A DPI service performs more in-depth analysis on net-
work traffic, often inspecting application data to determine the existence of an attack. The
two most commonly encountered subtypes are anomaly-based and signature-based DPI.
The former models normal behaviour of the network and reports intrusions based on devi-
ation from the model [50]. The latter uses a list of known signatures against which traffic
is compared [121]. The majority of DPI services do not run at line rate, and detect the
presence of an attack after it has occurred [38].

These network functions saw initial implementation through specialised Hardware Appliances
(HAs) that had to be physically located within the network. These HAs had a limit on the
number of rules that could used and on the volume of traffic traversing them. The configuration
is done through specialised control protocols that are vendor-specific. For example, the Cisco
PIX 506E Security Appliance14 supported up to 25000 concurrent connections.

Providing ICT infrastructure security in the face of increased network demand and adoption of
new applications has proved increasingly challenging [6]. Replacement or scaling of services
required procurement and installation of new HAs, a process that often took weeks and required
significant Capital Investment. Management and re-configuration required time-consuming man-
ual operation.

14https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-c03659458 Retrieved May 2020
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2.4.2 Virtualisation of Network Cybersecurity Services

To mitigate the problems of legacy Hardware Appliances (e.g., up-front cost, reduced deploy-
ment flexibility, scalability limitations, etc.) software-based security services have been pro-
posed in the late 1990s [121] [123]. These services were designed to be operated on commodity
server hardware and software (e.g., as Linux kernel modules or userspace applications).

One notable implementation is the Linux IPTables module [123]. It is a userspace application
that allows configuration of IP packet filter rules of the Linux kernel firewall. Ushering in soft-
warisation of security functions reduced the costs incurred in deployment of additional modules.

A notable DPI implementation for performing Intrusion Detection is Snort [121]. Designed as
a software-based packet inspector, it allows for high reconfigurability through software rules,
and provides a mechanism for dynamically adding in new functionality in the form of additional
software modules.

Although the software implementations for these security functions enabled decoupling of net-
work functionality from underlying hardware, the problems related to service location, scalabil-
ity and performance remained. Many of the newly proposed solutions were designed as mono-
lithic applications [5], able to use a single application thread for packet processing. In modern
networks, where 40 Gbps bandwidth availability is becoming commonplace, these network ser-
vices are an obvious bottleneck in performance [38]. Their functionality was still bound to the
underlying hardware location, and introduction of new network services required installation of
physical systems within the network topology [127].

The introduction of SDN and NFV concepts helped overcome the remaining operational chal-
lenges by providing virtualisation and expanding the number of devices that are able to host
networking services [8]. Through NFV, functions and services can be provisioned and deployed
faster, and the problem of vendor-compatibility is reduced [11].

The main challenges in adopting VNFs are related to performance when compared to specialised
HAs (where software solutions are generally inferior to their hardware counterparts in terms of
processing latency and overhead). To address performance limitations, research projects have
proposed new approaches to providing data plane processing. Examples include the Intel Data
Plane Development Kit15 and using network hardware for packet manipulation [159].

An emerging paradigm in design and use of security-oriented VNFs is the departure from the

15https://www.dpdk.org Retrieved May 2020
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monolithic architecture. Eliminating unneeded packet processing overhead can lead to improve-
ments in throughput and delay. vNIDS [85] provides such an implementation for DPI-based sys-
tems, and presents a way for partitioning application functionality into targeted microservices.
A similar approach has been proposed by Tourani et al. for privacy-enhancement services [138].

2.4.3 From static to mobile devices

As the shift from HAs to softwarised security services occurred, the network usage began to shift
as well. Advances in telecommunications, processor performance, and hardware manufacturing
processes allowed for the widespread adoption of mobile and portable devices [128]. Portable
devices allow for greater user mobility. This departure from static clients to ones that can roam
between multiple networks over time poses challenges with respect to network infrastructure re-
silience. A user’s expectations of an uninterrupted experience when migrating from one network
to another require transfer of network services from one location to another [125].

Challenges related to user mobility have been at the forefront of edge-based network services [64].
While the main body of work focused on ensuring service continuity for generic VNFs [154] [134],
the techniques developed can be used for provisioning of infrastructure security functions. Cziva
et. al [32] propose a migration strategy for providing low-latency network services targeted at
roaming users. The work focuses on assigning a threshold for latency violations of specific
services, and performing migration to hosts closer to the user once said threshold has been ex-
ceeded. To allocate services to the network infrastructure, the authors propose the use of an
optimisation problem combined with early termination of the associated implementation based
on Optimal Stopping Theory. The approach doesn’t take into consideration the migration of
inline network services as is often encountered in network security.

The need for mobile-centric systems is further reinforced by the rapid growth in network-capable
devices with improper security and privacy considerations [158]. The policy abstractions of ex-
isting security services are not expressive and customisable enough to provide adequate flexi-
bility in the face of the emerging threats, and the need for so-called µmboxes is identified to
provide the necessary deployment in resource-constrained scenarios.
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2.4.4 Context-based security policies

Roaming devices pose further challenges with respect to infrastructure security. These devices
can join an untrustworthy network, become compromised, then propagate the issue into other
networks [148]. Traditionally, this has been mitigated through restrictive policies that allow only
certain types of traffic. These security strategies conflict with the visions of next-generation
networks and adoption of new protocols and applications, limiting innovation [111].

Research projects have focused on partitioning of security functionality based on behavioural
information gathered from the network. An added benefit is the creation of customised security
services for each of the devices in the network. Modelling of device behaviour and functionality
has led to the definition of a new security approach. The authors of [18] propose definition of
security policies based on expected behaviour for different network devices. The work describes
the modelling process, with an example use-case in healthcare environments. The work is further
expanded [102] with the use of contextual graphs. However, the works do not describe any
implementation details, or any performance-related evaluation.

Li et al. [84] describe a multi-domain approach to orchestration in context-aware networks. In
their work, the authors derive the device context based on network location and application
traffic. This context is stored in local and global metadata headers for use in multi-domain
networks. Orchestration of resulting VNFs is performed at a top level. Fine-grained, network-
specific placement is performed by Docker Swarm, a Docker-native clustering system. Operator
costs are prioritised over network performance metrics in this work.

Morrison et al. [101] detail a framework for programmable in-network security enforcement.
The Poise system has two novel components: a client module and a policy compiler. The pol-

icy compiler uses a domain-specific programming language for expression of network security
policies based on device information and the state of the network. It outputs a configuration for
the client module, and a series of data plane processing programs, written in P4, to be deployed
on programmable switches that enforce the network policy. The client module component is
responsible for collecting and reporting contextual information. Its current implementation is
designed as a kernel module, which relays the gathered information. The main assumption of
this work is the ability of devices to accurately and truthfully report contextual information (e.g.,
GPS location, screen status, accelerometer readings) to a network operator. Privacy implications
aside, the assumption that kernel behaviour cannot be compromised is incompatible with cur-
rent edge environments. The work is, at the time of writing, in early stages, with preliminary
results only related to the overheads encountered by utilising client modules. The evaluation
also factors in policy violation detection, but does not provide insight into the resulting process.
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The context-based security concept is further refined by Yu et al. The Precise Security In-
strumentation [157] project aims at providing infrastructure security in enterprise environments
through a specialised controller that redirects per-device network traffic based on intent. The de-
vices are categorised based on contextual knowledge (e.g., internal server, workstation, laptop)
and security policies deployed to analyse deviation from expected behaviour. The observed de-
viation is used to instantiate new services for the given device, to mitigate infrastructure threats
and perform peripheral analysis of the network traffic. The deployment and orchestration of
such services is not presented within the publication.

TENNISON [44] presents a network-wide event processing and correlation framework to anal-
yse distributed security application alerts. It performs light-weight monitoring of network flows
and integrates the information with DPI alerts to provide operators with a global overview of
infrastructure threats. The proposed controller provides a southbound interface that collects in-
formation from IDS/IPS network functions, SDN switches packet counters and other in-network
flow statistics monitors (e.g., sFlow). The northbound interface allows specialised network-wide
security applications to run. These applications define device-specific policies that are to be fol-
lowed within the network and monitor deviation from expected behaviour. TENNISON also
integrates a hybrid SDN/NFV mitigation strategy, by informing the SDN controller of the re-
quired high-level changes required to mitigate malicious traffic and requesting new security
services for the NFV MANO component to deploy.

2.5 Orchestration of Network Functions

Orchestration of network functions encompasses allocation, instantiation, configuration and life-
cycle management [116]. One of the main challenges in adoption of NFV is the fast, reliable,
scalable, and dynamic orchestration of the associated network functions [11]. In terms of instan-
tiation and lifecycle management, virtualisation support (e.g., Xen, Docker, KVM, etc) can be
used to offload the required tasks. Configuration of VNFs is closely linked to the type of service
being requested, and is generally provided by network operators.

Server-side properties (such as CPU, memory, IO) and network resources (bandwidth, link load,
connectivity requirements) have to be factored in when performing allocation [71]. The latter
are highly dynamic and can change over time, as users join or leaving the network or interact
with new types of applications.

In general, VNF orchestration is similar to the well-studied problem of Virtual Machine (VM)
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orchestration applied in Data Centres and Clouds [72] [139] [33] [31]. However, while taking
into account server-side resource, VM placement does not account for network properties that
many VNFs interact with. Therefore, they cannot be directly applied for use in NFV domains.

The next two sections detail the most important aspects of VNF orchestration: selection of the
servers and allocation of resources for execution of VNFs, and creation of complex network
services using multiple network functions.

2.5.1 Resource Allocation and Placement of Network Functions

Allocation of VNFs is an NP-hard optimisation problem, as it is a generalised version of the NP-
complete Virtual Network Embedding problem [47]. Algorithms that attempt to place VNFs are
divided into two categories: optimal (or exact) solutions, or heuristic solutions.

Exact solutions propose the identification of an optimal scenario for resource allocation. Be-
cause of the NP-hard nature of the problem, small instances of problems are used as inputs
for these solutions. They are typically used as a baseline when evaluating heuristic solutions.
Heuristic solutions do not target an optimal allocation of VNFs, instead opting to minimise ex-
ecution time when solving large instances of the resource allocation problem. The following
sections contain examples of both types of solutions.

2.5.1.1 Optimal Network Function Placement Solutions

Optimal solutions are generally formulated using Linear Programming (LP), or linear optimisa-
tion models. These models are a series of mathematical linear relationships that aim to provide
the best outcome by maximising (or minimising) an expression. They are expressed in canonical
form as:

max
x

cTx

s.t. Ax≤ b

and x≥ 0

(2.1)

where x represents the vector of variables (unknown, to be determined), c and b are vectors of
known coefficients, A is a known matrix of coefficients, and (·)T is the matrix transpose. The
expression to be maximised (or minimised) is called the objective function.

In particular, Integer Linear Programming (ILP), a form of LP that restricts variables to integers,
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is preferred for formulation of placement problems. An integer decision variable can accurately
and succinctly express VNF-host mappings.

While non-integer linear programs can generally be solved efficiently in the worst-case [20],
ILP problems with bounded variables are NP-hard [88] [103]. Specialised software, called a
solver, such as the proprietary Gurobi [57], the open-source GNU Linear Programming Kit
(glpk) [105] can calculate solutions for ILP problems. They rely internally on algorithms such
as branch-and-bound or branch-and-price [83].

Bari et al. [11] formulate an ILP VNF orchestration problem that aims to determine the num-
ber and placement of VNFs that optimises operational costs and network utilisation, without
violating Service-Level Agreements (SLAs). An evaluation based on a CPLEX solver imple-
mentation is presented, where results show that VNF-based services provide more than four
times reduction in operational costs.

VNF-P [100] proposes an exact solution to the placement problem. An ILP for hybrid NFV-
environment where general purpose and specialised hardware coexist is presented. The aim of
the placement is the reduction of Operational and Capital Expenses through minimisation of the
number devices used for provisioning of network services. Because of the scaling limitations of
ILP problems, evaluation has been done on a small-scale network with various traffic loads. The
algorithms used by VNF-P finish in 16 seconds or less, and are able to react to changing traffic
demands.

An approach revolving around network properties is presented by Gupta et al [55]. The au-
thors present a linear programming problem that minimises bandwidth consumed by routing
traffic through selected paths. Placement of VNFs is performed at optimal locations in the a
programmable network environment. The term “Network-enabled Cloud” (NeC) is also intro-
duced, which describes a cloud environment with extensions provided by programmable packet
and optical network nodes. Results presented show a reduction in network resource consump-
tion.

The T-NOVA NFV platform’s TeNOR project [117] presents two models for mapping VNFs to
Points-of-Presence within the network. The objective function for the ILP model is a weighted
sum of the cost of assigning a VNF to a specific PoP, the sum of the overall delay, and the overall
network resource usage.

The model proposed in [32] focuses on placement of VNFs, considering bandwidth and latency
constraints to minimise the end-to-end latency. The ILP presented determines placement of
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VNFs in edge-cloud environments for multiple users. The focus is on individual VNFs that act as
traffic endpoints (e.g., caches, video transcoders, etc). A relocation and migration strategy based
on Optimal Stopping Theory (early stopping of execution while getting near-optimal results) is
included. Evaluation on simulated real-world networks achieves low user-to-service latencies
with minimal Service-Level Agreement violations.

In [13], an optimisation problem for mobile core networks to deploy VNFs is presented. Place-
ment onto nodes of the physical substrate network and optimal traffic routing between nodes is
achieved through the work. Similar to many other works in the field, the objective is to minimise
the cost of occupied links and node resources. Simulation results over two nation-wide network
topologies outperform traditional Virtual Network Embedding optimisation approaches.

The authors in [12] address placement of security services in virtualised environments. The
problem is modelled as a Mixed-Integer Linear Programming model (where some decision vari-
ables are non-discrete) on the ISP environment, with the goal of minimising costs of network
operators. The work proposes reduction of the Points-of-Presence in the network to host desired
services. Implementation details are provided in the form of a prototype, with use of the CPLEX
solver to generate a solution. The network models used are relatively small, and the reported
runtime is less than one second.

2.5.1.2 Heuristic Network Function Placement Solutions

Heuristic, non-exact solutions have been proposed by many researchers as alternatives that min-
imise execution times for finding placement solutions.

Acknowledging the complexity in optimal placement solutions, Yoshida et al. [156] provides a
two-step heuristic for placement of VNFs that considers computing and communication costs.
The first step relies on a resource filtering mechanism to determine which resources are eligible
for consideration. The resulting output is then provided to the second step, a genetic algorithm,
for generating placement decisions. The evaluation of the proposed approach provides lower
computation times when compared to a naïve approach and analyses scalability of the algo-
rithms.

In multi-tenant data centres, another genetic algorithm was proposed by Qu et al. [114], which
aims to minimise latency of VNF placements by assigning execution time slots to different
services. The algorithm performs virtual link bandwidth allocation, and scheduling of VNFs to
meet service demands in a centralised manner.
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For enterprise wireless networks, Riggio et al. [118] propose a management and orchestra-
tion framework compatible with the ETSI NFV specification. The allocation algorithm uses
a heuristic-based approach that optimises VNF placement based on application-level require-
ments (e.g. latency). Evaluation, performed using a simulated network topology, aims for high
service acceptance ratios and minimised server and link utilisation.

Using a real-time service graph mapping, Nemeth et al. [104] propose an allocation algorithm
for carrier networks. The proposed environment shows a very large number of VNF placement
requests arriving within a few seconds. By using a greedy backtracking method, the authors aim
at minimising the time required to derive a placement of VNFs. To enable flexibility, this solu-
tion allows for fine-tuning of parameters that influence the quality of orchestration and enable
desired acceptance ratios.

2.5.2 Network Function Chaining

Beyond the need to place individual VNFs within the network, operators are looking to add value
and enhance their resilience by providing complex services composed of sequences of VNFs
(also called Service Function Chaining (SFC)). One traditional example is a chain consisting of
a Firewall, an IDS, and a Wide Area Network Optimiser, that aim to filter out unneeded traffic
at the network core and increasing network availability. This section details notable solutions
to the VNF Placement Problem that allow for placement of function chains at multiple network
locations.

Pham et al. [110] proposed SAMA, which proposes service function chaining that minimises
operational and traffic costs. The problem is initially formulated as an ILP, and a heuristic using
a Markov approximation algorithm based on sampling is provided. The goal of the algorithm
is to reduce infrastructure utilisation and network costs. Furthermore, the authors present a
subproblem division that can enable distributed operation within the network infrastructure.

Vizarreta et al. [144] propose a cost-focused ILP approach that minimises estimated Capital
and Operational Expenses. As a result, the QoS aspect becomes a secondary objective in their
proposed model, and is impacted by other factors within the network.

Luizelli et al. [89] put forward a solution for Service Function Chaining between multiple re-
gions by utilising the NFV Points-of-Presence (PoP). The authors describe an ILP for chaining
of branching SFC that can accommodate inter-regional traffic, with the goal of minimising the
number of VNF instances allocated within the infrastructure. Furthermore, a heuristic algorithm
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for guiding the search is proposed by bounding the search parameters, obtaining near-optimal
results.

In [71] a formulation for optimal use of network resources is provided for the placement of VNF
chains. Their simulation results show how the ILP approach can accommodate more flows and
reduce the overall network resource usage. However, the presented simulation only features two
types of SFC requests, with no operator-defined composition strategy.

Kuo et al. [80] look at the relation between link and server usage in VNF allocations for enter-
prise networks. The goal of their solution is to maximise the number of accepted SFC requests,
which requires placement of the VNFs within the network and generation of appropriate steering
paths for the chains. In achieving this, the authors consider link requirements of the flows and
VM capacity within the infrastructure. To obtain the relationship between link and server usage
for a request the authors propose an additional ILP that aims to avoid deployment beforehand.

In terms of allocating security-centric VNFs, Ali et al. [5] propose a different method to tackling
the allocation problem, being presented as a variable-cost variable-sized bin packing problem
(VSBPP). Targeted towards multi-tenant data centre environments, the placement is influenced
by server resource availability and aims to increase overall requests. The solution proposed
does not take into consideration QoS metrics. Evaluation of the model shows an increase in
request acceptance rate (the number of services that can be hosted on the NFV infrastructure)
and reduction in unsatisfied server resource requests.

Finally, in [41] the progressive provisioning of security services (PESS) model is presented.
It estimates the processing delay based on residual computing resources and factors it into al-
location of services. The objective function aims to minimise cumulative usage of physical
resources. Acknowledging the limitations of an ILP formulation, the authors also propose a
heuristic solution. Both approaches propose sharing of security services between multiple users,
which increases related management overheads when user migrations occur within the network.
Furthermore, the evaluation is performed with the main goals of minimising residual bandwidth
of the networks and VNF host CPU availability. The resource availability of the aforementioned
hosts is akin to that of a TSP’s core infrastructure, with limited consideration towards edge
networks.
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2.6 Summary

This chapter studied the evolution of programmable networks, from the early adoption of the In-
ternet in the 1990s to modern times. As described in Section 2.2, SDN and NFV allow operators
to manage their networks in a programmable, dynamic, and customisable way. SDN provides a
centralised control plane for networks, while NFV enables flexible creation and use of services
at multiple network locations.

Section 2.3 presented the current state-of-the-art network paradigms and migration of services
from centralised, cloud and data centre-based infrastructures closer to the end users, that free
up core network infrastructure, provide location awareness, and provide low-latency network
services.

Section 2.4 provided an overview of network security approaches that have been used to in-
crease the resilience of infrastructure and protect end users. Specialised hardware appliances
(HAs) have been discussed, presenting challenges regarding lack of deployment flexibility, high
operational and capital expenses, limited extension of functionality, and inefficient management
of resources. Softwarised security services were introduced to alleviate some of the identified
problems, later being applied to the NFV environment, with their potential for use in enterprise
and data centre environments investigated. The current paradigm of device-oriented security
obtained from contextual information is presented and how adoption into enterprise networks
has been achieved.

Orchestration of network services in general, and security functions specifically is a complex
process. Section 2.5 reviewed the two principal solutions: exact placement problems and
heuristic-based algorithms. It outlined the limitations of using exact solutions on large-scale
networks and the trade-offs made for deriving appropriate solutions that match dynamic net-
work conditions. The section concludes with the required considerations for creation of complex
services through chaining of multiple network services.

Based on the work presented in previous sections, the following directions for this thesis are
identified:

1. The benefits of the network edge allow for use and deployment of lightweight VNFs that
can be dynamically started and stopped. However, the current security-centred VNFs are
designed as monolithic, heavy applications that require significant computational avail-
ability in their operation. Therefore, there is a need for lightweight, microservice-based
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security services that can operate on low-cost edge devices.

2. Extending previous orchestration work, a dynamic, low-latency placement strategy for in-
line VNFs is required to manage the aforementioned security VNFs according to dynamic
network properties and user expectations to prevent and mitigate undesired malicious ac-
tivity within the network infrastructure.

3. Long-term lifecycle management of network services needs to correspond to user be-
haviour. For example, because the security services filter undesired traffic, de-allocation
of network services when no longer required or upon user departure are essential in pro-
viding flexible user services and an enhanced experience.

In the next chapter, we further analyse the constraints imposed by the network architecture,
service types and user expectations. We synthesise the design requirements for network security
microservices and associated orchestration framework.



Chapter 3

Design

3.1 Overview

Edge networks have been enhanced over the years to support the emerging needs of Internet
applications and services, ranging from VoD hosting to general computation clusters, each with
different security requirements [149] [138] [40]. For instance, a typical IoT Gateway may re-
quire modules that detect and mitigate DDoS flooding attacks and remote code execution, while
critical servers may require a firewall, IDS/IPS and DPI to guarantee high availability and net-
work integrity. However, these security services are limited by the computational power needed
to process network traffic, restricting deployability and posing constraints on flexible manage-
ment of network functions.

As discussed in Section 2.4, the existing Virtualised Network Functions (VNFs) that provide in-
frastructure security functionality adopt a monolithic software architecture that requires plentiful
computational capacity. Attempts to provide distributed, network-wide functionality are gener-
ally limited to specific behaviour. However, these solutions do not cater to the environments of
next-generation networks, with functions operating on real-time network traffic and a goal of
providing transparent network services through minimisation of packet processing overheads.

To address these limitations, this chapter presents selected design considerations enhancing the
generic ETSI NFV reference architecture. The chapter presents the motivation and high-level
system requirements for use of security-oriented VNFs at the network edge in Section 3.2. In
Section 3.3 the main design considerations posed by the presence of lightweight, composable
security functions are presented. Then, in Section 3.4, a comparison between lightweight secu-
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rity VNF architectures, traditional software solutions and legacy hardware appliances is made,
alongside a justification for the use of dynamic creation and composition of microservices in our
framework. Management and orchestration concepts are discussed in Section 3.5, with consid-
eration given to orchestration of services by adhering to Context-based security principles, and
operation in resource-constrained environments. Finally, Section 3.6 presents the fundamentals
for dynamic, latency-optimal on-path placement orchestration of Network Service Chains that
is required to efficiently place and re-allocate services due to movements of users or changes in
network behaviour (e.g., congestion, link failure, etc.).

3.2 System Requirements

This section provides motivation for a new security NFV architecture by detailing the need
for lightweight customisable security functions, autonomous lifecycle management strategies,
and on-path, low-latency placement orchestration. The section then presents the core design
requirements and operational principles to be used in production networks.

3.2.1 Security Service Flexibility

Network Function Virtualisation has been introduced in the 2010s by large telecommunica-
tion service providers to virtualise in-network services by using commodity, yet powerful, x86
servers and network cards. Instead of using proprietary hardware appliances for providing net-
work security (such as firewalls, intrusion detection systems, deep packet inspectors, etc.), a
more flexible service management approach using popular system virtualisation platforms (e.g.,
Xen, VMWare ESXi, KVM, etc.) was adopted. As outlined in Section 2.5, the initial imple-
mentations were focused on provisioning large VMs in Data Centre networks to process large
amounts of traffic in the core network and co-host multiple VNFs.

The approach has recently seen further refinement with offloading of VNFs to the network edge,
to better cater to the emerging requirements of mobile and IoT devices. Providers have begun
enhancing the network edge with smaller Data Centre-like infrastructure (often called cloudlets)
and virtualising the existing processing hardware. This shift, while it provides access to de-
vices in close physical proximity to end-users, brings with it the less powerful computational
environment for use, from commodity routers, to IoT gateways, to enterprise edge servers.

The overhead incurred by controlling the devices needs to be kept at a minimum, especially
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Figure 3.1: Edge Network Environment

given the dynamic contexts in which mobile devices are present. Due to resource availability
concerns, and considering user mobility, having increased autonomy in the lifecycle manage-
ment of the VNFs is paramount, without sacrifices with respect to flexibility in general orches-
tration. The context-based security paradigm described in Section 2.4 offers the logical decou-
pling of security policy (the expected parameters for an application or device to function) and
implementation, however the details of management and orchestration strategies conforming to
the lightweight nature of edge networks have yet to be thoroughly defined.

As presented in Section 2.4, traditional virtualised security modules have not yet adapted to the
lightweight requirements of these emerging networks. Monolithic software architectures (e.g.
Snort IDS [121], Zeek [137], Netfilter Firewall [123], etc.) are still considered the most pop-
ular solutions for providing security functionality. The processing overheads incurred as every
packet traversing monolithic services quickly outweighs the benefits of proximity to end users.
Furthermore, the services often perform duplicate functionality (e.g., IP protocol validation, L4
decapsulation and re-encapsulation) that increases the delay.

To solve the challenges presented, the designed system will explore the options for lightweight,
microservice-based VNFs to enable creation of minimal-overhead services that can be run on
lower-power devices. The management and orchestration components will investigate the use
of autonomous lifecycle management while providing lightweight NFV functionality for use
in resource-constrained environments, as shown in Figure 3.1. Finally, placement of services
within the network with a minimal end-to-end latency objective will be explored.
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3.2.2 Placement of Security Service Chains

The allocation of VNFs to physical servers (also known as the VNF Placement Problem or VNF
Embedding) has been one of the most studied topics within the last few years. Solutions coming
from academia have been presented for optimal and heuristic placement, while industry solu-
tions make use of simple, predictable heuristic schedulers (e.g., Kubernetes’ resource scheduler,
OpenStack’s weight-and-filter scheduler). Many of these placement solutions stem from the VM
Placement Problem that arose when virtualisation and Cloud environments became widespread.
The placement of VNFs in edge environments presents several challenges.

Foremost, the current approaches to VNF placement focus primarily on minimisation of physical
servers used for hosting, as presented in Section 2.5.1. This approach can be translated into
reduction of capital and operational expenses, as fewer servers have to be purchased, managed,
and reduces energy consumption. This objective is relevant within the core network, but for
edge networks where existing infrastructure can be leveraged, the concerns mentioned become
less applicable. The design of a placement strategy at the network edge needs to focus on low-
latency services that allocates VNFs on the path between an end-user and the intended recipient
of network traffic.

Moreover, many of the placement algorithms do not take into account the generation of complex
network services through chaining of multiple VNFs. The recommendations made by the IETF
for deployment of network functions in Mobile Networks showcase the need for chaining mul-
tiple VNFs in order to meet the security and service requirements of both telecommunication
service providers and end-users. The design of a VNF resource allocation algorithm needs to
take into account multiple network functions chained together. The allocation can be co-located
on the same physical server or span multiple locations within the network, while ensuring that
the routing of network traffic reaches the intended destination.

For evolving networks, Context-based placement, which assigns a VNF to a single user, has
shown promise in previous research. Adoption of the paradigm at the network edge leading to
utilisation of residual network resources is to be explored as it can provide reduced end-to-end
latency and reduction of Capital and Operational expenses by avoiding provisioning of large-
scale Data Centres within edge netwokrs.

Finally, the orchestration algorithms do not take into account variations in network dynamics
or user relocation. These variations can arise from individual link congestion, latency fluctua-
tions, or link faults. The changing network conditions influence the user, and the design of the
placement mechanism needs to take them into account.
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The design looks to provide a latency-optimal placement and routing solution for on-path net-
work service chains. Such orchestration algorithms can rely on real-time network telemetry,
such as topology information and latency measurements, along with QoS requirements defined
by the operator to identify the optimal placement of network function based on temporal dy-
namics of the network. In the era of network slicing and variable performance requirements,
the guarantees offered by latency-optimal placement of VNFs at the network edge become a
cornerstone requirement for emerging applications.

3.2.3 Operational Principles

The platform allows operators to define new security policy elements, and create, deploy, and
manage on-path services on-demand. The increasing complexity of modern networks makes
static deployments of network functions, through traditional hardware appliances, difficult to
scale and increases capital and operational expenses. Autonomous functionality of the NFV or-
chestration platform should be easily accessible for configuration and customisation by network
operators.

Operation is designed to support a heterogeneous infrastructure, with a wide spectrum of de-
vices. As presented in Figure 3.1, the targeted infrastructure consists of IoT gateways that con-
nect sensors to the Internet, low-cost home routers that can be found in residential environments,
enterprise edge servers overseeing an entire organisation’s network, radio cells servicing mul-
tiple mobile devices, and autonomous vehicle beacons that facilitate communication between
multiple traffic participants. The proposed system should offer deployment on each of these
device classes, to bring programmable network services as close as possible to end users.

Detection of new devices or applications needs to be performed autonomously by the network,
with minimal operator interaction. In environments where users roam between multiple net-
work access points, operator intervention on deployment of new network functions needs to
be performed automatically. To this end, the designed system should integrate with existing
network management elements (e.g., SDN controllers) to detect the presence of new devices
on the network and perform the necessary deployment steps without manual intervention from
telecommunication service providers.

Customisation of lightweight VNFs is done through code. The modification of behaviour in one
VNF is done programatically, with the downside of incurred communication costs, instead of
manually editing properties through graphical user interfaces. This approach allows for rapid
addition and integration of new functionality, while maximising the potential for creating tailor-
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made network functions with minimal packet processing overhead. Network operators can au-
tomate the creation of new VNFs within the system.

Presence of security services within the network should not impact user experience. Without
sacrificing operator principles and best practices in terms of cybersecurity, end-users should ex-
perience minimal disruption to their normal activity. The overall design of the system should
provide the transparency (from the end-user perspective) by respecting the end-to-end argu-
ment [124].

3.2.4 High-Level Requirements

To reach an architecture that conforms to the needs of modern edge networks, the related liter-
ature has been reviewed, and current NFV platforms have been studied. Based on the findings,
the following high-level design requirements have been identified:

1. VNFs should run on multiple underlying devices, with a primary focus on low-cost hard-
ware that can be found at the network edge or residential premises.

2. Conform to context-based security principles, by assigning VNFs to individual user traffic,
promoting modularity and customisability, and allowing reconfiguration in short timescales
(a matter of seconds [36]).

3. Placement of VNFs should be done in real-time in order to meet the expectations of users
joining the network.

4. Allow individual servers to autonomously perform lifecycle management of VNFs, to
minimise control plane overheads and maximise hosting resource availability, but perform
reporting of utilisation and health for accurate centralised orchestration.

5. The platform should perform flexible, latency-optimal placement of service chains (con-
taining multiple VNFs) based on temporal network properties and location of end users, a
crucial component when services are used at the edge of the network.

6. Support for roaming users should be achieved by migrating or recreating VNFs when the
access points change, to provide an overall improved end-to-end (E2E) latency.

7. Transparent traffic routing should be used to provide resilient network connections and
allow for replacing individual VNFs without affecting users’ traffic.
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3.3 Design Considerations

This section introduces the principal design considerations for security-oriented lightweight
VNFs and the management and orchestration framework component to enable functionality in
edge networks. These considerations are based on, and extend, the general considerations in-
troduced in the ETSI NFV standard [42] and the IETF draft analysis on use-cases for Network
Function Virtualisation in mobile networks [59] [58].

3.3.1 Elasticity, Scalability and Responsiveness

Elasticity should be treated as a first class concern in a dynamic network environment [154].
In essence, elasticity is the ability of a management and orchestration component to adapt to
workload changes by automatically provisioning and de-provisioning of resources [138]. As an
example, users employing new applications require creation of new service chains with minimal
operator intervention. Furthermore, when the individual load is high, a VNF should be able to
migrate from a low-cost edge device to a more powerful server. This envisioned elasticity can
be achieved by using microservice-based VNFs that allow rapid instantiation and deconstruc-
tion, low computational complexity, and providing mechanisms for temporal resource utilisation
monitoring to perform task migration.

A scalable system can reduce capital and operational costs that a network operator incurs from
using an NFV platform within their infrastructure. Scalability of a NFV system is related to the
number of servers it can manage and use for VNFs, and the number of users that can be serviced
by VNFs [44]. In softwarised networks, the principal component that influences scalability is
the amount of traffic present in the control plane. When designing lightweight NFV platforms,
servers that autonomously manage some of the VNF lifecycle aspects can significantly reduce
the overhead of control plane communication and state required by the NFV orchestrator.

Responsiveness of NFV orchestration should be a high priority when considering dynamic, edge
networks [95]. The time from a user joining the network to the availability of given network
functionality should be kept to a minimum [157]. Rapid start and stop times for VNFs, rapid
allocation of VNFs to physical servers, timely creation of network traffic steering routes, and
a mechanism for creating and propagating customised VNFs to servers are the quintessential
design concepts for a responsive NFV platform.
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3.3.2 Performance in Edge Networks

Performance varies by the VNF type considered. As an example, an on-path real-time Deep
Packet Inspector (DPI) VNF has strict requirements to minimise the introduced packet process-
ing overhead, while e.g., a VNF deployed to capture packet traces for offline analysis needs fast
data storage capabilities.

Runtime performance of a VNF depends on the software artifacts used, as well as the amount
of resources allocated to the VNF. As the devices used in network edge scenarios generally
have limited computational, memory, and storage resources, the focus for improving the runtime
performance should be on the software artifact, by e.g., creating bespoke VNFs targeting desired
behaviour. Performance analysis related to this topic should focus on metrics related to packet
processing overhead, VNF reconfiguration duration (time taken for a change in behaviour to
occur), time for activation (time required for the VNF to process network traffic).

In terms of management and orchestration of services within the network, the activation of
service chains, consisting of multiple VNFs, is an important factor when measuring the per-
formance of a NFV framework. As an example, the time required to determine, allocate, and
route traffic through VNFs when a new service request is encountered is a core performance
metric in evaluation. The concept, also called VNF provisioning time, is usually measured in
minutes in today’s NFV frameworks, while lightweight platforms are reducing this time to a few
seconds [36].

VNFs and the underlying server management software often need to communicate with the
network-wide manager component in order to issue updates, provide utilisation metrics, or per-
form starting and stopping of functions. Therefore, it is important to provide efficient, rapid
communication between VNFs and NFV managers.

3.3.3 Management of large Service Chains and Tiers

In the ETSI NFV specification, management and orchestration revolves primarily around de-
termining the placement of VNFs on to physical servers and managing VNF lifecycle. As dis-
cussed, additional concerns regarding performance management, service availability, and infras-
tructure fault resilience need to be accounted for in the management software. When considering
thousands of small, lightweight VNFs that create complex network service chains and tiers in
a distributed, heterogeneous infrastructure with hundreds of edge devices and users, additional
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challenges need to be overcome.

One of the major contributions of NFV is the ability to rapidly respond to changes in the under-
lying network infrastructure. As a result, the management component should perform dynamic
re-orchestration of deployed services upon detection of a change network properties. As pre-
sented further into the thesis, this task runs the risk of becoming computationally complex when
many users are involved, no longer able to conform to the real-time orchestration requirement
defined in Section 3.2.4.

For security-centric use cases, monitoring of alerts and warnings issued by individual functions
is an integral part of the overall functionality. Alongside performance monitoring to report
utilisation information, the management component of the NFV platform requires a security
event monitor. To provide the functionality, the server-based NFV component needs to relay
the information to the management software using carrier-grade techniques, the latter requiring
support for handling a large number of simultaneous connections.

Adhering to the Context-Based Security paradigm presented in Section 2.4 depends on the avail-
ability of replacement VNFs that can be deployed when a user’s network context changes (e.g.,
when an application behaves unexpectedly, or a device performs operations outside its intended
utilisation). To this end, a method for interpreting various alerts issued by the VNFs is needed,
and an associated strategy for handling and mitigating various emerging infrastructure security
threats. To integrate such behaviour, the operator requires a flexible and extensible control in-
terface to define security policies, their mitigation strategies and associated VNF behaviour that
can be composed. Thus, the management software requires a well documented and platform-
independent API with platform and language-independent data structures that can describe the
desired deployment.

3.4 Microservice Network Security Architecture

As described in Section 2.4 and Section 3.2, security VNFs have been traditionally implemented
based on monolithic software architectures. However, the shift towards the use of the network
edge for enhanced service delivery is coupled with the limited computational resource avail-
ability of servers. Emerging work has been focused around providing application partitioning
solutions for running specific network functions in distributed and edge environments, similar
to the development of bespoke systems. At the same time, the microservice architecture has
been promoted because of the rapid deployment capabilities, reduced resource consumption,
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higher flexibility, and platform flexibility. In this section, the major differences between these
approaches are compared, and the use of microservices for our network security architecture is
justified.

3.4.1 Comparison with Monolithic and Bespoke Systems

Monolithic Systems are designed as a ‘one-size-fits-all’ solution that can be used in many dif-
ferent scenarios. They encapsulate functionality for multiple types of behaviours, that can be
activated at runtime through modification of configuration files [121] [123]. The generality of
the architecture used means that resulting software artifacts are highly dependent on their config-
uration in terms of resource usage, providing uncertainty in VNF provisioning. Furthermore, the
configuration files require significant amounts of time to be read and transformed into internal
data structures, making VNF provisioning times unnecessarily long. Finally, the packet process-
ing overhead introduced by the dynamic, runtime reconfigurable element, limits the availability
of such VNFs for applications that are latency sensitive.

Monolithic architectures require hosting at a specific location. Built on the assumption of global
network visibility, the distribution of multiple instances within the network is difficult to achieve,
especially when such systems correlate behavioural information from multiple users. Example
applications include Snort [121], the de-facto network security service, and its’ modules (e.g.,
Intel DPDK integration, anomaly detection, malware scanner), Zeek [137] (formerly Bro IDS),
or Suricata [106].

Bespoke Systems , or specialised distributed VNFs, are specially crafted versions of network
functions that distribute the behaviour throughout specific network environments. Bespoke sys-
tems are usually derived from existing implementations of VNF classes (e.g., firewall, Intrusion
Detection) [1] [2]. A notable example is the vNIDS research project [85], which uses applica-
tion partitioning to enable Deep Packet Inspection (DPI) on multiple VNF hosts located within
the network. While this approach provides lower overall packet processing overhead and allows
functionality to be present within multiple network locations, it still requires a logical centralisa-
tion of information through intra-VNF communication, restricts integration with Context-based
Security systems, and suffers from the same provisioning delays.

Microservices Figure 3.2 compares the architecture and behaviour of Microservices with that
of Monolithic Systems. The main advantage in Monolithic Systems is the ability to dynamically
enable desired behaviour at runtime, while Bespoke Systems and Microservices require built-in
behaviour that is compiled into the software artifact, with static functionality within the VNFs
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lifetime. To this end, monolithic applications employ additional elements (e.g., decoding and
pre-processing) to achieve flexibility, in detriment to processing overheads. In the case of Be-
spoke systems, VNFs can be enhanced with new types of the same behaviour (e.g., a new packet
signature), while Microservices allow for rapid deployment and execution at the cost of regen-
eration of software artifacts (e.g., from source code) for any behavioural changes made [92].

Microservices are a good compromise between the general flexibility given by monolithic archi-
tectures and partitioning properties of bespoke systems. They allow creation of different VNFs
with targeted behaviour from a repository of components, while being able to run indepen-
dently [69]. At the same time, they incur significantly lower packet processing overhead because
of the reduced dynamic behaviour [132]. Because of the predictable system resource utilisation
microservice architectures allow for more precise placement on physical servers and higher den-
sity of network functions on hosts, at the cost of runtime configuration capabilities [36].

3.4.2 Drawbacks for Microservice Architectures

While microservices provide several benefits when used on resource-constrained edge devices,
there are certain challenges that need to be considered when adopting this design for VNF im-
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plementations [69].

When envisioning a large number of VNFs operating in a large network infrastructure, the com-
plexity of managing the deployment increases. As every VNF is an independent service, com-
munication between elements has to be carefully handled. In some scenarios, management of
VNFs can cause complications because of the incurred latency overhead.

Several research works emerged in order to provide marshalling of smaller VNFs. In order to
better utilise computational availability and thus maximise potential throughput of a function,
consolidation of services has been previously proposed [76]. This approach risks inadvertently
creating monolithic functions that can add unexpected latency overheads when under demand.

Several authors have identified the inherent complexities associated with composition of new
VNFs from a series of independent modules, including function description [73], chaining [138],
and customisation [85]. Accurate description when performing composition is one such exam-
ple. According to John et al. [73], these description methods need to cover both the service-level
and hardware requirements. This topic has been under continuous investigation within the VM
and VNF placement problem space, with models involving simple approximations of hardware
availability (e.g., as encountered in [32], [39], [30], etc.), with recent works starting to consider
modelling requirements across multiple dimensions, as evidenced by et al. [108]. However, this
thesis does not attempt to provide a unified, formalised method for expressing these require-
ments.

Tourani et al. [138] identifies microservice chaining as a challenge in the security domain, due
to the increased risk of vulnerability within the network. To overcome this, the authors envi-
sion a secure API that enables isolated inter-process communication between VNFs. Several
industry-standard solutions are already available for this purpose, with a notable solution being
based around the gRPC protocol1 which allows for well-defined communication interfaces that
are checked during compilation, and enable secure communication using Transport-Layer Secu-
rity (TLS). Other solutions rely upon REpresentational State Transfer (REST), Socket, Simple
Object Access Protocol (SOAP), which are more loosely defined and require explicit knowledge
and manual verification of implementation.

Another open challenge, highlighted by Li et al. [85], is the difficulty of customisation. In
particular, the authors focus on Network Intrusion Detection Systems (NIDSes), however the
challenge remains present within the broader scope of security-centric VNFs. Modification of
a single component in a monolithic system requires rebuilding and redeployment of the entire

1http://grpc.io/ Retrieved November 2021
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system, posing a challenge in highly dynamic edge environments.

In our model each resulting VNF needs to be compiled, requiring a sufficiently powerful server
that can perform the task. In the case of multiple simultaneous creation requests, the challenge
of adequate VNF provisioning time becomes apparent.

3.5 Edge-based Security Service Orchestration

As described in Section 2.3, the network edge provides unique opportunities in placement of ser-
vices close to end-users, reducing delays and optimising infrastructure utilisation. However, the
network edge consists of resource-constrained devices, as illustrated in Table 2.3.2.4; manage-
ment and orchestration of network services within this environment must take into account the
limited computational resources, and utilise the underlying infrastructure efficiently. In this sec-
tion, we outline the considerations in designing an orchestration framework for security services
at the network edge, focusing on improving resource utilisation.

3.5.1 Usage Driven Services

As evidenced in Section 2.4, the “one-size-fits-all" paradigm for network security is quickly
becoming outdated. With the rapid increase of devices, volume of network traffic, and infras-
tructure sizes, existing management strategies are difficult to maintain and lead to periods when
operator best practices are not maintained (e.g., during service updates). Furthermore, miti-
gation times for emerging security threats are increased due to the delays in reconfiguring the
services involved.

Context-based security deployments [157] overcome this limitation by proposing per-device
security services that can be logically managed without interference for other users. The above-
mentioned limitations can be addressed through this logical separation. Instantiating per-application
network security VNFs can enable operators to provide security services only for applications
that are being used, thus minimising resource requirements within the network system.

Combining per-device with per-application security paradigms can ensure that operator best
practices are followed, while allowing users to maintain network availability when undesired
usage is present. Deployment at the network edge also leads to a decrease in core infrastructure
bandwidth utilisation for benign purposes, allowing for faster network expansion.
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3.5.2 Device Detection

The network edge is inherently unpredictable, with a multitude of devices joining and leaving the
network within short timescales. Even in a simple residential environment, there are no unified
mechanisms for when devices join or leave a network. As an example, assigning IP addresses
within a network requires application layer support through the Dynamic Host Configuration
Protocol; the client requesting an address must broadcast a special DHCPDISCOVER message,
instead of being discovered by the network. Because of these disparate mechanisms and the fact
that initial design of network mechanisms did not foresee mobility, the deployment of services
through NFV mechanisms when a device joins the network, or when a new application flow is
initiated, becomes a complex management and orchestration challenge.

The flexibility introduced by Software Defined Networking (SDN), which allows a global overview
of the underlying infrastructure and connected devices, can be leveraged to overcome this chal-
lenge. Using SDN, new devices can be rapidly identified within the network, allowing operators
to rapidly employ appropriate security modules which respect their policies and best practices.
Being built on top of SDN, the NFV framework can provide integration for deployment and
management of these modules, able to react rapidly to changes in device behaviour.

3.5.3 Resource-constrained Infrastructure

The vast majority of devices within the network edge, as presented in Table 2.3.2.4, have limited
computational resources that can be used for hosting services. In order to minimise capital ex-
penditures, the capabilities of these devices must be leveraged efficiently in providing additional
network functionality through NFV.

The services are managed according to device and application traffic. However, instantiating
every potential service within the network without being actively employed leads to inefficient
utilisation of resources.

The other aspect presented in Section 3.5.2, in which there is no mechanism through which the
network is notified by a device disconnecting, leads to services being instantiated but not used.
To alleviate this issue, we propose an autonomous VNF lifecycle management scheme where the
VNF hosts decide, based on the existing network traffic, on lifecycle management of individual
network services. This allows for the reclaiming of resources, improving the overall ability for
service utilisation.
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3.6 Latency-Optimal In-line Service Chain Placement

Following on the rationale presented in Section 3.2.2, this section introduces the latency-optimal
in-line service chain placement model designed for the orchestration of complex network secu-
rity services in the proposed framework.

As evidenced in Section 2.5.1, the problem of resource allocation and placement of Virtual
Network Functions within networks has been widely studied. The formulations and solutions
presented do not present the required features for deployment of security-focused VNFs at the
network edge. We further present these features and analyse how existing placement formula-
tions accommodate them.

• Source-to-destination placement: The formulation must provide placement of VNFs
without disrupting traffic flow between communicating devices. Thus, services are placed
on the network path between the source and destination. The Nestor ILP formulation [39]
and it’s multiple resource dimension formulation [108] enable this by identifying and plac-
ing VNFs at network vantage points (e.g., VNF Points-of-Presence, Data Centres) and
perform traffic routing to ensure that flows transit these intermediate hops before reaching
their destination; similar functionality is presented by Doriguzzi-Corin et al [41]. On the
other hand, the formulation presented by Cziva et al. [32] does not consider placement
of VNFs between source and destination, instead treating the VNFs as traffic end-points
(as is common in e.g., CDN services, or Video Hosts) that directly communicate with the
source device.

• Service chaining: Providing security for a network flow is achieved by employing sev-
eral specialised VNFs (e.g., Access Control, Firewall, Intrusion Detection) to inspect and
process traffic. As a consequence, placement solutions have to support service chains
composed of multiple VNFs which can be placed at different PoPs by providing connec-
tivity and traffic steering between VNFs. Monolithic, one-size-fits-all, VNFs perform all
of the functionality in a single location, which increases server resource demand (e.g.,
CPU, memory and throughput) and succumb to scalability limits with respect to traf-
fic processed. The solution proposed by Cziva et al. [32] only performs individual VNF
placements, service chains are not supported, which leads to security services being exclu-
sively defined as monolithic applications. Nestor [39] and PESS [41] provide placement
for network service chains.

• Granular security functionality: The Context-Based security paradigm that is advocated
in this thesis is built upon the understanding that multiple flows, even if part of the same
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application, have different security requirements and, thus, utilise different service chains
and security VNFs. For example, a CCTV system has three network flows: a video stream
captured by the cameras, and bi-directional control and management traffic (e.g., remotely
control camera pan, tilt, zoom, etc.) For the former flow, a security chain would involve a
firewall to fend against information leakage, and the latter flows are serviced by chains that
contain firewalls and IDS/IPS VNFs with different goals: the CCTV system needs to be
protected against IoT Command-and-Control attacks such as Mirai, and the remote acces-
sor must be defended against web exploits. The PESS solution [41] provides partial im-
plementation by recognising the need for three service chains, but resulting deployments
utilise monolithic VNFs which service all of these flows simultaneously. Nestor [39] al-
lows definition of multiple service chains which can satisfy the granularity of VNFs, and
the formulation by Cziva et al. [32], because it does not incorporate end-to-end traffic,
does not support this scenario.

• QoS-driven: The biggest advantage gained by placing VNFs at network edge is the im-
provement in the Quality of Service achieved by reduced latency. Treating a network
edge environment the same as a Data Centre or Backbone network does not provide the
promised results, primarily because of the limited resource availability within the environ-
ment. Solutions have to factor in both QoS elements and leverage the resources distributed
throughout the network in order to draw benefits from the edge environment. The formula-
tion by Doriguzzi-Corin et al. [41] incorporates latency constraints, but the primary focus
of the solution is minimisation of computational costs. Nestor [39] does not provide any
QoS constraints and aims to co-locate VNFs onto a minimal number of hosts. The solu-
tion presented by Cziva et al. [32] is one of the few solutions that focuses solely on the
network edge and prioritises QoS aspects by minimising the overall path latency for all
VNFs.

• Support operator policies: Placement solutions that are too rigid in their operation are
unlikely to provide any benefit beyond academic curiosity, especially for security systems
where each operator maintains a proprietary and confidential set of processes and pro-
cedures (e.g., firewall VNFs must be hosted on hardened systems) which govern service
deployments. Flexibility has tho be supported through integration of operator-defined
policies which complement the core placement strategy. To the best of our knowledge,
PESS [41] is the only state-of-the-art solution that explicitly supports operator policies
during the placement process. However, as these policies can be integrated through ad-
ditional constraints, formulations by both Dietrich et al. [39] and Cziva et al. [32] can be
adapted to conform to the operator best-practices.

Based on this analysis, we argue that there is a distinct need for a solution for the placement,
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resource allocation, and traffic steering of security service chains at the network edge. We further
propose a model that performs end-to-end Context-Based placement and makes use of residual
computational resources at the network edge.

The placement model is formulated as an Integer Linear Programming (ILP) problem to cal-
culate the latency-optimal allocation of service chains in edge networks. Due to their inherent
complexity and limited scalability, optimisation problems do not provide adequate operational
performance in real-world environments. The placement model outlined below identifies the
principles and objectives for the placement of security services within edge networks.

3.6.1 Rationale

Recent advances in virtualisation and NFV allow network functions to be hosted on any physical
server, for example edge devices close to the user, servers within the internal infrastructure, or
cloud data centres at a distant location.

In order to provide the best user-to-destination end-to-end (E2E) latency, operators are aiming to
place VNFs in close proximity to users, on the path that minimises overall transmission delays.
To achieve this, edge devices in close proximity to the user are first considered for VNF alloca-
tion and falling back to hosting VNFs on devices located within the core network infrastructure
(e.g., within a data centre) when the VNF requirements exceed the hosting capabilities of edge
devices.

In an ideal scenario, each service chain would be placed on the path with the lowest latency
between network endpoints. But implementing such an approach becomes infeasible in real-
world deployments. To achieve such behaviour means that every location within the network
requires VNF capacity to accommodate requests at any time. In the best-case scenario, where
processing capability is not a concern, this strategy requires significant capital expenditure in
setting up the required infrastructure. To alleviate this concern utilisation of residual processing
capabilities within the network should be employed, while ensuring service-level guarantees.
This solution means that the resulting data path through which traffic is steered for services
starts deviating from the ideal data path.

In adhering to the Context-Based Security paradigm, the model implements non-sharing of
VNFs between multiple devices. As a result of associating a particular security service chains
with a single device more flexible security policies are feasible, such as context deviation de-
tection (when a device behaves beyond intended parameters), or mitigation of network attacks
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without utilising core infrastructure bandwidth.

The model takes as input a description of the underlying physical network, including the current
resource availability of servers alongside one or more security service requests. The output is
a mapping of VNFs onto servers within the network, the recommended latency-optimal route
between the traffic source and destination traversing the VNF chain, and an updated model that
takes into account the resulting allocation.

3.6.2 System Model

We have summarised and synthesised the parameters used for the formulation of the problem
and model in Table 3.1. We represent the physical network as an undirected graph G= (H,E,U)
where H is the set of VNF-capable hosts, E is that of network links between hosts, and U is the
set of users connected to the network.

The heterogeneous nature of the network edge environment implies that the devices present
within the network have multiple characteristics (e.g., CPU architecture, CPU clock speed,
Memory Architecture, Memory size, underlying OS, etc.). Including all of the characteristics as
variables within a problem formulation becomes impracticable. Because of this consideration,
we describe the entire system capacity using a single variable. We assume that a VNF can be
placed on any host in this graph, and all hosts have a finite hardware capacity (combined cpu,

memory, io, etc.) to host VNFs, denoted as Wj, j ∈H.

Any link within the network is characterised by a latency value Am expressed in ms, and total
link bandwidth Bm expressed in Mbps.

We model flows between two users as (s,d) pairs and a set of paths Ps,d that connect the two
hosts. A security service request takes the form Ns,d and consists of multiple VNF ni

s,d . Each
service request is characterised by the upper latency bound θs,d of the associated SLA. This
parameter is dictated by the application class associated with a given flow.

We derive latency lk
s,d between the source-destination pairs s,d using path k as the sum of all link

latencies. It is worth noting that processing delays incurred by traversal of network functions
is not part of this derivation. The complexity in accurate modelling of the processing delays
would inevitably create differences between the proposed model and real-world scenarios. A
naïve formulation of processing delays assumes an invariant processing latency λ i

s,d for any
network function ni

s,d . The invariant nature would mean that the resulting processing latency for
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Table 3.1: System Parameters
Network Parameters Description

G= (H,E,U) Graph of network topology.
H= {h1,h2,h3...hH} VNF Hosts within the network.
E= {e1,e2,e3...eE} All network links.
F= {u1,u2,u3...uU} All flows associated with network functions.

Φ = {(s1,d1),(s2,d2)(s3,d3)...(sU ,dU)} All source and destination pairs of flows in
the network.

Ps,d = {p1, p2, p3...pP} All paths in the network from source s
to destination d.

Wj A singular value that represents cumulative CPU,
Memory, I/O, etc. capacity of h j ∈H.

Am Latency on link em ∈ E.
Bm Bandwidth of link em ∈ E.

VNF Parameters Description
Ns,d = {n1

s,d,n
2
s,d...n

F
s,d} Number of network functions to allocate where

ni ∈ Ns,d is associated to source and destination
pairs (s,d) ∈Φ.

θs,d Upper latency bound for security service Ns,d .
βs,d Bandwidth requirement for user of security service Ns,d .
Ri A singular value that represents cumulative CPU,

Memory, I/O, etc. requirements of network function
ni

s,d ∈ Ns,d .
Derived Parameters Description

lk
s,d = ∑em∈EAm Link-level latency between the source-destination pair

(s,d) using the path pk. Derived from the physical
topology and the VNF requests.

Variables Description
Xk

s,d Binary decision variable denoting if traffic
between the (s,d) pair is going
through path pk or not.

Y j
i Binary decision variable denoting if network

function ni
s,d is hosted on host h j.

Zi j
(s,d)k Binary decision variable denoting if network

function ni
s,d is located on host h j of path pk

between (s,d).
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a request is independent of the placement, being only influenced by the VNFs which compose
the service chain. A more accurate model relies on the characteristics of the host that serves a
given VNF. Thus, processing latency of the form λ

i j
s,d for any network function ni

s,d being hosted
on server h j, could be used within the model. However, compilation of such a matrix would lead
to an increase of state and lead to an overly constrained model, which could limit the number
of requests that can be served. In terms of real-world applicability, it requires that each VNF be
profiled on each capable server. This limits the extensibility of a system: adding new VNF hosts
requires blocking resources for profiling, and adding servers would be delayed by the need to
execute profiling before becoming available for use.

Another issue of contention is the influence that packet I/O has within the VNF. Modern packet
I/O solutions focus on providing low-latency from the wire to the processing unit, but require
specialised hardware and drivers (e.g., DPDK [48], XDP 2). Platform-agnostic approaches have
higher I/O overhead (e.g., Berkeley Sockets 3, LibPCAP 4) but work on a wide array of sys-
tems. In the scenario where a VNF implementation supports multiple packet I/O methods, each
would be considered a different VNF within the model, further increasing the search state and
complexity in solving the formulation.

The heterogeneous edge network environments also influence the system requirements of indi-
vidual VNF implementations. Once again, the inclusion of all possible variables and how they
influence the system requirements, becomes infeasible. With similar basis as described for host
system capacity, we employ a single resource requirements variable Ri, describing combined the
cpu, memory, io, etc requirements, for each VNF ni.

The derivation of variables that are deeply tied with underlying hardware architectures, such as
Wj and Ri in our model, has often been of widespread interest and debate within the academic
community. While providing a framework for derivation is outside the scope of this thesis, other
domains have encountered similar challenges. In Data Centre environments, a solution for this
challenge is proposed by Pentelas et al. [108], where a node has a multi-dimensional resource
description, is employed. Proving that multi-dimensional solutions are viable in Data Centre in-
frastructures, where heterogeneity is not an issue, the solution has a non-trivial generalisation for
heterogeneous environments. In the domain of exact algorithms and constraint programming,
which are related to Integer Linear Programming, as a method for formulating optimisation
problems, a solution involving system benchmarks is used. This strategy, frequently encoun-
tered when analysing algorithm performance in real-world scenarios, was however challenged

2https://www.redhat.com/en/blog/capturing-network-traffic-express-data-path-xdp-environment Retrieved
September 2021

3http://www.opengroup.org/onlinepubs/9699919799/functions/contents.html Retrieved October 2021
4https://www.tcpdump.org Retrieved October 2021
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by Prosser [113] with a detailed discussion in § 4.5 and empirical analysis on systems with sim-
ilar underlying hardware. In a heterogeneous environment, this effect would be present because
of the differences in hardware architecture. We however decide to accept this compromise in
derivation, looking forward to the evolution of new methodologies.

We use the binary decision variables:

Xk
s,d =

1 if the flow (s,d) is routed on path k

0 otherwise
(3.1)

Y j
i =

1 if VNF ni
s,d is located on host h j

0 otherwise
(3.2)

Zi j
(s,d)k =


1 if VNF ni

s,d is located on host h j,

belonging to path pk

0 otherwise

(3.3)

The variable described in Equation (3.1) encompasses the path selection and routing decision
of flows. Variable (3.2) is linked to the placement decision of individual VNF. We ensure con-
sistency between the two variables using (3.3), which encompasses all of the relevant system
parameters.

3.6.3 Problem Formulation

The placement problem is defined as follows:

Problem. Given the the network G described by set of users U, the set of VNF Hosts H, the set

of network edges E, with the traffic flow pairs Φ, the set of VNF chain requests N(s,d), and a

latency matrix l, we need to find an appropriate routing of all flows and placement for all VNFs

that minimises the total expected end-to-end latency from all users to their destinations.
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The solution to the placement problem is given by:

min. ∑
(s,d)∈Φ

∑
pk∈Ps,d

Xk
s,dlk

s,d (3.4)

Equation 3.4 looks for the values of Xk
s,d , while it is subject to the following constraints:

∑
pk∈Ps,d

Xk
s,d = 1,∀(s,d) ∈Φ (3.5)

Constraint (3.5) ensures that only one valid path may be used for any given flow. This means
that all network traffic belonging to a given flow follows the same network path, which contains
VNF allocations on physical servers. The constraint gives two guarantees: that there are no
instances of VNFs performing the same task, and that the network traffic traverses all VNFs on
the Service Chain.

∑
pk∈Ps,d

Xk
s,dlk

s,d < θs,d,∀(s,d) ∈Φ (3.6)

Constraint (3.6) verifies that the selected end-to-end (E2E) path latency is below the upper bound
specified for the flow at the time of placement (θs,d). This means that the application traffic
traversing the selected path and associated VNF allocations will be below the tolerated latency
threshold for the application used. The calculation for all possible latency values is stored in the
latency matrix lk

s,d where the s,d pair indicates the traffic source and destination and k denotes
the network path used between the two points.

∑
pk∈Ps,d

Xk
s,dlk

s,d + ∑
ni

s,d∈Ns,d

∑
h∈H

Y j
(s,d)iλ

i j
s,d < θs,d,∀(s,d) ∈Φ (3.7)

If a requirement to incorporate processing latencies within the path latency selection is present,
an extended formulation taking the form expressed in Constraint (3.7) can be used instead.
However, in further considering this formulation, we refer to the formulation only containing
link latency.
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∑
(s,d)∈Φ

∑
pk∈Ps,d

Xk
s,dβs,d < Bm,∀em ∈ E (3.8)

Constraint (3.8) verifies that links do not become overloaded by the path selection. It takes the
bandwidth requirements of all flows traversing through the link and ensures that their sum does
not exceed the maximum link bandwidth.

∑
h j∈H

Y j
(s,d)i = 1,∀(s,d) ∈Φ,∀ni

s,d ∈ Ns,d (3.9)

Constraint (3.9) states that each VNF must be allocated to exactly one host. This is done by
verifying that the allocation counter Y j

(s,d)i for a particular VNF sums up to 1.

∑
(s,d)inΦ

∑
ni∈Ns,d

Y j
i Ri <Wj,∀h j ∈H (3.10)

Constraint (3.10) enforces that resource limitations of hosts are adhered to (CPU, memory, IO
are finite and can only support a limited number of VNFs on any given host). This constraint
sums up all of the resource usage requirements Ri (selected by the binary decision variable Y j

i )
and ensures that for all hosts h j the individual sums are below Wj, the total capacity of the host.

Zi j
(s,d)k = Xk

s,dY j
i (3.11a)

Zi j
(s,d)k ≤ Xk

s,d (3.11b)

Zi j
(s,d)k ≤ Y j

i (3.11c)

Zi j
(s,d)k ≥ Xk

s,d +Y j
i −1 (3.11d)

Constraint (3.11a) is used to guarantee that the allocation is valid with respect to the path. This is
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done by verifying that the chosen host for a VNF allocation is located on the selected path k be-
tween (s,d). The linearised form of Constraint (3.11a) can be expressed by Constraints (3.11b),
(3.11c), (3.11d).

∑
pk∈Ps,d

Zi j
(s,d)k >= 1,∀(s,d) ∈Φ,∀ni

s,d ∈ Ns,d,∀h j ∈H (3.12)

Finally, we enforce the chaining requirement through constraint (3.12), where all VNF belonging
to the same Service Chain are on the same path. Doing so ensures that a chain does not reside
on multiple paths, violating network traffic steering considerations by e.g., duplicating packets.

3.7 Summary

The design concepts and core requirements for a security-oriented NFV framework capable
of creating, running and dynamically managing virtual network functions in various emerging
network environments were presented in Section 3.2. Section 3.3 discussed the relevant consid-
erations in designing such a framework.

Section 3.4 outlined the need for using customisable microservice network security modules in
the proposed networks as opposed to monolithic software architectures and bespoke implemen-
tations of lightweight security functionality, providing much lower hardware requirements, and
allowing for rapid creation and deployment of services suited to the operational environment.

Finally, Section 3.6 presented a solution for the latency-optimal placement of VNF chains and
traffic steering to achieve low-latency security service deployment and dynamic management. A
formulation of an optimisation problem using Integer Linear Programming (ILP) is given, with
the associated system model and description of the individual elements.

Overall, the design principles presented in this chapter will allow network operators to deploy
customisable security systems in edge networks and manage the placement of services to provide
the best latency for their users.
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Implementation

4.1 Overview

Following the design considerations outlined in Chapter 3, a network security function orches-
tration framework has been implemented.

The framework has the following main characteristics:

• Context-Based Network Function Control: Network Functions operate within the con-
text of the network users they provide services for. In order to cater to different needs,
from both an end-user perspective and network operator requirements, a robust control
plane is presented. The control plane implements the principles of context-based network
security in service request handling, lifecycle management, and identification of new re-
quirements.

• Real-time Allocation of Services: Whenever a new device joins the network, or new ap-
plications are used, the associated services must be allocated onto VNF hosts, provisioned
and activated. In order to offer enhanced user Quality of Experience, these new services
are made available in real-time, with a user experiencing minimal delays from instantiat-
ing new VNFs. For example, Cziva et al. [37] show that 50 container-based VNFs can be
created and started in 10 seconds, but does not account for orchestration overheads. The
orchestration must also be performed in a similar timeframe (e.g., device detection, VNF
placement, container transfer, etc.), with a goal of 20 seconds for VNF availability.

• Lightweight Network Functions for Edge Environments: Modern applications require

63
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minimal network latency. Packet processing overheads of network functions have to be
kept to a minimum to meet these demands. Microservice-based network functions that
perform lightweight, targeted processing are employed to achieve the proposed goal.

The architecture is organised into four planes, based on the recommendations of the ETSI NFV
standard [42]:

• The Infrastructure plane consists of edge devices and network infrastructure. Lifecycle
management of individual network functions is delegated to the Infrastructure plane in
order to minimise management overhead and enhance infrastructure resilience.

• The Virtual Infrastructure plane manages the configuration of network traffic routes,
detects new clients and applications used, communicates with edge devices used for VNF
hosting, and provides per-host utilisation metrics used in orchestration.

• The Orchestration plane handles service request prioritisation, mapping of operator poli-
cies to service function chains, placement of individual services, traffic steering to provide
latency-optimal utilisation, and tracks infrastructure availability.

• The Service plane consists of individual network functions that can be used to provide
necessary functionality resulting from the requests for network services.

The following sections present the implementation details of the components of the framework.
The network architecture, based on real-world topologies and influenced by existing principles
of Edge network designs, is presented in Section 4.2. In Section 4.3 the implementation of
the control plane aspect will be detailed, with focus on service request management and iden-
tification of new application requirements. Lifecycle management of network functions and
deployment of new services within the network are described in Section 4.4. We continue with
a heuristic solution aimed at providing real-time allocation of service requests in Section 4.5.
Section 4.6 gives insight on implementation and use of lightweight, microservice-based security
services. Finally, we conclude the chapter in Section 4.7.

4.2 Network Infrastructure

The infrastructure of the network consists of various resource-constrained hosting platforms
for network functions, such as Single-Board Computers, home routers, and lightweight NFV
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servers, co-existing with public cloud VMs for computationally-intensive tasks. These types
of devices are susceptible to “command-and-control” attacks1, where a single device issues a
network-wide instruction to perform undesired or malicious activities (e.g., DDoS attacks or
data theft) that compromise the entire infrastructure.

The underlying network interconnecting these devices uses an SDN-compliant OpenFlow design
for routing, enabling fine-grained control of the network flows from applications. As a result,
OpenFlow-compatible switches are present throughout the network to allow centralised control
and installation of forwarding rules on all devices required for VNF traffic steering. Clients
using the network are detected by the SDN Controller through switch notifications, in order to
identify the security context in which they are operating. Specifically, the OpenFlow 1.3 protocol
is used to control all network elements without using vendor-specific interfaces or extensions and
communicating device presence to the Security NFV framework.

Management of the SDN infrastructure is through networks designed for sparse latency-sensitive
traffic where throughput is generally of little concern compared to the data-plane network. The
network is thus designed for reliable and consistent performance. The potential implementations
include the following alternate management network strategies:

1. In-band: The management and data networks are shared, with no isolation between the
two traffic types. Management traffic is subject to congestion and reduced bandwidth
arising from data traffic.

2. Logically Out-Of-Band (OOB): Management traffic is logically separated, with ap-
proaches using, e.g., VLANs or dedicated flow rules in switches. This approach allows en-
forcement of QoS by prioritising management traffic. Isolation is enforced at QoS-enabled
routers, with no complete guarantees of separation between two network locations.

3. Physically OOB: A dedicated network is used exclusively for management traffic. While
the approach involves significant investment for new switches and host network interfaces,
it is used in critical environments. Physically separated networks are the recommended
solution for OpenStack cloud software used for NFV frameworks, and employed in many
production cloud Data Centre environments.

In our implementation the control network uses an in-band solution with no isolation. The sim-
plicity of the solution allows for rapid development, deployment, and evaluation of the proposed
framework.

1https://www.paloaltonetworks.com/cyberpedia/command-and-control-explained Retrieved August 2021
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In terms of OpenFlow applications used, which are essential for the operation of the network,
we employ a few OSI Layer 2 (Ethernet) and Layer 3 (IP) applications to enable basic net-
work functionality. Because the OpenFlow switches, by default, do not perform any network
forwarding not present within the forwarding tables, the entire behaviour of network switching
and routing protocols have to be re-implemented as OpenFlow controller applications. The lack
of a Link-Layer Discovery Protocol [65] support for the switches makes discovery of new de-
vices (e.g., clients joining the network) increasingly difficult. The Address Resolution Protocol
(ARP) [112], used by network clients to map MAC addresses to IP addresses and issue valid
Ethernet packets, is also not supported out-of-the-box.

Industrial solutions acknowledge this limitation of the OpenFlow specification. Starting with
OpenFlow Switch specification 1.1 2, a hybrid pipeline processing mode is defined, which sup-
ports both OpenFlow operation and normal Ethernet switching through a classification mech-
anism that routes traffic to either pipeline. However, the standard considers this classification
outside the scope of the standard, which led to vendors defining their own implementations. For
example, nVidia Mellanox Onyx performs classification based on VLAN filters 3, Nokia SR OS
supports per-interface or per-VLAN OpenFlow pipelines 4, and Arista EOS performs either per-
interface or per-VLAN classification, but can also perform a subset of OpenFlow actions for all
packets 5. If the vendor-prevalent VLAN classifier is used in a OpenFlow hybrid network then
the host needs to be aware of the underlying network configuration (e.g., knowing the OpenFlow
pipeline VLAN ID) and segregate network behaviour based on network characteristics; from a
security perspective, this poses a risk by circumventing the OpenFlow pipeline (and, implicitly,
the security service chain that the operator enforces).

4.3 Network Control Plane Module

Alongside applications implementing standards-defined network protocols, we make use of a
dedicated Context-Based Control Plane Module that connects the OpenFlow infrastructure to
the NFV platform. The functionality of this module is detailed within this Section.

The Control Plane Module is an SDN controller module that monitors for new application flows
from end-users. The module is built for the Ryu SDN controller for our prototype. It features a

2https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf Retrieved August 2021
3https://docs.nvidia.com/networking/display/ONYXv381112/OpenFlow+1.3+Workflow
4https://documentation.nokia.com/html/0_add-h-f/93-0073-HTML/7750_SR_OS_Router_Configuration_Guide/openflow.pdf

Retrieved August 2021
5https://www.arista.com/en/um-eos/eos-openflow Retrieved August 2021
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southbound API (Application Programming Interface) that communicates with the NFV Orches-
trator component for lifecycle and function management, by transmitting information regarding
device type and network behaviour.

The controller applications are responsible for guaranteeing the network availability of new
devices and applications. The LLDP application monitors device links by periodically sending
an OpenFlow PacketOut message with Ethernet Packets containing LLDP data on all ports of
a switch. Compliant network devices are also expected to send LLDP messages which are
forwarded by the receiving switch to the Controller. The LLDP controller application is thus
aware of all of the neighbours of a switch, including client devices which join the network.

We extend this mechanism to allow for new application presence and inform the NFV framework
for the deployment of security modules. Detection is made by the OpenFlow receiving Switch
OpenFlow PacketIn notifications for new application flows, which do not have table entries
setup. This detection triggers the VNF Chain allocation process for network chains, with a
high-level overview of the process presented in Figure 4.1.

We use a dedicated Device Manager that, based on a device’s properties and expected behaviour
(e.g., smart phone, IoT sensor, laptop, etc., and social media, video streaming, web browsing,
etc., respectively), gathered from LLDP information and application flow details, requests the as-
sociated Contexts which describe the cybersecurity requirements related to network behaviour.
The Context Manager is responsible for the composition of the security service function chain
that respects the operator’s best practices and requirements with respect to the aforementioned
behaviour.

In accordance to the principle of context-based security, the NFV framework maps per-device
application traffic to unique VNF chains, by handling identification of appropriate VNFs, service
chain composition, traffic steering, and VNF orchestration. The mapping and chain composition
is defined by the network operator according to their best practices and function availability:
high-level policies that can be inferred from the network traffic (e.g., HTTPS, VoIP, etc.) are
associated with series of network functions descriptors with security functionality. A NF de-
scriptor in our framework includes the archetype of the network function (e.g., generic firewall,
IDS, DPI, etc.), along with specific configuration requirements that have to be applied to the
network function (e.g., IP address, TCP or UDP ports, match rules, etc.).

The chain routing is mutually exclusive with ECMP (Equal-Cost Multi-Path) routing techniques,
as a chain does not allow traffic merging from multiple flows. This implementation choice aligns
with the design decision for adoption of Context-Based Network Security in Section 3.2 and is
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Figure 4.1: High-level behaviour of device identification and SDN routing

offset by the choice of lightweight network functions, expanded on in Section 4.6. The SDN
controller module, given a series of routing paths generated after the allocation of service func-
tion chains by the NFV Orchestrator, installs the relevant forwarding table entries on switches,
and verifies existing functionality of traffic steering.

The southbound API is used for VNF lifecycle management, when allocated service chains are
not in use. Under these conditions, the NFV Orchestrator notifies the controller module of the
deallocation decision by monitoring LLDP disappearances. The network switches involved in
traffic steering are instructed to drop the forwarding table entries pertaining to the disconnected
device.

Finally, this module can be extended with northbound API capability to give a visual User
Interface for network engineers to view and manage data in real-time. One way to achieve this
is to provide a REST (REpresentational State Transfer) API, alongside a web application built
using HTML5, CSS3 and JavaScript components. The API primitives included are related to
VNF categories, management of service chains and policy mapping, specifying network-wide
configuration parameters and inspection of the network infrastructure state.
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Figure 4.2: Components for Security VNF Management

4.4 Network Function Management

Security function management, including orchestration, individual function lifecycle manage-
ment, function building, and VNF host management is performed using components derived
from the ETSI NFV reference architecture [42]. A high-level overview of the system is pro-
vided in Figure 4.2. The salient components are: the function builder, the VNF host monitor,
and the function orchestrator. For the basis of our framework, we have used Kubernetes,
an open-source, production-grade container orchestration mechanism. The remainder of this
Section presents implementation details related to the security-centric NFV functionality.

4.4.1 NFV Orchestrator

The NFV Orchestrator responsible for interacting with the underlying network infrastructure
through the SDN Controller, for management of network function creation, deletion, state man-
agement, and access, and for management of the underlying NFV infrastructure: communicat-
ing with servers capable of hosting NFVs, tracking global and local resource availability, storage
systems, and distributing operational data throughout the cluster.

In the traditional Kubernetes architecture, the Orchestrator is comprised of several independent
modules (e.g., scheduler, data store, controller manager), collectively called the Master Node,
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interconnected by the Kubernetes API Server6. The Kubernetes scheduler is responsible for
mapping containers on capable worker nodes, the controller manager is responsible for mon-
itoring servers joining the cluster and watches for tasks that need to be handled (e.g., creation
of Kubernetes pods, setting up routes), and the data store is responsible for maintaining the
state of the cluster as a key-value store. Our implementation extends the scheduler module and
controller manager components. It also exposes the Kubernetes API to the SDN controller, to
monitor for service requests.

The Kubernetes nodes (equivalent to VNF Hosts in the ETSI NFV reference architecture) con-
tains several components as well. The kubelet agent monitors the state of each node, handles
container management, and informs the Controller of it’s state. kube-proxy is responsible for
setting up the node’s network rules for routing traffic between pods and the wider network, ex-
posing services and network ports. In operation, it makes use of the operating system packet
filtering functionality. Finally, the container runtime is responsible for the actual container
execution, with support for implementations making use of the Container Runtime Interface
specification7.

The orchestrator, upon receiving an event notification from the SDN controller module, is re-
sponsible for identifying the required security policies related to the device, generating a place-
ment decision for the network functions of the associated chain, requesting the creation of mi-
croservice security artifacts, and generating a steering path for application traffic. It is responsi-
ble for the migration of a network security service (or suite of services) in the event of roaming
devices and reconfiguration of deployed functions to react to evolving network conditions.

Most notably, we defer some aspects of lifecycle management of network functions (e.g., shut-
down) to VNF Hosts to minimise the control traffic, because of the filtering nature of security
functions. The orchestrator receives regular updates from hosts within the infrastructure to de-
termine placement availability and liveliness.

In order to provide online placement of network functions in dynamic networks, alongside the
Inline Service Chaining model proposed in Section 3.6, we have also implemented a heuristic
algorithm detailed in Section 4.5.

6https://kubernetes.io/docs/concepts/overview/components/ Retrieved November 2021
7https://github.com/kubernetes/community/blob/c23c61872559400107e0863600ecf898841299ea/contributors/devel/sig-

node/container-runtime-interface.md Retrieved November 2021
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4.4.2 Network Function Building

The Kubernetes architecture uses an external container registry for storing pods. The default
registry is the Docker Hub8, with default behaviour for Kubernetes nodes to download (via the
Internet) pods that are not available on the node. Advanced cluster setups, and cloud-based clus-
ters (e.g., Google Kubernetes Engine, Amazon Elastic Kubernetes Service), can be configured
to use external registries.

In order to achieve lightweight network functions with minimal overhead that are available in
a heterogeneous environment, we use an on-the-fly VNF building process. Located within the
VNF Catalogue module of the ETSI NFV architecture [42], of Kubernetes Image Registry, this
module produces software artifacts for the target hardware and intended functionality.

From a systems implementation perspective, there are several approaches to achieving artifact
generation, presented below:

• Static embedding: The bespoke artifact contains the targeted detection instructions em-
bedded into it. This provides rapid deployment and activation times, with minimal system
requirement overheads. Altering the behaviour involves generating, transferring and de-
ploying a new artifact, which leads to increased downtime.

• Dynamic linking: The bespoke artifact is a shared library with a well-defined interface
for interacting with a generic VNF module. Using jump tables and relocation pointers,
this adds a small memory footprint overhead and increases processing overhead. Changes
in detection requires minimal downtime, as the only change required is updating of jump
tables and relocation pointers. The reliance on dynamically linked external libraries limits
operation in heterogeneous environments due to source code portability and assumptions
made during implementation regarding the underlying software components.

• Run-time configuration: A VNF can be configured at run-time to perform network func-
tionality using human-readable configuration files. The configuration is read and pro-
cessed into data structure representations that can be used for packet processing. The
overhead incurred is larger, as data structures (e.g., tries for DPI) need additional memory
and there is dedicated logic to interpret the information.

The simplicity of embedding targeted packet processing logic into application binaries, with the
performance benefits compared to the other approaches are the main driving force for use of

8https://hub.docker.com Retrieved November 2021
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static embedding in our framework.

Our on-the-fly builder module receives a request from the orchestrator to use a VNF archetype
with a given specialisation (e.g., firewall; block TCP/80 in the case of HTTPS applications) and
a desired VNF host to act as a destination. To achieve static embedding, we give the compiler
preprocessor directives to selectively enable codepaths and indicate traffic patterns to match
against. The builder generates the software artifact to be used in the given situation and uploads
it to the VNF host for deployment.

The resulting container image is built on top of Alpine Linux, chosen for its lightweight nature
and support for multiple hardware architecture. The final container image has the embedded
software artifact and execution entrypoint set to it, resulting in a lightweight image (in the order
of a few kilobytes) that can be transferred to the VNF host.The associated deployment is then
created using the resulting container image.

4.4.3 VNF Host Management

The VNF Hosts located within the infrastructure contain a monitor module that reports liveliness
and utilisation to the NFV Orchestrator. The liveliness and utilisation information is used in
discovery of new VNF Hosts by the orchestrator, and can be used to determine available capacity
for VNF instances. In the Kubernetes model, this functionality is performed by the kubelet
agent.

In the event of a fault related to a given host, the orchestrator can recalculate the placement of
the VNFs deployed to that host. Implementation of this fault tolerance mechanism allows for in-
creased resilience of the overall network infrastructure, through timely detection and mitigation
of independent failures.

Furthermore, Kubernetes can also detect individual failed VNFs, through pod monitoring func-
tionality. We periodically monitor individual pod status, to both identify critical bugs within
the network function itself, unexpected resource contention, or malicious attacks specifically
targeting the security infrastructure.
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4.4.4 Function Lifecycle Management

Because security function chains filter undesired traffic, functions at the end of a service chain
might become idle. To enhance resource utilisation, we propose the offloading of certain lifecy-
cle management aspects to VNF Hosts. For the shutdown of inactive network functions, we use
the monitoring capabilities of the function hosts.

In Kubernetes, the closest equivalent workload would be a Job, which creates and runs one or
more containers (and retries execution) until a specified number successfully complete execu-
tion. This requires network functions to terminate after a period of inactivity, requiring specific
functionality that limits general applicability. Instead, we leverage the node capabilities, namely
the kubelet agent, which already monitors container state. We extend the agent with monitor-
ing of network traffic statistics (e.g., under Linux we can monitor an interface’s packet counters
using the /sys/class/net/net1/statistics/rx_packets kernel interface) for a
given pod. This mechanism provides low management overhead, as the agent already periodi-
cally monitors pod status.

If a network function does not receive any network traffic within a given temporal window, a
host can notify the orchestrator of the inactivity and perform shutdown of the inactive function.
We reason that the situation occurs under two circumstances, presented below:

1. Application stopped: As there are no standardised network mechanisms for announc-
ing the end of a user application’s lifetime (e.g., device left the network), we use flow
inactivity to infer that an application is not actively used by the end-user.

2. Previously filtered traffic: Undesired network traffic is filtered earlier in the service
chain. In the scope of Context-Based security, this would require deployment and use
of new, more aggressive security policies.

In either of the above-mentioned situations, proactive reclaiming of resources from inactivity
allows enhanced flexibility in catering to multiple users’ needs in dynamic environments.

We also extend kubelet to gather information on VNF alerts issued by the network function
(by monitoring the function’s standard error output), the VNF status (as described above), and
the operational state within deployment. Each Kubernetes node then sends a liveliness report
to the master, to ensure state synchronisation within the cluster and give an update on the pod
availability. On the Orchestrator side, the data store would be updated with the information
on individual VNF status, liveliness, and any alerts raised. In conformity with the Kubernetes
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Code Listing 1 Heartbeat Message Structure

1 "conditions": [

2 {

3 "vnfid": "Mirceas−iPhone−0",
4 "kind": "Ready",

5 "status": "True",

6 "vnfalerts": ""

7 },

8 {

9 "vnfid": "Mirceas−iPhone−1",
10 "kind": "Ready",

11 "status": "True",

12 "vnfalerts": "[FW]: IP;192.168.0.1"

13 },

14 {

15 "vnfid": "Mirceas−iPhone−2",
16 "kind": "Ready",

17 "status": "Idle",

18 "vnfalerts": ""

19 }

20 ]

data model, these updates would be further propagated to other modules. For example, VNF
Alerts would be forwarded to a Network Security Monitor which presents a centralised view of
potential incidents to an operator.

An example of the liveliness report combined with VNF lifecycle information is given, in JSON
format, in Code Listing 1. In this particular scenario, the VNF Mirceas-iPhone-1 produces an
alert for a dropped packet. As a result, the following Network Function, Mirceas-iPhone-2

reports an Idle status as it received no network traffic. If the behaviour persists over several
messages, the Kubernetes node would prompt the automatic termination of the Mirceas-iPhone-

2 VNF, excluding it from the heartbeat message and informing the controller of the freed up
resources.

4.5 Heuristic Minimal Path Deviation

The Inline Service Chaining model proposed in Section 3.6 is designed to provide an optimal
placement for security service chain requests within a given network topology. Given the com-
plexity of the ILP model, the time required to produce solutions is outside the acceptable range
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Code Listing 2 Minimal Path Deviation Algorithm

def mpda_allocation(flows):

for f in flows:

chain = get_chain(f)

paths = get_paths(f.src, f.dst)

paths.sort(key=len)

for p in paths:

if can_allocate(chain, p):

a = allocate(chain, p)

update_resources(a)

allocations.add(a)

Code Listing 3 Evaluation for chain allocation

def can_allocate(chain, path):

remaining_vss = chain.copy()

for vss in chain:

remaining_vss.pop()

for server in path:

if not can_host(server, vss):

continue

vss.potential_host = server

break

if remaining_vss:

return False

return True

for the dynamic scenarios the framework caters to. Furthermore, the model assumes a coherent
and consistent snapshot of the network-level information (e.g., link-layer latencies) that are sub-
ject to temporal variations. As a result, we implement a heuristic algorithm to find near-optimal
solutions rapidly, while still conforming to the context-based security paradigm by maintaining
VNF separation for multiple devices.

Obtaining an instantaneous network state with the required properties (e.g., link latencies) is
difficult to achieve in large, multi-link edge networks. For general network edge environments,
the distances between network nodes range between a few meters (in the case of dense small-
cell networks: e.g., 5G, WiFi) to a few kilometres (for customer-provided equipment connected
to a demarcation point). The short distance results in reduced propagation delays and can be
leveraged for reduced latency in service placement. Exchanging in-network measurements with
network distances is a reasonable trade-off in placement of services in realistic edge environ-
ments.
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Consequently, we propose a Minimal Path Deviation Allocation heuristic that conforms to realis-
tic network conditions. Our algorithm performs incremental allocation of service chain requests
based on deviation from the shortest network path. Our allocation strategy still follows the same
high-level design choices as the optimal solution presented in Section 3.6, namely inline network
function chains, with each VNF serving a single user, and considerations of temporal variances
in the network infrastructure, but relaxes the optimality requirement with respect to measured
link-layer latency.

In the Kubernetes model, pod allocation and placement occurs within the kube-scheduler com-
ponent. The default behaviour is performed in two steps: filtering and scoring. Filtering finds
the set of Kubernetes nodes which have the capability of running a pod. Scoring, as the name
implies, scores the nodes to choose the most suitable host for the pod. Some of the scoring
features that can be used by the scheduler refer to image locality (favouring nodes that have the
container image preloaded), node affinity (placement on nodes with certain operator-defined la-
bels), pod topology location (favouring nodes within a certain region), resource availability and
balancing (favouring nodes where resource availability has certain criteria, e.g., most available,
most used, or balanced usage).

Because the default Kubernetes behaviour has limited knowledge on the network topology aside
from the use of zones, and does not provide a simple mechanism for node adjacency preference,
we have implemented an alternative scheduler module in Python. This module gathers network
topology information from the SDN controller and uses it in conjunction with the Kubernetes
node capability information. Scheduling is performed on the entire service chain, defined within
the Kubernetes model as a Deployment involving multiple pods.

The implementation makes use of the Kubernetes Python API client9. For the sake of brevity
and to restrict the presentation of the work to novel elements we choose to include in this thesis
the high-level pseudocode equivalent of the implementation. The pseudocode for the approach
is listed in Code Listings 2 and 3, expressed using Python-like syntax.

Similar to the Kubernetes scheduler, we divide the placement process in two distinct steps:
path identification and node selection. In Code Listing 2, we consider all possible paths for
allocation, and sort them based on path length. For the proof-of-concept implementation, all
possible simple (i.e., non-cyclic) paths between the flow source and destination are considered.
The path search algorithm is based on the algorithm proposed by Yen [153], which provides an
ordered list of paths between the source and destination, starting from the shortest. In terms of
algorithmic complexity finding the first K paths requires O(KV 3) operations, with V being the

9https://github.com/kubernetes-client/python
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order of the graph (or, in our case, the number of VNF hosts). An alternative option within the
scheduler, for graphs with a small number of nodes (e.g., under 5, where convergence occurs),
a modified breadth-first search [126] can be used, as the number of operations is O(V !) for
obtaining the same result. The result of the path search algorithm is a generator, which lazily
computes the next result of the path search, avoiding the need to pre-compute all network paths,
as K→V !.

Analysing the paths in order, we determine if a service chain can be allocated on the given
path using the outline presented in Code Listing 3. For any given path and service chain, we
consider placement of each constituent VNF within the chain on the closest server. For a basic
implementation, the can_host method only analyses the resource availability for the server
and compares it to the requirements of the VNF. If successful, the scheduler marks the function
instance for allocation onto the server the resource requirements are met (e.g., number of hosted
pods is less than the server capacity). If the service chain can be fully placed on a given network
path, the allocation is performed and the model of network resource availability is updated
accordingly.

In terms of operator customisation, through implementation of best practices, we take inspi-
ration from the Kubernetes NodeAffinity policy: pods associated with special conditions
contain a special key-value map, called a nodeSelector which specifies certain require-
ments for the pod. In scheduling a service chain, when considering a VNF with a specified
NodeAffinity key-value map for allocation we filter nodes on the path under considera-
tion. As an example, if an operator deems that IDS VNFs are too computationally expensive to
be run outside of commodity servers, it can specify nodeSelector: {"node-type":

"commodity-server"} for VNF Hosts. For IDS pods, within the pod specification, the
NodeAffinity: {"node-type": "commodity-server"} should also be present.
The scheduler policy would only place the resulting VNF onto supported hosts.

4.6 Example Network Functions

This section details the implementation of microservice security-focused network functions
which are commonly encountered in provider networks and the associated on-the-fly build sys-
tem used to generate the VNF instances dynamically based on individual client requirements.
We introduce the generic wire network function, then construct two commonly encountered
security VNFs: a firewall and a Deep Packet Inspector.
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4.6.1 Overview and Common Components

The implementation10 of the functions is done in C and is designed for minimal dependency on
external libraries. The only concrete dependency of the framework is the C Standard Library,
for interaction with standard streams and argument parsing.

The C programming language was chosen because it is the de-facto system programming lan-
guage, offering high performance and nearly complete control over memory allocation and ac-
cess. The majority of the packet I/O libraries are based on, or offer support for, C, making
extensions to the general framework approachable. Alternative languages and frameworks for
implementation have been considered. Rust [77] is also designed for performance and memory
safety, but the language specification is not yet, in our opinion, stable (i.e., the language un-
derwent several revisions in the 2015-2021 timeframe). The Click framework [78] allows rapid
composition of network functions, but operation in heterogeneous environments requires port-
ing of individual elements due to memory alignment issues and the framework overall is still
considered experimental.

The main abstractions of the framework are contained within a C header, uNF.h. The header
contains abstractions and functionality for network interface acquisition and release, as well as
code which performs packet I/O. Through the API, network interfaces are accessed by their
name (e.g., eth0, net1, enp0s3, etc.), and the internal data structure makes use of a linked
list to store the associated file descriptors acquired from the I/O library. Because a network
function generally uses 2-3 interfaces (ingress, egress, and the possibility of a tap interface),
the size of the internal data structure is small, and the string-based public API can be used by
developers in gathering debug information without exposing details on the platform-dependent
implementation (e.g., whether the file descriptor is POSIX-compliant or a pointer towards a
library data structure).

It is be the only code location which has awareness of the specific functionality of the underlying
platform (e.g., packet I/O method, interface acquisition, OS implementation details), in order to
isolate platform-dependent code and provide a single location for the extension of the platform.
For example, the Berkeley Socket platform support consists of 200 lines of C code, with the
majority of the lines being boilerplate socket acquisition and binding. The socket is set up to
receive entire Layer 2 packets: AF_PACKET family with ETH_P_ALL protocol to receive all
protocols.

Although the intention of the framework is to avoid the use of heap memory, as it could lead

10https://github.com/mirceaIordache/uNF
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to unsafe code being developed and would lead to unpredictable memory usage at runtime, the
platform-dependent code is exempt from this limitation. For example, listing all of the network
interfaces using the Berkeley Socket interface is done through the getifaddrs function which
performs heap memory allocation and requires a subsequent call to freeifaddrs for freeing
the heap memory.

4.6.2 On-the-fly Building of VNFs

Based on the considerations outlined in Section 3.4, the resulting lightweight VNFs should use
minimal runtime configuration, in order to provide predictable activation times and resource
usage. To this end, the software artifacts are built upon request, after a suitable hosting server is
identified.

The generation of VNFs is done by issuing parametrised requests for compilation to a build
server. The compilation process produces a binary program which contains the security-related
functionality built-in, with little dependence on dynamic allocation of resources (e.g., heap
memory).

In the prototype implementation of the lightweight VNF build system, the parameters presented
in Table 4.1 have been identified for use in the generation of the artifacts. The build system
is based on the GNU Compiler Collection suite, and the GNU Make utility for configuration
of the different parameters requested. The ARCH parameter dictates the target architecture of
the server that is to host the VNF, and is used for ensuring the correct processor instruction
set is employed in the final artifact. The PKT_CAP variable is required to use the network
packet acquisition library best suited for the environment; multiple similar libraries, with distinct
advantages and subsequent limitations are available (e.g. Snort DAQ, Intel DPDK, Linux/BSD
Sockets, etc). For Intrusion Detection Systems, the IDS_RULES are provided as a list of known
signatures that are to be transformed at compile-time into representations of the data structures
used by the DPI engines, in this case a non-wildcard version of Aho-Corasick tries. Finally, the
FW_RULES parameter may be used to define any firewall-related rules that involve filtering of
traffic.

The parameter list, as presented in Table 4.1, is non-exhaustive in order to maintain the flexibility
of security services. It can be further extended to include other types of security functionality. As
an example, for Stateful Load Balancer VNFs, which are sometimes used as DDoS mitigation
techniques, one extension includes the number of simultaneous connections that one server can
have at any time through a LB_CONN parameter extension.
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Parameter Values Description
ARCH x86, armv7, mips Target platform hardware architecture

(Required)
PKT_CAP dpdk, daq, bsd_socket Packet acquisition library

(Optional - default bsd_socket)
IDS_RULES OUT:TCP;80;"GET" DPI signatures to be matched against

IN:TCP;21;"root" (Optional - default none)
FW_RULES IP;192.168.0.1 Firewall DROP rules to be used

(Optional - default none)

Table 4.1: Build system parameters, possible values, and explanations

Code Listing 4 Basic Wire NF implementation

1 int main(int argc, char∗∗ argv) {
2 //...

3 unf_listen(ingress_intf);

4 unf_listen(egress_intf);

5 do {

6 unf_recv(ingress_intf , packet_buf);

7 //Wire NF. Pass data along

8 unf_send(packet_buf , egress_intf);

9 }

10 while (1);

11 }

4.6.3 The Wire VNF

The simplest form of VNF that can be developed, and from which other implementations are
derived is a simple wire function that forwards packets from an ingress interface to an egress.

The implementation relies on few lines of C code, the summary of which is presented in Code List-
ing 4. The complete implementation, including pre-processor directives (e.g. header #includes)
consists of 50 lines of source code. The presented Listing has the following behaviour: on Lines
3 and 4 the ingress and egress interfaces are set up in userspace. The result is stored within the
internal data structure of the uNF framework, the application developer being encouraged to use
the canonical interface names in operation.

After interface acquisition, the program executes an infinite loop (Lines 5-10) through which a
network packet from the ingress interface is received in a buffer, and is sent on the egress buffer.
The behaviour of the memory manipulation mechanisms are dictated by packet I/O interface:
Berkeley Sockets copies the data into the buffer, while DPDK can use zero-copy mechanisms.
The packet buffer size is set to the network MTU, which for networks including Jumbo frames
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is of size 9234 bytes: The Ethernet header is (up to) 18 bytes, IP header is 20 bytes, with 9214
bytes for subsequent layers (IP Payload), as per upper limits of common switch vendors1112.

Although not pictured, or required (the lifetime of the container is tied to the lifetime of the
network function, meaning that the resources of the container would be reclaimed when the
application terminates), the implementation contains a clean-up step that releases the network
interfaces that have been previously acquired. We do this by setting up a signal handler for
the SIGINT signal, which frees up the acquired interfaces of the application before exiting the
process.

The main functionality is setting up the ingress and egress interfaces, and transferring packets
between them. While solutions to achieve this behaviour can be achieved using built-in Oper-
ating System utilities (e.g., Linux bridge-utils suite), implementation at the application-level is
a fundamental building block in creating other microservice VNFs, as it does not rely on any
underlying hardware and software assumptions. Furthermore, it provides a baseline for perfor-
mance evaluation of increasingly complex VNFs.

The only runtime configuration options required are the two network interfaces that are desig-
nated as ingress and egress. Because various systems do not have a uniform naming scheme
for their network interfaces, and to enable operation under heterogeneous environments, the
decision to use runtime configuration of network interfaces is essential.

4.6.4 Lightweight Firewall

Firewalls are the most popular type of security-focused VNFs employed in today’s networks.
In the proposed lightweight model, the “wire” VNF described in Section 4.6.3 is expanded to
contain basic L3/L4 packet matching functionality.

Headers of L3 and L4 (IP and Transport Protocol) network packets are at known, fixed loca-
tions and can be used for fast match actions with minimal processing overhead. Conforming to
the context-based security paradigm [157], the functionality is designed to allow the majority
of traffic, with DROP functionality specified by the operator depending on the client’s require-
ments.

11https://www.juniper.net/documentation/en_US/junos12.3/topics/usage-guidelines/interfaces-configuring-the-
media-mtu.html Retrieved January 2022

12https://www.arista.com/en/um-eos/eos-support-for-l3-mtu-on-7280r37500r37800r3 Retrieved January 2022
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Code Listing 5 Basic firewall implementation

1 //...

2 #ifndef FW_RULES

3 #warning "FW_RULES not defined."

4 #define FW_RULES ""

5 #endif

6 #define DO_FW(pkt, FW_RULE, ...) \

7 unf_fw(pkt, FW_RULE, ##__VA_ARGS__)

8 //...

9 do {

10 unf_recv(ingress_intf , packet_buf);

11 //Firewall NF. Inspect for header match

12 if ((err = DO_FW(packet_buf , FW_RULES)) != NULL)

13 fprintf(stderr, "[FW]: %s\n", err);

14 else

15 unf_send(packet_buf , egress_intf);

16

17 }

18 while (1);

19 //...

The implementation uses preprocessor definitions for static embedding of rules at compile time,
minimising the need for runtime configuration. We show the essential elements of the imple-
mentation in Code Listing 5.

In the Listing, Lines 2-5 provide some compilation-time checks, generating a warning that the
VNF is misconfigured, and provides a fallback option for that eventuality. Line 6 defines the C
preprocessor macro that is required for firewall operation. This macro is used to build a compile-
time linked list of the firewall rules. The preprocessor definition splits inputs into individual
rules, using the __VA_ARGS__ element. Each rule is then converted to a list of constituent
element tags (e.g., IP, TCP, UDP header analysis, and address or port match rule), which is then
mapped to a binary representation of the pattern match, in network byte order, at compile time
by benefiting from aggressive compilation optimisations.

Comparatively, the runtime packet matching functionality is straight forward. For each firewall
rule, the associated packet header is selected by calculating the offset of the header start and end
from the base packet address, and compared using XOR operations with the binary represen-
tation of the firewall rule. The main execution loop of the network function, Lines 9-18 of the
Listing, receive packets from the ingress interface and perform packet matching. If the packet
matches one of the firewall rules, then Line 13 prints an alert with the contents of the matched
rule and the packet is implicitly dropped. Otherwise, Line 15 is executed, with the packet being
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transmitted on the egress interface.

Once again, a signal handler for SIGINT which releases acquired network interfaces before ter-
minating the application is implemented. The complete implementation, including preprocessor
macros, mapping, binary rule generation and matching is achieved in under 300 lines of code.

Because this implementation only inspects the first Layer-specific header of the packet, it has
certain assumptions and limitations in operation. The VNF assumes that the packets it receives
are correctly steered by the network: a Firewall which checks IP(v4) rules does not expect IPv6
traffic. Furthermore, the implementation currently lacks support for encapsulated packets (e.g.,
IP in IP, 6in4, VXLAN, etc.). Further development of the solution can implement the func-
tionality required for increased network function robustness and support multiple networking
standards.

4.6.5 Deep Packet Inspection

Another popular category of security VNFs is related to Deep Packet Inspection. These services
often perform a thorough analysis of entire packet payloads, matching against known signatures
to detect and prevent specific attacks. Popular instances of DPI are found in IDS/IPS.

Code Listing 6 Basic DPI Implementation

1 //...

2 #ifndef IDS_RULES

3 #warning "IDS_RULES not defined."

4 #define IDS_RULES ""

5 #endif

6 #define DO_IDS(pkt, IDS_RULE, ...) \

7 unf_dpi(pkt, IDS_RULE, ##__VA_ARGS__)

8 //...

9 do {

10 unf_recv(ingress_intf , packet_buf);

11 //DPI NF. Inspect pkt contents

12 if ((err = DO_IDS(packet_buf , IDS_RULES)) != NULL)

13 fprintf(stderr, "[IDS]: %s\n", err);

14 else

15 unf_send(packet_buf , egress_intf);

16 }

17 while (1);

18 //...
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Unlike firewalls, these VNFs regularly rely on pattern matching algorithms, as the signatures
may be found anywhere within the packet payloads. The most common algorithm found in DPI
Engines is the Aho-Corasick algorithm [3], which performs matching against variable patterns;
it is also commonly encountered in other domains, such as regular expression matching.

The behaviour of the generic algorithm includes specific provisions for wildcard matching that
can include multiple random elements between patterns. While wildcard matching is a flexi-
ble tool in compressing multiple rules, it is rarely used in packet inspection proposed by the
context-based model and microservice architecture. As a consequence, the implementation of a
lightweight DPI Engine omits this feature, leading to more efficient runtime behaviour.

Code Listing 6 gives a high-level overview of the implementation of the DPI Engine in the pro-
posed fashion. The overall code structure is similar to the firewall implementation presented in
Code Listing 5: Lines 2-5 performs input checking, Lines 6-7 present a pre-processor macro for
passing a list of IDS rules to the inspection engine, and Lines 9-17 highlight the main processing
loop of the network function.

The structure of the DPI rules is considerably more complex than that of Firewall rules. Pattern
data can take many forms, from Protocol source and destination ports to bytes of arbitrary length.
Furthermore, the Aho-Corasick data structure, a trie with backlinks, can become increasingly
complex. For this reason, the DPI codebase departs from pure C implementation. The language
extensions of the C++11 standard, especially the constexpr specifier, make the development
effort of the DPI solution more readable and maintainable.

The implementation tokenises individual DPI rules to identify header information and detection
payload. Each token is mapped as follows: the packet header information (e.g., TCP destination
port) is encoded within a tree structure using a mapping from well-known header fields (e.g.,
protocol version, ports, etc), similar to the firewall solution. Leafs of the tree point towards an
Aho-Corasick trie. The payload inspection element is then converted to an Aho-Corasick trie.
If an existing header is present within the tree, then the trie is readjusted to include the new
payload within it.

Detection is done by initially traversing the header tree based on the information encoded within
the network packet. If a header is matched through tree traversal, the trie associated with possible
payloads is used for further inspection. If a pattern is present within the packet, then a VNF alert
is issued with the DPI rule, and the packet is dropped. The complete implementation, because
it uses two steps, with associated data structures, consists of approximately 1000 lines of C++-
compliant code.
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Parameter Description
P Number of packets processed
L Size of packet payload data
RH Number of header-based processing rules
RP Number of payload-based processing rules

Table 4.2: Complexity analysis notation

4.6.6 Algorithmic Complexity and Overhead

The example network functions, although using the same software architecture, implement fun-
damentally different algorithms. Because of this, the network function implementations pre-
sented in throughout provide differential overheads.

Instead, of a direct comparison between the functions, an analysis of the algorithmic complexity
for the different implementations is provided. In this analysis framework, we use the notation
presented in Table 4.2.

The wire network function is the simplest to analyse: it performs no packet processing aside
from reception and transmission. Thus, its algorithmic complexity is O(P), which scales linearly
with the number of packets being processed.

The firewall function only performs filtering based on packet header information. Because com-
parison between the defined rule and packet header requires a fixed number of operations, the
required number of operations is O(P∗RH).

Estimating the complexity of the DPI network function is best performed by decomposing the
two steps through which packet processing is performed: tree traversal and Aho-Corasick run-
time. For the latter, because the rules are known in advance and the data structure is computed
in advance, the runtime is linear with respect to the number of payload rules and input size
O(P∗ (RP +L)), under the consideration that no more than one payload occurs in a packet. For
tree search, the number of operations, in the worst-case is O(P∗RH). Assuming the worst-case
scenario, where each rule within a ruleset has a unique header description, but the same payload
match the number of operations is O(P∗ (RH +RL +L)).

This analysis confirms that the performance of a VNF is impacted most by the number of packets
that it has to process, as identified by several authors [38], [157], [97], [81]. Secondly, the
complexity provides a rough guideline for network function performance, which agrees with
existing literature [147], [58]: a overhead of a wire is less than the overhead of a firewall, which
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in turn is less than the overhead of a DPI.

4.7 Summary

In this chapter, we have presented the implementation details of the security-oriented network
function framework while maintaining the objectives presented in Chapter 3 for an Edge network
architecture. In the network infrastructure, we realise the abundance of resource-constrained
hardware and designed our framework to conform to heterogeneous environments.

We presented an SDN module that can be used to detect new application flows and request ser-
vices following operator best practices and policies. The orchestration of network functions as
presented in this context relies on several modules to maximise flexibility. The implementation
aligns with the ETSI NFV references and looks at specific aspects pertaining to the detection,
deployment, management and orchestration of security service chains required for modern net-
works.

In the next chapter, we propose a methodology for analysing the performance of individual
aspects of the NFV paradigm and evaluate the constituent components of our framework under
real-world scenarios.



Chapter 5

Evaluation

5.1 Overview

The evaluation presented in this chapter shows the main benefits of the proposed NFV frame-
work and lightweight microservice design. In evaluating this work measurements taken from
commodity NFV servers, resource-constrained hardware, and simulation results obtained using
realistic edge network scenarios were used.

Section 5.2 shows the performance of microservice-based security VNFs, including experimen-
tal results on deployment times, memory consumption, composition of new services and changes
in behaviour. Some experiments compare the microservice design with well-established mono-
lithic architectures to justify the decision to use lightweight technologies introduced in Sec-
tion 3.4.

Section 5.3 presents the results obtained from using the NFV management and orchestration
framework described in Section 4.4. The performance of per-user creation, deployment, and
modification of VNFs is compared to operator-defined static classes. Control network mea-
surements including reaction to network events and delays incurred by performing on-the-fly
composition of network service chains are compared with production-grade NFV frameworks,
such as Kubernetes.

Finally, in Section 5.4, the benefits of the proposed Latency-Optimal Placement of Service
Chains optimisation model presented in Section 3.6 and associated heuristic Minimal Path Devi-
ation Algorithm from Section 4.5 are analysed. First, the latency benefits of on-path placement

87
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of network services are compared to localisation at centralised locations (e.g., data centres). The
performance of the heuristic algorithm is investigated with respect to number of latency viola-
tions encountered by users, global network latency, and link utilisation rates. The evaluation is
concluded by an analysis on the robustness of the proposed algorithm in harsh network environ-
ments, where individual link latencies are higher than those encountered in edge networks.

5.2 Performance of the Lightweight Network Function Ar-
chitecture

This section highlights the most important characteristics of lightweight NF modules that were
measured on a commodity NFV server and resource-constrained devices.

The evaluation environment used is described in Section 5.2.1. NF activation times, a cru-
cial performance element when considering dynamic network scenarios, is presented in Sec-
tion 5.2.2. As the intended operation is within edge networks, where VNF Hosts primarily
consist of resource-constrained devices, the packet processing overheads are evaluated in Sec-
tion 5.2.3, and memory residency is investigated in Section 5.2.4. Achievable throughput of the
VNF architectures is analysed in Section 5.2.5.

The contribution of these measurements is to compare microservice architectures with tradi-
tional monolithic designs and to present the properties required for next-generation VNFs, such
as delay introduced, chaining properties, and activation times. Due to their tailored nature, be-
spoke designs which conform to a given network architecture prove difficult to evaluate in a
heterogeneous environment, as presented in this section.

5.2.1 Evaluation Environment

The following measurements were conducted using a mid-range computer with a commodity
Intel i7 CPU and 8GB DDR3 RAM. The operating system used was Ubuntu 18.04 LTS with
Linux kernel version 4.15.

Measurements involving edge devices were performed using a commodity resource-constrained
device, a Raspberry Pi 3B, with an ARMv8 CPU and 1GB RAM. Raspbian OS (a Debian-based
OS) was installed, with Linux kernel version 4.14.
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In terms of NFs evaluated, DPI Engines were used, as they are among the most complex net-
work services employed in real-world networks in terms of activation times, processing over-
head, memory residency, and achievable throughput. The well-known Snort DPI engine, version
2.9.8.3, was chosen as it conforms to the monolithic software architecture, with single-threaded
packet processing capabilities.

In order to accurately measure the performance metrics, the applications were hosted natively on
the hardware, without employment of any virtualisation or containerisation technologies. The
cumulative overheads from Virtual Machine or Container allocation, initialisation, and startup
would be equivalent for the measurements conducted, and would thus cancel out.

The rulesets used for evaluation were identical between the different software architectures. The
rules were randomly selected from the Snort Registered ruleset snapshot 2983 which contains
approximately 50,000 rules designed by Talos Security (a subsidiary of Cisco) to protect against
real-world threats.

5.2.2 Start and Reconfiguration of Microservices

In order to provide high flexibility in deployment and migration of VNFs in networks, the time
between when the NF application starts initialising to becoming operational, able to receive and
process network traffic, is a crucial factor.

We measure the time from the application starting to it starting to receive packets using the ts1

utility with microsecond precision. This time includes the loading of the application, run-time
configuration (e.g., Snort builds the associated data structures for detection during this time),
network interface acquisition, and finally receiving packets into an internal buffer. Figure 5.1
shows the time required for microservice-based NF architectures to become active versus tradi-
tional monolithic software designs.

In order to change the traffic patterns that are being inspected, the Network Function application
requires a process that reconfigures the behaviour, by stopping packet processing, freeing the
underlying data structures, re-reading the inspection rules, and populating new data structures
that contain the new information. Reconfiguration of a microservice requires stopping the exist-
ing instance and replacing it with a new one that contains the desired behaviour. On the other
hand, monolithic architectures rely on run-time reconfiguration through configuration files that
need to be re-parsed; for example, Snort can be reloaded using the steps described above by

1http://joeyh.name/code/moreutils/ Retrieved December 2021
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Figure 5.1: Activation and reconfiguration time required for VNF architectures

implementing a signal handler for the SIGHUP message.

Use of lightweight NFs is often preferable due to their rapid and predictable times to activa-
tion. In the scenarios presented, however, the microservice-based VNFs are already available
as software artifacts; investigation into the consequences of on-demand compilation of VNFs is
performed in Section 5.3.2.

5.2.3 Packet Processing Overheads

Keeping processing overheads low is important for transparent network services. It is a key
benchmark when considering new VNF designs. Comparing different architectures is challeng-
ing, especially in heterogeneous hardware environments. However, as argued in Section 3.4,
overheads incurred by the complexity of different architectures can be observed by investigating
the scaling behaviour.

In the experimental setup, both monolithic and microservice versions of the system are execut-
ing the same functionality (e.g., detection of pre-defined packet payloads). The underlying DPI
engines are based on the Aho-Corasick algorithm for pattern matching [3], and packet acqui-
sition is performed in a similar manner. For the purposes of this evaluation, traffic generated
using iperf is separated into benign, without containing the signatures used for inspection —
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Figure 5.2: Packet processing overheads

thus no packet processing should occur —, and malicious, to analyse the performance impact of
the services when packet processing is needed.

Figure 5.2 compares the delay introduced by different architectures through measurement of
packet ingress/egress times when traversing a VNF. Snort delays for benign traffic (that does
not require explicit inspection) are unnecessary. The added overhead is due to the fact that, for
all classes of network traffic, the monolithic architecture has to identify at run-time whether a
packet is subject to inspection at packet ingress. Microservices target only a subsection of traffic;
even on ‘suspected’ traffic, the packet processing overhead is lower than the monolithic varia-
tion because of the architectural exclusion of dynamic classification. The packet classification
component is integrated within the network data plane (e.g., through SDN flow tables), being
redundant in monolithic architectures.

5.2.4 Memory Requirements

NFV servers in network edge scenarios have limited memory on board. For example, commod-
ity routers have as little as 512MB of available memory. Minimising the memory footprint of a
VNF is important, as it can allow resource-constrained devices to have increased VNF capacity.
In Figure 5.3, the runtime memory usage of the NF architectures is compared.
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Figure 5.3: VNF memory consumption

Overall, memory consumption of the two systems is comparable. The main variation is dictated
by the Aho-Corasick algorithm data structure [3]. Remaining architectural elements (e.g., packet
decoding and preprocessing) become less relevant with respect to memory requirements when
larger rulesets are analysed.

Monolithic designs use run-time configuration files that, when parsed, dictate the memory con-
sumption. There is no prior knowledge to the system resources that need to be dedicated to host-
ing a VNF instance, as the static memory dedicated to the VNF is not indicative of the runtime
needs. Through techniques such as static analysis, the memory requirements of microservices
can be more easily estimated.

5.2.5 Achievable Throughput

In an environment similar to the one used in Section 5.2.3, iperf was used to measure max-
imum throughput between source and destination connected through running DPI VNFs and
‘wire’ VNFs (simple bridges connecting ingress to egress interfaces, as shown in Section 4.6.3).
Throughput has been measured in Mbps, as the functionality of the VNFs evaluated is tightly
coupled with the data rate transmitted, and not the number of packets that are being processed.

Results in Figure 5.4 show maximum achievable throughput on different systems acting as
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Figure 5.4: Throughput of VNFs on different hardware

VNF Hosts, and is limited by the speed of the network topology. In the case of the resource-
constrained Raspberry Pi, it only benefits from a singular 100 Mbps network interface that is
being used for both packet ingress and egress.

Even under ideal circumstances, monolithic applications do not efficiently utilise the available
network resources, thus creating artificial congestion throughout the network, introducing packet
losses, and increasing the delay experienced by end-users. Combined with our observations
in Section 5.2.3, we believe that the added complexity of unnecessary dynamic components
(which, as previously mentioned, have been offloaded to the network data plane), is the main
factor for the loss in throughput which is observed in Figure 5.4. By limiting the scope of
microservices to only perform inspection on targeted traffic, they can make use of the available
resources to improve throughput and capability of processing packets.

5.3 Responsiveness of Per-Device Service Chains

We designed and implemented our security NFV solution to be able to operate at the network
edge, which is a highly dynamic environment that necessitates rapid responses in function de-
ployment due to client behaviour. As a result, we propose the evaluation of our framework when
changes within the network occur (e.g., clients joining and leaving), to better emphasise the need
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for these properties.

5.3.1 Evaluation Environment

The network environment for the evaluation of the NFV framework is achieved through emula-
tion using Mininet. In obtaining the results described in this section, the well-understood Docker
containers which are used in other proposed lightweight NFV frameworks [34] [134] [69], are
used to host the VNFs. Orchestration of these containers is performed using the Kubernetes
framework, which allows for implementation of the custom behaviour described in Section 4.4.

The evaluation for this section was performed using commodity servers, equipped with an Intel
i7 CPU and 16GB DDR3 RAM. The operating system used was Ubuntu 18.04 LTS with Linux
kernel version 4.15. This hardware setup is typical of a server hosting NFV Management and
Orchestration components within real-world edge network deployments.

5.3.2 Creation of Targeted Microservices

The ETSI NFV architecture [42] recommends using a VNF store to transfer the services onto
capable hosts. However, using such a mechanism with the pre-built microservices proposed in
Section 4.6, the storage space required becomes unrealistic.

In Section 4.6 we presented an On-The-Fly (OTF) build system that creates targeted microser-
vices with the desired security behaviour. We thus allow operators and clients alike to use a
common framework to express security policies. We investigate the time required for the NFV
framework to create the desired software artifact through the build system and transfer the re-
quired VNF to its intended server. We compare this to the use of a dedicated VNF store, which
contains pre-built software artifacts in Figure 5.5.

Compared to a dedicated VNF store, the performance at first glance is impacted. To this end, we
use one target architecture (x86) and increase the number of rules used for creating the relevant
VNFs. As can be seen in Figure 5.6, the storage requirements for using a VNF store increase
exponentially with the number of individual rules, quickly going into the Exabyte range. This
behaviour is expected, because of the number of ruleset combinations that need to be achieved;
as a simple example, if we have a rule set {A,B,C} then the resulting VNF artifacts would
require the following rules embedded {A,B,C,AB,AC,BC,ABC}, each within an individual ar-



CHAPTER 5. EVALUATION 95

0 200 400 600 800 1000
Ruleset size

8

10

12

14

16

Ti
m

e 
(m

s)

10000

12500

15000

17500

20000

22500

25000

Di
sk

 u
sa

ge
 (b

yt
es

)

OTF Build Time
VNF Store Lookup Time
OTF Space
VNF Store Space

Figure 5.5: Build times and artifact sizes

tifact. Thus, the number of VNFs (and the resulting artifact storage space) increases according
to the mathematical binomial coefficient formula ∑k=1,n

(n
k

)
= n!∑k=1,n

1
k!(n!−k!) which can be

further simplified to ∑k=1,n
(n

k

)
= 2n−1, where n is the total number of packet processing rules

the operator wishes to employ. In our scenario, we do not factor in the empty set as it would
result in a simple Wire VNF without any functionality. Considering the characteristics of edge
network environments the solution is targeting, this increase can limit the practical applicability
of the proposed framework.

5.3.3 On-demand Deployment of Service Chains

Service Chains in networks traditionally service multiple clients, with traffic steering rules de-
fined in advance. Context-based security function management is most effective when each
device is served by its own dedicated VNFs because the logical separation between devices
allows for rapid function updates in response to emerging malicious activity.

Providing transparent network services requires minimal spin-up time, to incentivize adoption
of context-based security without affecting end-users. We look at the time required for our
NFV framework to detect and identify the context of a device, to deployment of service chains
of varying length determined by the context. We compare the overall overhead with a well-
known NFV service orchestrator, Kubernetes, which is widely deployed in existing networks.
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Figure 5.6: Storage space requirements for µservice VNF variations

We illustrate our findings for VNF activation in Figure 5.7.

A detailed breakdown of the delays incurred by each component are presented in Figure 5.8.
We compare in this scenario the delays in completing deployments of service chains of different
lengths using both our proposed solution and equivalent behaviour found within Kubernetes.
The overall overhead added by the proposed detection and context identification components is
kept to a minimum, with the majority of delays being attributed to the communication overhead
between multiple systems in the framework. By employing the OTF build system, we also
reduce the transfer overhead, thus providing improved responsiveness compared to state-of-the-
art solutions. This behaviour is observed due to VNF hosts under Kubernetes transfer an entire
container (e.g., a multi-layered Docker image) and initialises it, as with our solution, the OTF
build system produces a single artifact that is much smaller in size.

5.3.4 Autonomous Lifecycle Management

The highly dynamic nature of edge networks means that control networks risk becoming con-
gested with messages pertaining to lifecycle management. Knowing that individual functions in
a security service chain might drop network traffic and render other functions as idle, we pro-
posed in Section 4.4 the autonomous lifecycle management scheme in order to increase resource
availability and reduce risk of congestion of the control network.
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0 20 40 60 80
Time (s)

Kube1

Kube5

Kube15

Kube25

Kube50

uServ1

uServ5

uServ15

uServ25

uServ50

De
pl

oy
m

en
t &

 C
ha

in
 S

ize

Starting
Initialising
Transferring
Requesting
Detecting

Figure 5.8: Analysis of individual component delays in deployment



CHAPTER 5. EVALUATION 98

1 5 15 25 50
Deployment Size

0

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
 (K

bp
s)

Kubernetes
Autonomous

Figure 5.9: Investigation on control network resource usage

We compare the autonomous lifecycle management scheme, which lets individual VNF hosts
determine the lifecycle of the Network Functions they are hosting, to the one used by Kuber-
netes, a production-grade orchestration system. In the latter scenario, the Management and
Orchestration controller is responsible for issuing lifecycle commands, increasing the NFV con-
trol plane overhead. We look at the number of messages exchanged by the NFV controller and
VNF Host when performing multiple VNF allocation and de-allocation requests, and present the
findings in Figure 5.9. Due to the autonomous nature of the lifecycle management system, we
reduce the overall control plane communication while maintaining essential health monitoring
of the VNF Host infrastructure.

5.4 Latency-Optimal Placement of Service Chains

For placement of service chains using the context-based security paradigm, which requires non-
sharing of VNFs between clients, we have implemented the Minimal Path Deviation (MPD)
allocation algorithm as described in Section 4.5. To show the properties of such a system, we
have designed a series of experiments based on a simulated environment2. After presenting our
proposed experimental environment (Section 5.4.1) that was modelled using a real-world topol-
ogy and network-level measurements, we evaluate placement of our Context-Based Optimal

2https://github.com/mirceaIordache/ChainingILP
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Solution (as presented in Section 3.6) and a state-of-the-art VNF embedding strategy as pre-
sented by Dietrich et al. [39]. We show the emerging latency benefits of using in-path placement
of service chains in Section 5.4.3. We further analyse the properties of the proposed algorithm
with respect to traffic steering in Section 5.4.4. We finish our evaluation by introducing temporal
latency variation and present the robustness of the placement scheme in Section 5.4.5.

5.4.1 Experimental Setup

5.4.1.1 Network Topology

As a basis for the network topology used, we have used the nation-wide Jisc NREN backbone
network, as reported on Topology Zoo3, and it contains 28 nodes and 45 edges. A visual repre-
sentation of this topology is also presented in Figure 5.10.

In order to approximate edge resources, we have assumed finite resource availability at all points
of presence in this network topology, with each server able to host a limited number of VNFs.
The deployment where computational availability is present alongside each network device is in
close alignment with the ETSI MEC suggested scenario [64]. We have introduced two Cloud
Data Centres to be used, to represent the internal NFV infrastructure with unlimited capacity
for hosting of VNFs. The two Data Centres were selected to be centrally located within the
topology with the minimal average number of hops to any other given node. Users have a direct
connection to one of the nodes within the topology, selected at random.

5.4.1.2 Application Modelling

We have categorised the applications based on the expected maximum tolerance level of end-
to-end latency of packets, giving our summary in Table 5.1. We assign a total latency θs,d for
each request Ns,d representing the maximum allowed latency for the flow, beyond which the user
notices application performance degradation. This information is derived from work showcasing
the benefits of next-generation networks and the envisioned applications [62] [28] [128].

In terms of bandwidth consumption, we use three classes of applications, which are described in
Table 5.2. The resulting model thus consists of applications selected from a feature matrix for
the two principal network characteristics.

3http://www.topology-zoo.org
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Figure 5.10: Topology Zoo JANET Backbone Topology
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Application type Latency SLA
Hard Real-time (e.g., autonomous vehicles) 5ms
Soft Real-time (e.g., AR/VR) 10ms
Near real-time (e.g., video conferencing) 30ms
Non real-time (e.g., data transfer) 100ms

Table 5.1: Application classes and their latency requirements

Application type Description Bandwidth Demand
Control-only Online gaming, telemetry streaming, etc. 50Mbps
Compressed Video Conference calls, social media 100Mbps
High-Quality Video Streaming services, Full remote control 200Mbps

Table 5.2: Application classes based on bandwidth consumption

Network service requests are generated based on real-world network security applications (e.g.,
Access Control List, Firewall, Intrusion Detection or Prevention) [95]. The individual NF com-
putational requirements are derived from resource profiles for each class of NF (i.e., required
CPU cycles per NF or memory footprint). Resulting request chains are thus comprised of a
uniform distribution of NF selections from a set of three classes, each with its own resource
requirements.

5.4.1.3 Link Latency and Bandwidth Modelling

End-to-end latency has been modelled using millions of end-to-end latency measurements from
real-world applications. Data has been collected from the New Zealand research and education
wide-area network provider REANNZ using Ruru [37]. Modelling has been performed in a
similar manner to the process described in [32], with individual link latency values sampled
from a Gamma distribution (k = 2.2,θ = 0.22) to create a representative time series.

For link bandwidth, we allocate a bandwidth of 500Mbps for access links which connect users
to the network topology, and 1Gbps for core links that provide connectivity between the topol-
ogy points of presence (PoPs). The choice for the former is to ensure that congestion does not
occur at the access level, which would skew results due to insufficient bandwidth during service
requests. The latter choice of bandwidth arises due to the prevalence of commodity network
devices (e.g., home routers, small business core switches, etc.) which provides equivalent char-
acteristics. Finally, connections between nodes that are designated as Data Centres (DC) have a
link bandwidth of 10Gbps to align with the high-capacity nature of the PoP. Higher capacity of
the links in the proposed network topology is unnecessary; even at maximum utilisation of the
1Gbps links for inbound traffic, the DC links would not be fully utilised.
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5.4.2 Optimal Placement Strategies

We first compare the viability of the Context-Based placement strategy advocated in this thesis
against state-of-the-art VNF embedding solutions which focus on co-location of services. To
this end we chose the Nestor Network Service Embedder presented by Dietrich et al. [39], in
the Mixed-Integer Programming formulation, which provides an optimal allocation focusing on
minimising the embedding footprint of services. Furthermore, we look at the impact of band-
width constraints within the Context-Based placement formulation within edge environments.

The formulations for the two optimisation problems have been implemented using the Gurobi
solver [57]. For this experiment, we consider an offline scenario, where network service requests
are batch-processed, and we vary the batch size. By using this methodology we obtain unity
acceptance ratio of requests but can only operate on small batch sizes, of up to tens of requests
simultaneously.

The solver calculates the optimal allocations of service chains within the topology, according
to the respective objective functions and constraints of each formulation. Based on these al-
locations, we calculate the total network latency for all flows which are serviced by resulting
deployments. Our evaluation in this experiment focuses on the total path latency and the total
path length that the flows encounter.

Furthermore, we investigate, under edge network conditions, the effect of utilising bandwidth
constraints within the ILP formulation to ensure that individual links do not become over-
subscribed. To this end we use the entire formulation of the ILP described in Section 3.6 as
the Bandwidth-Constrained ILP, and a secondary formulation omitting Constraint (3.8), which
avoids link oversubscription, as an alternative.

We perform a comparison between the Context-Based Placement strategies and the state-of-the-
art Nestor NSE formulation by performing allocation of network services on residual resources
distributed within the network, and minimising allocation footprint, respectively. Figure 5.11
represents the cumulative path latency and length with respect to the number of service chain
requests being processed. Both formulations of the Context-Based Placement strategies consis-
tently yield lower overall latencies and path lengths when compared to the more common VNF
consolidation approach.

For the number of requests studied, the two Context-Based variations provide identical place-
ment of services. This is related to the resource scarcity within the network edge, which also
limiting the number of requests that can be processed within a given batch. Since the scope of
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Figure 5.11: Cumulative path latency and length for optimal placement formulations

the work focuses on the resource-constrained nature of the network edge environment, an in-
crease of the resource availability of edge PoPs (i.e., transitioning to a Data Centre model with
uniform network-wide computational availability) is unrealistic.

In light of the observed results the choice of Context-based placement, whose goal is minimi-
sation of end-to-end network latency and utilisation of residual resources within the network,
within edge networks is preferable to alternative state-of-the-art solutions which focus on VNF
consolidation. Furthermore, the impact of limited bandwidth in such networks is minimal, over-
shadowed by the resource-constrained nature of the environment.

5.4.3 Heuristic Allocation

Following the investigation into the placement results of the two paradigms, we compare the
performance of the Heuristic Minimal Path Deviation (MPD). Figure 5.12 shows the cumulative
latencies and path lengths for the MPD algorithm when compared to the ILP solution under the
same circumstances as described in Section 5.4.2. As expected, the cumulative latencies of the
heuristic are higher than an optimal solution, however, on average, we observe a performance
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Figure 5.12: Cumulative path latencies and length in heuristic scenarios

increase of up to 50% when comparing against Nestor due to use of residual network resources.

5.4.4 Deviation from shortest and optimal path

Our MPD algorithm calculates the shortest path which contains the necessary hardware re-
sources to fulfil a service request. In Figure 5.13, by considering a fixed number of Service
Requests and varying the end-user locations within the network, we perform a comparison be-
tween the path lengths of the optimal and heuristic allocation models. We normalise these results
with respect to the shortest path between the user and destination. Using longer paths for traffic
routing in the optimal solution gives improved initial latency. However, in large networks, we
argue that hardware limitations of switches become apparent, increasing the switching delay and
leading to overpopulation of forwarding tables.
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Figure 5.13: Path lengths compared to shortest network path

5.4.5 Dynamic Network Behaviour

As link latencies change over time (due to user utilisation), the placement of VNF is subject to
temporal variations. These deviations from a previously optimal allocation may result in latency
violations which note application performance degradation. We analyse the resulting violations
to provide key insights into dynamic rescheduling of service chains.

This experiment expands on the one presented in Section 5.4.3 by introducing a temporal com-
ponent that updates the latency matrix l every time instance t (such a time instance can be e.g.,
1 minute in a real-world network). We then analyse the number of latency violations that occur
over the given time period.

We perform our evaluation by considering a fixed number of requests, and compare the effi-
ciency of initial allocations using the proposed algorithm with the optimal solution when hosts
are placed randomly within the network. To do so, we analyse the number of SLA violations
observed after one timestep instance (i.e., by introducing jitter within the network links). As can
be seen in Figure 5.14, in the majority of cases, our proposed MPD algorithm performs optimal
or near-optimal placement of service requests. The number of application requests that initially
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Figure 5.14: Initial placement efficiency

cause latency violations is 23.3%. Of particular interest is the scenario where an allocation
causes 42.85% of the application flows to suffer latency violations. We have identified that the
later service requests were allocated on longer paths because of the First-In-First-Served priori-
tisation model employed by the heuristic allocation process. In real-world situations, these types
of issues can be mitigated by sorting the incoming requests by application latency requirements
prior to allocation.

We compare the number of SLA violations when the number of requests changes. We run the
simulation over 100 time instances and present the behaviour of our placement system. To this
end, we present, in Figure 5.15 the total number of latency violations observed after 100 time
steps. Of interesting note is that Nestor consistently generates a large number of violations due
to routing all network traffic to one of the Data Centres within the topology. Once again, we
also observe that the bandwidth constraint of the Context-Based Placement Problem does not
produce any noticeable differences.

We perform a more granular investigation of the latency violations, by looking at normalised
the per-flow violations occurring at every timestep. As shown in Figure 5.16, the number of
latency violations occurring for the optimal placement is significantly higher than the violations
generated by the MPD heuristic scheme.
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Figure 5.15: Latency violations after 100 time instances

We attribute this increased robustness to temporal latency variations to the shorter paths used
in placement of services. On the other hand, the optimal allocation attempts to minimise the
end-to-end latency at a given time instant, hence introducing multiple delay-sensitive elements
within the chosen path. When also factoring in the time required for finding an optimal solution
for the allocation problem, the heuristic solution is preferable, even if certain latency violations
are still encountered.

5.4.6 Robustness of Heuristic

The MPD and Latency-Optimal VNF Chain Placement Optimisation Problem have been de-
signed with network edge scenarios in mind. However, we consider the possibility of harsh
network conditions where the network latency is similar to core and Internet scenarios.

In order to maintain the characteristics of the network traffic, according to [37], we maintained
the same Gamma distribution characteristics, and scaled the resulting mean latency kθ by a
constant α . For the latter, we used values from 20 to 214 to analyse the behaviour of our proposed
approach in adverse network conditions. Each link latency is independently sampled from a
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Figure 5.16: Latency violations per time instance

Gamma distribution with the characteristics described.

In Figure 5.17, we compare the resulting cumulative path latencies of the optimisation models
proposed in Section 3.6 and the Nestor formulation. We average out the measurements of mul-
tiple experimental runs with the same mean latency distribution to obtain an indicator for the
performance of the proposed solutions. We then compare the best-performing optimal formula-
tion with the MPD algorithm in Figure 5.18. Although faced with adverse network conditions,
the heuristic placement of VNFs in the network provides near-optimal results, with no significant
deviation from the optimisation model used.

Furthermore, we look at the mean placement latencies and variation of the optimal formulations
in Figure 5.19. Using this technique, the mean and average values for the latencies present
close values, with no significant outliers detected in placement strategies. We observe that the
variation of the Nestor strategy is lower with respect to the mean latency increases, while the
Context-based schemes provide some unpredictability (with, e.g., lower variation in the path
latency scale of 80-100ms, and higher in 1-50ms).

We analyse the MPD algorithm under similar circumstances in Figure 5.20. Between the heuris-
tic MPD and Context-based solution we observe that the variation in placement (error) is not
directly linked to the increases in the mean latency scaling. The proposed MPD formulation,
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Figure 5.17: Optimal placement robustness

Figure 5.18: MPD robustness
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Figure 5.19: Mean placement latencies and errors of optimal formulations

although designed with edge network as its principal application domain, provides robust allo-
cation when operating in infrastructures with larger link latencies, with convergence with the
Optimal formulation starting to occur in the 100ms range (e.g., backbone).

5.5 Summary

This chapter has presented the important characteristics of the proposed lightweight NF architec-
ture and associated management and orchestration framework, aimed at providing composable
security services in resource-constrained networks.

It used performance measurements taken from real-world environments to compare the critical
aspects of microservice NFs with the equivalent state-of-the-art monolithic implementations,
showing equivalent or improved performance from architectural choice.

The key aspects of deployment on resource-constrained environments have been identified and
evaluated, with the impact on network-level performance investigated. It has investigated the
impact of on-the-fly generation of security VNF software artifacts and autonomous lifecycle
management of the hosting infrastructure.
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Figure 5.20: Mean placement latencies and errors of MPD

Finally, the performance of the heuristic Minimal Path Deviation allocation was compared
against context-based and resource-consolidation optimal solutions over a simulated national in-
frastructure, having near-optimal performance in placement of complex security service chains
under multiple infrastructure conditions, while allowing operators to maintain best practices.



Chapter 6

Conclusions and Future Research
Directions

6.1 Overview

The final chapter highlights the contributions of the research performed in Section 6.2. In Sec-
tion 6.3 the thesis statement is revisited in light of the research presented. The lessons learned
throughout are presented in Section 6.4. Future research directions, including further use-cases
for orchestration of microservice-based VNF architectures, integration with emerging research
domains, and general directions for Software-Defined Security policies are highlighted in Sec-
tion 6.5. Finally, Section 6.6 concludes the thesis.

6.2 Contributions

This work has applied the latest technologies and principles of network programmability, in-
cluding NFV and SDN, and combined them with Context-based Security paradigms to bring
network resilience services to the network edge. Through a novel framework for security net-
work function orchestration operators are able to manage Virtual Network Functions in a hetero-
geneous network environment, maximising infrastructure resource usage. This capability allows
the providers to offer new value-added services to end-users, improving Return on Investment
by reducing capital and operational expenditures.

112
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Through the benefits of on-path service chain placement, this work has demonstrated signif-
icant improvement of end-user Quality of Service. Residual network resource utilisation is
maximised, the requirement for Data Centre deployments at the network edge is reduced, and
critical network infrastructure can be protected against malicious or undesired usage.

By adoption of the microservice design pattern, network functions can be implemented in a
modular, lightweight fashion. These network functions have reduced deployment time, lower
packet processing overhead, and can operate in resource-constrained environments.

In Chapter 2 we have presented an overview of the evolution of network programmability, cyber-
security solutions, and summarised the existing state-of-the-art on the topic of Network Function
Virtualisation from the perspective of a network operator applying security principles.

Chapter 3 analysed the limitations of previous network security paradigms and orchestration
algorithms, and motivated the need for a modular, device-centric approach. It outlined the high-
level requirements and design principles for next-generation network service deployment, com-
pared different security architectures and paradigms, and presented a latency-optimal in-line
service chain placement algorithm, expressed as an Integer Linear Programming Optimisation
Problem.

The technical details of an implementation were presented in Chapter 4. A bottom-up framework
was presented, detailing modular security services implementations, placement and lifecycle
management strategies, and the network traffic in several deployment scenarios. It considered
real-world constraints in providing allocation of complex service chains, and presented a heuris-
tic Minimal Path Deviation Allocation algorithm that provides near-optimal security service
chain placement for roaming clients.

Chapter 5 gave a comprehensive evaluation of the proposed framework. It highlighted the
benefits of modular security services through performance benchmarks. It then analysed the
responsiveness of the framework in environments with roaming clients which required rapid
deployment of complex security service chains. Finally, an evaluation of the latency-optimal
in-line service chain placement orchestration and its’ heuristic approximation is conducted over
a simulated network topology with real-world latency characteristics.
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6.3 Thesis Statement Revisited

In this section, the thesis statement, first iterated in Section 1.2, is repeated, with the remainder
of the section indicating how it has been addressed.

The thesis statement is reiterated, as follows:

The deployment of VNFs introduces flexibility and dynamism in response to the increased de-

mand for network-enhanced services in modern and next-generation networks. Network opera-

tors’ enforcement of cyber-security policies needs to respond to the temporal variations within

the network, while providing service-level agreements to end-users. This work asserts that cre-

ating, dynamically managing, and monitoring lightweight security modules in edge networks

(for example public wireless LANs, 5G cell clusters, Autonomous Vehicle networks) will allow

operators to provide assurances on device-to-device communication. The work focuses on net-

work functions that, through behaviour and placement within the network, lead to low traffic

latency overhead in edge network paths. The flexible nature of security best practices requires

that the work not limit the expression of security service composition and placement.

The thesis has started by describing the need for unified network management and introduc-
ing important underlying achievements such as SDN and NFV. It motivated the aims of next-
generation networks providing low-latency services for users, and showed limitations of existing
research and industry solutions. It analysed the network operator’s requirements for providing
cybersecurity services, and identified the existing state-of-the-art in using virtualised security
functions.

To provide security services in close proximity to the end users (for example at the network
edge), the concept of lightweight, targeted, microservice-based security functions has been
evaluated. As shown, lightweight services can be created easily and hosted on various low-
cost devices (e.g., home routers, or IoT devices). It highlighted a microservice-based paradigm
for services to rapidly initialise, or be reconfigured in a matter of seconds, instead of minutes.
Several real-world examples of security functions have been presented in this thesis.

For operation in highly dynamic networks, where users join and leave the network frequently,
several management strategies have been investigated. As evidenced in our evaluation, per-
forming autonomous lifecycle management can reduce the complexity in orchestrating multiple
VNFs in large networks. Furthermore, creation of targeted microservices for security and their
on-demand deployment based on user behaviour has been proven to provide customisable and
transparent network services.
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Balancing low-latency network connectivity with computationally complex placement of VNF
chains is crucial when considering temporal elements of networks (e.g., user locations, latency
variability). The trade-off between these two aspects has been analysed, with a solution using
Integer Linear Programming for latency-optimal Service Chain placement, and an associated
heuristic that provides near-optimal allocation while providing faster orchestration of complex
network services. These solutions have been compared against state-of-the-art solutions that
aim on minimising operator costs. Results have shown that, Service Level Agreements are met
when employing a strategy that enables the minimisation of latency and data paths.

This thesis has demonstrated how microservice-based VNFs can be created, deployed, managed
and orchestrated in resource-constrained network environments to provide targeted, customis-
able, and transparent complex infrastructure security services for end-users. It builds upon a
well known container management framework, enhancing its capability to operate as an NFV
platform through improved service deployment, placement, and lifecycle management.

6.4 Lessons Learned

This thesis is a result of a research endeavour spanning multiple years. Over time, several
important lessons have been learned and multiple obstacles have been overcome. In this Section
we cover note some of the main achievements of the work, and some important lessons learned.

6.4.1 Research Contribution in Systems

Research within the wider domain of Computer Systems (e.g., Operating Systems, Distributed
Systems, Networks, Parallelism, etc.) is often challenging, proposing novel ideas often difficult.
Contributions build upon a body of knowledge that has been constructed over a decades-long
process. Some ideas presented within a field can also be applied to other knowledge domains
and environments, such as the problem of task scheduling in many-core systems being adapted
for Virtual Machine placement within a Data Centre.

Innovation relies on both the novel concepts as well the methods used and resulting implementa-
tion. Many of the state-of-the-art solutions that have gathered wide recognition in both academic
and industrial domains are accompanied by thorough methodology and implementation, from
Google’s Borg project [143] underpinning many of the current deployments of distributed com-
putation including traditional web services and virtual network functions, to the Google File



CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 116

System [53] that put forward the main principles of modern large-scale distributed computation,
to the Ethane [22] and OpenFlow [94] projects that drive evolution of modern networks.

6.4.2 Reality of Current Networks

Computer Networks have frequently faced the problem of ossification. Development and adop-
tion of new ideas is delayed because of widespread adoption of current solutions. For exam-
ple, the concept of Active Networking [135], which looked at an increasingly programmable
network, has failed to gain the network traction because the required changes were not com-
patible with existing network devices. The adoption of OpenFlow also faced some challenges
because of autonomous network protocols, such as BGP, would not function properly. Support
in adoption of new technologies in current environments, such as adapting existing switches for
OpenFlow support [29], is crucial for the adoption of new paradigms and the transition towards
increasingly flexible and programmable networks.

Computer Networks also become increasingly complicated and difficult to model. The number
of devices, applications, behaviours, and protocols makes accurate recreations without reliable
information. Sometimes, a restricted view, with justified assumptions on network behaviour, is
required. For example, network traffic in modern Data Centres is assumed to be predominantly
east-west, because the majority of the workload involves data processing solutions. Similarly,
this thesis assumes that edge networks are heterogeneous, motivated by the prevalence of com-
modity servers which are based on the x86 instruction set, and also the recent popularity of
low-cost ARM devices that can run general-purpose software [140].

6.4.3 Security in Computer Networks

The topic of security within computer networks is extremely broad, and can have different mean-
ings depending on the context within which it is presented. It encompasses broad topics, from
vulnerability analysis, exploitation vectors, to privacy, encryption, trust, to operator isolation,
infrastructure resilience, and large-scale malicious usage.

This thesis has focused on tackling the challenges of provisioning of security in an emerg-
ing network topology. By exploiting state-of-the-art advancements in network softwarisation,
programmability, and virtualisation, a deployment model which aims to better utilise residual
computational capacity within the network in an efficient way, without impacting end-user ex-
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perience in the process.

In achieving this, one of the biggest challenges was accurately describing the security deploy-
ments that are in use in real-world environments. Operators often treat this information as confi-
dential, as it could be used to circumvent protection mechanisms. Information is pieced together
from publications, incident postmortem reports, marketing material of various solutions.

But some information becomes quickly outdated. Evolution of dataplane programmability so-
lutions, such as the P4 language [17] and associated Barefoot/Intel Tofino hardware implemen-
tation that makes it possible to deploy within production networks, opens a gateway towards
a new generation of network deployments. The traditional DNS Amplification DDoS attack
could be prevented in real-time by dataplane solutions that operate at line rate within the net-
work. This (potential) evolution would not invalidate the work done so far, but requires that
existing contributions remain forward-looking: wider integration within the network ecosystem,
that encourages for further improvement, and builds upon previous work.

6.5 Future Research Directions

6.5.1 Further Use-Cases

The work presented in this thesis has been channelled towards existing edge network architec-
tures (e.g., residential and public networks, IoT). Emerging network architectures that exhibit
similar characteristics can benefit from this approach, with specific improvements related to
their specific characteristics. For example, next-generation cellular networks can use spatial-
awareness to predict user locations and prepare migration of network services to minimise down-
time.

Furthermore, certain scenarios allow for the possibility of hosting VNFs on the network client
device itself. One such example use-case is in autonomous vehicle networks, in which devices
benefit from specialised processing hardware and available resources for execution of local func-
tionality. Management and orchestration in these conditions brings special energy-efficiency
concerns, which pose an interesting research challenge.

Finally, the principles of this thesis can be applied to Data Centre environments. With an es-
tablished infrastructure relying on SDN and NFV, adoption of lightweight VNFs can provide
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increased operator resource utilisation, and reduce capital and operational expenditure related to
the management of the infrastructure. From a resilience perspective, the work highlighted in this
thesis can be used to rapidly detect and mitigate emerging infrastructure attacks that are com-
monly targeting DCs. With Cloudflare reporting1 that DDoS attacks are increasing in frequency
and volume, operators are required to rapidly adapt to emerging threats.

6.5.2 Programmable Data Planes

With Intel’s acquisition of Altera in 2016, and Barefoot Networks in 2019, deployment of
data plane programmable NFs is likely to become ubiquitous in the near future. Network ser-
vices can benefit from emerging data plane programmability in implementing functionality and
VNF telemetry. Use of “bump-in-the-wire” functions on programmable network interfaces and
switches is becoming an emerging area of network research, and data plane network telemetry
is becoming of increased interest for commercial operators.

Similarly, advancements in hardware offloading and virtualisation, paves they way for advanced
dataplane services for regular applications. nVidia Mellanox interfaces2 provide support for
eXpress Data Path3 offloading. In the near future, operators can leverage this integration, along
with hardware virtualisation features (e.g., SR-IOV, VT-c, and VT-d) to significantly reduce the
overheads of virtualisation, provide transparent network functions before packets even leave the
host, and present new use-cases for the network.

6.5.3 Service Request Formalisation

To the best of our knowledge, there is no formal standardisation for the expression of Service
Requests. Each NFV platform, including the one presented within this dissertations, makes
assumptions on the types of services, how chaining is achieved, and definition requirements and
limitations. In order for continuous innovation to occur within the NFV domain, a formalisation
of the chaining behaviour, steering considerations, and system description is required. This
would enable real-world applicability for multiple-operator VNF compatibility, and multiple
domain NFV management, and better understanding of network behaviour, enabling further
development of NFV platforms.

1https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q2-2020/ Retrieved November 2020
2https://developer.nvidia.com/blog/accelerating-with-xdp-over-mellanox-connectx-nics/
3https://www.redhat.com/en/blog/capturing-network-traffic-express-data-path-xdp-environment Retrieved

September 2021
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6.5.4 Software-Defined Security

The network security paradigms have started shifting, leveraging modern network management
solutions, such as SDN and NFV. Yet, the vision of user-centric network security requires further
sustained efforts from academia and industry to become a tangible reality.

The scope of this thesis has allowed exploration of how network services can be designed, and
how management and orchestration could be performed in order to provide transparent, respon-
sive, and resource-efficient service delivery. However, other areas for providing flexible secu-
rity services aimed to improve infrastructure resilience provide promising research directions.
Foremost is the classification mechanism used to determine user context and associated service
requirements. The work in this area currently relies on operator-defined device classification.
Research into dynamic, run-time classification of devices and application traffic can expand the
flexibility of any context-based framework. Early approaches based on machine learning or ar-
tificial intelligence for traffic classification could be adapted to provide promising results for
widespread adoption of context-based security.

Furthermore, alert aggregation schemes for network-wide event monitoring can be used to im-
prove and preempt future infrastructure attacks. To this end, providing unified, extensible, and
clear communication mechanisms between services deployed throughout a network such that
it can dynamically react to emerging network events is paramount. Context-based frameworks
are fundamentally based on the transition towards increasingly stricter security services as in-
frastructure threats evolve, and further research avenues open up for investigation regarding this
area.

Alongside these research efforts, focus on improved reliability and fault tolerance of VNFs pro-
viding critical functionality is required. Since security services are often the initial target of in-
frastructure attacks, mechanisms to detect resource contention and methods for mitigation need
to be considered. By leveraging network telemetry for latency analysis of VNF performance,
threats as those mentioned above can be further identified and mitigated.

6.6 Concluding Remarks

The computer networking industry is currently evolving towards enhanced programmability.
Continuous improvements in network virtualisation and softwarisation enable automated, zero-
touch management of the infrastructure with a clear separation of layers, from the physical
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up to the application. This thesis attempted to unify the concepts of network softwarisation
and infrastructure security, allowing for deployment of flexible services in dynamic network
environments which are becoming ubiquitous.

This work confirmed the applicability of the context-based security paradigms that have been
proposed in the literature and outlined the essential concepts of an NFV framework and relevant
VNFs that can be used in resource-constrained environments. It shed light into new research di-
rections for core aspects of the aforementioned paradigms that improve applicability, and ushers
in the era of software-defined security for next-generation networks.
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