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Abstract

Febrile illnesses are still a major cause of mortality and morbidity globally and the failure to de-

tect and correctly diagnose a specific disease associated with fever is partly responsible for this.

This thesis aimed to investigate a biosensor-based method for the detection of fever-associated

diseases and to further explore the molecular mechanisms and possible biomarkers of febrile

illnesses by employing a metabolomics-based approach. The biosensor platform is based on a

complementary metal oxide semiconductor technology, which has both technological and eco-

nomic advantages. Due to the small size of the microchip, accurate signal processing becomes

challenging and, thus, computational methods were developed and tested for the quantitative

detection of antibodies in a solution tested on the biosensor platform. Three methods, one based

on a deterministic approach and two others based on machine learning (ML) algorithms, were

tested and compared for the detection of a reaction spot intensity using synthetically generated

images. Next, in order to develop an immunoassay protocol for the detection of one specific

fever associated infectious disease, human African trypanosomiasis (HAT), several steps were

taken. First of all, a suitable and sensitive method of detection was selected, i.e. enzyme linked

immunosorbent assay (ELISA). Next, four recombinant antigens currently used for the detec-

tion of HAT were selected based on previous evidence and developed using molecular cloning

techniques in E.coli. These were tested on infected and control humans serum samples obtained

from endemic regions of the Democratic Republic of Congo (DRC). Disposable poly-methyl

methacrylate (PMMA) slides which were chemically functionalised were used on top of the

chip as the immunoassay surface. Titrations for the selected antigens/antibody were tested us-

ing an indirect ELISA-like protocol and the best results after fitting a calibration curve were

obtained for an antigen concentration of 2.5 µg/ml. The detection of the antibody to the try-

panosome antigen invariant surface glycoprotein 65 (ISG65) proved to be successful and the

protocol could be replicated for all the other antigens. However, technical challenges and the

closure of the laboratory during the Covid-19 pandemic precluded my taking this part of the

project to its conclusion. Following this, metabolomics datasets studying disparate febrile in-

fectious illnesses obtained using liquid chromatography coupled to mass spectrometry (LC-MS)

were used in order to investigate and detect possible metabolite-based biomarkers common to

fever-associated diseases. A warping based method was developed in order to enable integra-

tion by alignment of disparate LC-MS metabolomics datasets. Integration was performed by

i
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correcting the RT drift between the datasets using fitted Gaussian Process regression models,

a supervised ML method, which was followed by direct matching alignment using MZmine2.

The correction was performed by using the standard reference mixture (SRM) information. Sta-

tistical analysis on the meta-dataset was performed using linear modelling implemented in the

limma R-package. Comparison was made between infected and control samples and commonal-

ity was established using the fold change values obtained for the individual datasets. Annotation

was carried out by matching the compounds against metabomlomics datasets and through mum-

michog software, which was also used for pathway analysis. The features obtained from this

analysis which were putatively annotated were classified into categories (amino acids, sugars,

lipids, nucleotides, etc.). Features in common to all datasets were used to make a connection

to the previously established molecular basis of fever. Significant changes were identified to

several metabolic pathways, with the most notable perturbations being within the kynurenine

pathway, a branch of tryptophan metabolism. Also, features specific to each dataset were used

to evaluate the accuracy of the fever biomarkers and investigate possible biomarkers for each

different fever-associated disease.
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Chapter 1

Introduction

Many infectious diseases are characterised by fever: a generic host response to numerous mi-

crobial pathogens. Fever is associated with the hypothalamus which, in response to exogenous

pyrogens, activates cyclooxygenase-2 (COX-2) and releases prostaglandin E2 (PGE2), trigger-

ing a systemic increase in body temperature which can have microbicidal effects [1]. Although

fever generally has a protective effect, acute febrile illnesses are still a major cause of mortal-

ity and morbidity globally, particularly in low to middle income countries [2]. The failure to

detect and correctly diagnose a specific disease associated with fever is partly responsible for

this. Inappropriate treatment of misdiagnosed diseases can contribute to the selection of drug

resistant microbes. For example, in many parts of Africa, fever is assumed to be due to malaria

and treated with anti-malarial drugs. In cases where the patient may have not been infected with

malaria parasites, but subsequently became infected while the drug concentration was waning,

a selective pressure on resistant mutants was imposed [3]. Therefore, improved diagnostics of

febrile patients and specific biomarker discovery is desirable.

In this PhD, an inter-disciplinary approach was undertaken to investigate the detection of dis-

eases associated with fever, drawing on areas such as molecular biology, computational biology

based on machine learning approaches, and engineering. The first part of this thesis focused on

developing an immunoassay for the detection of a fever-related disease on a point-of-care plat-

form previously developed as part of the Multicorder project [4, 5]. The initial aim of the Mul-

ticorder research project was to develop a complementary metal-oxide semiconductor (CMOS)

based biosensor to enable the detection of metabolites such as choline, xanthine, sarcosine and

cholesterol through enzyme assays. In [5], the scope of the CMOS-based biosensor was ex-

tended to the detection of human immuno-deficiency virus (HIV) specific antibodies through

an immunoassay. This part of the PhD used [5] as a reference for the immunoassay previously

developed on the biosensor platform and aimed to contribute to the Multicorder programmatic

research effort. Based on the results obtained by [5] a machine learning algorithm was first

developed for the analysis of the biosensor data. Next, recombinant antigens and a suitable im-
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munoassay were both developed for the biosensor platform. In the second part of the thesis, the

mechanism of fever-associated diseases was further investigated using mass spectrometry data.

Multiple metabolomics datasets on disparate fever-associated diseases were integrated using a

novel algorithm and metabolic biomarkers associated with fever-causing diseases and infectious

disease severity were identified.

1.1 Overview of the thesis

The thesis is structured into seven chapters. A brief description of each chapter is outlined below.

Chapter 2 presents the background information, based on relevant literature research, on the

main topics addressed in this PhD. The topics included refer to immunosensors, metabolomics

analysis overview and concepts of machine learning, in particular of supervised learning.

Chapter 3 compares three computational methods developed for the processing of the im-

munosensor signal outputs. It also presents an algorithm based on Bayesian inference tech-

niques which was specifically developed for the detection of reaction spots developed on the

immunosensor.

Chapter 4 presents the process of developing an immunosensor approach for the detection of

one fever-associated disease, Human African Trypanosomiasis (HAT). It also presents the pro-

cesses of developing recombinant antigens for the detection of HAT and customising the detec-

tion platform for running the immunoassays.

Chapter 5 introduces a novel method based on supervised machine learning of integrating mul-

tiple disparate metabolomics datasets obtained following mass spectrometry analysis. It also

presents the process of identifying common metabolic biomarkers of fever-associated diseases

which could help in their diagnosis process.

Chapter 6 presents and discusses the biomarkers previously identified in Chapter 5 and the

biochemical pathways relevant to the meta-dataset, as well as to each independent disease, in

the context of the pathophysiological mechanisms of fever.

The work described in Chapters 5 and 6 has led to a paper which has been prepared for publica-

tion:

1. "Alignment of multiple metabolomics LC-MS datasets from disparate diseases to reveal

fever-associated metabolites" [6].

Chapter 7 presents a summary of the work performed in this thesis along with its contributions,

and highlights the possible future work directions based on the conducted research.
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1.2 Code

All of the code for the analysis presented in this thesis was written using python programming

language, unless specified otherwise. Version Python 3.7 was used. The code is available in my

github repositories: https://github.com/anamaria-uofg/biosens and https://github.com/anamaria-

uofg/mma.

1.3 Figures

All figures and plots were produced by myself either in Python 3.7 or Microsoft Office Power-

Point, unless specified otherwise.

1.4 Abbreviations

Table 1.1 below contains a comprehensive list of the abbreviations or acronyms and their mean-

ings which were used throughout this thesis.

Abbreviation Meaning

APTES 3-Amino Propyl Tri-Ethoxy-Silane

AuNP Gold Nanoparicles

CMOS Complementary Metal Oxide Semiconductor

E.coli Escherichia coli

COX-2 Cyclooxygenase-2

EIC Extracted Ion Chromatogram

ELISA Enzyme Linked Immunosorbent Assay

ESI Electrospray Ionisation

GA Glutaraldehyde

GP Gaussian Process

GPR Gaussian Process Regression

HAT Human African Trypanosmiasis

HMDB Human Metabolome Database

HPLC High Performance Liquid Chromatography

IDO-1 Indoleamine-2,1-dioxygenase

IFN Interferon

IPTG Isopropyl β-D-1-Thiogalactopyranoside

ISG65 Invariant Surface Glycoprotein 65

ISG75 Invariant Surface Glycoprotein 75
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KEGG Kyoto Encyclopedia of Genes and Genomes

KNN k-Nearest Neighbours

LB Lysogen Broth

LED Light-Emitting Diode

LC-MS Liquid Chromatography-Mass Spectrometry

logFC logarithmic Fold Change

LOD Limit of Detection

LOQ Limit of Quantitation

m/z mass-to-charge ratio

MAE Mean Absolute Error

MC Monte Carlo

MLP Multi-Layer Perceptron kernel

ML Machine Learning

MS2 Tandem Mass spectrometry

MSE Mean Squared Error

nL1.3 Native Variant Surface glycoprotein LiTat 1.3

nL1.5 Native Variant Surface glycoprotein LiTat 1.5

PD Photo-diode

pdf Probability Distribution Function

PGE-2 Prostaglandin E2

PMMA Poly-Methyl Methacrylate

ppm parts per million

RBF Radial Basis Function kernel

rL1.3 Recombinant Variant Surface Glycoprotein LiTat 1.5

rL1.5 Recombinant Variant Surface Glycoprotein LiTat 1.5

RT Retention Time

SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis

SMC Sequential Monte Carlo

SRM Standard Reference Mixture

TIC Total Ion Current

T.b.gambiense Trypanosoma brucei gambiense

TNF Tumor Necrosis Factor

VL Visceral Leishmaniasis

Table 1.1: Abbreviations used often throughout the thesis, listed in alphabetical order.



Chapter 2

Background literature

This chapter aims to introduce the relevant background knowledge for the main topics addressed

in this thesis required for investigating the detection of fever associated diseases. The first topic

discussed is that of biosensors, as the first aim of this thesis was to develop an immunosensor

on a complementary metal oxide semiconductor (CMOS) based platform for the detection of

fever-associated diseases. The next topic introduced is that of machine learning, in particular

regression, its importance in the analysis of biological data and its utility in this project. Lastly,

the final topic which is discussed is metabolomics and its utility in the discovery of molecular

mechanisms.

The topics investigated in this thesis, alongside their application researched in the different chap-

ters aim to provide an insight into the possibilities of better detection and diagnosis of fever-

associated infectious diseases. Accurate detection of such infectious diseases is important for

avoiding pathogen transmission and long-term complications, thus ensuring therapy effective-

ness.

As mentioned previously, acute febrile illnesses, including those caused by neglected tropi-

cal pathogens, are still a major cause of death, especially in low to middle income countries.

Therefore easy to access, simple operation and low-cost portable technology is required in such

settings to facilitate the accurate detection, and, thus, the correct treatment of the disease. Such

technology is represented by point-of-care (POC) devices, including biosensors [7] which are

presented in the next section.
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2.1 Biosensors

A biosensor is an analytical device which converts a biochemical recognition event into a mea-

surable signal enabling, thus, rapid diagnosis [8]. The first biosensor, an electrochemical biosen-

sor, was proposed in 1962 and was used for quantifying the glucose concentration directly from

a sample [9]. According to its IUPAC definition, a biosensor is comprised of two main com-

ponents, i.e. the sensing element and the transducing element, i.e. an element which converts

one form of energy into another (Figure 2.1) [10]. The sensing element, or the bioreceptor,

is represented by molecules which should exhibit specific and selective interactions with the

analyte that needs detection (Figure 2.1). The detection of the analyte, also known as the bio-

recognition event, results in a change in the property of the bioreceptor that is then detected by

the transducer and converted into a measurable signal which is proportional to the amount of

analyte-bioreceptor interaction (Figure 2.1) [10,11]. The transduced signal is then processed by

complex electronic circuitry and converted from analog to digital. This signal is then further

processed through software to generate results understandable by any user [10].

Figure 2.1: General representation of the way biosensors operate: the bioreceptor could be represented
by either: DNA molecules, enzymes, antibodies, tissues, microorganisms or cell receptors. Different
types of transducers could be used in a biosensor, such as: optical (photodiode, single photon avalanche
diode (SPAD)) or electrochemical (ion-sensitive field-effect transistor (ISFET)) sensors. Reproduced and
modified from [12].

Depending on their two main components, biosensors can be classified either into tissue-based,

enzyme-based, antibody-based (i.e. immunosensors), DNA-based (apta- or geno-sensors) or

according to the transducing element into optical or electrochemical sensors [13]. The biosensor

used in this project is an optical immunosensor, as it aims to detect antibodies or antigens from a

solution using the signal received from photodiodes (PDs) after a change in the solution’s colour

which causes a change in the light transmittance to the PD.
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2.1.1 Biosensors for infectious diseases

Well-established diagnosis techniques for infectious diseases include Enzyme-Linked Immuno-

sorbent Assay (ELISA), microscopy and microorganism culture, and nucleic acid-based assays,

with ELISA being one of the most commonly used biochemistry-based assay types which in-

volves the detection of an analyte in a liquid sample. The standard overall process of detection

is, however, costly, labour intensive and requires complex sample preparation. Thus, the use

of alternative biosensors in this field would offer the possibility of a low-cost portable tech-

nology platform that can identify pathogens rapidly and help in establishing the appropriate

treatment [14]. Other advantages of using biosensors include the use of small sample volumes,

high selectivity and sensitivity and rapid response [15].

The most common types of biosensors used for the detection of infectious diseases are, based

on their transducing element, either optical or electrochemical or, based on their bioreceptor,

either genosensors or immunosensors [12]. Optical biosensors measure changes in absorbance,

fluorescence, chemiluminescence or refractive index resulting from the interaction of the optical

field with the receptor. In contrast, the detection in electrochemical biosensors depends on the

binding-induced electrical properties of the circuit of which the sensor is an essential component

[12]. Since one of the aims of this thesis was to develop an optical immunosensor, these type of

biosensors will mostly be discussed next.

An important step in the development of an immunosensor is the immobilisation step, as the

antibody-antigen interaction should occur with minimal steric hindrance making the molecular

orientation of proteins on the surface very important. Immobilisation methods include adsorp-

tion, covalent coupling, antibody-fragment tag, antibody-binding proteins, with the simplest and

most commonly used method being adsorption [16]. Most immunosensors are based on the same

concept as direct, sandwich or competitive inhibition ELISA assays. In direct immunoassays,

the bioreceptor is the antigen from the sample immobilised on the surface and a change in the

optical properties of the sensor occurs when conjugated antibodies interact with the immobilised

antigens. Sandwich assays, which measure the antigen from a sample by using two layers of

antibodies (capture and detection antibodies), are a sensitive method of detection compared to

direct assays. Finally, in indirect assays antigens are immobilised on the surface in order to

detect specific antibodies in a sample [14].

The efficiency of biosensors is also greatly dependent on the materials used for their fabrica-

tion. Nanomaterials are increasingly used as an essential component in the development of

biosensors, as they can enhance their optical, electronic or magnetic properties. Gold nano-

particles (AuNPs), for example, are being used increasingly in both optically and electrochemi-

cally based biosensor applications. AuNPs may also be used for the immobilization or labelling

of biomolecules [17]. For example, functionalisation of antibodies may use AuNPs conjugated



CHAPTER 2. BACKGROUND LITERATURE 8

to either of the three main available protein groups: −NH2, −COOH and −SH. The use of the

thiol group and of the C-terminal are both favourable as they prevent the involvement of the la-

belling particle with the antigen-binding site and, thus, allow antibody-antigen interaction [17].

2.1.1.1 Examples of biosensors developed for detecting fever associated infectious dis-

eases

A selection of successfully developed biosensors for the detection of infectious diseases are

presented in this section. For the detection of malaria, both electrochemical and optical biosen-

sors have been developed using histidine-rich protein-II as the bioreceptor [18–22]. In [22]

an electrochemical immunosensor was developed using a sandwich ELISA-like assay using a

detection antibody conjugated with horseradish peroxidase (HRP) (Figure 2.2). A limit of de-

tection (LOD) of 2.14 ng/mL was obtained for the buffer samples and an LOD of 36 pg/mL

when AuNPs conjugate detection antibody-enzyme were used, which demonstrates the benefit

of using colloidal gold nanoparticles for the amplification of the sensor’s signal and for lowering

the detection limit of the target protein.

Figure 2.2: Schematic representation of a sandwich-ELISA-like immunosensor which uses AuNPs for
signal amplification and HRP as a reporter enzyme. The capture antibody is immobilised by physical
adsorption on the surface of the gold working electrodes. The sensor is then washed and the antigen is
added. After a second wash, the detection antibody is added. (From [22])

For Leishmaniasis, an optical immunosensor using the surface plasmon resonance (SPR) tech-

nique was developed for detecting anti-L.infantum antibodies [23]. SPR technology is a label-

free method of detection that can monitor the binding of small molecules with high sensitiv-

ity. Another reported method of detecting L.infantum antigens was by using a piezoelectric

immunosensor with antibodies immobilized on a gold surface covered with a thin film of cys-

teamine and glutaraldehyde [24]. For Zika virus, an electrochemical immunosensor was devel-

oped as part of a proof-of-concept work [25]. The bioreceptor used in this case was a mono-

clonal anti-Zika virus antibody. The immunosensor was based on an interdigitated gold micro-
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electrode array which measured the changes that occur at the interface between the electrodes

and electrolytes in the solution. The surface of the immunosensor was modified with a solu-

tion which contained esters that react with amines to form amide bonds. For Human African

Trypanosomiasis (HAT), an aptasensor using single-walled carbon nanotubes as the transducing

element was developed. The recognition element used was protein-specific RNA aptamers used

for determining variable surface glycoproteins (VSG) [26]. Since antigen-antibody reactions are

more sensitive due to the very specific recognition of the antigen’s epitope by the antibody [27],

the first aim of the biosensor-related work in the present thesis was to develop recombinant anti-

gens for HAT detection which could be used for an immunoassay on the CMOS-based biosensor

platform from the Multicorder project.

2.1.2 Overview on CMOS-biosensors

As previously stated, the method of detection that was used in this PhD for the development

of the immunosensor is based on CMOS technology. From an economic point of view, CMOS

technology is the most important technology for the fabrication of microelectronic circuits [28].

The CMOS developed for the Multicorder project consists of a 16x16 microelectrode array,

with each cluster array having three types of nanophotonic sensors integrated, i.e. single photon

avalanche diode (SPAD), ion sensitive field effect transistor (ISFET) and photodiode (PD) (Fig-

ure 2.3) [4, 29]. The photodiode is a photo sensitive detector and a single pixel of the CMOS

imager is an active pixel sensor. The change in light intensity due to a change in refractive inten-

sity that is measured by the PD is translated to a change in the output voltage. The measurements

which were carried out in this project used the PD sensor. As part of the Multicorder project, [5]

developed an immunoassay on this CMOS-based platform for the detection of HIV antibodies.

This was used as a starting point for the development of the immunosensor described in Chapter

4.

Figure 2.3: The microchip developed in the Multicorder project integrated with the three types of
nanosensors including a photodiode coupled to the printer circuit board [29]

.

Other previous studies have also confirmed successful use of CMOS integrated circuits for im-
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munoassays in point-of-care devices [30]. An advantage of using CMOS, rather than other

technology such as lateral flow assay, is that CMOS can attain quantitative results. In [31],

a CMOS-based biosensor was used to monitor the photon count during the interaction of the

HIV antigens and antibodies. The HIV antigen was immobilised on a substrate with Indium

nanoparticles of different thicknesses, which proved to influence the binding efficiency between

the antigen and antibody. An LOD of 10 fg/mL of HIV antigen was obtained with the CMOS

sensor, proving its increased level of sensitivity compared to immunosensors based on different

technologies. In another study, an ELISA-like sandwich assay was performed directly on the

CMOS chip [32]. The same group successfully developed a multi-analyte CMOS sensor to mea-

sure multiple sandwich-ELISA reactions performed on the chip using chemiluminescence [33].

The chemiluminescence was recorded by the integrated photodetector which allowed the de-

tection of different biological targets, such as immunoglobulin E and myoglobin, and showed

similar results to the clinical protocols. In terms of its structure, the microchip consisted of 32

photodiodes within 3 µm depth cavities with each diode being coated with chemically function-

alised layers for improved antibody protein binding.

2.1.3 Approach to developing the immunoassay for the detection of fever-

associated disease

As part of the Multicorder programmatic research effort, the first aim of the thesis consisted of

developing an optical ELISA-like immunosensor for the detection of multiple fever associated

infectious diseases. The antigens which were immobilised on the sensor surface were developed

using molecular cloning techniques. In contrast to [5], surface functionalisation was performed

for covalent molecular attachment. Prior to the laboratory work, PD-CMOS biosensor signal

processing methods were developed for enhancing the reading of the reaction location and in-

tensity on the chip by using the data already collected from the platform in [5]. Two of the

methods were based on supervised machine learning techniques, which are introduced in the

next section of this chapter.
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2.2 Machine learning overview

Machine learning (ML) generally aims to identify or learn patterns in data by creating models

using a range of computational algorithms. Based on the type of the process by which the model

learns, the ML algorithms can be broadly classified into supervised learning and unsupervised

learning. When using supervised learning there is prior knowledge of what the output values

for a set of data should be. Thus, for a given samples of data and output values, supervised ML

aims to learn a function which best approximates their relationship. Depending on the target data

type, i.e. either discrete or continuous variables, the supervised ML algorithms can be classified

into classification or regression, respectively [34]. In contrast to supervised ML, unsupervised

ML aims to infer the structure within the data without using labelled output values. As such, it

can be used for preliminary data exploration. Some algorithms employed for unsupervised ML

are clustering, density estimation and visualisation (principal component analysis). The ML

related analysis performed in this thesis is based on supervised learning algorithms, mainly on

regression algorithms. These will be described in the next section.

2.2.1 Regression models

Mathematical notation For an easier understanding of the concepts explained in this section

several mathematical notations were utilised. Scalar variables are notated as x, and vectors and

matrices are notated in bold as x and X, respectively. The superscript T denotes the transpose

of a matrix or vector, hence xT is a row vector. Conditional probabilities are written as p(a | b),

which signifies the probability of obtaining a after b has been observed. Lastly, tilde sign ∼
signifies that a variable is distributed according to a certain distribution.

As outlined previously, the main aim of regression is to predict a set of continuous target vari-

ables. For example, when given a dataset of N attribute scalar variables {x1,x2, ...,xN}, each

described by corresponding target scalar variables {t1, t2, ..., tN}, the goal of regression is to pre-

dict the corresponding target variable (tnew) of a new attribute variable (xnew). To better explain

this, a more practical example is considered. Figure 2.4a shows the population of an European

country over the last 30 years. For example, x1 is approximately 23.5 million for year t1 = 1989.

This example uses simple, uni-dimensional attribute and target scalar variables. However, target

variables with higher dimensions can also be used to model a relationship; these are normally

structured into matrices with N rows and M columns.

The aim of regression in the presented example is to use the data to learn the relationship between

the population size (tn) and year (xn) and be able to predict the population (tnew) in any given

year (xnew). After making several assumptions with regards to its shape, this relationship could

be defined by various mathematical functions with a set of associated parameters. In this case,
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the relationship can be modelled using a straight line. This is the simplest form of regression, i.e.

linear regression, where the relation between the variables can also be described by an equation

of the form: f (x) = t = w0 +w1x or f (x) = t = wTxn if expressed in vectorial form (where

xn =
(

1
xn

)

and is a row of X, w =
(

w0
w1

)

), or t = wX if expressed in matrix form. The values of

the parameters of this function, w0,w1 determine how good the model is, i.e how close the fitted

line is to all of the data point. In order to calculate these, a squared loss function can be used

which computes the squared difference between the true population size and the population size

predicted by the model and after minimisation determines the optimal values for w0,w1. In this

case, f (x) = 3.19× 108 − 1.48× 105x. This function can then be applied to make predictions

for future years as illustrated in Figure 2.4c. However, even with optimal parameters, errors can

still arise in the model (Figure 2.4b).
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Figure 2.4: Modelling the population of an European country over the last 30 years using linear regres-
sion. a) Scatter plot showing the population size over 30 year. b) Modelling the decrease in population
using fitted linear regression. Errors between the true values and the predicted ones are also illustrated.
c) Making predictions for year 2025 and 2030. The data was obtained from United Nations - World
Population Prospects [35].

Other functions, such as higher order polynomial functions, could be used to model the re-

lationship and minimise these errors. These could lead, however, to over-fitting of the data.

Over-fitting of the data refers to using functions which model only the training data very well,

but are unable to generalise to other data points [36]. The form of the function f (x), which is

determined during the training phase, aims to provide a good generalisation of the whole data

and make accurate predictions for new data. Precise predictions are, however, unlikely, and thus

it is more useful to predict a range of values rather than a particular one. This is done by using

probabilistic regression models.

2.2.2 Probabilistic regression

Basic notions of probabilities will be described firstly in this section. Probabilities can be de-

fined over discrete sets of events or over sets of continuous variables. In the previous example,

the sample space is made up of continuous variables. One of the most important probability

distribution functions (pdf) is the Gaussian or normal distribution (notation: N(x | µ,σ2)). This
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is defined over a sample space that includes all real numbers and has a probability distribution

function for a random variable x:

N(x | µ,σ2) =
1

σ
√

2π
exp−(x−µ)2

2σ2 (2.1)

where µ represents the mean and σ2 the variance of the function. Figure 2.5 shows the pdf of x

for various µ and σ2 values. The width of the distribution is defined by σ2 and the height by µ

about which the distribution is symmetric.
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Figure 2.5: The Gaussian distribution represented using different values for mean (µ) and variance (σ2)

2.2.2.1 Bayes rule

For a better understanding of probabilites, Bayes’ rule is presented next. Bayes theorem repre-

sents the interaction between probability distribution functions. Bayes’ rule (Eq. 2.2) provides

a way of updating current knowledge or beliefs about an observation in light of new data. In

this case, all of the possible outcomes are described by a probability distribution rather than a

single value. In order to explain Bayes’ rule, the vectorial form of the linear function will be

considered.

posterior =
likelihood×prior

marginal likelihood

p(w | t,X) =
p(t | X,w)p(w)

p(t | x)
(2.2)

In the Bayesian approach a prior belief about the parameters, p(w) needs to be specified, be-

fore observing the data t. Bayes’ equation tells us how to update what it is known about the

distribution over parameters w from observation xn given tn has been observed, i.e. p(w | t,X).

The main goal of Bayesian inference is, thus, the computation of the posterior probability dis-
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tribution over the parameters p(w | t,X). In order to do so, two other distributions need to be

computed. The first one is the likelihood distribution p(t |X,w) which represents how likely it is

that for a particular value of xn and wn, tn would happen. Finding parameters that maximise the

likelihood is an important step in ML analysis. The second distribution involved in the equation

is the marginal likelihood distribution p(t | X) which is independent of the function parameters

and usually acts as a normalising constant. In other words, the posterior probability distribution

can be defined as the prior probability distribution which is weighted by the likelihood and, then,

re-normalised.

Based on Bayesian inference, generative regression models can be developed. For example,

the implementation of a Bayesian framework for regression led to the development of non-

parametric supervised machine learning models, such as the Gaussian Process regression models

[37].

2.2.2.2 Gaussian Process Regression

Traditionally, parametric models have been used for supervised learning, however they lack flex-

ibility when analysing complex datasets. Such flexible regression models are represented by the

non-parametric Gaussian Process (GP) models. In contrast to the parametric Bayesian approach

to linear regression where the prior is placed on the parameters (w), in the case of GP regression

the prior is placed directly on the values of the function. The dependence in this case is repre-

sented between the output values (t) via the covariance function. The covariance function can be

regarded as the correlation between two points or a measure of similarity between two vectors.

GP regression models also assume that the joint distribution of the function is of Gaussian form.

In order to better explain this, using the population example, only two years were considered.

The probabilities p(t1990 | x1990) and p(t1991 | x1991) were plotted against each other in a densities

graph along with their joint distribution p([t1990, t1991] | x1990,x1991) (Figure 2.6). The mean (µ)

of the functions was set to 0, which can be observed in the centre of the ellipse. Because these

two functions are assumed to be Gaussian distributed, then any point on this graph (e.g. tq) can

be sampled from a Gaussian distribution with mean vector
(

0
0

)

and a covariance matrix with 2

rows and 1 column (Σ): tq ∼ N(µ,Σ). Based on the shape of the covariance, i.e. the ellipse, it

can be said that the correlation between t1990 and t1991 is quite high and the covariance matrix

would look like this: Σ =
(

1 0.7
0.7 1

)

(Figure 2.6 a). If one increases, then it is expected that the

other increases as well. In contrast to this, the correlation between t2005 and t1990 which are more

distant points, is lower (e.g. Σ =
(

1 0.3
0.3 1

)

) (Figure 2.6 b).
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Figure 2.6: a) Bi-variate Gaussian distribution of t1990 and t1991. The joint distribution p([t1990, t1991] |
x1990,x1991) is represented on top of the graph. b) Bi-variate Gaussian distribution of t1990 and t2005. The
joint distribution p([t1990, t2005] | x1990,x2005) is represented on top of the graph.

A particularity of the Gaussian distribution is that if we slice at any value, we would still see

a Gaussian distribution. From the joint distributions presented in Figure 2.6 we would like to

obtain the conditional probability of t1991 given t1990, p(t1991 | t1990,x1990,x1991). This can be

obtained through multivariate Gaussian theorem, which, for simplicity purposes, will not be

detailed here.

So, in GP regressions, we aim to model the function outputs using a multivariate Gaussian

distribution. The prior distribution for this is defined by a mean function and a covariance

function (Eq. 2.3). These are then used to compute the elements of the mean vector (m(xn)) and

covariance matrix with N rows and M columns (k(xn,xm)) that define the Gaussian distribution.

Usually the mean function is set to 0, which means that the Gaussian mean is a vector of zeros.

The covariance matrix, also referred to as a similarity kernel has a number of hyper-parameters

such as variance and lengthscale which determine the shape of the covariance function [37].

t ∼ (m(xn),k(xn,xm)). (2.3)

GP regression models can also be constructed to include noise or errors. For instance, in the

population example whilst a general downward trend is captured, errors still occur, as illustrated

in Figure 2.4 b). In this case, the observed target data also includes the error ε: t = f (x)+ ε .

For GPs, it is assumed that the error is independently sampled for each target from a Gaussian

distribution.
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Kernel Types There are several kernels which can be used to model the relationship between

the output functions at different input values. The type of kernel used describes the type of

correlations between the output functions. Kernels can be stationary and non-stationary. Sta-

tionary kernels refer to the fact their value only depends on the difference (xn −xm) and not on

the absolute values of xn and xm which means that the function prior has the same properties

along the x axis, or the same "wobbliness" [36]. On the other hand, for non-stationary kernels,

the statistical properties of the function change as (xn − xm) changes [36]. Therefore, if the

function is known to have different characteristics in different regions of the input space, then

non-stationary kernels are more suitable.

One of the most used kernels is the squared-exponential or, also known as, radial basis function

(RBF) kernel (Figure 2.7). The RBF kernel is stationary, universal and capable of learning any

continuous function if given enough training data [38]. The radial basis function has two hyper-

parameters: lengthscale and output variance. The lengthscale parameter γ specifies the width

of the kernel which determines the smoothness of the functions in the model and the variance

parameter α which controls the vertical variation. The difference in different γ values is also

illustrated in Figure 2.9 above. The optimal hyper-parameters can be determined through several

methods such as: cross-validation, computation of maximal likelihood or Bayesian optimisation

[39].

k(xn,xm) = α exp(−γ(| xn −xm |2)) (2.4)

An example of a non-stationary kernel is the neural network kernel which is obtained by marginal-

ising the parameters from a neural network model (Figure 2.7 b) [36].
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Figure 2.7: Sampling from the prior and posterior distributions of a GP function. In a) and c) it was
sampled 5 times from a multivariate Gaussian distribution with mean 0 and kernel (k(xn,xm)). Kernels
included were RBF and neural network (MLP). In b) and d) it was sampled 5 times from the posterior
distribution after 15 sample points were modelled using GP. The mean of the prediction and the posterior
predictive variance (µ ±3σ ) are also illustrated.

Composite Kernels Multiple kernels can also be combined to create new ones with different

properties, which allows to incorporate as much high-level structure as necessary into the model.

There are two main methods of combining kernels: addition and multiplication (2.5). Sampling

from composite kernels was performed in Figure 2.8.

ka + kb = ka(xn,xm)+ kb(xn,xm)

ka × kb = ka(xn,xm)× kb(xn,xm).
(2.5)



CHAPTER 2. BACKGROUND LITERATURE 18

2 4 6 8 10

x

−6

−4

−2

0

2

4

f(
x)

Prior:RBF+MLP

Function mean

(a)

2 4 6 8 10

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

f(
x)

Posterior: RBF+MLP
Function mean

2 4 6 8 10

x

−2

−1

0

1

2

f(
x)

Prediction
Function mean

Confidence interval (3σ)

(b)

2 4 6 8 10

x

−1

0

1

2

3

4

f(
x)

Prior:RBF*MLP
Function mean

(c)

2 4 6 8 10

x

−3

−2

−1

0

1

2

f(
x)

Posterior: RBF*MLP
Function mean

2 4 6 8 10

x

−4

−2

0

2

4

f(
x)

Prediction
Function mean

Confidence interval (3σ)

(d)

Figure 2.8: Sampling from the prior and posterior distributions of a GP function. In a) and c) it was
sampled 5 times from a multivariate Gaussian distribution with mean 0 and kernel (k(xn,xm)). Kernels
were represented by composite kernels obtained either through addition or multiplication of the RBF and
neural network (MLP). In b) and d) it was sampled 5 times from the posterior distribution after the same
sample points as in Figure 2.7 were modelled using GP. The mean of the prediction and the posterior
predictive variance (µ ±3σ ) are also illustrated.

GP packages There are several frameworks which can be used for conducting GP regressions

in different programming languages, such as scikit-learn, GPy [40] or gptk [41]. One of the

drawbacks of using GPs is the size of the training data. Since the computation of GPs involves

determining the inverse of a matrix, there is an increase in processing time with the increase in

training data size. For the programming in Python conducted for this thesis, GPy package was

used [40]. Using the population size example, the relationship between the population and year

were modelled using GP regression (Figure 2.9). This allows for a posterior predictive range to

be defined, extending thus the variability in future predictions.
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Figure 2.9: Modelling the population size using GP regression with different hyper-parameter values,
specifically the lengthscale (γ) hyper-parameter. After optimisation of the model, α = 2.2 and in a)
γ = 8.9 and in b) γ = 34.7.

2.2.3 ML applications in the biological field

The bigger the size of the data, i.e. larger number of observations, the better the model will

be trained to predict the target variable [36]. Due to the increasing data available from biologi-

cal and clinically-related investigations, machine learning algorithms have become increasingly

used in this area.

Machine learning has been increasingly applied in biology-related scientific research. Using the

term ’machine learning’ on PubMed, a free search engine accessing primarily scientific journal

literature related to biomedical and life sciences, more than 64k results were obtained. The num-

ber of ML related journal articles has dramatically increased over the last decade [42]. A large

number of topic have been addressed including those of image processing, evolution, text mining

and the analysis of -omics big data such as genomics, proteomics and metabolomics which will

be discussed in more detail in the next section [43]. All three types of ML algorithms, unsuper-

vised, supervised and semi-supervised learning are used in the field of biomedical sciences. For

example, an analysis workflow of a clinical metabolomics study would involve first an unsuper-

vised approach to cluster the data and determine whether the groups correlate with the different

disease states investigated. This is usually done through principal component analysis (PCA).

Next, using a supervised approach the features most of which determine the separation into the

different groups are selected through a process called feature selection. In this thesis concepts

of Bayesian inference and regression were applied to the analysis of the data, including that of

the PD-CMOS output and the metabolomics data. The next section introduces basic aspects of

metabolomics and how such data is processed.
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2.3 Metabolomics Overview

Metabolomics is the study of the metabolome which defines the complete set of small molecule

chemicals up to 1.5 kDa found within a biological sample such as a cell, an organ, a tissue or

a biofluid [44, 45]. The main goal of a metabolomics experiment is to measure the changes

in the metabolome of a particular system in response to a change in the system’s homeostasis.

Starting from the central dogma of molecular biology, it is well known that DNA gets transcribed

into different types of RNA, out of which some get translated into proteins, some of which

being enzymes that catalyse the generation of metabolites, such as sugars, nucleotides, amino

acids and lipids, which make up the biological phenotype of the measured organism (Figure

2.10) [46]. The metabolome, thus, provides a snapshot of the physiology of the cell, tissue, organ

or organism being measured. It directly reflects the underlying biochemical activity and state of

cells, which is why it has the potential to provide reliable biomarkers for certain diseases [44].

Metabolomics studies have been applied in various research areas such as environmental and

biological stress studies, biomarker discovery and integrative systems biology [47].

Figure 2.10: The central dogma molecular biology. The DNA is transcribed into several types of RNA.
Some of them get translated into proteins which are then degraded into metabolites. The metabolites
represent the end product of the cellular processes and they provide a snapshot of the physiology of the
cell, tissue, organ and organism measured. The illustrations representing the DNA, RNA, protein crystal
structure and the human representation were obtained from the following sources: [48–50].

Metabolomics workflow The main processing steps in a metabolomics study after the sam-

ples have been collected and the metabolite extraction performed are the following [51]:

1. Data acquisition through mass spectrometry (MS) coupled with either gas chromatogra-

phy (GC) or liquid chromatography (LC) or through nuclear magnetic resonance (NMR).

2. Computational data pre-processing: peak detection, peak alignment.
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3. Statistical analysis: different statistical or machine learning techniques may be applied at

this stage.

4. Metabolite identification (by database search)

5. Metabolite verification (by comparing fragmentation patterns of unknown metabolites

with known standards)

6. Pathway and metabolic network analysis

The first two steps related to data acquisition and data pre-processing are described in more

detail in the next sections.

2.3.1 LC-MS analysis

The metabolome can be measured either through nuclear magnetic resonance, or through mass

spectrometry. This overview of metabolomics, however, focused on describing data obtained

from mass spectrometry analysis. The process of mass spectrometry is usually coupled with

either GC or LC, with liquid chromatography coupled with mass spectrometry (LC-MS) being

the most widely used analytical platform [52]. This section describes the principles of high

performance LC-MS analysis, as part of this thesis dealt with the pre-processing of this type of

data.

Before the extensive use of LC-MS use, GC-MS systems were preferred. This was due to the

incompatibility between the liquid column and the MS, until the development of the electro-

spray ionisation source (ESI) [53, 54]. ESI works especially well with metabolites, xenobiotics

and peptides [53]. The liquid chromatography uses a liquid as the mobile phase to transport

the sample molecules through the chromatographic column until they reach the ESI source and

undergo a soft ionisation process. In high performance LC, a pressurized liquid and the sample

mixture are passed through a column containing an adsorbent, a granular type of material made

of solid particles (e.g. silica, polymers) with sizes between 2 µm and 50 µm. This separates the

sample components based on their different degree of interaction with the adsorbent particles;

the interactions can be hydrophobic, ionic, dipole-dipole or a combination of these. The com-

position of the pressurised liquid, which is typically a mixture of solvents (water, acetonitrile,

methanol, ethanol, etc.), and its temperature also influence the separation process. Once the

separated compounds reach the ESI, they get ionised, which allows the creation of compounds

with the gain or loss of atoms or molecules. If the resulting analyte has a greater mass than the

original molecule, it is called an adduct, and if it has a lower mass it is called a fragment. ESI

sources can be set up either in negative or positive polarisation mode, because, depending on

their characteristics, some molecules are more easily ionised in one or another. When operated
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in positive ESI mode, a proton is added to the analyte [M+H]+, and when operated in negative

ESI mode the analyte loses a proton [M −H]−. Adduction or loss of other cations or anions

during ESI is also likely during different conditions. For example, when salts are present the

adduction of cations such as [M+NH4]
+, [M+Na]+ and [M+K]+ and anions [M+ f ormate]−,

[M+acetate]− to the analytes is possible [53].

2.3.1.1 The fragmentation process

Under normal conditions, the ESI provides a "soft" ionisation source, causing little or no frag-

mentation to the compounds [53]. However, ions can also purposefully be induced to undergo

fragmentation [53]. In general, this process is performed during the LC-MS analysis through

collision induced dissociation (CID), when ions collide with inert gases such as nitrogen or ar-

gon [53]. During the collision some of the kinetic energy applied to the analyte is converted

into internal energy resulting into bond breakage within the analyte. The CID technique which

was used to obtain the fragmentation data analysed in this PhD was higher-energy C-trap dis-

sociation (HCD) [55], a method also associated with the Q-Exactive Quadrupole Orbitrap mass

spectrometer. The dissociation takes place in the HCD cell at lower energy voltages [55]; the

fragmented ions are then stored in one of the mass spectrometer’s components called the C-trap,

where higher radiofrequency voltage is applied to retain the fragmented ions, which are next in-

jected into the orbitrap for mass analysis [55]. Fragmentation data or tandem mass spectrometry

(MS2) data is obtained at the end of this process.

The MS2 information can be acquired either through data-dependent acquisition (DDA) or data-

independent acquisition (DIA). For this project, the LC-MS2 data analysed was collected us-

ing DDA strategies. During the survey scan, MS automatically selects precursor ions above a

selected abundance threshold and only enables their fragmentation. DIA, on the other hand,

performs fragmentation on all ions within a given m/z or retention time window [56].

MS2 data aids in the annotation process of the analytes, as molecular structures may be de-

termined from the fragmentation pattern. The fragmentation pattern of small molecules is

less straightforward than that of proteins where fragments are made following cleavage of the

amino bond. Thus, data bases containing experimental data of tandem mass spectrometry from

metabolomics data have been developed in order to facilitate the comparison and annotation pro-

cess of tandem mass spectrometry data. Examples of generally used databases are HMDB [57],

LipidMAPS [58], Massbank [59] and ChemSpider [60]. These consist of either experimentally

obtained MS2 spectra or theoretical spectra obtained in an in-silico manner.
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2.3.2 LC-MS data pre-processing: Peak detection

At the end of the LC-MS run, a chromatogram is obtained, in which each ion is represented by a

peak characterised by its mass-to charge ratio (m/z), retention time (RT) and intensity. This type

of raw data is typically quite noisy and it needs to be pre-processed by noise filtering followed

by a process called peak detection or peak picking. In the end, a list of ions along with their

m/z, RT and intensity is obtained. Examples of open source software which perform these steps

are XCMS and MZmine [61, 62]. In MZmine, the software which was used for the analysis in

this thesis, the peak detection process is comprised of several steps including: mass detection,

chromatogram builder, and chromatogram deconvolution. In the mass detection step, the data

for each mass spectrum (MS) scan is converted from profile to centroid data, a process also

referred to as binning. During the binning process, the data is converted into pairs of m/z and

intensity [62].

After binning, the extracted ion chromatogram (EIC) is then constructed by connecting the m/z

values, found within a pre-specified m/z tolerance window, which span across multiple MS

scans [62]. Next, chromatographic peaks are detected from the EIC based on a RT range [62]. A

candidate peak is represented by multiple m/z data points belonging to the same molecular ion,

because of the 13C isotope, or due to multiple charge states being distributed over multiple MS

scans as result of chromatographic elution [62,63]. At this point, the signal-to-noise ratio of the

candidate peak is also computed and filtered out if it is lower than the user predefined value [62].

A good chromatographic peak should have a relatively smooth Gaussian shape and the algorithm

behind peak detection should be able to distinguish between the actual signal generated from a

chemical analyte and irrelevant signals from chemical or electronic noise.

There are several algorithms which perform peak detection. Chromatographic peaks can be de-

tected by directly analysing the local maximum points, matching peaks with the second deriva-

tive of the Gaussian function using a fixed window width, or by analysing the EIC’s continuous

wavelet transform (CWT) coefficients [64]. The CWT algorithm, also implemented by XCMS

and MZmine, is the most flexible and frequently used method of detection. The other two afore-

mentioned method have limitations such as overestimation of the number of actual peaks and

detection of peaks with fixed width [64].

The peak detection process is dependent on the parameters predefined by the user such as m/z

tolerance (measured in parts-per-million (ppm)), signal-to-noise ratio, minimal peak intensity

and peak width. For instance, if a peak has a m/z width larger than the predefined range, then

the signal generated by one analyte could be split into multiple neighbouring bins, as it drifts

between scans [64]. Incorrect parameterisation could also lead to false peaks being detected or to

real peaks being missed. For instance, such errors could stem from the set m/z tolerance: a larger

m/z tolerance, close m/z traces can merge leading to missing peaks or incorrect quantitative
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Figure 2.11: Illustration of an LC-MS platform and its data output represented in the form of chro-
matograms of the multiple sample run on the platform. Each peak is represented in the 3D space by its
m/z, RT and intensity. Diagram constructed using figures from [67, 68].

values [65]. The m/z tolerance is also dependent on the LC-MS instrumentation. For example, a

range of 5-15 ppm may generate too broad EICs for Orbitrap data [66]. Similarly, if the signal-

to-noise threshold is set too high it can also lead to missing peaks. Consistency in peak width

is also dependent on the LC-MS acquisition process: high efficiency LC columns, no column

saturation, mass overload. Examples of bad peaks include tailing peaks, ghost peaks (column or

mobile phase contamination), fronting peaks, split peaks (mobile phase pH too high) [64, 66].

Following the process of peak detection peak alignment is performed. This is described in the

next section.

2.3.3 LC-MS data pre-processing: Peak alignment

During an LC-MS experiment, multiple samples are analysed and, in order to compare the peak

detection results from all samples, they need to be aligned. After alignment, a list of aligned

peaksets is obtained. The process of alignment, or correspondence, refers to the mapping of

corresponding analytes in any experiment which span across multiple samples. However, this

process poses several challenges. During an analytical batch of an LC-MS run, several factors

can cause a systemic or component drift in m/z and, mainly, in RT. Some of these factors include:

fluctuation in environmental temperature, pressure and humidity, changes in mobile phase pH,

chromatographic column condition and running time, sample matrix, ion suppression and even

random variation [69].

The already existing correspondence algorithms, which map peaks from one run to another, can

be categorised into direct matching and warping algorithms [69]. The warping-based algorithms
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generally seek to model the RT drift between the different sample runs before the peak detection

process. In [69], four different major warping algorithms have been identified as being used

in alignment: dynamic time warping (DTW), correlation optimised warping (COW), paramet-

ric time warping (PTW) and continuous profile mode (CPM). Alignment tools using this type

of warping algorithms are XCMS [61], OpenMS [70] and MZmine 2 RANSAC Aligner [62].

The direct matching method, in contrast, skips the correction of the retention time drift between

runs and seeks to map the peaks across the runs directly after the peak detection process has

been performed [69]. This method consists of two main stages: computing the feature sim-

ilarity and using this similarity to map the peaks to an arbitrary selected reference peak list.

Feature similarity between two peaks is performed by comparing their m/z and RT by using

different measures such as normalised weighted absolute difference [62], cosine similarity [71],

Euclidean distance [72] or Mahalanobis distance. Feature matching is then performed through

greedy or combinatorial matching methods. Mzmine2 JoinAligner is an example of greedy di-

rect matching method which maps the runs to a "master" peak list based on their m/z and RT

similarity scores. Simultaneous multiple alignment (SIMA) is a combinatorial direct matching

method which finds a stable matching in a graph produced by joining peaks (nodes) from one run

with peaks from another run that are within certain m/z and RT tolerances [73]. As the output of

direct-matching methods is the list of aligned peaksets itself, this class of methods can be used

as an independent alignment method or as a second-stage process that follows a warping-based

method. Once RT drift has been corrected in warping-based methods, it is often easier to es-

tablish the actual correspondence of peaks. Seen differently, if a good correspondence between

peaks can be established, finding a warping function that maps the retention time from one run

to another also becomes easier. The types of alignment algorithms can also be classified into

profile-based and feature-based [69]. The profile-based ones perform the alignment before peak

detection, as opposed to the feature-based ones where alignment is performed after the peak

detection. The feature-based ones normally use reference variables as landmarks to perform

retention time drift correction. These can include internal standards normally used in the quality

control process of a metabolomics experiment.

2.3.4 Compound annotation

Compound annotation refers to the process of associating an ion to a chemical compound based

on its m/z, RT and, when available, MS2 spectra. Annotation in untargeted metabolomics is

very challenging, as a variety of atom (C,H,N,O,P,S) configurations can occur for one given

molecular mass. For example, isomeric peaks have the same m/z values and the same chemical

formula, but different chemical structure. Another example of peaks which could be mistaken

for one another are isobaric peaks which have similar m/z values, but different chemical formula

entirely. Annotation is typically performed by comparing the m/z values against a list of metabo-
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lites from publicly available databases such as the ones mentioned previously, i.e. HMDB [57],

KEGG [74] or Massbank [59]. The Metabolomics Standards Initiative (MSI) was used as a

guideline for reporting the compounds identified in the metabolomics analysis performed in this

PhD [75]. Based on MSI, there are four levels of metabolite identifications: 1) identified com-

pounds (which were obtained by matching the observed peaks against those generated from a

set of chemical standards), 2) putatively annotated compounds (obtained by mapping the peaks

to publicly available spectral libraries), 3) putatively characterized compound classes (identifi-

cation only based on the chemical class) and 4) unknown compounds [75].

2.3.5 Conclusion

In conclusion, several methods, both computational and laboratory-based, which will be ad-

dressed in the next chapters of this thesis, were employed for improving the detection of fever

associated diseases.



Chapter 3

Biosensor signal processing for the

quantitative detection of a reaction

3.1 Introduction

The biosensor platform was developed as part of the Multicorder project and it consists of a

16x16 micro-electrode array which amounts to a total surface area of 2.56 mm2 [4]. Develop-

ing a multiplex immunoassay without any additional physically separating components (wells,

channels) on a surface area of this size presents several challenges including that of signal pro-

cessing. In [5] where the same platform was used for running a multiplex immunoassay, the

reaction spots were calculated by manually selecting their location using rectangle shapes which

encapsulate the spots and computing the mean voltage values of the pixels contained inside the

rectangles. This is exemplified in Figure 3.1 [5]. However, this type of approach is prone to

introduce several types of biases which could affect the accurate identification of the reaction

spot characteristics (intensity, size and location). For example, since the location of the reaction

spot is not exactly known, pixels with higher intensity read-outs may be ignored when selecting

the reaction area for negative controls or vice-versa, thus affecting the results. Moreover, due to

their method of deposition, the reaction spots tend to have a circular shape, rather than a rectan-

gular one. Additionally, various other sources of noise, such as the light source angle, surface

of the immunoassay, chip manufacturing issues such as faulty pixels, could all interfere with the

processing of the signal received from the pixel array photodiodes (PDs). Therefore, a robust

method for determining or inferring the reaction spot characteristics is needed.

An impediment in the experimental analysis using the biosensor platform was constituted by

the insufficient provision of chips. Thus, actual experimental data could not be obtained for

the analysis performed in this chapter. In order to overcome this, synthetic data was generated

for testing and comparing methods of analysis of the biosensor output. The synthetic data rep-

27
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resented by a 16 × 16 image array was generated according to the data obtained on the same

biosensor platform [5]. The data was obtained following the multiplex detection of HIV anti-

body gp120, rabbit anti-mouse IgG and their respective negative controls, and the reaction spots

were present on four different regions of the image generated from the pixel array PDs (Figure

3.1) [5]. Based on this data, it was assumed that the reaction spot has a circular shape, and, thus,

the synthetic data was generated by creating image arrays with one circle characterised by its

centre location on the x- and y-axis (x,y), its radius (r) and intensity (i) determined by the PDs.

Figure 3.1: Images obtained from the PD-CMOS microchip biosensor by [5] following the multiplex
detection of rabbit anti-mouse IgG, HIV antibody gp120 and their respective negative controls. Reaction
spots with a circular shape are observed. The four reaction spots are manually selected in [5].

In this chapter three methods were proposed for the quantitative detection of one antigen-

antibody reaction on the surface of the biosensor. These were based on either deterministic

or stochastic approaches and each present a number of benefits as well as several limitations.

Thus, a comparison was performed between the three methods in order to determine for which

method the benefits outweigh the limitations making it, thus, more appropriate for the processing

of the PDs signal output.

The first method was based on a simple deterministic approach of selecting the first n pixels with

the highest intensity values and calculating their mean intensity. This would ensure that any bias

caused by the manual selection of the reaction area would be removed. The main advantages of

this method are represented by its simplicity and fast processing speed. However this method

would not be taking into account the different types of noise which could affect either the surface

of the chip or the signal registered by the PDs. Thus, a possible limitation could be characterised

by the lack of accuracy in determining the intensity (i) when the signal to noise ratio (S:N) is

low. Another limitation could be represented by the fact that the number of pixels for which the
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mean is calculated needs to be pre-selected, introducing thus a possible bias.

Although numerous machine learning (ML) methods can be tested for this analysis, the final

choice was narrowed down to two flexible methods for data analysis. Thus, the second and third

methods used a ML approach based on Bayesian inference which was introduced in Chapter 2.

By using a Bayesian inference approach it is aimed to provide an unbiased and robust method

for estimating the characteristics of the reaction spot. Bayes’ theorem (Eq. 3.1) provides the

means to update what it is known about an initial belief, which is represented by the distribution

over parameters θ given evidence z has been observed, i.e. p(θ | z). All the unknown quantities

are described by a distribution rather than a single value and the main goal of Bayesian inference

is the computation of the posterior probability p(θ | z). In the present case, the samples from

the prior distribution p(θ) are represented by the characteristics of the reaction spot we are in-

terested in detecting, i.e. its centre coordinates (x,y), its centre radius (r) and intensity (i). Thus,

in this case it was aimed to develop a method which accurately detects either all characteristics

x,y,r,i or only the intensity, i, given the image z where p(θ | z) = p((x,y,r, i) | z).

p(θ | z) =
p(z | θ)p(θ)

p(z)
=

p(z | θ)p(θ)
∫

p(θ)p(z | θ)dθ
(3.1)

The first ML method which was tested in this chapter is based on a regression model that im-

plements a Bayesian framework, i.e. Gaussian Process regression which was also introduced

in Chapter 2. This was selected due to its flexibility and applicability to smaller datasets, as it

performs well with little training data. In this case, a set of synthetically generated images was

used as training data in order to build a regression model which predicts the characteristics of a

reaction spot, focusing on the detection of the intensity (i). A limitation of this approach is rep-

resented by the need of training data, i.e. reactions performed on multiple different chip surfaces

measured on the biosensor platform, and the difficulties in obtaining it. For this analysis, this

limitation was bypassed by using synthetic data. This approach could also perform worse when

the spot locations are different, unless the training data covers a multitude of spot locations.

The second ML method is based on Bayesian generative modelling which bypasses the need

for training data. Since there is no mathematical relation linking the prior samples -the distri-

bution over (x,y,r, i)- with the image (z), it is not possible to analytically obtain the posterior

distribution of the parameters given a particular image (p((x,y,r, i) | z)). This can be instead

solved through a stochastic Bayesian computation approach. Stochastic or simulation methods

are based on obtaining random samples (x,y,r, i) from the distribution p((x,y,r, i) | z) in order

to obtain the posterior distribution, which, in this case, refers to the spot characteristics. Such

techniques, based on random sampling, are generally known as Monte Carlo (MC) techniques.

The MC approach mainly relies on generating random samples from a distribution to make an

inference. MC is useful for Bayesian models which involve more than one unknown parameter,
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as is the case in the current situation. A flexible and easy to implement Monte Carlo approach is

Sequential Monte Carlo (SMC). Sequential Monte Carlo (SMC) methods, also known as parti-

cle filtering (PF) or importance sampling methods, are generally known from their applications

in robotics, particularly in tracking moving objects. However, they can also be used in simpler

static settings where there is no known mathematical function linking the input and output.

The final method is, thus, a SMC generative modelling approach which aims to obtain the pos-

terior distribution, i.e. to estimate the characteristics of interest of the reaction spot. The general

algorithm starts by sampling a large set of particles from the prior distribution. In this case, the

term particle is used to denote a sample drawn from the prior distribution, i.e. a set of randomly

generated x,y,r, i parameters. SMC uses the prior distribution directly to draw its first samples

from. With each iteration, the particles are weighted, by comparing the synthetic image gener-

ated from them with the image which is being analysed. A new sample population from the prior

distribution is generated by selecting the particles with the highest likelihood probability and ap-

plying a random modification to them such as a Gaussian density. As this resampling process

is repeated, the filter approaches the optimal Bayesian estimate. In the end, a sample similar to

the one which would be obtained from the posterior distribution is obtained, leading thus to an

estimate of the spot characteristics x,y,r, i, and, for this analysis, of i, in particular. This method

provides a robust approach of detecting spots in any location even at low S:N. It also benefits of

the fact that it requires no training data. One limitation, however, could be related to a possible

slow processing speed.

In conclusion, three methods were developed and tested for the signal processing obtained from

the pixel array PDs. Additionally, the analysis in this chapter aimed to compare the three meth-

ods described above and to determine which performs better under various noise conditions.
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3.2 Method

3.2.1 Artificial images

It was assumed the image generated by the PDs array is a 16× 16 array, each position in the

array representing one pixel of the active pixel surface area. It was also assumed that the reaction

spot is a circle. Hence, in order to synthetically generate an image array with one reaction spot,

a Python object (Circle) was created. The object’s main attributes are the x and y coordinates

of the circle’s centre (x, y), the radius length (r) and intensity (i) of the circle. The class also

contains the function for generating the synthetic image (generate_circle_image) and for adding

noise to it (add_noise_image) while assuming, in first instance, that the noise is described by a

Gaussian distribution with zero mean and variance σnoise. The circle image generation is based

on the Pythagorean theorem when characterising the radius of a circle based on its centre’s

coordinates. If (x1,y1) is inside the circle, then x2
1 + y2

1 ≤ r2. Taking into account that one pixel

is represented by one point of the array, each pixel is looped over for n number of steps Stotal and

the proportion of the circle present in each pixel Sproportion is calculated. Thus, the following

equation (3.2) is used for attributing the intensity for each pixel.

Ipixel =
Icircle

Stotal

×Sproportion + valuebaseline (3.2)

3.2.2 Signal processing methods

3.2.2.1 Method 1: Deterministic approach

This method was similar to the one used by [5], but instead of manually selecting the spot

location and calculating the mean value of the pixels inside the rectangle, the pixels with the

highest values were selected. The array representing the image was sorted in descending order

and the first n=28 values were selected. This particular number of pixel values were selected

as it was approximate of the surface area of a circle with radius r=3. In order to evaluate this

method, the mean absolute error was calculated (MAE), i.e. the absolute difference between the

mean of the obtained spot intensity values and the actual spot intensity. This method was also

referred to as Max method.

3.2.2.2 Method 2: GP regression

For this method, a set of synthetic images had to be generated to be used as a training dataset for

the regression model. For performing the GP regression GPy Python package was used [40]. A
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set of n=100 synthetic image arrays was generated by using randomly allocated i ∈ [1,25] and

σnoise ∈ [1,20] values and constant x,y,r values. The input variables were the image arrays and

the target variable was the intensity. For comparing the accuracy of the methods in terms of the

spot location identification a second set was generated by using randomly allocated x, y and r

values with constant signal (i) to noise (σnoise) ratio (S:N).

Model evaluation The model was evaluated using functions included in Python package scikit-

learn for calculating accuracy, mean absolute error (MAE) and mean squared error (MSE). Ac-

curacy refers to the amount of correctly predicted data points out of all the data points, MAE

reflects the magnitude of error between the predicted and true value and MSE represents the

squared difference between the predicted and true value of each data point.

3.2.2.3 Method 3: SMC generative modelling

The steps of the SMC based algorithm are represented in the diagram in Figure 3.2 and explained

in more detail below.

3. Compute weight

1. Resample N particles based on their weights

1. Generate N particles

2. Add Gaussian Noise (σnoise)

New sample of N particles

X resampling stepsA B

Artificial Image

2. Compute Euclidean distance

3. Compute Euclidean distance

4. Compute weight(σweight)

Figure 3.2: Diagram representing the steps taken in the SMC algorithm. A. N random particles are
generated and each is compared with the artificial image (synthetically generated image). Based on their
Euclidean distance to the image, each particle is attributed a weight. B. Based on the computed weights
N equally-weighted particles are resampled from the original sample. These are then modified by adding
Gaussian noise to it, creating thus a new sample of N particles which are again compared with the artificial
image by calculating their weights. Resampling is performed X times.

1. Initialisation step: Generate N random particles, i.e. the samples for the prior p(θ).

For i = {1,2, ...,N} sample θi ∼ p(θ). (3.3)

A particle is defined by (x,y,r, i) where x ∈ [0,16], y ∈ [0,16] represent the circle’s centre

coordinates, r ∈ [0,8] the radius length and i ∈ [0,80] the intensity for which a 16× 16

array image is defined.



CHAPTER 3. IMMUNOSENSOR SIGNAL PROCESSING 33

2. Importance sampling step: Compute the weight of each particle.

For i = {1,2, ...,N} wi = p(z | θi). (3.4)

The weight of each particle (wi) is determined by the Euclidean distance between the

synthetically generated image (q) and the particle image (p) (Eq.3.5, 3.6). It is computed

based on the exponential term of the function of a normal distribution.

d(q, p) =

√

n

∑
i=1

(qi − pi)2 (3.5)

wi =−0.5× d(q, p)2

σweight
2 (3.6)

At each resampling step the highest weight wmax is subtracted from the weight of each

particle, exponentialised and normalised so that ∑
N
i=1 wi = 1 (Eq.3.7). This is done in

order to make sure that at each resampling step there is at least one weight 6= 0 before

normalisation.

wi =
e(wi−wmax)

∑
N
n=1 wn

(3.7)

3. Selection and modification step: Resample with replacement N particles based on the

importance weights which were slightly modified.

At this step the particles with the highest probabilities wi are more likely to be resampled.

Particles (n=N) with probability wi were sampled from the original sample of particles

and modified by adding noise described by a Gaussian distribution for which the variance

is described by σnoise (add_noise_to_characteristics). Steps 2 and 3 are then repeated X

times. After the X resampling steps, only those particles which are consistent with the

measurement survive.

Model evaluation The aim of the SMC algorithm is to obtain a distribution similar to that of

the actual posterior distribution. In order to determine the convergence between the two dis-

tributions the mean and variance of the obtained distribution were calculated at end of each

resampling step. Various values were tested for N, the number of randomly generated particles,

X, the resampling steps, and σnoise. At each resampling step the mean and variance of x,y,r, i

were computed and plotted to determine convergence with the coordinates of the artificial im-

age. Thus, the algorithm was tested for different particle sample sizes, N ∈ [125,250,500] for

X = 1000 resampling steps and constant S:N. After the suitable parameters were selected, the
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algorithm was tested for convergence at decreasing S:N values (50:1, 5:1, 2:1, 0.5:1). After the

final resampling step, the MAE and variance obtained was used for comparison with the other

methods.

3.2.3 Experiments: Comparing the three methods

Two experiments were performed for comparing the methods and determine which method ob-

tains the characteristics closest to those of the image being analysed. The first experiment aimed

to determine which method performs best in determining or estimating the intensity i. The sec-

ond experiment was done to determine which ML method best identifies the location (x,y) and

size (r) of the circle.

3.2.3.1 Identifying the spot intensity

The three methods were tested in triplicate on the same artificially generated image with de-

creasing S:N (50:1, 5:1, 2:1, 0.5:1). The image had the same reaction spot size (r = 3) and

location (x = 4,y = 6). The results were evaluated based on the intensity deviation or MAE

obtained after running the three methods on the images. MAE represents the absolute difference

between the actual spot intensity and the spot intensities obtained from each method. For the

first method MAE =| mean of the first n pixels - i|, for the GP method MAE = |mean of the GP

model distribution output - i| and for the SMC method MAE=|mean of the distribution from the

last resampling step - i|. The mean and standard variance of the three MAE of each method were

computed and compared against each other.

3.2.3.2 Identifying the spot location and size

The GP method and SMC method were tested in triplicate on three image arrays with the same

S:N = 2:1 and different spot locations and dimensions ((x = 4,y = 6,r = 3), (x = 6,y = 12,r =

4), (x = 12,y = 4,r = 2)). The difference between the actual spot location and size and the spot

location and size obtained from the two methods (∆x,∆y,∆r) were calculated. The mean after

running all replicates for each method were computed and compared.

3.2.4 Code

All code was written in Python programming language and it can be found in the publicly

available Github repository https://github.com/anamaria-uofg/biosens.
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3.3 Results

3.3.1 Signal processing methods

3.3.1.1 Deterministic approach

The results from finding the spot based on the pixels with maximum intensity are presented

below. The mean of the first n=28 highest values from the image array were selected from the

artificially generated images and are presented in Table 3.1. The mean of the first n=28 pixels

with the highest value were computed for each image. The results after 100 images is presented

in Table 3.1. Both the MAE and standard deviation are increasing with decreasing S:N. This

signifies that this method is performing less accurately and less robustly with increasing noise.

S:N 50:1 5:1 2:1 0.5:1
MAE 0.78 0.78 0.72 0.92
STDEV 0.09 0.27 0.37 0.58

Table 3.1: The results for decreasing signal:noise ratios when using the deterministic approach on 100
synthetically generated images.

3.3.1.2 GP regression

The multilayer perceptron (MLP) kernel worked optimally for fitting regression model on a

training dataset of 100 synthetically generated images. Following cross-validation where 70%

data was split into training data and 30% in testing data, an accuracy score of 0.99 was obtained

with a mean accuracy error of 0.52 and the mean squared error of 0.56 (Table 3.2). For spot

location prediction, however, the accuracy was much lower and the error magnitude higher

(Table 3.2).

Accuracy MAE MSE
Intensity prediction 0.991 0.521 0.559
Location prediction 0.46 2.65 14.46

Table 3.2: The results for decreasing signal:noise ratios when using the GP regression approach on 100
synthetically generated images.

3.3.1.3 SMC algorithm

Convergence The algorithm was initially run with N=125 particles and X=1000 resampling

steps (Figure B.1). Results for the mean of the particles, represented by their x,y circle centre
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coordinates (pixel location), radius and intensity, at each resampling step are represented. Con-

vergence with the values of the synthetically generated image are reached within the first 50

resampling steps for the x, y circle coordinates. However, it takes more resampling steps, 400,

to reach convergence in the case of the radius and intensity of the circle. The process gets quite

stable quickly for the estimation of the circle centre coordinates and the radius for all three sam-

ple sizes. However, the intensity determination is less stable. The results obtained for N=250

particles and N=500 particles are presented in Figure B.2 and Figure B.3, respectively. Intensity

reaches the actual value within 300 resampling steps with N=500, as opposed to the other N

values, for which it takes approximately 400 resampling steps for intensity to reach the actual

value. Thus, in the next section N=500 particles were used for running SMC.

Analysing the algorithm efficiency: reducing the signal-noise ratio The signal-noise ratio

was gradually decreased from 50:1 to 0.5:1. With decreasing signal:noise ratios, the spot be-

comes less visible to the eye as illustrated in Figure 3.6 (j), but its location can still be detected

by the algorithm. The images and the algorithm results are illustrated in Figure 3.6. The results

of analysing the efficiency of the algorithm are presented in the figures below. As the noise vari-

ance increases and the spot intensity decreases, the number of resampling steps it takes to reach

convergence increases, especially for the circle radius and intensity. Additionally, for the 5:1

signal to noise ratio, there seems to be a slight over-estimation of the circle radius and intensity

(Figure 3.4). For the lower 2:1 and 0.5:1 signal-noise ratios the variance was quite high for the

first resampling step, but it substantially decreased in the subsequent resampling steps (Figure

3.5). At an S:N of 0.5:1, there is a slight over-estimation of the radius of the circle, which seems

to be compensated by an under-estimation of the circle intensity.

3.3.2 Comparison between the three approaches

3.3.2.1 Intensity detection

The comparison between the three approaches at decreasing S:N are presented in Table 3.3 and

Figure 3.3. Based on the values obtained, the deterministic method results into the highest

intensity deviations ranging from 0.7 to 2.0 which increases with higher noise levels. Also,

at S:N = 0.5:1, the max method does not identify correctly the pixels inside the spot as not all

are located inside the spot, but distributed across the image (Figure 3.6). Overall, in terms of

determining the spot intensity, the SMC and GPR perform better (Figure 3.3). At the lowest

S:N, GP performs better than SMC, based on the intensity deviation results. However, when

taking into consideration the results from the variance of the posterior distributions from the

ML methods, GP has a very high variance in comparison to SMC. This means that the results

obtained from SMC in estimating the intensity are more robust.
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S:N 50:1 5:01 2:01 0.5:1
Max_mean 0.753 ± 0.085 0.756 ± 0.199 0.909 ± 0.707 1.848 ± 0.582
GP_mean 0.020 ± 0.014 0.167 ± 0.124 0.632 ± 0.357 0.686 ± .516
GP_var 0.029 ± 0.002 0.296 ± 0.013 0.674 ± 0.134 3.283 ± 0.311
SMC_mean 0.046 ± 0.032 0.184 ± 0.061 0.492 ± 0.415 1.007 ± 0.591
SMC_var 0.141 ± 0.025 0.091 ± 0.033 0.112 ± 0.039 0.094 ± 0.006

Table 3.3: Differences in the detected spot intensity when using different detection methods. Decreasing
signal:noise ratios where used. The results are reported as the mean of the tested triplicates alongside the
standard deviation (±).
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Figure 3.3: a) Comparison between the three methods at different S:N based on MAE (∆ Intensity). The
error bars represent the standard deviation from the mean obtained from the measured triplicates. b) The
intensity distribution variance of the image obtained following each method is also presented.

3.3.2.2 Location and size detection

GPR and SMC methods were compared against each other for determining which performs

better at detecting different spot locations. In this case, SMC performs better than GPR at

detecting both the size (r) and the spot location (x,y), as it results into lower MAE and STDEV

(Table 3.4).
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x y r
Spot 1

GPR Mean 1.382 ± 0.323 0.479 ± 0.327 0.617 ± 0.279
SMC Mean 0.026 ± 0.008 0.049 ± 0.040 0.060 ± 0.042

Spot 2
GPR Mean 0.623 ± 0.711 0.813 ± 0.873 0.473 ± 0.443
SMC Mean 0.037 ± 0.023 0.185 ± 0.091 0.034 ± 0.009

Spot 3
GPR Mean 3.195 ± 0.686 2.708 ± 0.407 0.662 ± 0.074
SMC Mean 0.100 ± 0.127 0.052 ± 0.045 0.157 ± 0.024

Table 3.4: Detecting the spot size and location using GPR and SMC method. The methods were applied
to three image arrays for which the reaction spots had different size and locations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.4: Results for the particle filtering algorithm for N = 500 particle, X = 1000 resampling steps.
The intensity of circle was kept at i=25 and σnoise of the image of interest was increased from 0.05 (a-c),
to 0.5 (d-f) and 5 (g-i). The intensity was decreased to i=10 and σnoise kept at 5. The mean of the particles
at each resampling step were computed for the x,y circle centre coordinates (pixel location), radius and
intensity.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.5: Results for the particle filtering algorithm for N = 500 particle, X = 1000 resampling steps.
The intensity of circle was kept at i=25 and σnoise of the image of interest was increased from 0.05 (a-c),
to 0.5 (d-f) and 5 (g-i). The intensity was decreased to i=10 and σnoise kept at 5 (j-l). The variance of
the particles at each resampling step were computed for the x,y circle centre coordinates (pixel location),
radius and intensity.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.6: The synthetically generated images with σnoise ∈ 0.05,0.5,5 and i ∈ 25,10 (a,d,g,j) and the
location of the circle as estimated by the SMC algorithm (b,e,h,k) and as obtained by the deterministic
approach (c,f,i,l).



CHAPTER 3. IMMUNOSENSOR SIGNAL PROCESSING 42

3.4 Discussion and conclusion

Based on the results obtained from comparing the three methods, the deterministic approach

results in the highest intensity deviation from the actual intensity value. At the lowest S:N, based

on the mean ∆i results, the GPR method performed best in estimating the intensity, followed by

SMC. However, the SMC intensity detection was more robust, as reflected by the lower variance.

The main advantage of using SMC over GPR is that no training data is required for building a

prediction model. In the case of GPR, 100 image arrays were synthetically generated for training

the model. This number was selected, as it was thought that this small sample size would be

possible to be obtained in the laboratory. The size and location of the spot were hard coded in the

algorithm and they were all the same for the 100 images; only the intensity and noise variance

added to the images varied. In contrast to this, no training data is required for SMC, as the

algorithm automatically generates random images and samples the ones closest to the image of

interest. Thus, detecting spots of different sizes, location or intensities would not pose a problem

to SMC. The SMC approach can also identify the correct location and intensity of a circle of

varying intensities in a 16 × 16 image array with increasing levels of added Gaussian noise.

Using the SMC approach in this case is useful because there is no probabilistic model to define

the mathematical relationship between the model input and output. The deterministic approach,

also, does not require any training data and, in contrast to SMC, is computationally very fast.

However, the intensity deviations are higher than for the other two methods, increasing with

decreasing S:N, and at low S:N this approach does not locate the spot accurately. Additionally,

it would not perform optimally when several reaction spots would need to be detected of various

intensities, or when a control reaction spot with low intensity would need to be detected.

Several limitations of the SMC algorithm were also identified. Firstly, the running time is long

and it increases proportionally with the number of particles being sampled. For sampling 125

particles the algorithm takes 1.6 hours, whilst for sampling 500 particles it takes 9.6 hours. This

limitation could be overcome by improving the code and replacing the loops with faster struc-

tures. Another method of overcoming this limitation is through parallelisation of the algorithm.

This process has already been studied by different research groups and reviewed by [76]. One

of the easiest methods of parallelisation is performed by running M independent particle filters

with N particles and, at the end, average the M estimators. Several algorithms implementing

and improving this concept have been developed such as DRNA, particle island and α-SMC.

Another common limitation of the particle filtering algorithm is the weight degeneracy which

occurs when one particle has the weight approximately 1, while the others have weights close to

0. Also, the number of particles should be high enough to avoid this problem [77].

Taking into account the advantages and limitations enumerated above, depending on the S:N

actually generated by the biosensor platform and the spot number either of the three methods
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could be selected. In the case where the chip signal has high S:N then the deterministic method

results into higher intensity deviation than the GPR and SMC methods. An advantage posed

by SMC is that any type of noise can be encoded into the SMC algorithm. Another advantage

of SMC over the other two methods is that it can accurately determine the location, size and

intensity of the spot. Moreover, if multiple spots of varying intensities were to be detected

using the deterministic approach it will be harder and increasingly biased for detecting the spot

intensity.

Image processing tools for detection of spots in an image are also available. For example, the

Python package scikit-image offers has a collection of various algorithms for image process-

ing [78]. Edge detection and segmentation are some of the functions used for detecting spots

of various characteristics in an image. However, these can only be applied to high resolution

images. In terms of methods of processing images obtained from biological data similarly to

the ones presented in this chapter, one earlier study developed a method based also on Bayesian

inference for the analysis of microarray assays [79]. In this study they have incorporated the

uncertainty of estimating the expression levels into their analysis of microarray assay images.

However, the microarray images have a higher resolution than the images obtained from the

biosensor, so this was not considered for testing on the data from this chapter.

In terms of future research directions for the work presented in this chapter, relevant modifica-

tions would be added to the algorithm once the immunoassay has been successfully developed.

Improvements need to be made in order to be able to use it on a real image obtained after run-

ning an immunoassay. These are detailed next. Currently, the particle filtering algorithm is used

for identifying the position and intensity of a circle. However, if needed, the shape of the blob

could be changed. Also, the image produced by the chip might have a gradient background noise

caused by the positioning of the LED. This could also be easily incorporated into the algorithm

in order to account for the background noise. The algorithm could also be easily extended for

identifying multiple spots of various sizes and intensities on a 16 × 16 image array. For ex-

ample, one particle would represent an image with multiple circles of size rn and intensity in,

instead of just one.

In conclusion, three algorithms were developed for the detection of spot intensities on a biosen-

sor image array. These were tested and compared on synthetically generated images. Out of

the three, the SMC performed best in terms of accuracy and decreased variability in estimating

the intensity. The next chapter describes the approach of developing and running immunoassays

on the biosensor platform with the aim to obtain images similar to the ones presented in this

chapter.



Chapter 4

Developing an immunosensor for the

detection of a fever associated disease

4.1 Introduction

Immunoassays are a sensitive method of detection for infectious diseases, as they are based

on the antigen-antibody interaction [80]. Concomitantly, the world of electronics is dominated

by the low cost, mass-manufactured complementary metal oxide semiconductor (CMOS) tech-

nology, which has made a huge impact on sensing technology. By combining immunoassay

techniques and CMOS technology a powerful tool for the quantitative detection for infectious

diseases could be developed. Well-established diagnosis techniques for infectious diseases in-

clude Enzyme-Linked Immunosorbent Assay (ELISA), microscopy and microorganism culture,

and nucleic acid-based assays [12]. The standard overall process of detection is, however, time-

consuming, costly, labour intensive and requires complex sample preparation. Thus, the use of

biosensors in this field would offer the possibility of a low-cost portable technology platform

that can identify pathogens rapidly and help in predicting appropriate treatment [14]. Other ad-

vantages of using biosensors include the use of small sample volumes, high selectivity and sen-

sitivity and rapid response [15]. In this chapter a sensitive diagnostic immunoassay tool which

is based on the CMOS-based biosensor described in Chapter 2 Section 2.1.2 was developed for

the detection of a fever associated disease, Human African Trypanosomiasis (HAT).

Due to its high detection sensitivity, an ELISA format was selected to be adapted and used

on the CMOS-based biosensor for the detection of a fever associated disease. In this chapter,

an indirect ELISA format was used for the detection of antibodies in infected serum samples

(Figure 4.1). This type of ELISA delivers high flexibility since different primary antibodies can

be used during the assay which require only a single type of labelled antibody to be used for the

final detection step. Additionally, as the primary antibody is not labelled, maximum immuno-

44
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reactivity is retained. A limitation of this type of assay could be represented by a possible

background noise generated from cross-reactivity of the secondary antibody to the adsorbed

antigen [81].

The antibody detection is performed in two stages after the specific antigens have been immo-

bilised onto the surface either through passive adsorption or covalent attachment. The antigens

are generally diluted at a concentration of 2-10 µg/ml in an alkaline buffer [81]. The high pH

of the buffer aids solubility of proteins and ensures that they have an overall negative charge,

which helps binding to a positively charged surface [82]. In the first stage of the indirect ELISA,

the antibodies of interest from the infected serum sample, i.e. primary antibodies, attach to the

antigens. Next, a labelled secondary antibody, often polyclonal and anti-species, binds to the

primary antibody. Enzymes such as horseradish peroxidase (HRP) are generally used as labels.

However, in this case, as the final result of the assay should be a precipitate which blocks the

transmission of photons to the chip surface, the labels used are gold nano-particles (AuNP), as

previously used on this platform to detect HIV gp120 [5]. This method of detection works on the

same principle as the immunogold-silver staining (IGSS) method which is commonly used as a

immuno-histochemical visualisation technique [83]. Metallic silver precipitates on heavy metals

such as gold, and thus enlarges the small colloidal gold particles. The reaction is time dependent

and a longer than needed enhancement time could determine a background noise due to silver

precipitates formed by self-nucleation. This reaction is usually performed at room temperature.

Figure 4.1: Indirect ELISA scheme. The antigens are immobilised on the surface and an unconjugated
primary detection antibody added to bind with the antigen. Next, a conjugated secondary antibody di-
rected against the host species of the primary antibody is added. The substrate then produces a signal
proportional to the amount of antibody bound to the antigen. Reproduced and modified from [84]

Adapting the general principle of immunoassay to a silicon surface may involve the chip surface

to be directly functionalised for the immunoassay. However, since the number of immunoas-

says required for the experiment exceeded that of CMOS chips provided as part of the Multi-

corder project, an alternative approach, using poly-methyl methacrylate (PMMA) slides, was

employed. PMMA has important characteristics relevant to the development of immunoassays
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on their surface. These include: high optical transparency, low cost, high scratch resistance,

versatility in fabrication and impact resistance. Moreover, PMMA has been previously used

successfully for the immobilization of enzymes, proteins and DNA [85–87]. In this project,

PMMA slides which were placed directly on the sensor chip surface were used as the surface

to run the indirect immunoassay on. The PMMA slide on which the immunoassay was run can

then be disposed of allowing a second sample to be tested on a fresh PMMA slide on the same

detector surface.

Generally, immunoassays are performed on specially designed ELISA 96-well microplates.

These are made from polystyrene or polyvinyl chloride (PVC) which are then treated using

different approaches in order to ensure affinity to molecules with hydrophobic, hydrophilic or

mixed characteristics [88]. Both polystyrene and PVC are hydrophobic surfaces, but this can be

easily modified using various techniques which alter the chemistry of the surface. For instance,

in the case of polystyrene, it is its benzene ring which gets modified in the chemical functional-

isation process [88]. Through it, carboxyl and amine groups can be added to the surface.

Treating the surface with chemicals such as glutaraldehyde (GA) is usually used to prevent non-

specific protein adsorption [89]. This method is efficient for antigens with high carbohydrate

content since these bind poorly to plastic surface. Additionally, using hydrophobic immobil-

isation methods could have a denaturing effect on the biomolecules, as they unfold to expose

hydrophobic regions that can interact with the surface. Therefore, covalent attachment of pro-

teins is preferred in order to avoid the above mentioned problems. A similar protocol of PMMA

functionalisation was used previously [89].

In order to test the optimal amount of antigen needed to coat the well and the optimal amount

of anti-species conjugated with gold nanoparticles (AuNP) which it can detect, a checkerboard

titration (CBT) method was used [90]. The process of CBT involves the dilution of two reagents

against each other to examine the activities inherent at all the resulting combinations. Given the

small reaction surface, lower antigen concentrations were also be tested, as density affects the

binding to the surface. A high concentration of antigen may cause steric inhibition, i.e antigen

molecules are too closely packed. High concentration of antigens may also increase stacking

or layering, which may allow less stable interactions of subsequent reactions. Coating time and

temperature are also important: times and temperature are usually inversely proportional, i.e for

high temperatures (37 °C or room temperature) assays are normally left for 1-3 hours and for

lower temperatures (4 °C) coating is done overnight.

For this immunoassay, it was aimed to detect one fever-associated infectious disease, Human

African Trypanosomiasis (HAT), which is prevalent in the low to middle income countries, es-

pecially in regions of west, central and east Africa. This is mainly caused in humans by the

pathogen Trypanosoma brucei. In west and central Africa, T.b.gambiense causes a chronic dis-

ease taking several years to evolve from stage 1 (hemolymphatic) to stage 2 (neuroencephalic).
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If left untreated, it may be fatal as it affects the nervous system of the host in the later stages of

development [91]. In stage 1, trypanosomiasis T.b.gambiense infections can be treated with pen-

tamidine and, in stage 2 with nifurtimox and eflornithine combination therapy [92]. The surface

of a trypanosome is coated with approximately 107 different types of the so-called molecules of

variant surface glycoproteins (VSGs) that are highly immunogenic. This dense layer of VSG

dimers acts as a protective layer for the invariant surface glycoproteins (ISGs) and other surface

components [93]. A particular characteristic of this parasite is a mechanism of antigenic vari-

ation whereby the parasites change their variant surface coat to avoid the immune system. In

this process one VSG coat is replaced by another one of a different antigenic type that is not

recognized by antibodies raised to the previous type [94].

Early detection and treatment of the disease is important not only to reduce the transmission rate

in the community but also because treatment for patients in the later stages is more complicated

and the risk of severe side effects is significantly higher [94]. Gambiense HAT is characterized

by low parasitaemia levels (<5 ng total trypanosome protein/ ml blood) and thus, screening

for the presence of specific antibodies after infection with the parasite constitutes a valuable

detection tool. The Card Agglutination Test for Trypanosomiasis (CATT), which uses the LiTat

1.3 VSG (L1.3) as biomarker was the first HAT detection test [95]. More recently, lateral flow

rapid diagnostic tests have also been developed for HAT detection [96, 97].

In order to combat the pathogen’s antigenic variation mechanism and to increase the sensitivity

of an antibody detection test, multiple antigens can be used simultaneously as biomarkers for

the detection test. Apart from L1.3, LiTat 1.5 VSG (L1.5) has also been identified as another

suitable biomarker, since both of the VSG types are generally expressed early in a trypanosome

infection (ultimately up to a thousand different VSG types are available, hence finding those that

predominate in early infection has been useful) [98,99]. It is the presence of antibodies to these

markers that is used as the basis of these tests. Other antigens which are recognized by the sera of

HAT infected patients have been identified through proteomic studies, in particular the invariant

surface glycoprotein 65 (ISG65) [100]. Another ISG with diagnostic potential was ISG75, even

though the ELISA results for this glycoprotein were weaker than those for ISG65 [100]. For

developing diagnostic tools based on the aforementioned biomarkers, recombinant antigens are

preferred to native antigens, in order to eliminate the infection risk for staff and the need for

laboratory animals for antigen production.

As the above markers have been successfully used in the detection assays or, more recently, the

lateral flow rapid diagnostic tests [95, 99, 100] they were considered as useful starting points to

develop a CMOS chip based immunoassay for the detection of HAT on a platform that had also

been tested for the immuno-detection of HIV [5]. Thus, this chapter aimed to firstly develop the

recombinant antigens rL1.3, rL1.5, rISG65 and rISG75 in order to use them for the screening of

sleeping sickness on the CMOS-based biosensor. Additionally, it also aimed to develop the im-
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munoassay which would be run on the chemically functionalised PMMA slide on the biosensor.

The initial aim of this chapter was to develop a multiplex immunoassay using all four recom-

binant antigens. However, due to the Covid-19 pandemic which brought upon the laboratory

closure, only the recombinant antigen rISG65 was used on the immunosensor platform.
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4.2 Materials and Methods

4.2.1 Chemicals

All reagents were purchased from Sigma-Aldrich (Poole, Dorset, UK) unless otherwise stated.

For the DNA manipulation experiments Escherichia coli (E.coli) strain BL21(DE3) from No-

vagen was utilised. The bacterial vector pET-28a(+) was also purchased from Novagen; The

NuPAGE 4-12% Bis-Tris gels were purchased from Invitrogen and were used for the separation

and visualisation of proteins.

4.2.2 Construct engineering

The mRNA coding sequences specifically selected regions within the total protein sequence of

L1.3, L1.5, ISG65, ISG75 were identified using relevant literature research [94, 98, 101, 102],

GenBank and UniProtKB. The expression vectors which were optimised for being cloned into

pET-28a(+) vector with the cloning sites EcoRI/XhoI were commercially obtained from Gen-

Script Biotech. The final theoretical molecular weight was calculated using Expasy.

rL1.3 The protein sequence was obtained from GenBank: accession ID AHW98113.1 (UniPro-

tKB X5GEX5) with 479 aa (region 24:372 trypanosomal VSG domain) with the mRNA coding

sequence accession ID KJ499460.1 with 1440 bp [94]. The optimised sequence length was 1062

with the GC content of 58.53%. Based on this, the final molecular weight should be approxi-

mately 37.4 kDa (36.6 kDa +0.8 kDa (6xHis Tag)).

rL1.5 The protein sequence was obtained from GenBank: accession ID ADV15625.1 (UniPro-

tKB E7EDN2) with 502 aa (residues 33:426) with the mRNA coding sequence HQ662603.1

with 1635 bp [98]. The final sequence length was 1197 with GC content of 58.03%. Based on

this the final molecular weight should be approximately 43.2 kDa (42.4 kDa+0.8 kDa (6xHis

Tag)).

The same protein regions as in [99] were selected to be purified, as they represented the native

DNA sequences of the antigens.

rISG65 The protein sequence was obtained from GenBank: accession ID AAA30147.1 (UniPro-

tKB Q26712) with 436 aa (residues 19:385) with the mRNA coding sequence M86709.1 [101].

The final sequence length was 1116 with GC content 54.62%. Based on this the final molecular

weight should be approximately 41.2 kDa (40.4 kDa+0.8 kDa (6xHis Tag)).
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rISG75 The protein sequence was obtained from GenBank: accession ID AAC41567.1 (UniPro-

tKB Q26769) with 523 aa (residues 28:468) with the mRNA coding sequence L07866.1 [102].

The final sequence length was 1338 with GC content of 57.87%.Based on this the final molecular

weight should be approximately 50.0 kDa (49.2 kDa+0.8 kDa (6xHis Tag)).

Specific protein regions were selected based on the study by Sullivan et al [100].

4.2.2.1 Transformation protocol into BL21(DE3) competent cells

The GenScript constructs were expression-ready constructs containing the desired DNA se-

quence cloned into kanamycin resistant (K+) pET-28a(+) vector at the EcoRI/XhoI cloning sites.

The constructs were each prepared according to their vendor instructions and further transformed

into BL21(DE3) competent E.coli cells.

The BL21(DE3) cells were then thawed on ice and 50 µl of cells were pipetted into a trans-

formation tube; 1.5 µl of the construct containing the plasmid DNA was added. The tube was

flicked several times to mix the DNA and cells and left on ice for 30 minutes. Heat shock of

42°C for 60 s was then applied and the mixture was placed back on ice for 5 minutes. Next,

950 µl lysogen broth (LB) were added and placed at 37°C for 1 hour (ZHWY-200D Incubator

Shaker). Dilutions of the mixture were plated on LB-kanamycin agar plates. Resistant cells

were selected by inoculation of individual colonies in 10 ml LB-K(+) broth (0.1% K) and in-

cubated overnight. Glycerol stocks were then prepared using 750 µl 20% glycerol and 750 µl

culture and stored at -80°C.

4.2.2.2 Protein expression protocol

The starter culture was prepared from the glycerol stock and incubated overnight. This was done

by adding 10 µl kanamycin to 10 ml LB. The frozen glycerol stock was scraped with a plastic

stick and mixed in the solution. The starter culture was then inoculated into a fresh culture and

incubated for 2-3 hours until it reached OD600nm of 0.5-0.6.

Optimisation of culture conditions for protein expression Different induction conditions,

i.e. molar concentration of isopropyl β-D-1-thiogalactopyranoside (IPTG), incubation period

and temperature, were tested for determining the optimal expression of the proteins. Concentra-

tions of 0.2 mM, 0.4 mM, 1.0 mM IPTG were tested with temperatures and incubation periods

of: 15°C overnight, 25°C overnight and 37°C 2-3 hours. By lowering the temperature of the in-

duction temperature, correct folding of the molecule can be improved by avoiding the formation

of inclusion bodies, as translation is slowed [103, 104]. Moreover, lower IPTG concentrations

facilitate the soluble form of the target protein.
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For large scale protein purification, 1 L of liquid medium (K+) was inoculated with a freshly

grown colony or 10 ml of freshly grown culture and incubated at 37°C until OD600nm reached

0.4–0.8. Protein was expressed using the optimal induction time/temperature determined in the

small scale trial. The cells were collected after centrifugation at 10°C, 9,000 g for 15 minutes.

The supernatant was discarded and cells were resuspended in 20 ml of 0.1M PBS. The resulting

supernatant which was collected by centrifugation of the cell culture for 10 minutes at 4,500

g was resuspended in a binding buffer supplemented with 1 pill per 50 mL of binding buffer

of protease inhibitor cocktail tablet (EDTA-free Protease Inhibitor Cocktail, Roche Diagnostics

GmbH). This was then vortexed until everything was dissolved.

In order to disrupt the membrane cells, the bacterial cells were sonicated at 4° C by using 15

sonication cycles –10 seconds pulse burst + 10-20 seconds rest at 18 µm amplitude (Soniprep

150, MSE Ltd). The resulted debris was removed by performing an ultracentrifugation step at

30,000 x g for 30 minutes at 4°C.

Ni2+ Affinity Chromatography The proteins were then purified using His GraviTrap kit(TA-

LON, Sigma) according to the affinity chromatography process, i.e. cell lysis, binding of the

tagged protein to an affinity resin inside the column, washing off the unwanted lysate and eluting

the tagged protein. For efficient binding the pH of the lysate should be between 7.5 and 8 and the

buffer should not contain chelators, such as EDTA or citrate, or high imidazole concentrations

(>30 mM) [105]. Thus, after lysis the resulting supernatant was loaded onto was loaded onto

the GraviTrap Ni-charged affinity chromatography column which was previously equilibrated

using 10 ml of binding buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 7.4).

At this step the recombinant protein was bound to the Ni-Sepharose column. Next, the column

was washed with washing buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 7.4)

and the protein was eluted using elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM

imidazole, pH 7.4). Imidazole competes for the Ni2+ and it displaces the His Tag and the tagged

protein falls off allowing thus their elution. The imidazole competitor was eliminated and the

protein was concentrated by centrifugation using a centrifugal filter unit with a 30 kDa cut-off

membrane (Amicon Ultra-15, Millipore). The final protein was stored in solution in PBS, 5%

glycerol at -80°C. This last step enhances the solubility and stability of the proteins.

At the end of the purification stage, the sample was collected, stained with Coomassie dye and

loaded on SDS-PAGE using Mini Gel Tank (life technologies) and run at 150 V. The protein

concentration was determined by measuring the UV absorption at A280 and calculate the con-

centration of the protein using the NanoDrop® 10000 spectrophotometer (Thermo Scientific).



CHAPTER 4. DEVELOPING AN IMMUNOSENSOR 52

4.2.3 Testing the recombinant antigens on human serum samples and an-

tisera

The reactivity and specificity of the recombinant antigens were determined using sera from

infected humans or uninfected controls. In order to test the reactivity of the purified proteins,

39 HAT positive, 41 control human sera and 4 rabbit anti-sera (anti-ISG65, anti-ISG75, anti-

L1.3, anti-L1.5) samples were used. The human samples (n=80) originated from patients from

endemic regions in the Democratic Republic of Congo [106]. The testing was performed by

myself at the Institute of Tropical Medicine (Antwerp, Belgium). Native antigens for L1.3

and L1.5 (nL1.3, nL1.5) and recombinant L1.3 and L1.5 expressed in L.tarentolae were also

provided. The recombinant L1.3 and L1.5 expressed in L.tarentolae were kindly donated by Dr.

Barrie Rooney and the antibodies for ISG65 and ISG75 were donated by Prof Mark Carrington

(University of Cambridge).

4.2.3.1 ELISA procedure

The immunoassay protocol was adapted from Lejon [107]. Microplates were coated overnight

at 4°C with 100 µ l/well of purified recombinant protein at 4 µ g/ml or with native antigen at 2 µ

g/ml in phosphate buffer (pH 6.5). Further manipulations were undertaken at room temperature.

After coating, the wells were blocked with blocking buffer (0.01 M sodium phosphate, 0.2 M

sodium chloride, 0.05% NaN3, 1% (casein) skimmed milk powder, pH 7.4) for 1 hour. The sera

was diluted at 1:150 in PBS blocking buffer. Antibody binding was visualised with goat anti-

human IgG conjugated with horseradish peroxidase diluted in PBS-Tween (1:40000) (Jackson

ImmunoResearch, Europe Ltd). The optical density values were read at 450 nm (Multiskan

RC Version 6.0; Labsystems). The corrected optical density (ODcorr) values were calculated

by subtracting for each serum the OD reading in the control well from the OD reading in the

antigen coated well.

4.2.4 CMOS-based detection platform

The platform had already been developed by Al-Rawhani et al [29] as part of the Multicorder

project and its design and setup are thoroughly described in the respective paper and summarised

in Chapter 2 Figure 2.3. The setup consists of a CMOS-based photodiode (PD) array and a light

emitting diode (LED). The chip measures 3.4 x 3.6 mm with an active sensor array area of 1.6 x

1.6 mm.



CHAPTER 4. DEVELOPING AN IMMUNOSENSOR 53

4.2.4.1 Data acquisition and processing

The CMOS-chip is connected to an ARM mbed STM32 Nucleo-F334R8 board. The mbed mi-

crocontroller was programmed to provide addressing signals and to acquire the output readings

from the array (MST, School of Engineering). These readings were then transferred via USB

to a MATLAB program developed by Valerio Annese (MST, School of Engineering). Matlab

files were further processed using Python. Due to the fact that the reaction took place on the

whole surface of the APS, the spot detection methods proposed in Chapter 3 were not used in

this chapter. Instead the mean of the image array obtained from the PD array was computed for

each time frame (36 tf/s) and was reported in terms of the PD voltage (V).

4.2.4.2 Setup

The setup which was developed for this chapter is presented in Figure 4.2. The wires bonded

on the chip surface are protected with a glass cover slip. A support (22x22 mm) was 3D printed

and glued to the chip. This would ensure that the positioning of the PMMA slides (22x22 mm)

and, therefore, the analysed data would be reproducible. The adapted ELISA assay is performed

on PMMA slides and afterwards the slide is placed on top of the chip and the light transmittance

reaching the PDs is read.

(a) (b) (c)

Figure 4.2: The chip setup. The chip is connected to the mbed and it is surrounded with the 3D printed
support. The PMMA slide is then placed on top (b) and covered with a lid with 560 nm LED attached to
it (c).

Platform stability The stability of the platform was tested by measuring the light transmit-

tance over 500s. For each time frame the mean of the image array (V) was computed and results

were plotted.
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PMMA slides The immunoassay was only tested for one recombinant antigen, hence the

PMMA slides were designed to have one well in the middle. The slides were sized at 22 x

22 mm with a 1.2 mm well in the middle which could be positioned exactly above the APS of

the chip. CO2 laser was used to cut the PMMA slides and engrave the wells. This was done

by Chunxiao Hu (MST, School of Engineering). The variability between the PMMA slides was

measured by reading n=18 slides on the platform and comparing the obtained image array mean.

Surface functionalisation The PMMA slides were prepared for covalent attachment of the

antigens. The functionalisation protocol was adapted from [85]. PMMA slides were first hy-

droxylated using oxygen plasma treatment at 150 W for 40 s by Valerio Anesse (MST, School of

Engineering). Following this, the slides were functionalised using 4% 3-aminopropyltriethoxysilane

(APTES) solution for 1 hour at room temperature, followed by rinsing them with 70% ethanol

solution once and with dH2O twice [108]. After drying, the silanized glass slides were reacted

with a 1% solution of glutaraldehyde (GA) in 0.1 M PBS for 1 hour, followed by rinsing with

PBS buffer. The added GA yields aldehydes which can form an imine linkage with the primary

amines on the protein (Figure 4.3). The APTES+GA functionalised PMMA surfaces were then

reacted with the antigen solution in carbonate buffer (pH 9.0) (Figure 4.3).

Figure 4.3: Schematic of the steps involved in the chemical functionalisation of a hydroxylsed PMMA
surface. The silane ends of the molecules attach to the hydroxylsed PMMA substrate leaving the alde-
hyde groups to react with the amine groups on the proteins, as represented below. Glutaraldehyde was
subsequently used to modify the surface,yielding an aldehyde that can form an imine linkage with the
primary amines on the protein.

4.2.4.3 Biosensor immunoassay protocol

The antigens were immobilized on the functionalized surface and left for drying overnight

at room temperature. Immobilisation of the recombinant antigen diluted in carbonate buffer

(pH=9). As a negative control for the titrations, fetal bovine serum (FBS) 1:50 was used. In
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order to determine the optimal reagent concentrations, titrations with different recombinant anti-

gen and antibody concentrations were made. Antigen concentrations ranging from 0 to 10 µg/ml

were coated on to the surface of the PMMA slides and each of these concentrations were tested

against 3 serum antibody concentrations: 0 µg/ml, 10 µg/ml and 20 µg/ml.

ELISA The antigens were first rehydrated in PBS for 1 min. The rest of the protocol was

adapted from the one presented in Section 4.2.3.1 by changing the incubation times, reagents

quantity (1 µl of solution for each step) and the substrates. The schematic representation of

the immunoassay is illustrated in Figure 4.4. The slides were then blocked with Blocking-PBS

(1% milk powder, 0.05% NaN3) for 15 minutes at room temperature. After washing with PBS-

Tween20 (0.05% Tween20), the primary Ab from rabbit serum was added and left for incubation

for 15 minutes at room temperature. The secondary Ab, goat anti-rabbit IgG conjugated to 12

nm AuNP (Jackson ImmunoResearch), was added and left for incubation for 15 minutes. After

washing with PBS-Tween20 the silver enhancer solution was added. The silver solution is made

up of 2 solutions: A: silver nitrate and B: initiator solution. The two need to be mixed 1:1 just

before adding it to the slide in order to prevent the background noise caused by the quick silver

auto-nucleation. Each reaction was run in duplicate.

Figure 4.4: Schematic representing the immunoassay. The PMMA surface on which the immunoassay
is performed is functionalized with (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde (GA).
The precipitate sinks to the surface.

Determining the optimal LED wavelength The ELISA procedure was first tested using IgG

and anti-IgG conjugated to AuNP. Different dilutions of the detection antibody, i.e. anti-IgG

conjugated to AuNP, were added to the slides (1:5, 1:10, 1:20, 1:40, 1:80, 1:160, 1:320). The

results (% of light transmission) were measured using a Raman microspectrometer in order to

determine the optimal wavelength to be used on the platform.
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ELISA output processing The PMMA slide was read on the platform before the reaction

(control slide) and during/after the reaction (reacted slide). The results were processed and

presented as the difference ∆V between the control slide and the reacted slide at different time

points during the reaction. Afterwards, the slide was washed and the remaining silver precipitate

was read once again. Linear regression was used to fit a straight line through the results. This

was achieved using Python scipy package (stats.linregress). The limit of detection (LOD) and

limit of quantitation (LOQ) in each case were calculated as following:

LOD = 3.3∗ σ

S
(4.1)

LOQ = 10∗ σ

S
(4.2)

where: S= slope of calibration curve and σ = residual standard deviation of the regression line
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4.3 Results

4.3.1 Protein expression and purification

All four recombinant proteins were initially induced with 0.4 mM IPTG for 3-5 hours at 37°C.

Total protein (both soluble fraction and insoluble fraction) bands for the four antigens were

clearly observed in the SDS-PAGE (4.5 A). However, the soluble fraction for the recombinant

proteins, especially rL1.3, rL1.5 and rISG75, had very low to zero expression level. Thus dif-

ferent induction conditions were tested. Induction at 22°C overnight with 0.4 mM IPTG had the

best outcome in terms of protein expression levels. The purified protein was run on the SDS-

PAGE and a clear improvement in the expression of the soluble protein was observed especially

for rISG65 and rISG75 (4.5 B). For the variant surface glycoproteins, however, after lowering

the induction temperature, there was very small improvement in terms of the expression of the

soluble protein.

Figure 4.5: Coomassie stained SDS-polyacrylamide 12 % gel of the recombinant proteins. The molec-
ular weights of the protein ladder are marked on the left side. A) Expression of total (soluble+insoluble
fractions) recombinant proteins with induction with 0.4 mM IPTG for 3-5 hours at 37°shows some ex-
pression for the 4 recombinant antigens. Soluble proteins were not expressed for rL1.3 and rL1.5 B)
Expression of the soluble fraction of the rISG65 and rISG75 was improved with induction with 0.4 mM
IPTG overnight at 22°C. It is likely that for rISG65 its dimer was also expressed at around 100 kDa
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Recombinant protein Theoretical mass(kDa) Concentration (mg/ml) A260/ A280
LiTat 1.3 VSG 37.4 2.77 0.7
LiTat 1.5 VSG 43.2 0.40 0.69
ISG65 41.2 11.85 0.73
ISG75 50 4.96 0.62

Table 4.1: Protein A280 measurements: Protein yield after purification with protein induction at 22°C.
ISG65 and ISG75 are smaller than the total antigen as only partial antigens of known immunogenicity
were expressed. Evidence was used to choose regions of antigenicity [99, 100].

Based on the SDS-PAGE in Figure 4.5 B, rISG65 dimer might have also been expressed at

around 100 kDa. Also, there are indications in the SDS-PAGE that the purification process

might not have worked optimally, as there are still some possible E.coli contaminants left in the

samples both at 37°C and 22°C induction (Figure 4.5). It is known that the main contaminants

during purification of proteins expressed in E.coli are the GroEl and DnaK chaperones which

appear at around 70 kDa as a doublet [105]. Although at a low concentration, the doublets can

still be spotted in the SDS-PAGE and they became more evident when induction was performed

at a lower temperature. DnaJ is another E.coli chaperone which appears at around 40 kDa and a

protein of this mass is evident in Figure 4.5 A (at 37 kDa).

The protein concentration measured for the purified proteins is presented in Table 4.1. Based on

the A280 results the protein yield was lowest for rL1.5 at 0.4 mg/ml and the highest for rISG65

at 11.85 mg/ml.

4.3.2 Testing the recombinant antigens on human serum samples and an-

tisera

A bar chart was used to represent the results of the ELISA tests (Figure 4.7). Two-tailed het-

eroscedastic t-test was performed to check whether there was a significant difference between

the positive and control samples in terms of absorbance levels. A p-value lower than 0.05 was

obtained in all of the 6 cases represented in the figure below, which suggests that the ELISA

coated with the recombinant proteins could differentiate between control and infected patients.

The p-values for each case were: 8.01e-29 (nL1.3), 8.95e-26 (nL1.5), 1.15e-10 (rL1.3), 2.44e-5

(rL1.5), 3.57e-18 (rISG65), 4.83e-8 (rISG75). As it may be observed, both native VSGs (nL1.3,

nL1.5) separate the positive and control sera very well both in terms of specificity and sensitivity.

In comparison to these native antigens, the number of false positives is higher using the re-

combinant antigens (rL1.3, rL1.5, rISG65, rISG75) which might be explained by the remaining

E.coli contaminants in the samples as observed in the SDS-PAGE (Figure 4.5 A & B). The mean

ODs for infected patients were 2.7 (rL1.3), 2.03 (rL1.5), 3.05 (rISG65), 2.78 (rISG75) and for

control 0.94, 1.27, 0.91, 1.4 respectively. Based on these values and those aforementioned ob-
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tained from the t-test, the purification of the rISG65 worked the best out of the four recombinant

antigens, with a lower number of false positives and higher number of true positives.

ELISA was also performed for anti-sera for each of the recombinant antigens (Figure 4.6). Each

antisera was made using rabbit sera by injecting purified antigens. For anti-L1.3 antibody the

highest reactivity was obtained with the recombinant antigen. There was, however, some reac-

tivity with the other recombinant and native antigens excluding L1.3, especially with rL1.5, but

not statistically significant. The p-value obtained after comparing the reactivity of L1.3 antigens

with anti-L1.3 antibodies and the reactivity of the other antigens was 0.001. For anti-L1.5 the

highest reactivity was obtained with the native L1.5. Very low reactivity was also obtained with

the other recombinant antigens. The reactivity of anti-L1.5 with L1.5 antigens was significantly

higher than with the other antigens (p-val =0.002). In the case of the antibodies for the invariant

surface glycoproteins, however, it seems there was a high degree of cross-reactivity, as binding

was high with all of the four recombinant antigens, including the variable surface glycoproteins.

Figure 4.6: ELISA results against each antibody for the antigens. Y-Axis: The mean absorbance value
of the samples. X-Axis: The antigens in the following order: native antigens (nL1.3, nL1.5), recombi-
nant antigens (rL1.3, rL1.5, rISG65, rISG75), recombinant antigens expressed in L.tarentolae (B_rL1.3,
B_rL1.5). Anti-VSG 1.3 reacts best with rL1.3, nL1.3 and B_rL1.3, but there is some reaction with the
other antigens as well.
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4.3.3 CMOS-based antibody detection

Optimal LED wavelength detection Based on the results obtained from the microspectrom-

eter, the quantity of silver precipitate was correlated with the quantity of detection Ab. For all of

the conditions it can be observed that less light is transmitted between 450-600 nm (Figure 4.8).

A closer inspection of the results indicate that 560 nm the lowest transmittance was registered

for all concentrations: 98.7% for the blank well, 77.98% for 3.1 µg/ml antibody, 68% for 6.25

µg/ml antibody, 58.8% for 12.5 µg/ml antibody, 52.08% for 25 µg/ml antibody, 48.1% for 50

µg/ml antibody, 43.21% for 100 µg/ml antibody and 35.98% for 200 µg/ml antibody. There-

fore, a LED with a 560 nm wavelength was used for reading the immunoassay results on the

biosensor. The LED was connected to a power source which permits adjusting the intensity of

the LED. The voltage which produces the best output was 2.7 V.

Figure 4.8: Transmission spectrum of the silver spots (developed after immunoassay with different gold
conjugated antibody solutions) developed on a APTES-GA treated glass slide.

Platform stability The stability of the measuring platform is confirmed by the constant light

transmittance values for a dry PMMA slide over the course of 8 minutes, as observed in Figure

4.9. The mean of voltage of the pixel array PD output over 500 s is 1.2 V with a standard

deviation of 0.002.

PMMA slide variability Prior to surface functionalisation, the light transmission through 18

blank slides was read. The power for the LED was set at 2.7 V for all of the slides and the LED

was positioned at the same distance in each case. In Figure 4.9b there is some variability between

the readings of the light transmittance of each slide (min: 1.09 V, max: 1.24 V, mean: 1.15 V

± 0.04 V). Therefore, each slide should be read on the platform before the ELISA reaction as

control.

Silver auto-nucleation Two control slides consisting of one PMMA slide filled with 1 µl

water and one PMMA slide filled with silver solution were used to detect silver auto-nucleation
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(a) (b)

Figure 4.9: a) Mean pixel PD voltage measured for a dry PMMA slide over 500 s. b) Light transmission
measured through PMMA slides prior to their chemical functionalisation. A high variability between
them can be observed.

(Figure 4.10). Self-nucleation is noticeable from 300 s onwards. The rate of the decreasing the

voltage for the first 300 s (-10 s) for both slides is R = -0.24 mV/s. For the slide with silver

solution the rate (600s and 300s) is -0.61 mV/s and for the water slide (500-300s) R = -0.2.

(a) (b)

Figure 4.10: a) Mean pixel PD voltage measured for (left) water and (right) water with silver solution

4.3.3.1 ELISA titration results

The developed recombinant rISG65 was used in this ELISA, as it had the best specificity and

reactivity out of the four developed recombinant antigens. Antigen concentrations of 1.25 µg,

2.5µg, 5µg and 10µg were used to coat the functionalised PMMA slides well. As for the

primary antibody, concentrations of 5µl, 10µl and 20µl were used. As a negative control, FBS

solution was used. The chip results read during the final stage of the immunoassay are presented

below in Figure 4.11. From these graphs it appears that the PMMA slide coated with 2.5 µl

rISG65 showed a decrease in voltage correlated with the antibody concentration.
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(a) 1.25 µg rISG65 (b) 2.5 µg rISG65

(c) 5 µg rISG65 (d) 10 µg rISG65

Figure 4.11: Immunoassay at various antigen and primary antibody concentrations. The readings are
recorded during the last stage of the immunoassay.

The final ELISA results after the final stage of the immunoassay was completed and the slides

washed with dH2O are presented in Figure 4.12. The R2 values of the fitted linear model, LOD

and LOQ were computed for each rISG65 concentration (Table 4.2). The highest R2 value was

obtained for the assays with 2.5 µg/ml rISG65 (Table 4.2). The limit of detection obtained for

this rISG65 concentration from the slope of the calibration curve was 0.84 µg/ml and the limit

of quantitation was 2.56 µg/ml. These were the smallest LOD and LOQ values obtained out

of the four antigen concentrations tested. Based on these results, the developed immunoassay

worked optimally only for the antigen concentration of 2.5 µg/ml.
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(a) 1.25 µg rISG65 (b) 2.5 µg rISG65

(c) 5 µg rISG65 (d) 10 µg rISG65

Figure 4.12: Immunoassay at various antigen and primary antibody concentrations. The readings are
recorded after the slides were washed and dried following the final immunoassay stage.

rISG65 concentration (µg/ml) 1.25 2.5 5 10
R2 0.65 0.97 0.91 0.81
LOD (µg/ml anti-ISG65) 3.84 0.84 1.54 2.39
LOQ (µg/ml anti-ISG65) 11.64 2.56 4.68 7.25

Table 4.2: Determining the LOD and LOQ based on the calibration curves.
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4.4 Discussion

In this section the results obtained following the development of the recombinant proteins and

those obtained after the running the developed immunoassay for the biosensor are discussed,

whilst taking into consideration the limitations of the experiments performed. Overall, the re-

combinant proteins of interest were expressed in E.coli, but E.coli specific contaminants were

also co-purified. Taking into consideration that the biosensor platform was a proof-of-concept

experiment and that samples tested on the platform were unlikely to contain antibodies to E.coli,

the analysis was continued using the purified recombinant protein with the highest expression

level, i.e. rISG65. Although, the experiment was initially aiming to use all four recombinant

antigens on the platform for multiplex detecting, the developed immmunoassay protocol was

first tested using only one recombinant protein. The immunoassay protocol proved to be suc-

cessful when the surface was coated with lower antigen concentrations (2.5 µg/ml). In com-

parison to [5] where a LOD of 10 µg/ml was obtained, the immunoassay developed in this

chapter performed better as suggested by the obtained LOD of 0.84 µg/ml. This could stem

from several factors such as the different type of chemical surface functionalisation and coat-

ing antigen concentration. However, several impediments were also identified, which mainly

stemmed from working with a small surface area. These could be remedied by using, for exam-

ple, inkjet printing or microcontact printing method coupled with a microfluidics systems when

multiplexing [109–111].

4.4.1 Protein expression and purification

For this protein purification experiment pET-28(+) was chosen as it provides kanamycin resis-

tance (kanamycin works by blocking the protein synthesis at mRNA level) and it also provides an

N-terminal His Tag/ thrombin/T7 Tag configuration (N-terminally 6xHis-tagged proteins with

a thrombin site) to recombinant proteins. The hexa-histidine tagged proteins can be purified

using a relatively simple protocol using immobilized metal affinity chromatography. Also, the

hexa-histidine tags are small and usually do not affect the solubility characteristics of the protein.

Regarding the competent cells used for transformation, E.coli B21(DE3) cells were selected

mainly due to their high levels of protein expression caused by the T7 RNA polymerase-IPTG

induction system. Addition of IPTG in the culture medium leads to the release of the lac gene

repressor and subsequent expression of T7 RNA Polymerase. This initiates the transcription

from the T7 promoter present in the vector, thus allowing the expression of any foreign gene

cloned downstream to this promoter [112].

One feature of the T7 system is that many recombinant proteins precipitate or fold incorrectly

exposing them to protease degradation when expressed at 37°C, but are soluble and fold cor-
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rectly when the temperature during induction is 15–25°C. This might occur due to the fact that

slower rates of protein production allow more time for the translated recombinant proteins to

fold properly. This was seen in my work where solubility for the recombinant antigens (mainly

ISG75 and VSG1.5) was adversely affected at 37°C induction. Thus, induction at lower tem-

peratures was used in this project. Previous studies used induction at 22°C for 2 days for ISG65

and ISG75 which were also expressed in E.coli vector [100].

Overall, the protein purification experiment led to partially impure recombinant proteins (rISG65,

rISG75, rL1.3, rL1.5) being expressed. The possible factors affecting this are explained next.

The protein purification experiment may be affected by several factors such as poor bacterial

cell lysis, failure of the tagged protein to bind to the chromatography column, the wrong pro-

tein being expressed or co-purification with the bacterial proteins [105]. In this study, the main

problem with the protein purification stems from the co-purification with the bacterial proteins.

This generally happens with proteins expressed in E. coli when the expression level of the re-

combinant protein is low [105]. Contaminants usually include proteins with multiple histidine

residues or molecular chaperones that bind directly to the resin or to the recombinant protein.

Such molecular chaperones include GroEl, DnaK, DnaJ as described in the results above are

candidates for contaminants here. In such cases, either additional chromatography is required

or expression in an alternative expression system, i.e different bacterial vector or different ex-

pression host. For example, in the case of the variant surface glycoproteins successful protein

expression was achieved in L. mexicana and P. pastoris [94, 99].

Because of the contaminated background of the purified proteins, the ELISA performed on

human serum samples from endemic region resulted in a high number of false positives, in

comparison to the native antigens. The recombinant variant surface glycoproteins also showed

lower reactivity than the invariant surface glycoproteins.

Since it was anticipated that the human serum from infected patients was considered unlikely to

have antibodies to E. coli proteins, testing the chip based format and assessing the utility of the

imperfectly pure proteins was still carried out. Moreover, based on the results which indicated a

better purification of rISG65, testing the chip based format was done using the obtained rISG65.

4.4.2 Bionsensor immunoassay

The aim of this chapter was initially to develop a multiplex immunoassay for the detection of

fever-associated diseases. However, due to limited resources and issues which were encoun-

tered during the experimental laboratory work, the biosensor was developed only using one

recombinant antigen. The results obtained using the immunosensor developed using rISG65

are discussed below and a possible reason for the the optimal results obtained with 2.5 µg/ml

rISG65 are explained.
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Based on the obtained results, the lowest LOD was obtained at 2.5 µg/ml. This could be ex-

plained by the different factors affecting antigen immobilisation, one such factor being the num-

ber of rISG65 molecules which could be optimally immobilised on to the surface of the well.

As previously mentioned, high concentration of antigens could increase stacking or layering,

which may allow less stable interactions of subsequent reactions with antibody. Although some

proteins are elongated, most proteins, including ISG65, fold into globular domains, their interior

consisting of protein subunits and domains with closely packed atoms, meaning there are no sub-

stantial holes and almost no water molecules in the interior of the protein [113]. Consequently,

proteins are quite rigid structures. Also, proteins have a similar density of 1.37 g/cm3 [114].

Assuming the rISG65 protein is a sphere, the radius size of a 50kDa molecule is approximately

2.4 nm with a surface are of 72.38 nm2 (Asphere = 4πr2) [113].

Therefore, on a surface area of 2.56 mm2, i.e. the surface area of the PMMA well, a maximum

of 3.54× 1010 protein molecules could be immobilised on one layer with no space in-between

the molecules. Next, it was calculated how many protein molecules would be in the different

concentrations of rISG65 solution used for the assays. It is known that in 1 mole of a substance

there are 6 ∗ 1023 molecules (Avogadro’s number). Therefore the number of molecules in a

solution with a known volume and concentration is:

nmolecules = nmoles ×6×1023 =
m

µ
×6×1023 =

V × c

µ
×6×1023 (4.3)

Where: nmolecules = number of molecules; nmoles = number of moles; µ= molecular mass of the

substance of interest (rISG65); m = mass of rISG65; c = concentration of rISG in solution with

volume V (c = m
V

).

Since the rISG65 molecule is approximately 50 kDa because I used a truncated version of the

protein with optimal antigenicity, this equals to a molecular mass of 5×104 g/mol. A solution

with a concentration of 10 µg/ml would therefore have 12× 1010 molecules in 1 µl, which is

approximately 3.4 times more than the number of molecules which would fit in one layer on the

surface. A solution of 5 µg/ml would have 6×1010 molecules in 1 µl which is around 1.7 times

more than the number of molecules which would fit in one layer on the surface. Finally for a

concentration of 2.5 µg/ml which presented the highest R2 value after linear fitting, there would

be 3×1010 molecules, which is by 1.1 times less than the number of molecules which would fit

in one layer on the surface. This could be an explanation for the better results obtained for this

concentration. For a concentration of 1.25 µg/ml there would be 1.5× 1010 molecules, by 2.4

times less than the maximum molecule occupancy, which means reactivity of antigen was not

satisfied at its maximum capacity. The results in terms of theoretical percentage of molecular

occupancy are presented in Table 4.3 below. In conclusion, these results confirm the fact that

a concentration of 2.5 µg/ml rISG65 used for the coating step of the assay worked the best out
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of the 4 concentrations, due to the fact molecules could be stacked in one layer on the surface

of the PMMA well at a molecular occupancy of 85%. For future improvements of the assay,

further antibody concentrations should be tested.

ISG65 Concentration (µg/ml) Molecule occupancy (%)
1.25 42.37
2.5 84.75
5 169.49
10 338.98

Table 4.3: The molecule occupancy of the well for the different concentrations solutions of ISG65.

4.4.2.1 Factors affecting the immunoassay and suggestions for improvement

Several factors affecting the immunoassay were identified. First of all, the surface of the PMMA

well may have affected the assay because of its rough structure caused by the CO2 laser. Since

the surface was not uniform and smooth this could have resulted into variable buffer deposition.

Additional factors which might have affected the immunoassay are the type of surface function-

alisation, incubation times and temperature. The chemical surface functionalisation might affect

the reproducibility of the immunoassays. Wet chemical functionalisation of PMMA slides is

a cost-effective and relatively simple procedure. However, it does present certain limitations.

First of all, it could cause irregular surface etching and, secondly, stability of chemically mod-

ified surfaces could be compromised. Plasma treatment is an alternative to functionalisation

of PMMA surfaces [115]. It is recommended, however, that if further chemical treatment is

required this should be done within 1 h of the plasma treatment [85]. Alternatively, other chem-

icals such as polyethylene imine (PEI) could also be used instead of APTES [89]. The repeated

washing steps with varying pressure levels involved in the ELISA protocol might also affect the

immunoassay. These limitations could be overcome by integrating the chip with a microfluidics

system together with microcontact printing techniques for multiplex coating of antigens [116].

Antigen immobilisation techniques Another aspect of the immunoassay which could be im-

proved is the antigen immobilisation step. For this study, the antigen was air-dried on the PMMA

well. The antigen solution contained glycerol, a chemical additive which prevents protein de-

naturation and chemical instabilities [117]. Air drying techniques have been previously tested

and proven to be successful [118–120]. Other additives could be better in improving protein sta-

bility, such as the sugars sucrose and trehalose. The removal of water during the drying process

should lead to a tight contact of the antigen to the surface. For an improved immunoassay, anti-

gen immobilisation on smooth PMMA surface is recommended. Moreover, since the original

aim of the assay was to multiplex it, inkjet or microcontact printing techniques should be taken

into consideration. The principle behind the multiplex printing would be similar to that underly-
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ing microarrays for which inkjet printing is generally used. Inkjet printing techniques could be

tried for a more accurate immobilisation of multiple antigens/antibodies [110]. Inkjet printing

permits the deposition of tiny droplets (≥ 1 pl) onto a substrate (glass, plastic, etc.). The advan-

tages of inkjet printing are the absence of physical contact between the printhead and the printed

substrate and the absence of a mask for patterning. To develop a printable ink, the viscosity and

surface tension of the liquid should also be taken into consideration. For increasing the surface

tension, different compounds such as surfactant Tween 80 can be added to the ink. Proteins,

single-stranded DNA oligomers and human cells have been inkjet printed [111]. For example,

in [33] for the printing process on a CMOS-based immunosensor, they used a Sciflex S5 printer

and the print media were 3.3 µM antibody solution in 20 mM phosphate buffered saline solution.

Another technique used as an alternative to inkjet printing for depositing proteins is microcon-

tact printing [121]. This technique is more flexible in terms of the rheology requirements and

it provides higher resolution than inkjet printing. For this method a stamp (usually made from

PDMS) is dipped into the “ink” containing the proteins and it is then brought into contact with

the silicon surface [111].

Implementing a microfluidics system Another method for improving the immunoassay pro-

cedure on the chip would be to integrate the chip with a microfluidics system and, instead of

using silver staining method for the detection of the antigen-antibody reaction, other more sensi-

tive reactions such as colorimetric reaction with horseradish peroxidase substrate could be used

for detection [116]. A microfluidics system would also improve the delivery of the reagents

during the assay and compactness of the entire system. This would ensure reproducibility and

would decrease the time needed to perform the assay. The fluids are transported through the

microchannels via laminar flow which ensures that molecules are transported in a relatively

predictable manner without any turbuluence. Several studies used microfluidics techniques to

develop a faster and more efficient assay. For examples, [109] used PMMA surface combined

with microfluidics system to develop and a 2-hours immunoassay.

4.4.3 Conclusion

In conclusion, the immunosensor approach presented in this chapter could be used for the de-

tection of HAT. Although there is a clear difference between the negative controls and positive

controls, further optimisation of the immunoassay protocol would be required. Based on the

LOD results, the immunoassay with the PMMA surface coated with 2.5 µg/ml rISG65 worked

best at detecting HAT specific antibodies. However, due to the experimental issues encoun-

tered during the laboratory work and delays in chip provision from external source, we chose

to suspend the biosensor work, which became terminal with the onset of the first Covid-19 pan-

demic related lockdown where laboratories were closed. Instead, my focus was directed towards
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metabolomics approaches to fever-associated diseases that aimed to seek potentially diagnostic

biomarkers and also molecular mechanisms underlying disease. These are described in the next

chapter.



Chapter 5

Developing a method for the alignment of

multiple disparate metabolomics datasets

5.1 Introduction

Recently, increasing numbers of studies on fever-associated diseases using mass spectrome-

try coupled with untargeted high performance liquid chromatography (LC-MS) have emerged

[122–126]. As presented in Chapter 2 Section 3, LC-MS is one of the most sensitive methods for

identifying metabolite markers and for providing a comprehensive coverage of the metabolome,

as it enables the separation and measurement of thousands of discrete chemical compounds [44].

When analysis of LC-MS data is performed on datasets studying individual disease states, how-

ever, it is not possible to distinguish between metabolites associated generically with fever, and

others specific for particular diseases. Thus, by integrating multiple disparate LC-MS datasets

associated with fever, it was aimed to simultaneously search for common perturbations to com-

pounds across a set of fever associated diseases, in order to identify metabolites generically

associated with fever or disease severity. In order to achieve this, an algorithm for the integra-

tion of multiple LC-MS datasets through peakset alignment was proposed.

LC-MS peak alignment challenges The alignment process, also referred to as correspon-

dence, for which algorithms are categorised into either direct matching or warping algorithms,

has been extensively studied, mainly in the context of multiple injections within the same exper-

iment [69]; these were detailed in Chapter 2 Section 3. This is due to the fact that although the

LC-MS instrumentation and methodology are robust and well established, measurement vari-

ability can still appear, resulting in non-linear shifts especially in retention time (RT). Improper

alignment could lead to mis-alignment or cross-alignment issues. Mis-alignment occurs when

peaks fail to align together forming split peaks, i.e. one peakset is being treated as different

71
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peaksets (features), when the peaks being aligned have a RT drift larger than a set RT tolerance

window. Whereas, cross-alignment occurs when peaks from different compounds align [127].

For example, isobaric peaks could cross-align and erroneously form one feature. In this case,

isobaric compounds refer to compounds with the same nominal mass, i.e. the sum of integer

masses of protons and neutrons of a chemical species [128], but with different exact mass and

chemical formula. The risk of mis-alignment or cross-alignment of isobaric features increases

with increasing RT drifts between samples and a fixed RT tolerance window. Additionally,

some metabolites are less stable than others, becoming more prone than others to exhibit intra

or interbatch shifts in RT and exhibiting a higher risk of mis-alignment [127].

There are two types of variability sources which can appear in an LC-MS experiment and cause

mis-alignment: system variation and component level variation [69]. The system variation is

usually consistent throughout the whole run and may be caused by factors such as the apparatus

itself, the column, system stability and temperature [129]. Whereas, component level variation,

by contrast, is specific to a single analyte or a group of analytes, so it cannot be modelled using

monotonic functions. In order to reduce the RT variability within an experiment, especially the

systematic ones, a set of known metabolites, or standard reference mixture (SRM), is run at

various points during an LC-MS experiment as part of the quality control process [129, 130].

Using SRMs enables the drift in compound intensity and especially RT to be tracked throughout

every LC-MS run. Therefore, the SRM metabolites can be used as landmarks for retention time

correction as the m/z for each compound detected using LC-MS is constant.

In this chapter, a method for the integration of three disparate LC-MS datasets is proposed. The

information provided by the SRM runs was used to determine the RT drift between injections of

different LC-MS experiments. This was then modelled using Gaussian Process (GP) regressions

[37] which were described in detail in Chapter 2 Section 2. GPs are a non-parametric approach

to modelling data and they differ from standard regression models in that they do not require

any assumptions about a particular parametric form for the function being modelled. The fitted

GPs were used to perform a high-level correction of retention times between experiments, after

which standard direct matching alignment can be performed.

GP regressions are flexible non-parametric modelling methods which can be optimally applied

to small sized data-sets. In summary, the prior distribution of a GP regression is defined by a

mean function, which is usually set to 0, and a covariance function, also known as a kernel (2.3).

The kernel is the one which describes the relationship between the output functions of the model.

There are multiple types of kernels, such as stationary kernels (RBF) and non-stationary (MLP).

Composite kernels can also be used and these are obtained either through addition or multiplica-

tion of single kernels; this allows to incorporate as much high-level structure as necessary into

the model. The shape of the kernel is also determined by its hyper-parameters (variance, length-

scale) which can be optimised using methods such as Bayesian optimisation. In this chapter
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both single and composite kernels were used for the GP models which were tested and selected

using cross-validation. These were implemented and optimised using GPy python package [40].

The optimisation of the hyper-parameters in the GPy package is done via maximisation of the

marginal likelihood [40].

The algorithm was developed here specifically to determine whether particular metabolites

could be identified that changed in abundance in similar ways across a series of distinct fever-

associated diseases. These include Zika virus infection in patients from Ecuador [131], Leish-

maniasis patients from Spain [132] and uncomplicated malaria infected volunteers from the

UK [133]. The samples had all been run previously using the same LC-MS platform (Glasgow

Polyomics, University of Glasgow, UK). By seeking metabolites whose variation in abundance

followed common trends in different datasets we aimed to determine disease-generic metabo-

lites that could both assist in understanding the pathophysiology of infectious disease, and also

highlight metabolites that were found to have a change in abundance in individual studies that

may be fever rather than specific disease related.

In conclusion, this chapter aimed to develop a method for integrating multiple disparate metabolomics

LC-MS datasets and identify common and specific disease perturbation across data sets by using

GP regressions for correcting the RT drift between datasets.



CHAPTER 5. META METABOLOMICS ANALYSIS 74

5.2 Materials and methods

5.2.1 Datasets

Three LC-MS datasets (DZ , DM, DV L) analysed at Glasgow Polyomics metabolomics facility

(University of Glasgow, UK) which studied different infections with pathogens associated with

febrile disease were used for the cross-experimental integration in this study. These are listed

below:

1. DZ: In this dataset the blood serum from patients with Zika virus disease and healthy

controls was analysed as part of a case-control experiment [131].

2. DM: In this dataset the blood serum from patients with malaria and healthy controls

was analysed. This was an intervention study, where healthy controls were infected with

malaria and thus disease-specific symptoms were closely controlled [133].

3. DV L: In this dataset the blood serum from patients with Visceral Leishmaniasis and

healthy controls was analysed as part of a case-control experiment [132].

All three experiments were designed for detecting the differences between the serum metabolic

profiles of healthy controls and infected patients diagnosed by gold-standard methods. In total,

there were 74 samples (37 controls and 37 disease samples). Detailed information about each

LC-MS experiment is presented in Table 5.1.

Dataset DZ DM DV L

Infectious Disease Zika virus Malaria Visceral Leishmaniasis
Study Type Case-control Intervention Case-control
LC Column/MS Platform pHILIC/Q-Exactive pHILIC/Q-Exactive pHILIC/Q-Exactive
LC-MS Run Length (min) 26 26 46
Date Analysed 2018 2016 2018
Healthy Controls 10 7 20
Infected Patients 10 7 20
SRM Sets 3 3 3
MS2 data Yes Yes Yes

Table 5.1: LC-MS datasets details: Information about each LC-MS experiment including the disease
studied, type of study, number of controls and patients, LC-MS platform used and date when the samples
from the LC-MS experiment were run. Fragmentation (MS2) data was also available for all datasets.

5.2.1.1 Data curation

For DV L, plasma was taken from 20 adult patients from Fuenlabrada (Madrid, Spain) diagnosed

with VL at the Hospital Universitario de Fuenlabrada between January 2013 and June 2015.
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Blood samples were collected during the period of active disease and infection by Leishmania in-

fantum was confirmed by Leishmania specific nested PCR; the presence of Leishmania-specific

plasma antibodies were determined by rK39 immunochromatographic test (Inbios, USA) and in-

direct immunofluorecence test. Data obtained were compared with those of 20 matched healthy

controls obtained from volunteers at the Blood Bank of the Hospital Universitario de Fuen-

labrada [131]. For DZ , patients included in the Zika virus group had presented to hospital seek-

ing assistance for febrile symptoms confirmed as Zika virus infection by PCR (n=10). The

healthy control group was composed of women attending their routine prenatal care (n=10).

Samples from all participants were collected by using a red cap vacuum blood tube of 4 mL,

without clot activator. After blood collection, the tubes were maintained in the rack, at room

temperature for 30 minutes. After this time, samples were maintained at 4°C until centrifu-

gation (which was performed in less than 5 hours). Centrifugation was carried out at 2000 x

g for 10 minutes. Serum samples were then placed in 1.5 microtubes and stored at -80°C until

metabolites extraction [132]. Regarding DM, the malaria patients are described in detail in [133].

5.2.1.2 LC-MS platform

The experiments were performed at different time points (Table 5.1) using the same LC-MS

platform: Thermo Orbitrap QExactive (Thermo Fisher Scientific) mass spectrometer coupled

with a Dionex UltiMate 3000 RSLC system (Thermo Fisher Scientific, Hemel Hempstead, UK)

using a ZIC-pHILIC column. In all three experiments, the column was maintained at 30°C and

samples were eluted with a linear gradient at a flow rate of 0.3 ml/min. While the same flow

rate was used for all three datasets, the length of the run differed for DV L, which lasted longer

than the other two datasets. For the MS analysis, the Orbitrap Q-Exactive mass spectrometer

was operated using the following settings: resolution 70,000, m/z range 70-1050, sheath gas 40,

auxiliary gas 5, sweep gas 1, probe temperature 150°C, capillary temperature 320°C. At the end

of the mass spectrometry analysis .mzXML files were obtained.

5.2.1.3 Tandem mass spectrometry data

Fragmentation (MS2) analysis was also performed for all three experiments using higher energy

C-trap dissociation (HCD) fragmentation of the pooled samples at a normalised collision energy

(NCE) of 60. At the end of the MS2 analysis .mzXML files were obtained.

5.2.1.4 Standard reference mixtures

As part of the quality control across each experiment, three sets of standard reference mixtures

(SRM) which include compounds that cover a broad range of metabolic pathways such as amino
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acid metabolism, central carbon metabolism and nucleotide metabolism were run twice, before

and after the cohort of samples was run. Two types of SRM files were included in the dataset.

The first type of files are the raw .mzXML files obtained from the MS analysis. The second ones

are .csv files generated with ToxID software from the raw files where, for each SRM metabolite

the following information is given: compound name, chemical formula, polarity, detected mass-

to-charge ratio, delta (ppm), expected retention time and actual retention time. The total number

of SRM metabolites detected in +ve ESI mode in each set is provided in Table 5.2 below.

Set 1 Set 2 Set 3
Dataset Rep.1 Rep.2 Rep.1 Rep.2 Rep.1 Rep.2
DZ 37 38 44 42 13 13
DM 47 37 50 45 15 14
DV L 35 36 44 43 14 14

Table 5.2: Total number of SRM metabolites (+ve ESI mode) identified in the ToxID generated files.

5.2.2 Study workflow

The data analysis process is outlined in the diagram in Figure 5.1.

Quality Control The total intensity of all ions at each time point is known as the total ion

current chromatogram (TIC). The TICs were used as a quality control for each of the samples in

the dataset. They were compared and checked in order to determine whether any of the samples

needed to be removed from the analysis. The samples with a flat chromatogram throughout the

entire run were deemed faulty, and thus, removed from further analysis. Three samples were

removed from DV L (VL6, VL6_r, VL6_r2) and one sample was removed from DZ (C6).

5.2.3 Peak detection

The processing of the spectral data begins with the detection of the chromatographic peaks from

the input SRM and samples LC-MS data. Peak detection was performed using the wavelet

transform method from MZmine2 v2.40.1 [62] in batch mode. MZmine2 is an open-source Java

software developed for mass spectrometry data processing. Some of the processes it performs

include: raw input file manipulation, peak detection, chromatographic alignment, normalisation,

visualization and data export [62]. The usual workflow for peak detection for both MS and

MS2 data begins with mass detection followed by chromatogram building and deconvolution

as detailed in Chapter 2. The parameter values used for each step of MZmine peak detection

software are detailed in the list below. It is to be noted that for the chromatogram deconvolution

step different values were used for each separate dataset by using the preview mode.
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1. Mass detection:

• RT: 0.00 – 26.02 min (46.00 min for DV L)

• MS level: 1/2 (for MS2 data)

• Polarity: +

• Spectrum type: centroided

• Mass detector: Centroid (Noise level: 1.0E4)

2. ADAP chromatogram builder:

• Group intensity threshold: 1E4

• Min. highest intensity: Group intensity threshold ×10 = 1E5

• Min group size (number of scans): 5

• m/z tolerance (depends on the instruments used): 3ppm or 0.001 m/z

3. Chromatogram deconvolution (peak detection):

• S/N threshold: 3 (limit of detection) - 5 (limit of quantitation)

• Coefficient area: 10 (using preview mode)

• Peak duration range: 0.03 - 1.00 (1.5, for detecting more peaks towards the end)

• RT wavelet range (v. sensitive): 0.01 - 0.40

4. File export:

• The peak picked files were exported to both csv and mzTab formats.

Some parameters are instrument specific, such as the m/z tolerance used for the ADAP chro-

matogram builder, whereas others where chosen by using the preview mode available in MZmine2

and the raw .mzXML standards files by comparing the number of total SRM metabolites ob-

tained after peak detection with the ones in Table 5.2 obtained from ToxID. With the values

presented in Table 5.2 the closest match in total number of standards was obtained (Table 5.3).

The peak list files obtained following peak detection contained information about the retention

time (RT), mass-to-charge ratio (m/z) and intensity for each peak. Additionally for MS2 data,

an .mgf file was generated containing information on the fragments intensity and m/z and their

MS precursor.
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Set 1 Set 2 Set 3
Dataset Rep.1 Rep.2 Rep.1 Rep.2 Rep.1 Rep.2
DZ 37 38 42 35 10 11
DM 47 37 46 44 13 14
DV L 32 35 40 33 12 12

Table 5.3: Total number of SRM metabolites identified in the MZmine2 processed files.

5.2.4 Alignment MZmine2 workflow

MZmine2 was also used for peak lists alignment. Any aligned peak across the samples is defined

as a peakset. The simplest alignment algorithm employed by MZmine2 is the Join Aligner

algorithm which works as follows: the first peak list file from the list of peak list files (Si) is

set to be the master of the peak list files which will be matched against every other peak list file

(S j). For each sample file S j, the algorithm iterates through the rows of Si and for each row it

looks for peaks which are within the pre-set retention time alignment window (RTWindow) and

m/z alignment window (MZWindow). For each match, a score is computed using Eq. 5.1 and

the pair getting the highest score is aligned to Si.

score = (1− MZDi f f erence

MZWindow
)×MZWeight +(1− RT Di f f erence

RTWindow
)×RTWeight (5.1)

MZWindow, RTWindow, MZWeight and RTWeight were all manually set. MZWeight was

set to 75, RTWeight was set to 25 and MZWindow was set to 0.01, or 10 ppm. The value

for RTWindow was selected later in the analysis, after the retention time for each dataset was

processed as described in the next section.

5.2.5 SRMs analysis

First, the reference dataset –DZ– was randomly selected out of the two datasets with the shorter

run length. Next, the SRM metabolites were extracted from the peak lists for each dataset,

creating a profile for each dataset characterised by (m/z, RT) of each of the SRMs. The profiles

were then mapped to the reference dataset profile and for each metabolite the RT drift from the

mapped SRMs was determined and modelled using GP regression.

5.2.5.1 GPR modelling of the RT drift

The RTs from the (m/z, RT) profile created for each non-reference dataset (input observations)

were regressed against their respective RT drift from the reference dataset values (observed val-
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ues). In order to obtain a closer fit to the data but still maintain the variability, SRM metabolites

outliers were removed based on their RT drift from the reference profile using a z-score cutoff

value of 2. Model hyperparameter optimisation was done using multiple restarts (n=10) with the

GPy optimiser in order to avoid local minima. In order to determine which covariance function

aids in fitting the data best in each case, cross-validation was performed, by stratifying and split-

ting the SRM data in half for training and testing the model. Scikit python package was used

to calculate the prediction accuracy score, mean absolute error (MAE) and mean squared error

(MSE). For implementing the Gaussian Process models, the GPy python package, version 1.9.9

was used ( [40]).

5.2.5.2 GPR corrected data

The GPR corrected RT times were obtained by adding the GPR predicted variables (posterior

mean) to the initial RT values of each compound from the non-reference dataset.

5.2.5.3 Detection of alignment RT window parameter

The alignment of the peakset lists was performed using the JoinAligner module from MZmine2.

The optimal RTWindow parameter was determined by aligning the SRM peak lists RTWindow

values ranging from 0.01 min to 2 min. For each of the three SRM sets the total number of peaks

aligned and the total number of SRM metabolites that align for each RTWindow value across the

datasets is calculated. In order to determine the optimal RTWindow for all datasets, the value

for which the alignment results in the lowest total number of peaks aligned and highest number

of SRM metabolites is chosen for further analysis.

5.2.6 Samples analysis

The GPR models obtained in the previous stage were applied to each sample peak list by cor-

recting the RT values for each peakset as detailed above. The lists were then aligned using the

RTWindow value previously obtained. In order to reduce the data sparcity, the final peak list

obtained was first processed by filtering out the peaks based on the percentage of missing values

from each dataset. An arbitrary cut-off value of 50% was used, i.e. if a feature contains more

than 50% missing values in one or more datasets, the respective feature is eliminated from fur-

ther analysis.. Data imputation using k-nearest neighbours algorithm (KNN), where k=3, was

performed solely for visualisation purposes [134]. KNN is an algorithm used for matching a

point with its closest k-neighbours in a multi-dimensional space. It can be used for both discrete

and continuous data. The assumption behind using KNN for missing values is that a value can

be approximated by the values of the points that are closest to it, based on other variables.
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5.2.7 Statistical analysis

The statistical analysis focused on the intensity differences between the sample peak lists be-

longing to the control and infected groups from all three datasets. The intensities were log2 nor-

malised and modelled using linear regression included in the limma R package, where blocking

was used to adjust for the intensity variability between the different datasets [135]. The output

of this analysis is a list containing all the peaksets and their respective p-value, Benjamini-

Hochberg (BH) adjusted p-value and logarithmic fold change (logFC) between the two con-

ditions. The formula used for the linear regression is given below. The logFC values were

calculated both for all samples from the meta-dataset, i.e. integrated logFC (logFCm), and for

the samples from each individual dataset, i.e. individual logFC (logFCi).

Yi jk = α j + xiβ j + zkγ j + εi jk (5.2)

Where: Yi jk= response variable (intensity level of metabolite j in condition i and dataset k),

α j = intercept for metabolite j, xi= first predictor variable: condition (infected/ control), β j=

estimated difference for metabolite j for each condition, zk= second predictor variable: dataset,

γ j = the dataset effect for metabolite j, εi jk = error stochastic component, within group variation.

Based on the logFCi of each dataset obtained for each peakset it was determined whether the

perturbation was common to all datasets, i.e. whether the logFCi were all either positive or

negative, or specific to one dataset, i.e. logFCi for the dataset was opposite to the other datasets.

5.2.8 Feature annotation and pathway analysis

Fragmentation spectra from each dataset was aligned to the final filtered peak list. A profile

characterized by (m/z, RT, ms2spec) was created for the possible adducts/fragments for each

peakset (Table S2) and several methods were used for feature annotation. First, annotation was

performed using the SRM information by mapping the peaks profile against the SRM (m/z, RT)

profiles with an absolute m/z tolerance of 0.01. The SRM profiles were obtained prior to this

study following analysis with ToxID software by Glasgow Polyomics; samples are identified by

matching the mass spectra and retention times against entries in a library.

Next, the features were mapped against metabolite information extracted from the Human Meta-

bolome Database (HMDB). HMDB contains comprehensive information on a high number

of metabolites found in human sera. The metabolites and LC-MS experimental MS2 spectra

database were downloaded from HMDB. Where one or more spectra was aligned to a peak-

set, the attached spectrum/spectra were compared against the experimental LC-MS spectra from

HMDB and the match with the highest cosine similarity score was used to annotate the peak.
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Where possible, the annotation obtained from the matched spectra were compared with the

SRM annotation from ToxID in order to determine the cosine similarity threshold for separating

a good annotation from a bad one.

For pathway and activity network analysis mummichog version 2.3.3. was used [136]. Mum-

michog is a software which implements a set of statistical algorithms that predict functional

activity directly from measurements considered significant when compared to those in a refer-

ence sample [136]. It uses Kyoto Encyclopedia of Genes and Genomes (KEGG) to map the

metabolic pathways. The parameters used for mummichog analysis were: -m positive/negative

(ESI mode), -u 3 (instrument ppm tolerance), -c 0.05 (cutoff p-value used to select the significant

list of features). The network modules obtained from the mummichog analysis were inputted into

Cytoscape [137] to display the activity network.

5.2.9 Results visualisation

When comparing two different experimental groups, visualisation for metabolomics data results

is usually performed using volcano plots, heatmaps, scatter plots, bar plots or boxplots [51]. In

this case, results were represented using a box plots approach combined with scatter plots in

order to visualise the mean level and standard deviation of the samples in each group from each

dataset. This was due to the fact that there were ’batch’ differences in the peakset intensities, and

the analysis mainly focused on determining the direction of change in metabolites abundance

for each of the dataset. Therefore, for each peakset a box plot was done for both conditions for

each dataset, after imputing any missing values using KNN imputation.

5.2.10 Code

All of the analysis was performed in python programming language (https://github.com/anamaria-

uofg/mma). The information about any given peak was stored in an object (peakinfo) with the

following attributes: id, m/z, RT, p-val, t-val, logFC, mummichog annotation, mummichog path-

way, mummichog kegg id, std annotation, std kegg id, spectra, adducts, best_ms2_match_adduct,

ms2_annotation, ms2_kegg_id, intensities (from each sample). For the data processing per-

formed in this project Python 3.7 was mainly used and only occasionally R 3.5. For the data

pre-processing, the raw metabolomics .mzXML files were processed using MZmine 2.

5.2.11 Methodology evaluation

The peakset lists with no GPR correction were aligned and the same workflow was applied to

their analysis. The results obtained were compared with the results of the GPR modified data.
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Also, the datasets were individually analysed and their filtered peakset lists were then intersected

to determine whether any commonality can be found in this way. Additionally, the alignment

process was evaluated using the available MS2 data. If two compounds with similar m/z and

RT break down into the same fragments (during LC-MS analysis), then it is highly likely they

represent the same compound. Therefore, if a peakset has multiple highly similar MS2 spectra

from different datasets, it is likely that the peaks were aligned correctly. In order to measure the

similarity between two MS2 spectra, cosine similarity score implemented in mass-spec-utils was

used [138]. In order to evaluate the alignment process using MS2 data the spectral similarity

between the MS2 profiles was computed when more than one spectrum was aligned to one

peakset. For each of the spectral similarity scores (good spectral similarity score), the mean

of the corresponding distribution of random spectral similarity scores (bad spectral similarity

score) was calculated, which were obtained from spectra of peaksets with similar m/z (absolute

tolerance = 0.01), but different RT (difference larger than 40 s).
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5.3 Results

5.3.1 SRM Analysis

Between DZ and DM, 77 SRM metabolites were found in common: 37 in SRM Set 1, 32 in SRM

Set 2 and 8 in SRM Set 3. Between DZ and DV L 68 SRM metabolites were found in common:

32 in SRM Set 1, 27 in SRM Set 2 and 9 in SRM Set 3. In each case the mean retention time

drift along with other statistics between each dataset and the reference dataset was calculated

(Table 5.4). The reference RT was plotted against the RT drift for DM and DV L (Figure 5.2).

For DM the mean retention time drift in comparison to the reference dataset was 19.85 s and the

highest retention time drift between two peaks belonging to the same ion was 319.74 s. In the

case of DV L, the mean retention time drift was 112.03 s and the maximum retention time drift

was 252.54 s. Additionally, it may be observed that after 6 minutes the drift starts increasing

exponentially with time, which might prove more challenging to model than the drift observed

in DM.

Dataset Mean RT shift (s) STD Max. RT shift (s)
DZ vs. DM -19.85 41.40 319.74
DZ vs. DV L -112.03 84.78 252.54

Table 5.4: RT drift statistics between the reference dataset and DM and DV L

(a) (b)

Figure 5.2: The RT drift (min) before the GPR correction in DM (a) and DV L (b) in comparison to the
reference dataset DZ . The straight line represents the point where no drift occurs between the datasets.
The dotted lines represent a ±30 s interval allowed for the RT drift.

5.3.1.1 Correlation between the RT drift and other variables

The SRM analysis for +ve ESI mode data is presented below. Correlation between the RT drift

and the characteristics of the dataset profiles was checked and the highest correlation was found
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DZ m/z DZ RT DM m/z DM RT DV L m/z DV L RT
RT Drift DZ-DM -0.01 -0.04 -0.01 0.22 / /
RT Drift DZ-DV L -0.08 0.55 / / -0.08 0.796

Table 5.5: Correlation scores between the RT drift and (m/z, RT) of each dataset profile.

with the RT (Table 5.5). Based on this information, the training (70%) and test (30%) data were

split and stratified in 4 equal length bins based on the RT. Following cross-validation, the kernel

with the highest accuracy and lowest MAE was chosen. The final model was fitted using the

selected kernel and optimised using multi-start in order to deal with possible bad local minimum.

The regression was also fitted to individual m/z based bins to determine whether there was any

influence of m/z on the regression model (Figure 5.3). However, no difference between the

models for specific m/z bins was observed.
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Figure 5.3: GP regression models fitted to individual m/z based bins for DM (a) and DV L (b).

5.3.1.2 GPR modelling of the RT drift

Several kernels, among which RBF, neural network and cosine kernels, were tested to determine

which ones best fit the data. Composite kernels were also tested on the data. Following cross-

validation an RBF kernel was selected as the best for fitting the RT drift in DM with an accuracy

of 0.99, MAE = 0.06 and MSE = 0.03. When fitted to the whole data (except the outliers) the

final model had an accuracy score 0.93, MAE=0.14 and MSE = 0.46. Because of the small data

size the confidence interval below 5 minutes and above 20 minutes starts increasing. The two
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hyperparameters of the RBF function, i.e. variance and lengthscale, were optimised to 0.07 and

6.84 respectively (Gaussian noise variance = 0.01) (Figure 3).

For the drift in DV L a composite kernel RBF+MLP was chosen for fitting the data with an

accuracy score of 0.995, MAE=0.14 and MSE = 0.03 (Figure 4). When fitted to the whole

data (except the outliers) the final model had an accuracy score 0.89, MAE=0.27 and MSE =

0.74. The hyperparameters after 10 optimisation restarts: MLP variance = 3.99, MLP weight

variance = 2.02e7, MLP bias variance = 5.56e-309, RBF variance = 7.44, RBF lengthscale =

9.41 (Gaussian noise variance = 0.1).

(a) (b)

Figure 5.4: Modelling the drift in DM using an RBF kernel. Mean and posterior predictive variance
(confidence interval) of the GPR model with optimised hyperparameters. The plot on the right illustrates
the RT drift in DM before and after correction of the retention times using the GPR model.

RBF Value Constraints Priors
Variance 0.07 +ve.
Lengthscale 6.84 +ve
Gaussian Noise Variance 0.01 +ve

Table 5.6: Hyperparameter values of the GPR model using an RBF kernel which was used for modelling
the RT drift in DM

Sum Value Constraints Priors
RBF Variance 7.44 +ve.
RBF Lengthscale 9.41 +ve
MLP Variance 3.99 +ve.
MLP Weight Variance 2.02e7 +ve
MLP Bias Variance 5.56e-309 +ve.
Gaussian Noise Variance 0.1 +ve.

Table 5.7: Hyperparameter values of the GPR model using a composite RBF+MLP kernel which was
used for modelling the RT drift in DV L



CHAPTER 5. META METABOLOMICS ANALYSIS 87

(a) (b)

Figure 5.5: Modelling the drift in DV L using a composite RBF + MLP kernel. The graph on the left: Mean
and posterior predictive variance (confidence interval) of the GPR model with optimised hyperparameters:
MLP variance = 3.99, MLP weight variance = 2.02e7, MLP bias variance = 5.56e-309, RBF variance =
7.44, RBF lengthscale = 9.41. The plot on the right illustrates the RT drift in DV L before and after
correction of the retention times using the GPR model.

5.3.2 RTWindow value choice for JoinAligner module

For DM, 94.8% of the maximum number of SRM metabolites in common with the reference

dataset are aligned at RTWindow = 0.25 min after RT drift correction, as opposed to 19.48% be-

fore drift correction. Whereas, for DV L the maximum number of metabolites which are aligned

after drift correction are obtained at RTWindow = 0.5 min for which 92.67% of the metabolites

align, as opposed to 17.64% before correction. At a RTWindow value of 0.25 min 83.82% of the

metabolites align (Figure 5.6, 5.7). Based on these results, the optimal RTWindow parameter

for further alignment of the samples was selected RTWindow = 0.5 min. After correction, the

number of total peaksets obtained following alignment also decreases, signifying better aligned

peaks. Choosing the correct parameter for the RT window is important, because if the window

is too small, then false negatives are introduced and, vice-versa, if the window is too big, then

false positives are introduced.

5.3.3 Methodology evaluation

5.3.3.1 GPR corrected data vs original data

Results obtained for the +ve mode data are presented. In total, 625 peaksets remained after

filtering of the GPR corrected data, as opposed to 344 peaksets in the original data (Table 5.8).

Most of the peaks which are aligned only in the GPR modified data have the retention time in

the range of [7,13] minutes (Figure 5.8).
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(a) (b)

Figure 5.8: Peaks identified after alignment before (red) and after (green) GP modification. Peaks are
being represented based on their m/z (a) and RT (b).

Without GP With GP Difference
Sig. modified peak values 176 275 1.56
Total number of filtered peaks 344 604 1.98
Total number of peaks 38197 37220 0.97

Table 5.8: Results obtained from the un-modified and GP modified aligned data.

5.3.3.2 Individual datasets alignment

For DZ , 2305 peaksets remain after filtering, out of which 3 are significant. For DV L, 2392 peak-

sets remain after filtering, out of which 775 are significant. For DM, 2152 peaksets remain after

filtering, out of which 5 are significantly different. When intersecting the significantly different

peaksets, there is no peakset found to be in common between all three datasets. Therefore, align-

ing the peaksets together increases the number of samples, increasing statistical significance.

5.3.3.3 MS2 data

Due to the fragmentation strategy employed in each experiment, MS2 spectra were available

only for a small percentage of the data. From the filtered peaksets there were 217 peaksets with

MS2 spectra aligned, out of which 141 had an MS2 spectrum from one dataset attached to it,

65 peaks had MS2 spectra from 2 datasets attached and 11 peaks had MS2 spectra from all 3

datasets. The majority of peaksets were fragmented only in one dataset. Out of the 141 peaksets

with an MS2 spectrum from one dataset, 18.4% peaksets had MS2 data only from DM, 45.4%

from DZ and 36.2% from DV L. Based on Figure 5.9, the bad spectral similarity scores attached

to peaksets with the same m/z mainly have a lower similarity score than the good scores (87%),

which in general shows that the alignment worked.
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Figure 5.9: Spectral similarity scores of each peakset plotted against the difference between a random
spectral similarity score and the actual spectral similarity score. The points below the red line represent
the peaksets for which the actual spectral similarity score is higher than the score from randomly matched
spectra with similar m/z.

5.3.4 Sample analysis

5.3.4.1 Modifying samples RT based on the obtained GP regression models

Next, the retention times in the samples files were modified based on the previously obtained

GP regression models and aligned using the previously obtained RTWindow value.

For visualisation purposes, a particular peakset with m/z = 209.092 (L-Kynurenine) was ex-

tracted from each dataset and the chromatogram of the alignment before and after the GPR

correction is shown in Figure 5.10. As it may be observed, after the GP correction, all peaks

from the 3 datasets align properly.

Figure 5.10: TIC for m/z = 209.092 (L-Kynurenine) before and after GPR correction
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5.3.4.2 Samples alignment

For the samples alignment, the -ve ESI mode data was processed in the same way as the +ve

mode data which was presented above. The JoinAligner module was run with RTWindow = 0.5

min in order to align all 74 samples across the three datasets. Following alignment there were

37220 peaksets in +ve mode and 24729 in -ve mode. After filtering out the peaksets with more

than 50% values missing in any one dataset, only 1.68% of the total number of peaksets, i.e. 625,

remained. A similar percentage was obtained in the case of the negative mode data where 1.85%

(459) of the total number of peaksets remained. The differential expression analysis resulted in

207 significantly different (BH adjusted p-value < 0.05) features and 159 features in the positive

and negative mode, respectively. The results are attached in the following Google document:

Integrated LC-MS analysis results.

5.3.4.3 Metabolite annotation using HMDB and fragmentation spectra

Based on Figure 5.11 it can be clearly noticed that cosine similarity score of 0.35 marks a good

threshold point to indicate a good annotation. To be noted, however, that scores of around 0.2

could signify a related molecule of the analysed molecule. Peaks with a MS2 spectral match of

0.35 or more were annotated with their respective HMDB annotation.

(a) (b)

Figure 5.11: Histograms of the counts of actual (good) spectral similarity scores (a) and theoretical bad
spectral similarity scores (b). Most of the bad scores are distributed at a spectral similarity score = 0.1,
with less of them being distributed at a similarity score = 0.35. In contrast to this, most of the good scores
peak at a similarity score = 0.5.

Verifying the identity of tryptophan and kynurenine peaks using MS2 spectral information

Several statistically significant features which were annotated using the fragmentation spectra

and HMDB experimental spectra are presented to illustrate the similarity after they have been

matched. Their fragmentation spectra was graphically matched against the experimental Mass-

https://docs.google.com/spreadsheets/d/13jD4dxetNlIYKZ69Lspml8ixHM7CGZT06fHfqTSMnZo/edit?usp=sharing
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Bank fragmentation spectra using the metabolomics spectrum resolver (https://metabolomics-

usi.ucsd.edu/) [139]. Particular focus was offered to a set of annotated features which are rele-

vant to the fever mechanisms discussed in more detail in Chapter 6. Among these tryptophan,

kynurenine and niacinamide were of particular significance.

As both the tryptophan and kynurenine peaks had spectral information from one out of the three

datasets, it was used to verify the identity using the cosine similarity score with experimental LC-

MS/MS spectral information from HMDB. Metabolomics spectrum resolver was also used to

further check the similarity between the dataset spectrum and spectra obtained from MassBank.

Similarity scores of 0.35 and 0.54, respectively, were obtained for kynurenine and 0.31 and 0.55,

respectively, for the tryptophan fragment (with loss of ammonia) (Figure 5.12, Figure 5.13).

Figure 5.12: Peakset annotated as Kynurenine (M+H[1+]) using SRM matching method, mummichog

and HMDB matching method. The spectrum belongs to DV L (resolver obtained from ms2lda.org) and it
was matched against experimental LC-MS MS2 information from MassBank compound KO003269 with
a cosine similarity score of 0.54 (fragment tolerance =0.2) (Metabolomics spectrum resolver plot).

https://metabolomics-usi.ucsd.edu/mirror?usi1=mzspec:MS2LDA:TASK-1215:accession:1632350&usi2=mzdata:MASSBANK:KO003269&width=12&height=7&mz_min=45.0&mz_max=200.0&max_intensity=150.0&grid=false&annotate_peaks=[[59.0475,74.0225,98.9825,118.0675,132.0425,146.0625],[74,94.2,104,118.1,136.3,146.2,174.3]]&annotate_precision=4&annotation_rotation=90.0&cosine=standard&fragment_mz_tolerance=0.2
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Figure 5.13: Peak annotated as L-Tryptophan fragment with loss of ammonia (M-NH3+H[1+]) using
SRM matching method, mummichog and HMDB matching method. The loss of ammonia from proto-
nated tryptophan was observed as the primary fragmentation pathway in gas-phase reactions (Lioe et al.,
2004). The spectrum belongs to DZ and it was matched against experimental LC-MS MS2 information
from MassBank BML01191 compound with a cosine similarity score of 0.55 (fragment tolerance =0.2)
(Metabolomics spectrum resolver plot).

Verifying the alignment in the case of niacinamide Both niacinamide and niacin levels are

significantly lower in infected patients. The peak annotated as niacinamide in + ESI mode

has MS2 spectra from two datasets and in this case the similarity between the two spectra is

illustrated in Figure 5.14. A cosine similarity score of 1 was obtained, demonstrating that in this

case the alignment between the datasets was optimal.

https://metabolomics-usi.ucsd.edu/mirror?usi1=mzspec:MS2LDA:TASK-1199:accession:1628982&usi2=mzdata:MASSBANK:BML01191&width=12&height=7&mz_min=50&mz_max=220&max_intensity=150.0&grid=false&annotate_peaks=[[64.9275,91.0525,115.0525,118.0675,123.9625,146.0625,188.0725],[115.0536,118.065,132.0796,146.0597,170.0575]]&annotate_precision=4&annotation_rotation=90&cosine=standard&fragment_mz_tolerance=0.2
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Figure 5.14: Peak annotated as Niacinamide (M+H[1+]) using SRM matching method, mummichog

and HMDB matching method. Top spectrum belongs to the MS2 information obtained from DM and
the bottom spectrum belongs to the MS2 information obtained from DZ . The cosine similarity obtained
using metabolomics spectrum resolver is 1, which signifies a perfect match and also that the alignment
was accurate in this case (Metabolomics spectrum resolver plot).

https://metabolomics-usi.ucsd.edu/mirror?usi1=mzspec:MS2LDA:TASK-1199:accession:1628816&usi2=mzspec:MS2LDA:TASK-1204:accession:1630182&width=12&height=7&mz_min=50&mz_max=160&max_intensity=150.0&grid=false&annotate_peaks=[[80.0475,96.0425,123.0525],[80.0475,96.0425,123.0525]]&annotate_precision=4&annotation_rotation=90&cosine=standard&fragment_mz_tolerance=0.02
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5.4 Discussion

The algorithm behind the integration of the three datasets consisted of correcting the peaksets re-

tention time drift between the peak detected datasets based on GP models fitted to the RT drift in

SRM metabolites and, subsequently, aligning them. Up until recently, retention time drift occur-

ring in LC-MS experiments has only been studied in the context of the same experiment, rather

than between different experiments. Recent studies have begun exploring the retention time drift

problem in the context of large sample sizes and proposed several algorithms for correcting it.

One study in which alignment between samples from large-scale datasets is addressed, proposed

a profile-based alignment algorithm which uses a graphical time warping method to correct the

retention times for the mis-aligned features previously detected [140]. In this case, retention

time drift was corrected across different m/z bins. Two large-scale LC-MS datasets –Rotterdam

dataset (N=1000 samples) and MESA dataset (N=1977 samples)- were used for developing and

testing the algorithm. Both of them consisted also of internal quality control samples which are

aliquots of pools of all study samples. Misalignment was observed between the samples in each

dataset, which could also have been caused by the difference in acquisition instrumentation. In

this case, mis-aligned features referred to those which had a non-random set of sample indices.

Their reasoning was that neighbouring samples tend to be aligned together due to the similar

RT shifts. Thus, a feature that contains a continuous run of samples is deemed to be incorrect,

due to the fact that sample orders should be random in a well designed experiment [140]. They

then apply warping to the mis-aligned features as a function of m/z. In this chapter, it was also

tried to stratify the peaks according to m/z and apply different warping functions. However, no

difference between the different bins was noticed. This could also be due to the smaller sample

size available. In [140], they use a modified version of graphical time warping (GTW) to the

XIC profiles of the mis-aligned profiles.

A few studies used endogenous reference peaks as landmarks to model the RT shift between

sets of samples. Watrous et al [127] presented a feature-based method for aligning the samples

at a population scale (N=2895 human plasma samples) by correcting the non-linear retention

time shift inside the raw files, in a manner that is similar to this study. In order to determine the

retention shift between samples, they have used internal standards which were isotope labelled

and allowed modelling of the shift to correct raw files for further peak detection and alignment.

Afterwards, alignment was employed using MZmine’s JoinAligner alignment algorithm. An-

other study which used a feature-based alignment and RT drift correction method was by Li et

al [141]. They used adjacent tandem mass spectrometry information to select suitable endoge-

nous reference compounds which would act as landmarks for modelling the RT drift. However,

this was used on a small scale metabolomics dataset.

A recently published study [142] performed integration of two metabolomics datasets. Similar



CHAPTER 5. META METABOLOMICS ANALYSIS 97

to [141] they have also used internal reference compounds which were selected based on their

m/z and intensity. In contrast to our approach, in [142] each dataset was aligned separately

and annotated. They used reference metabolites generally found in metabolomics datasets (eg.

creatinine in urine), which were identified within both datasets and were mapped against each

other based on their RTs. A generalised additive model (GAM) was then fitted on the data and,

based on it, a predicted RT was calculated for all the peaks in the non-reference dataset. For each

feature pair in each m/z bin a score was calculated to rank the alignments on m/z, rt and relative

abundance (Q). This is quite similar to the score used by MZmine JoinAligner algorithm, apart

from the fact that they take into account the abundance parameter.

The advantage of the approach presented in this chapter of aligning multiple LC-MS datasets

at a retention time level is the identification of both putatively annotated and unannotated com-

pounds which act in the same way or uniquely to each disease. GP regression models provide a

robust framework to correct the RT drift between datasets. Additionally, as the overall sample

size is increased, statistical robustness of the analysis is enhanced, provided assumptions on the

underlying similarity in responses of disparate datasets, e.g. in this case, the separate pathogen

related infections here, are robust. A common limitation in many LC-MS biomarker discovery

studies introduced by the small sample size is, thus, overcome. Annotation using MS2 infor-

mation is also improved, as some datasets contain MS2 spectra for peaksets which are absent

in other datasets. This could be advantageous for datasets which have limited fragmentation

data available, as it improves the chance of a peakset having MS2 spectra aligned, and thus the

possibility for better annotation. In this sense, the datasets become complementary to each other.

One of the limitations of this study was that the algorithm was only tested with datasets run in

the same laboratory, on the same LC-MS platform, and at the moment it is not known whether

this method could be applied to metabolomics datasets run on different platforms. Annotation

was also a limitation, as it is the case for metabolomics studies in general [143, 144]. It is to be

noted that for some of the metabolites, the difference between the control group and the infected

group was larger in one of the datasets than in the other datasets and in some cases this could

have contributed to the statistical significance of the difference in the metabolites abundance in

control as opposed to infected. This could be either due to the disease itself or its severity. In

this case it is to be noted that DM was an intervention study and the infection was controlled and

less severe which might explain relatively lower logFC in the dataset.

5.4.1 Future directions

Regarding future research directions, improvements to the evaluation of the algorithm could be

made. At the moment, the evaluation was performed by comparing the GPR corrected aligned

datasets with the aligned datasets which were not drift corrected and more aligned peaksets
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were found in the GPR corrected aligned datasets. Additionally, fragmentation data from in-

dividual datasets was compared for each peakset with more than one MS2 spectrum aligned

to it. This was done using cosine score to determine the similarity between the aligned frag-

mentation spectra. This provided a more quantitative approach in evaluating the algorithm. An

even better evaluation method would be by using a control dataset which is run twice on the

LC-MS platform using different elution times, e.g. 20 min and 30 min, similarly to [142]. The

detected peaksets from the resulting two datasets would be aligned and compared with the de-

tected peaksets found in one of the dataset. The two resulting peaksets should then interpose

with each other. Once this form of evaluation is performed, the algorithm could be tested on

other metabolomics datasets. Another suggestion both for improving the evaluation algorithm

and for enabling molecular networking between the datasets is related to specific MS2 data ac-

quisition. This experiment used TopN MS2 data acquisition, where the first N ions with the

highest intensities were selected for fragmentation, but MS2 data acquisition specifically for the

ions of interest which were detected following alignment would improve the evaluation.

The integrating method presented in this chapter could be further developed into an web appli-

cation which could be used with ease by any researcher. As a proof-of-concept, a simple web

application was developed using Streamlit to compute the RT drift between 2 datasets and model

it using GP regression. This uses the ToxID files obtained following the SRM run to extract the

SRM metabolites information (m/z and RT). The files belong to datasets which the user would

like to integrate. The graphical user interface (GUI) is illustrated in Figure 5.15. The first in-

troduced files are considered the reference datasets. The RT drift is then computed and plotted

inside the GUI. If the mean of the drift is less or equal to 30 s then the user is asked whether he

wishes to continue with the analysis, i.e. fitting a GP model to it (Figure 5.15).

5.4.2 Conclusion

In conclusion three LC-MS datasets investigating metabolic changes in Zika, malaria and VL

infected patients were successfully aligned together using fitted GP models for correcting the RT

drift between them, determined by the RTs of the SRM metabolites within each dataset. Proper

peakset alignment across multiple disparate untargeted metabolomics datasets led to the iden-

tification of compounds changing in abundance in similar ways across the different infectious

diseases. Moreover this sort of approach was easily integrated with already existing alignment

software such as JoinAligner. Following compound annotation and statistical analysis, both

common and specific dysregulation patterns were observed in metabolic pathways. These are

presented and discussed in detail in the next chapter.
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(a)

(b)

Figure 5.15: Graphical user interface for the web application developed with Streamlit for detection and
modelling the RT drift between sets of SRM metabolites from disparate metabolomics datasets: a) SRM
files are uploaded, and the RT information of each SRM is extracted for two of the datasets and plotted
against each other; b) the GP regression model is applied to the identified RT drift.



Chapter 6

Identifying metabolites common to

fever-associated diseases and specific to

individual diseases

This chapter aims to further explore the molecular mechanism of febrile illnesses and discuss

the putatively annotated features identified in the analysis of the previous chapter. These were

investigated based on the logFC values obtained following the statistical analysis performed

with limma. These denoted the log transformed fold change between the infected and control

samples. For each feature, the logFC value was computed both for the integrated datasets,

logFCm, and also for each individual dataset, logFCi. Based on the logFCi obtained for each

individual dataset, features were categorised as being downregulated or upregulated in a similar

manner across the datasets, or uniquely for each dataset. These features are investigated in

the next sections of this chapter. The pathway analysis results obtained using mummichog and

KEGG are also discussed.

Commonly regulated features could be indicative of disease severity or infectious disease in

general, whereas individually regulated features could aid in the diagnosis of a specific febrile

infectious disease. It should be taken into account, however, that the interpretation of the results

is highly dependent on the annotation of the features and the accuracy of the peak detection

process. In this case annotation was performed either by mapping the features on to the SRM list

(srm), by using the MS2 data and matching the spectra against experimental spectra from HMDB

(ms2) or as a result of mummichog analysis (mm). Overall, for the +ve ESI mode data, out of

the total number of peaksets, 15% were annotated with srm, 8% with ms2 and 39.8% with mm,

and for the -ve ESI mode data 5.7% were annotated using srm, 4.4% with ms2 and 35.5% with

mm. Whenever a feature had annotation from multiple sources which did not match, the srm

annotation was the one taken into further consideration. The annotation process also took into

consideration possible adducts and fragments which could result during the LC-MS analysis.

100
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Therefore, multiple peaksets could be annotated as being the same metabolite. Additionally,

following the peak detection process, there is a possibility of split peaks or false peaks being

detected, as a consequence of static parameterization [66]. This also, in turn, influences the

annotation process and could result into erroneously annotated peaksets. Identical annotation

associated with multiple peaks could also be due to the presence of isomers, i.e. compounds

with the same m/z, but different chemical structure.
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6.1 Metabolites in common between the fever-associated dis-

eases

In this section, the set of metabolic compounds which present common perturbations across the

studied datasets are discussed. The putatively annotated metabolites which were found to be

either upregulated or downregulated in all three datasets are presented, and their importance in

the fever molecular mechanism is discussed based on the pathway analysis findings.

6.1.1 Overview of significantly modified annotated metabolites

The significant features which have been putatively annotated and present a common trend based

on the logFCi values between the infected and control groups are presented in Figure 6.1, Figure

6.2 and Figure 6.3. Based on this, a general trend over the three datasets was established. For the

+ve ESI mode data, 30 peaksets presented a general upward trend (all datasets have logFCi>0)

out of which 11 were statistically significant and 150 peaksets presented a general downward

trend (logFCi<0) out of which 69 were significant. For the -ve ESI mode data, 46 peaksets

presented a general upward trend out of which 25 were statistically significant and 115 peaksets

presented a general downward trend out of which 74 were significant. Figure 6.1 presents the up-

regulated metabolites in the infected group. These include metabolites from different molecule

classes such as amino acids (asparagine, aspartic acid, kynurenine and kynurenic acid), sugars

(glucose), nucleic acids (cytosine) and lipids (chenodeoxyglycocholate). Figures 6.2 and 6.3

contain boxplots of the downregulated metabolites in the infected group. In this case, more

metabolites were identified, which are discussed in more detail in the next section.

It is to be noted that the boxplots were plotted after imputing the missing values. For some of

the peaksets, some samples had registered an intensity value of 0. A reason for this might be that

no peak was identified for that particular sample. For illustrative purposes, mainly to aid with

scaling issues when plotting the values into boxplots, the missing values were imputed using

KNN algorithm as described in Chapter 5 Section 2.6. Sometimes this might have an impact on

the boxplots, and might skew the actual logFCi values, i.e. if the actual logFCi value is positive,

after imputing missing values the resulting logFCi value could be negative.

A table containing the results following the statistical analysis with annotation is included in

the linked table. It was observed that a large proportion of the features elutes in clusters of

similar retention time, indicating that they might be related, i.e.fragment or adduct of the parent

ion. The list of ions used to calculate the possible adducts/fragments of each peak are included

in the linked table. Common adducts include gain of 13C, 34S, H2O, Na or K and common

fragmentation patterns include loss of CO, H2O, HCOOH, NH3, C3H4O2, H4O2.

https://docs.google.com/spreadsheets/d/13jD4dxetNlIYKZ69Lspml8ixHM7CGZT06fHfqTSMnZo/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1k-Q3o-aLdRPZkR4ldK2RTPIB44Rk1ynySvgtsLPfKSg/edit#gid=0
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Asparagine [M+H]+

Upregulated metabolites

Amino acids and derivatives

Lipids and derivatives

PyrimidinesSugars

Cytosine [M+H]+

Kynurenine [M+H]+

Chenodeoxyglycocholate [M+H]+

Kynurenic Acid [M+H]+

3-Hydroxybutanoate [M-H]-

Aspartate 4-Semialdehyde [M-H]-

Glucose [M-H]-

Octadecanoate [M-H]- 6-Hydroxyhexanoate [M-H2O-H]-

RT: 10.33 min RT: 9.21 min RT: 9.32 min RT: 6.71 min

RT: 3.88 min RT: 8.63 min RT: 3.32 min RT: 6.69 min

RT: 11.85 min RT: 9.76 min

Figure 6.1: Boxplots of annotated compounds for both conditions in each dataset. Overview of annotated
metabolites which are statistically significant (p-val<0.05) and present a general upward trend in all three
datasets, i.e higher intensities in infected patients. Values from both positive and negative ionisation
mode are presented from left to right in ascending order of their p-value. Metabolites in italic font are
only annotated using mummichog.



CHAPTER 6. BIOMARKERS OF FEVER-ASSOCIATED DISEASES 104

Threonine [M-H]-

Citrulline [M-NH3+H]+Methionine [M-H]-

Glutamine [M+H]+

Downregulated metabolites

A
m

in
o
 a

ci
d

s 
a
n

d
 d

er
iv

a
ti

v
es

C
a
rb

o
x
y
li

c 
a
ci

d
s

Indoles

Taurine [M+H]+ O-Acetyl-L-Serine [M-H2O+H]+ Methylcysteine [M+H]+

Homoserine [M-H4O2+H]+

Indole-3-acetate [M+H]+

Histidine [M(13C)+H]+ Tryptophan [M-NH3+H]+

Lactate [M-H]- Oxalate [M-H]-

5-Methoxyindole acetate [M-H]-

Malate [M-H2O-H]-

RT: 11.91 min RT: 12.21 min RT: = 11.89 min

5-Oxoproline [M+H]+

RT: 12.21 min

RT: = 10.09 min

RT: 11.88 min RT: 9.93 min RT: 12.42 min

RT: 11.71 min RT: 11.77 min RT: 9.96 min

RT: 8.998 min RT: 13.74 min RT: 11.11 min

RT: 8.296 min RT: 7.52 min

Figure 6.2: Boxplots of annotated compounds for both conditions in each dataset. Overview of annotated
metabolites which are statistically significant (p-val<0.05) and present a general downward trend in all
three datasets, i.e. lower intensities in infected patients (with p-value <0.05). Values from both positive
and negative ionisation mode are presented from left to right in descending order of their p-value in each
group. Metabolites in italic font are only annotated using mummichog.
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Nucleotides and derivatives

sn-Glycero-

3-Phosphocholine [M+H]+ Sphingosine 1-Phosphate [M+H]+ 20:5 Carnitine [M+Na]+

O-Acetylcarnitine [M(13C)+H]+

Adenine [M+H2O+H]+

22:6 Carnitine [M+Na]+

Linoleyl carnitine [M+H]+ Choline [M(13C)+H]+
Tetracosapentaenoyl

carnitine [M+Na]+

Uridine [M-H]-

Linoelaidic acid [M-H]- Tetradecanoate [M(13C)-H]-

Uracil [M-H]-

Downregulated metabolites

RT: 11.35 min RT: 6.71 min RT: 3.97 min RT: 3.86 min

RT: 9.29 min RT: 3.70 min RT: 16.70 min RT: 3.74 min

RT: 3.13 min RT: 3.41 min

RT: 9.04 min RT: 8.89 min RT: 8.90 min

Figure 6.3: Boxplots of annotated compounds for both conditions in each dataset. Overview of annotated
metabolites which are statistically significant (p-val<0.05) and present a general downward trend in all
three datasets, i.e. lower intensities in infected patients (with p-value <0.05). Values from both positive
and negative ionisation mode are presented from left to right in descending order of their p-value in each
group. Metabolites in italic font are only annotated using mummichog.
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6.1.2 Pathway analysis results

Following mummichog pathway analysis for the data obtained in both the positive and nega-

tive ionisation modes, 20 KEGG pathways were found to be statistically significant. The al-

gorithm behind mummichog is constituted of two main complementary parts: pathway analysis

and module analysis [136]. The module or activity network can be within a pathway or between

several pathways which show more internal connections than expected randomly in the whole

network [136]. This tends to be less biased than the usual biological pathway. The pathway and

network analysis in mummichog are performed by mapping the data to KEGG pathways and

BioCyc metabolic networks, respectively. Statistical significance of the networks is calculated

based on a variation of Fisher’s exact test (FET). In order to distinguish between real signals

and random data, a distribution of random data is generated and mapped to the database path-

ways [136]. By contrasting the pathway enrichment result obtained from statistically significant

features against random data, the likelihood of finding the correct pathways and metabolites can

be quantified [136].

The pathway analysis revealed a significant impact of the studied infectious diseases primarily

on nitrogen metabolism with a focus on tryptophan metabolism (Table 6.1). Following the mod-

ular analysis, the activity network for the +ve ESI mode data is also centered around tryptophan

metabolism, specifically the kynurenine pathway, which is discussed in more detail next (Fig-

ure6.4). For the -ve ESI mode data, the activity network includes tryptophan metabolites and,

additionally, citric acid cycle metabolites.

KEGG Pathway p-value ESI mode

Nitrogen metabolism 0.000672 +

Tryptophan metabolism 0.00084 +

Alanine and Aspartate Metabolism 0.002017 +

Pyruvate Metabolism 0.00521 -

Vitamin B3 (nicotinate and nicotinamide) metabolism 0.005546 +

Pyrimidine metabolism 0.007226 +

Glycolysis and Gluconeogenesis 0.008151 -

Carnitine shuttle 0.009243 +

Glycerophospholipid metabolism 0.013024 -

Glycosphingolipid metabolism 0.013024 -

Methionine and cysteine metabolism 0.015965 +

Aminosugars metabolism 0.022939 +

Purine metabolism 0.022939 +

Bile acid biosynthesis 0.031846 +
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Fatty Acid Metabolism 0.031846 -

Putative anti-Inflammatory metabolites formation from EPA 0.031846 +

Androgen and estrogen biosynthesis and metabolism 0.03924 -

C21-steroid hormone biosynthesis and metabolism 0.03924 -

Vitamin B1 (thiamin) metabolism 0.03924 -

Glutathione Metabolism 0.04445 +

Table 6.1: Significantly altered metabolic pathways (p-val<0.05) following mummichog analysis of the
negative and positive ionisation mode data.

(a)

(b)

Figure 6.4: mummichog activity networks plotted in Cytoscape obtained following the analysis of the
positive mode LC-MS data (up) and negative mode LC-MS data (down). Metabolites involved in the
tryptophan metabolism and citric acid cycle are predominat in the activity networks.
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6.1.2.1 Tryptophan metabolism

Focused analysis on this pathway represented in Figure 6.5 revealed significant decreases ac-

companied by a general downward trend in all three datasets in tryptophan and tryptophan

derivatives such as indoleacetic acid and methoxyindole acetate. Methyl indole acetate and

formyl-N-acetyl-5-methoxy kyunernamine were also significantly decreased in the infected group

with the exception of the Malaria dataset where the logFCi value was slightly higher (Figure

6.5). In contrast, the kynurenine pathway suggests an increased activation as kynurenine and

kynurenic acid present higher levels in infected patients in all three datasets. 3-Hydroxyanthranilate

was in general higher as well with the exception of the Malaria dataset were logFCi value was

slightly lower. Anthranilate levels were also reduced in infected patients across all datasets, al-

though not statistically significant so. Nicotinic acid (- ESI mode) was also found in significantly

lower levels in infected patients and nicotinamide was significantly lower, although Zika dataset

had positive logFCi (Figure 6.3). It is important to note that unless otherwise stated, annotations

are putative and based on m/z alone.

Tryptophan metabolism has previously been associated with various agents of infection [145],

particularly its flow through the kynurenine pathway which produces metabolites including

kynurenate and nicotinamide adenine dinucleotide (NAD+). Of particular interest is the inverse

relation between kynurenine and tryptophan, as the ratio between the two is used to measure the

activity of the enzyme indoleamine-2,3-dioxygenase 1 (IDO-1) [146]. IDO-1 is the rate limit-

ing step of the tryptophan pathway and it catalyses the breakdown of tryptophan to kynurenine.

IDO-1 activity is also tightly regulated by interferon gamma (IFN-γ) activity [147]. Similar to

this, COX-2, an enzyme central to the fever process, can also be induced by IFN-γ [148]. The

interplay between IDO-1 and COX-2 enzymes has been previously studied where inhibition

of COX-2 enzyme has led to a downregulation in IDO-1 and decrease in kynurenine metabo-

lites [149].

The effect of each separate disease on the kynurenine pathway has also been studied previously

for specific infectious disease associated with fever: malaria [150], HAT [151], Zika virus [152]

and VL [153]. For each disease, an increased degradation of tryptophan into kynurenine, as a

consequence of an increased IDO-1 activity was observed. IDO-1 is located in immune cells

such as macrophages and monocytes, and nerve cells, microglia, astrocytes and neurons [152].

In the presence of proinflammatory cytokines, particularly IFN-γ , TNF-α and less so by IFN-

α and IFN-β [154], IDO-1 gets activated, which in turn leads to neuroprotective and neuro-

toxic metabolites being generated. In mice models with increased levels IFN-γ , higher levels

of quinolinic acid in the hippocampal area were observed [154]. It could also be hypothesised

in this case, that the increased level in kynurenine and decreased levels of tryptophan not only

indicate an increased IDO-1 activity, but also an increased COX-2 activity.
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Figure 6.5: Tryptophan metabolism and the changing metabolites from each dataset. Intensities values
are represented as lg2 values. The metabolites were mapped against the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway map hsa00380. Metabolites in italic font are annotated following mummichog

analysis or HMDB matching method, while the rest are annotated using the SRM metabolites information.
The boxplots representing the intensities of all the samples in each condition (red = infected, blue =
control) in all three datasets.
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6.1.2.2 Amino acid metabolism

The rest of the significantly affected pathways relate mostly to other amino acids metabolism

such as alanine, aspartate and glutamate metabolism, methionine and cysteine metabolism and

glutathione metabolism (Table 6.1). Figure 6.3 indicates a clear suppression in amino acid

metabolism, especially in glutamine and related metabolites. In immune cells, glutamine is

converted through glutaminolysis into glutamate, aspartate and alanine by undergoing partial

oxidation [155]. This could explain the decrease in glutamine and increase in aspartate in the

infected group in all three datasets. Similarly, another glutamine derived metabolite, asparagine,

was found to be increased in infected patients in all three datasets. Aspartate then feeds into

the urea cycle and gets converted into arginosuccinate, fumarate, arginine, urea, ornithine and

citrulline which gets converted back to aspartate [156].

Glutamine also acts as a precursor for citrulline which plays an important role in arginine biosyn-

thesis in the urea cycle. Citrulline levels were significantly lower in the infected group from the

three datasets. Citrulline is also a product of arginine deamination along with nitric oxide (NO),

a process which is catalysed by nitric oxide synthase. It is well known that NO takes part in

the antimicrobial defence mechanism during infection and inflammation [157]. The antimicro-

bial effect does not stem from NO, but from the reactive nitrogen intermediates formed after

its oxidation, which inactivate microbial enzymes (ribonucleotide reductase, aconitase) [158].

The lower levels of citrulline in the infected groups, which could also signify higher levels of

NO, could indicate an increased production of NO to fight against the infection. For the present

meta-dataset one peakset was identified as being arginine through ms2 matching (ID:760). This

was indeed downregulated in all datasets, but without statistical significance.

Altered glutathione metabolism accompanied by a dysregulated methionine and cysteine meta-

bolism could also be observed from the analysis of the metadataset. The plasma levels of the

amino acid 5-oxoproline (pyroglutamic acid) were also lower in the infected patients in compari-

son to healthy controls. Additionally, the sulfur containing amino acids methionine and methyl-

cysteine showed a decrease in the infected patients. A precursor of cysteine, o-acetylserine

was also decreased in the infected group alongside threonine and homoserine. Taurine, another

metabolite derived from cysteine metabolism, was found to have significantly lower levels in

infected patients in the metadataset. Overall, the decrease in reduced thiols, may arise due to

increased levels of oxidative stress in response to infection. There has been previous evidence

which suggests that the alteration of the redox homeostasis and glutathione depletion affect nor-

mal body temperature [159].

Other amino acids presenting lower levels in all three datasets in the infected group but not with

statistical significance include: beta-alanine, proline and betaine. In contrast, a few amino acids

and their relatives presented overall higher levels in infected patients: carnitine, tyrosine and

leucine.
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Figure 6.6: NO synthesis and the changing metabolites from each dataset. Intensities values are rep-
resented as lg2 values. The metabolites were mapped against the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway map hsa00380. Metabolites in italic font are annotated following mummi-

chog analysis or HMDB matching method, while the rest are annotated using the SRM metabolites in-
formation. The boxplots representing the intensities of all the samples in each condition (red = infected,
blue = control) in all three datasets.

6.1.2.3 Carbon metabolism

A significant increase in glucose was also noted across datasets (Fig 6.3) indicating alterations in

central carbon metabolism. Indeed, perturbations to the glycolytic process and citric acid cycle,

in particular, were confirmed in - ESI mode data particularly with significant decreases in lactate

and malate 6.6. The significant increase in glucose is related to stress-induced hyperglycaemia

which occurs in cases such as fever and infectious diseases [160]. This occurs due to the in-

teraction between proinflammatory cytokines (TNF-α , IL-1, IL-6), the hypothalamic-pituitary

axis and the noradrenergic system [160].
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6.1.2.4 Lipid metabolism

Lipid abnormalities were also noted in the sera of infected patients, which demonstrated sig-

nificant changes in the fatty acid metabolism, where there was a significant decrease mainly

in particular acylcarnitines (Figure 6.2). Fatty acids, 3-hydroxybutanoate, 6-hydroxyhexanoate

and octadecanoate were, on the other hand, all increased. This could be related to the previously

mentioned increase in carnitine and subsequent decrease in acetylcarnitine levels which might

indicate an increased activity in releasing fatty acids. Short-chain fatty acids are known to have

a protective role and play a beneficial part in reducing endothelial activation, which leads to a

reduction in proinflammatory cytokine production and adhesion molecule expression [161].

Sphingolipid and glycerophospholipid metabolism were also affected with sphingosine 1-phosphate

being lower in all datasets. This might be indicative of liver damage, which is also reflected in the

significantly modified levels of bile acids and taurine [162]. Bile acid biosynthesis metabolism

also seems to be affected with taurine levels decreasing significantly in infected patients and

chenodeoxycholate being significantly increased in infected patients. Choline and its deriva-

tives were also downregulated in infected patients, which might also be related to macrophage

metabolism [163].

Sphingolipids are not only important cellular membrane components, but they also have a dy-

namic role in cellular signalling and are involved in processes such as proliferation, endocytosis,

necrosis, apoptosis and migration [164]. These are also a pathogen membrane component and

have, thus, an important role in infectious diseases. Key molecules in sphingolipid signalling

are: ceramide, sphingosine and sphingosine-1-phosphate (S1P). S1P is produced during inflam-

mation or following tissue damage and it has been reported that pathogens affect S1P signalling

via sphingosine kinase/S1P axis [165]. S1P exists both in the intracellular and extracellular

pool, particularly in plasma. Plasma S1P has been shown to regulate various processes related to

pathogenesis [166]. According to [166] reduced plasma S1P levels were associated with malaria

severity in mice. There is also evidence that S1P bioavailability could have a role in attenuating

endothelial damage. S1P also known to induce NO release from endothelial cells [167].

Linoelaidic acid was also putatively annotated. This is an isomer of linoleic acid, so without fur-

ther confirmation the feature could also be linoleic acid, a precursor to eicosanoids. It was found

to be significantly lower with a general downward trend in all datasets. Another feature was

annotated as linoleic acid which was annotated both by mummichog and MS2 spectral valida-

tion and was also decreased in infected patients, albeit without reaching statistical significance,

apart from DZ where logFCi was positive (0.4). Linoleic acid is a precursor for arachidonic

acid from which prostaglandins and other bioactive eicosanoids are synthesised. In the context

of fever, it could be hypothesized that an increased production of PGE2 due to the activation

of COX-2 causes an increased turnover of arachidonic acid with a subsequent increased usage

of linoleic acid, hence the decreased levels in serum. The LC-MS platform used here does not
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readily detect arachidonic acid or its products.

Linoleic acid [M+H
2
O+H]+

RT: 3.05 min

(a)

Linolelaidic acid [M-H]-

RT: 3.13 min

(b)

Figure 6.7: (a) Boxplot of the intensities in each group and dataset for the compound putatively annotated
as linoleic acid using mummichog and MS2 data. Linoleic acid is a precursor to arachidonic acid and
prostaglandin E2 which plays an important role in the physiological mechanism of fever. Here the linoleic
acid levels are generally lower in the infected group (red) which might be due to the increased production
of arachidonic acid. (b) Peak putatively annotated as linoelaidic acid in negative mode by mummichog.
Linoelaidic acid is an isomer of linoleic acid, so it could be either without further confirmation from
tandem MS analysis. In a) the peakset represents an adduct of linoleic acid, hence the difference in m/z
between the two. The downward trend is noticeable in both cases.

6.1.2.5 Nucleotide metabolism

Pyrimidine metabolism is significantly affected with cytosine being significantly higher in in-

fected patients. Viral infections are known to cause significant metabolic changes in host cells,

such as upregulation of pyrimidine nucleotide biosynthesis [168]. Uracil and its derivative, uri-

dine, on the other hand, were found to be significantly decreased in all three datasets in the

infected group. Purine metabolism is also affected, with adenine being significantly lower in

infected patients.

6.1.3 Connecting the results with the molecular mechanisms of fever

The algorithm was written with the intention of comparing datasets related to infection, hence

we sought differences between the two conditions from all three datasets using linear regression

from limma and mummichog to determine the biological network of activity and significantly af-

fected pathways in the infected samples group. This study offers a route to identify commonality

in the metabolic profile in infected patients affected by pathogens that cause fever. At the centre

of this meta-dataset stands the relationship between the kynurenine and tryptophan metabolites,

as also identified by mummichog pathway analysis.
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The existing proposed molecular basis for fever involves the following. The innate immune sys-

tem is activated through pathogen recognition by toll-like receptors e.g. TLR-4. There are sev-

eral pathogen-derived recognition molecules, with the most studied ones being the lipopolysac-

charides (LPS) [159]. LPS interact with TLR-4 which further induce activation of nuclear factor

κB (NF-κB). This, in turn, initiates the production of endogenous pyrogenic cytokines (IL-6,

IL-1β , TNF-α) [159]. These pyrogenic cytokines then act on the organum vasculosus of the

laminae terminalis in the hypothalamus. They also trigger the release of arachidonic acid from

membrane phospholipids which is converted to prostaglandin H2 (PGH2) via the activation of

cyclooxygenase-2 (COX-2), the rate limiting enzyme in the synthesis of prostaglandins [159].

The microsomal prostaglandin E2 synthase (mPGES-1) then converts PGH2 into prostaglandin

E2 (PGE2) which acts on the pre-optic nucleus in the hypothalamus leading to an elevated tem-

perature set-point. Additional negative feedback systems prevent excessive elevation of body

temperature via antipyretic cytokines (IL-1Ra, IL-10, TNF-α binding protein) [1]. Other inflam-

matory mediators, apart from PGE2, which could act as pyrogens are: bradykinin, corticotropin

releasing hormone, nitric oxide [169], endothelin and macrophage inflammatory protein 1 (MIP-

1) [159].

Based on the obtained results, a possible connection between fever and the kynurenine pathway

from tryptophan metabolism could be explained by the interplay between IDO-1 and COX-2.

An activation of IDO-1 could lead to a decreased inhibition of COX-2 which in turn could lead

to an increased activation of PGE2 release. The link between the two enzymes and inflammation

has been previously studied. COX-2 enzyme activity suppression could also be decreased by

the lower levels of niacinamide in the infected group, as niacinamide has been shown to influ-

ence its activity [170]. It is worth noting that serum metabolomics, as used here, detects only

a faint echo of the changes that are occuring in specific cell types orchestrating inflammation

in local anatomical sites associated with infection. Although PGE2 was not annotated in these

datasets (prostaglandins being difficult to detect using the platform used), linoelaidic acid and

linoleic acid were putatively annotated and found to be decreased. Linoleic acid is a precursor

of arachidonic acid and bioactive eicosanoids such as PGE2. The general decreased level in the

infected group could point to an increased production of arachidonic acid and, thus, PGE2. Set-

ting these results into the context of the ongoing pandemic, recent metabolomics investigations

on SARS-CoV2 infection in coronavirus patients also pinpointed significant alterations in the

tryptophan-kynurenine pathway [171,172], with kynurenine levels increasing as disease severity

did, although it would appear kynurenine increase is a general feature of febrile illness rather

than a coronavirus specific response.

Many of the other metabolites found to have significant abundance level differences between

the two groups have also been studied before in relation to their role in immunometabolism,

due to their effect in altering the expression of either pro-inflammatory or anti-inflammatory

cytokines. Glutamine, for instance, plays a major role in the immune system, as a key energy
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source for immune cells and it is used at a higher rate during catabolic conditions such as sepsis

or other infections [155]. As suggested by [173] metabolites such as depleted glutamine and

citrulline identified in this study could also be used as indicators of disease severity. Decreased

oxoproline levels were also previously associated with a non-infectious fever-associated disease,

Rheumatoid Arthritis [174].

It should be noted that while some of the commonly affected metabolites could indeed be related

to fever or inflammation, others, such as those involved in pyrimidine metabolism, could be

related strictly to the pathogenic aspect of the studied datasets, as previously noted above.
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6.2 Metabolites specific to individual datasets

The sample size of the investigated datasets was small, a common limitation in metabolomics

studies. DM had only 14 samples in total, DZ 20 samples and DV L 40 samples. This can affect the

statistical significance of the results when comparing the infected and control samples. Hence,

integrating the datasets provided an increased sample size and statistical robustness. However,

when integrating the datasets, apart from the features which behave in similar manner in infected

vs. control based on the logFCi computed for each dataset, features which behave in a specific

manner to only one of the datasets can be more easily detected when using each dataset’s logFCi

value to differentiate it from the other dataset with opposite logFCi values. However, it should

be noted that because of the small sample size of each dataset, the statistical significance of the

fold change value between the conditions is also affected.

It should be noted that this is only putative annotation and hence the reporting of results may

not be totally accurate. In this investigation, however, annotation using SRM was considered

most reliable. After corroborating these results, and combining any duplicates, the metabolites

specific to one dataset are listed in Table 6.2 below. The metabolites which were also detected in

common for all datasets were filtered out. Additionally, the peaks with the same annotation, but

opposing logFCm values were also filtered out. For this analysis, peaksets for each individual

dataset which did not align during the integration process were also taken into consideration.

DM In the case of the malaria dataset there were 149 features with logFC values opposite

from the other two datasets, out of which one was statistically significant. In the ascending or-

der of their logFC values, the putatively annotated features are enumerated next with attached

information on the peakset ID and the method of annotation: a) downregulated: cortisone

(2472, mm), creatinine (175, ms2), imidazole-4-acetate (325, srm); n1-methyl-2-pyridone-5-

carboxamide (716, mm), 3-hydroxyanthranilate (712, mm); b) upregulated: cystine (1839, srm),

methyl indole-3-acetate (1229, mm), hippuric acid (3642, ms2). From the mummichog pathway

analysis results methionine metabolism stood out for DM for the upregulated features. For the

- ESI mode results: a) downregulated: arachidonic acid (1458, 1453, mm), glycerol (69, mm),

glycocholate (3154, mm), docosahexaenoic acid (1515, mm); b) upregulated: methyl indole-3-

acetate (856, mm). Additionally, signficantly upregulated adenosine in DM was identified in the

peaksets specific to the dataset, i.e. which were not aligned with the peaksets from the other

datasets.

DZ In the case of DZ there were 145 features with logFC values opposite from the other two

datasets, out of which two were statistically significant for the dataset. In the ascending order

of their logFC values the putatively annotated features are the following: a) downregulated:
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epinephrine (743, mm), n(pi)-methyl-l-histidine (10779, srm). For the - ESI mode results: a)

downregulated: 4-coumaryl alcohol (532, mm), choline phosphate (660, mm).

DV L In the case of DV L there were 151 features with logFC values opposite from the other

two datasets, out of which 57 were statistically significant for the dataset. The higher number

of statistically significant logFC values in the case of this dataset stem mainly from the higher

number of samples (N=40) compared to the other two datasets. Most of the highly downregu-

lated features were not annotated by mm/ms2/srm method. Manual annotation was performed in

this case, most of them being assigned to various phophatidyl cholines: PC 38:4 (3022), PC p-

38:5 (2958), PC 40:7 (3000). In the ascending order of their logFC values the putatively anno-

tated features are the following: a) downregulated: porphobilinogen (177, mm); b) upregulated:

phenylacetylglycine (897, srm), ornithine (198, mm), 2-phenylacetamide (236, mm), creatinine

(183, srm, ms2,mm); |logFC|<1: pyridoxine (1191, srm). For the - ESI mode results: a) down-

regulated: 2-oxobutanoate (120, srm), b) upregulated: d-threose (271, srm), d-erythrose (447,

srm), l-iditol (797, mm). Additionally, lysine and dihydrouracil were significantly upregulated

in the individual DV L.
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Metabolites DM DZ DV L Taxonomy

2-phenylacetamide ↑↑ amide derivatives

creatinine ↑↑ amino acids and derivatives

cystine ↑↑ amino acids and derivatives

lysine ↑↑ amino acids and derivatives

n(pi)-methylhistidine ↓↓ amino acids and derivatives

ornithine ↑↑ amino acids and derivatives

phenylacetylglycine ↑↑ amino acids and derivatives

porphobilinogen ↓↓ amino acids and derivatives

erythrose ↑↑ carbohydrates and derivatives

glycerol ↓↓ carbohydrates and derivatives

iditol ↑↑ carbohydrates and derivatives

threose ↑↑ carbohydrates and derivatives

2-oxobutanoate ↓↓ carboxylic acids and derivatives

hippuric acid ↑↑ carboxylic acids and derivatives

3-hydroxyanthranilate ↓ carboxylic acids and derivatives

epinephrine ↓↓ catecholamines

4-coumaryl alcohol ↓↓ cynnamyl alcohols

imidazole-4-acetate ↓↓ imidazoles and derivatives

methyl indole-3-acetate ↑↑ indoles and derivatives

arachidonic acid ↓↓ lipids and derivatives

docosahexanoic acid ↓↓ lipids and derivatives

n1-methyl-2-pyridone-5-carboxamide ↓ nicotinamides

adenosine ↑↑ purines and derivatives

dihydrouracil ↑↑ pyrimidines and derivatives

PC 38:4 ↓↓ phophatidylcholines

PC 40:7 ↓↓ phophatidylcholines

PC p- 38:5 ↓↓ phophatidylcholines

choline phosphate ↓ phosphocholines

pyridoxine ↑ pyridoxines

glycocholate ↓↓ steroids and derivatives

cortisone ↓↓ steroids and derivatives

Table 6.2: Putatively annotated features specific to individual datasets. The arrows symbolise whether
the metabolite was found to be upregulated or downregulated. Double arrows signify a | logFC |> 1.
Metabolites which were also found to be in common between the datasets were not highlighted and not
considered for further evaluation. The metabolites highlighted in light blue were found to be significant
in the individual datasets which where not integrated.
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In case of malaria, [173] identified that amino acid metabolism was predominantly affected,

especially arginine because of lower glutamine and proline, low tryptophan, elevated kynure-

nine and a reduction in certain lipids (sphingomyelins). In the current analysis, these were all

found to be commonly modified between the datasets. This provides a good example of why

learning about the common changes between infectious diseases with similar underlying symp-

toms is helpful to prevent against assuming that these might be malaria specific. Metabolites

which were downregulated in DM, but upregulated in the other two datasets, were: imidazole-

4-acetate, glycerol, 3-hydroxyanthranilate, arachidonic acid, docosahexanoic acid, n1-methyl-

2-pyridone-5-carboxamide, glycocholate and cortisone. Imidazole-4-acetate is a derivative of

histidine, whose levels increases as a response malaria, and of aminoisoquinolines used to treat

malaria [175]. Probably the decreased levels could suggest an increased uptake of imidazole-

4-acetate from the blood stream. The decreased levels of arachidonic acid could be related to

the fact that for DM, malaria was induced in a group of subjects in a controlled environment

and fever symptoms were less exacerbated compared to the other two datasets. Thus, arachi-

donic acid which is a fever mediator, was not elevated in this case. Metabolites which were

upregulated in DM, but downregulated in the other two, were: cystine, methyl indole-3-acetate,

hippuric acid and adenosine. In an early study on malaria infected erythrocites, an increase

in adenosine deaminase activity was observed [176]. Additionally, [177] observed increased

plasma adenosine levels in malaria infected monkeys. The increased adenosine levels obtained

in DM could reflect this increase in adenosine deaminase caused by malaria infection, as adeno-

sine is its substrate. It is to be noted that adenine was decreased for all datasets. In the case of

DM the increase of adenosine could also reflect an increased breakdown of adenine.

In a study by [178] elevated levels of gut microbial acids, among which hippuric acid, were

linked to acidosis caused during severe malaria. Their levels were also correlated with disease

severity. Moreover, it has been suggested that the profile of the bacterial flora could also have an

impact on the severity degree of the infection [179]. This disturbance of the normal gut barrier

function could be related to the sequestration of infected red blood cells, which is central to the

patophysiology of falciparum malaria. This gut barrier dysfunction may cause the translocation

of microbial acids into the circulation. Biomarkers of gut integrity such as citrulline and arginine

also presented a significant reduction [178]. Reduced levels of citrulline were also observed as

a common disruption in the presently integrated datasets, which might indicate gut integrity was

affected in all diseases.

In the case of DV L phosphatidyl cholines were decreased in infected samples. This might be

related to liver damage caused during the infection with L.infantum. Other metabolites which

were downregulated in DV L, but upregulated in the other two, were: porphobilinogen and 2-

oxobutanoate (precursor in isoleucine biosynthesis). Metabolites which were upregulated in

DV L, but downregulated in the other two, were: 2-phenylacetamide, creatinine (consistent with

findings in [180]), lysine, ornithine, phenylacetylglycine, dihydrouracil, pyridoxine, iditol and
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the sugars threose and erythrose. Some of the enumerated biomarkers are also used for deter-

mining certain physiological dysfunctions. For example, elevated creatinine could point to a

renal dysfunction.

In the case of DZ four putatively annotated features were specifically downregulated (n(pi)-

methylhistidine, epinephrine, 4-coumaryl alcohol, choline phosphate) and one upregulated (hy-

droxykynurenine). Hidroxykynurenine is a metabolite involved in the kynurenine pathway

which was disrupted in all datasets. It is to be noted that some of the metabolites identified,

e.g. epinephrine, could also be derived from the medicine used to treat the disease.

In conclusion, several disease-specific biomarkers were identified for each dataset which did not

coincide with the biomarkers found in common between the three datasets. Discussing each

biomarker was beyond the scope of this thesis. However, several of the specific biomarkers

identified were successfully matched against existing literature in confirming specific disease

physiology.

6.2.1 Conclusion

By integrating LC-MS datasets in this manner both biomarkers underlying the commonality be-

tween different diseases and biomarkers specific to each disease could potentially be identified.

The features detected in this investigation and outlined in this chapter could be used on the PD-

CMOS platform, as it has already been demonstrated that it can be used for the detection of

metabolites [181]. Additionally, this sort of approach also outlines the fact even though some

metabolic biomarkers appear to be specific for certain disease, they could, in fact, represent a

commonality between multiple disparate diseases.



Chapter 7

Conclusion and future research directions

Two principal methods for the detection of fever-associated diseases were investigated for this

thesis: detection using a biosensor-based immunoassay and detection of fever-associated biomark-

ers to improve the diagnosis of relevant diseases. This thesis makes a series of contributions,

summarised according to each chapter containing results in the list below. Additionally, several

aspects were also identified which could be further addressed in future research work. These are

detailed in the following paragraphs.

1. In Chapter 3, three computational methods were developed for the quantitative detec-

tion of a reaction spot after an immunoassay was run on the PD-CMOS biosensor plat-

form. Two of the methods were developed using already existing packages while the third

method was a new approach based on generative modelling. The three methods were then

compared to determine which was the optimal one for signal processing. In the end, the

method based on Sequential Monte Carlo algorithm proved to be the one which correctly

estimated the spot intensity, especially at higher noise values.

Improving the computational methods for the reaction spot detection In this chap-

ter, only synthetically generated images mimicking those which would be obtained from

the biosensor were used for developing and testing the three methods mentioned above.

Images obtained following multiple immunoassays ran in the laboratory on the biosensor

platform would be the next step necessary in further testing the developed algorithms. In

this way, detailed information regarding the actual signal obtained from the biosensor,

as well as the type and magnitude of noise, would be obtained and incorporated into the

stochastic algorithms based on GP regression and SMC generative modelling. Moreover,

the algorithm was developed only for the detection of one reaction spot. This could be fur-

ther extended for the simultaneous detection of multiple reaction spots. Further research

could thus be directed towards the evaluation of the three signal processing methods.

121
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2. In Chapter 4, an approach to developing a PD-CMOS based immunosensor for the detec-

tion of fever-associated HAT disease specific antibodies using the recombinant antigens

-rL1.3, rL1.5, rISG65, rISG75- was proposed.

(a) The recombinant antigens were engineered using molecular cloning techniques in

E.coli.

(b) The immunoassay surface was chemically functionalised using APTES and GA in

order to enable covalent attachment of the antigens onto the surface.

(c) The PD-CMOS biosensor platform was tested for the detection of an antibody anti-

ISG65, aimed at a specific trypanosome surface antigen, and exhibited good results

based on its LOD and LOQ values.

Suggestions for improving the immunosensor platform Due to the Covid-19 pan-

demic, laboratory work was suspended and future research would be required for improv-

ing the immunoassay, especially in the area of antigen printing on the surface and delivery

of fluids. In this case, a microfluidics approach was suggested [86]. This would opti-

mise the consistency in delivering the fluids during the immunoassay providing, thus, a

more robust immunoassay format. For the antigen deposition, physical separators such as

wells or channels could be used. Alternatively, microstamping methods or inkjet printing

methods could be tested out. Moreover, other antigens and antibodies should be tested for

coating the surface.

3. In Chapter 5, a computational approach to integrating multiple disparate metabolomics

LC-MS datasets was proposed. This was performed through the alignment between the

peaksets from each dataset after a non-linear feature-based warping method was developed

and applied to correct the RT drift between the datasets. The warping method was based

on Gaussian Process regression modelling, a non-parametric regression approach which

works well with small training data. The new predicted RTs for each dataset were utilised

for aligning the three infectious disease metabolomics datasets using a direct-matching

method.

RT drift correction algorithm The research and analysis conducted in this chapter has

provided with a solid method in determining common perturbations in plasma molecules

from patients infected with different pathogens. Future research directions which could be

undertaken in this area are summarised next. Firstly, in terms of the alignment algorithm

accuracy, further evaluation could be performed. Similarly to [142], this could be done

by using a test sample which is run twice through the LC-MS platform using different run

lengths. By applying the RT drift correction algorithm to one of the samples, the ability of

all peaks to be found after aligning the two samples could be evaluated. Another method
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which could be used both for algorithm evaluation and improved molecular networking

would be based on MS2 data analysis. In order to do this, acquiring specific MS2 data

would be needed. For the data analysed in this PhD, the MS2 data was obtained from

the ions with the highest intensity. However, if the MS2 data for all three datasets were

to be obtained from all ions with statistical significance, then both evaluation and anno-

tation would be improved. In the first place, this would allow for a more comprehensive

comparison based on cosine similarity scores between the MS2 spectra from all datasets

for each peakset, enabling thus a better evaluation of the alignment. Secondly, molecular

networking could be performed by using the new MS2 data [182].

In terms of the accessibility of the developed method, a basic web application was devel-

oped for the moment, but further improvements and features could be added in order to

develop the RT drift correction software. Other sets of metabolomics datasets could be

used to determine further metabolites related to fever. For example, datasets from other

infectious diseases or non-infectious diseases associated with fever could be integrated

and commonality in terms of metabolite perturbation could be determined.

4. In Chapter 6, molecular mechanisms related to fever were confirmed following the anal-

ysis performed in Chapter 5. The biomarkers and molecular mechanisms specific to each

of the fever-associated disease were also addressed. Several of the metabolites identified

which of importance to fever mechanism include those related to the kynurenine pathway

of the tryptophan metabolism. The molecules identified as potential fever biomarkers, or

the enzymes involved in their synthesis could potentially be used on the biosensor plat-

form used in the first part of the thesis in similar manner to [181].

In conclusion, through computational and laboratory-based methods, areas such as signal pro-

cessing of an immunosensor platform, biomarker detection through a novel RT correction method

were researched for improving the detection of fever associated diseases.



Appendix A

Background literature: Adducts

Ion Reverse Calculation
[M+H]+ mz - PROTON
[M+2H]2+ (mz - PROTON)*2
[M+3H]3+ (mz - PROTON)*3
[M(13C)+H]+ mz - 1.0034 - PROTON
[M(13C)+2H]2+ (mz - 0.5017 - PROTON)*2
[M(13C)+3H]3+ (mz - 0.3344 - PROTON)*3
[M(34S)+H]+ mz -1.9958 - PROTON
[M(37Cl)+H]+ mz -1.9972 - PROTON
[M+Na]+ mz - 21.9820 - PROTON
[M+H +Na]2+ (mz - 10.991 - PROTON)*2
[M+K]+ mz - 37.9555 - PROTON
[M+H2O+H]+ mz - 18.0106 - PROTON
[M−H2O+H]+ mz + 18.0106 - PROTON
[M−H4O2 +H]+ mz + 36.0212 - PROTON
[M−NH3 +H]+ mz + 17.0265 - PROTON
[M−CO+H]+ mz + 27.9950 - PROTON
[M−CO2 +H]+ mz + 43.9898 - PROTON
[M−HCOOH +H]+ mz + 46.0054 - PROTON
[M+HCOONa]+ mz - 67.9874 - PROTON
[M−HCOONa+H]+ mz + 67.9874 - PROTON
[M+NaCl]+ mz - 57.9586 - PROTON
[M−C3H4O2 +H]+ mz + 72.0211 - PROTON
[M+HCOOK]+ mz - 83.9613 - PROTON
[M−HCOOK +H]+ mz + 83.9613 - PROTON
[M−H]− mz + PROTON
[M−2H]2− (mz + PROTON)*2
[M−3H]3− (mz + PROTON)*3
[M−H2O−H]− mz + PROTON + 18.0111135
[M+Na−2H]− mz - 20.974666
[M+Cl]− mz - 34.969402
[M+K −2H]− mz - 36.948606
[M+FA−H]− mz - 44.998201
[M+Hac−H]− mz - 59.013851
[M+Br]− mz - 78.918885
[M+T FA−H]− mz - 112.985586
[2M−H]− (mz + PROTON)/2
[2M+FA−H]− (mz - 44.998201)/2
[2M+Hac−H]− (mz - 59.013851)/2
[3M−H]− (mz + PROTON)/3

Table A.1: Formula for reverse calculating the m/z of adducts for positive and negative ESI mode data,
where PROTON = 1.00727646677. Obtained from [183]. TFA = trifluoroacetate, FA = formic acid, Hac
= acetic acid.
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Evaluating the SMC based algorithm

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.1: Results for the particle filtering algorithm for N = 125 particle, X = 1000 resampling steps
and σweight = 10. The top figures (a-c) represent the resampling steps it takes to reach convergence
to the artificial image. The mean of the particles at each resampling step were computed for the x,y
circle centre coordinates (pixel location), radius and intensity. Figures (d-f) represent the variance of the
particles’ characteristics at each resampling step. Figures (g-i) represent the distribution of the particles’
characteristics at each resampling step.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.2: Results for the particle filtering algorithm for N = 250 particle, X = 1000 resampling steps
and σweight = 10. The top figures (a-c) represent the resampling steps it takes to reach convergence
to the artificial image. The mean of the particles at each resampling step were computed for the x,y
circle centre coordinates (pixel location), radius and intensity. Figures (d-f) represent the variance of the
particles’ characteristics at each resampling step. Figures (g-i) represent the distribution of the particles’
characteristics at each resampling step.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.3: Results for the particle filtering algorithm for N = 500 particle, X = 1000 resampling steps
and σweight = 10. The top figures (a-c) represent the resampling steps it takes to reach convergence
to the artificial image. The mean of the particles at each resampling step were computed for the x,y
circle centre coordinates (pixel location), radius and intensity. Figures (d-f) represent the variance of the
particles’ characteristics at each resampling step. Figures (g-i) represent the distribution of the particles’
characteristics at each resampling step.
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