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Abstract 

Social robots have great practical potentials to be applied to, for example, 

education, autism therapy, and commercial settings. However, currently, few 

commercially available social robots meet our expectations of ‘social agents’ 

due to their limited social skills and the abilities to maintain smooth and 

sophisticated rea-life social interactions. Psychological and human-centred 

perspectives are therefore crucial to be incorporated in for better understanding 

and development of social robots that can be deployed as assistants and 

companions to enhance human life quality. In this thesis, I present a research 

approach that draws together psychological literature, Open Science initiatives, 

and game theory paradigms, aiming to systemically and structurally investigate 

the cooperative and social aspects of human–robot interactions.  

 

In Chapter 1, the three components of this research approach are illustrated, 

with the main focus on their relevance and value in more rigorously researching 

human–robot interactions. Chapter 2 to 4 describe the three empirical studies 

that I adopted this research approach to examine the roles of contextual factors, 

personal factors, and robotic factors in human–robot interactions. Specifically, 

findings in Chapter 2 revealed that people’s cooperative decisions in prisoner’s 

dilemma games played with the embodied Cozmo robot were not influenced by 

the incentive structures of the games, contrary to the evidence from 

interpersonal prisoner’s dilemma games, but their decisions demonstrated a 

reciprocal (tit-for-tat) pattern in response to the robot opponent. In Chapter 3, 

we verified that this Cozmo robotic platform can displays highly recognisable 

emotional expressions to people, and people’s affective empathic might be 

counterintuitively associated with the emotion contagion effects of Cozmo’s 

emotional displays. Chapter 4 presents a study that examined the effects of 

Cozmo’s negative emotional displays on shaping people’s cooperative tendencies 

in prisoner’s dilemma games. We did not find evidence supporting an interaction 

between the effects of the robots’ emotions and people’s cooperative 

predispositions, which was inconsistent with our predictions informed by 

psychological emotion theories. However, exploratory analyses suggested that 

people who correctly recognised the Cozmo robots’ sad and angry expressions 

were less cooperative to the robots in games. Throughout the two studies on 
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prisoner’s dilemma games played with the embodied Cozmo robots, we revealed 

consistent cooperative tendencies by people that cooperative willingness was 

the highest at the start of games and gradually decreased as more game rounds 

were played.  

 

In Chapter 5, I summarised the current findings and identified some limitations 

of these studies. Also, I outlined the future directions in relation to these topics, 

including further investigations into the generalisability of different robotic 

platforms and incorporating neurocognitive and qualitative methods for in-depth 

understanding of mechanisms supporting people’s cooperative willingness 

towards social robots. Social interactions with robots are highly dynamic and 

complex, which have brought about some unique challenges to robotic designers 

and researchers in the relevant fields. The thesis provides a point of departure 

for understanding cooperative willingness towards small-size social robots at a 

behavioural level. The research approach and empirical findings presented in the 

thesis could help enhance reproducibility in human–robot interaction research 

and more importantly, have practical implications of real-life human–robot 

cooperation. 
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Chapter 1 General Introduction 

“We are at the beginning of a revolution that is fundamentally 

changing the way we live, work, and relate to one another. In its 

scale, scope and complexity, what I consider to be the fourth 

industrial revolution is unlike anything humankind has experienced 

before.” (Schwab, 2016) 

As Schwab (2016) notes in the quote above, technology has been changing our 

world in an exponential and unprecedented way. The innovation of artificial 

intelligence (AI), robotics, three-dimensional (3D) printing, and machine learning 

have not only fundamentally redefined the technical parts of our lives, but have 

also redefined the scope of our physical and social spheres (Schwab, 2016; Xu et 

al., 2018). Particularly, the headway made in AI and robotics has stimulated 

great public interest, as well as concern, among many people (Makridakis, 2017). 

Science fiction has long played a role in shaping public imagination and fear 

towards artificial agents (Cross & Ramsey, 2021; Henschel et al., 2021), dating 

back at least to Karel Čapek’s (1920) play ‘Rossum’s Universal Robots (R.U.R.)’, 

which is the first time the world was introduced to the word ‘robot’. In this 

theatre piece, Čapek depicts a scenario where artificial workers — what he has 

called robots, and defined as machines originally created to replace human 

labour — eventually cause the extinction of the human species. Although the 

kinds of AI technology dreamed up in science fiction usually deviate far from 

current development of autonomous artificial agents (Henschel et al., 2021; 

Makridakis, 2017), many science fiction works delve into humanity’s concern 

over AI technology overpowering humanity. This underscores the importance of 

taking humanity into consideration during the rapid technological advancement 

(Xu et al., 2018), as well as keeping humans and the front and centre of new 

social technological developments (Broadbent, 2017a; Cross & Ramsey, 2021; 

Eyssel, 2017). In the field of social robotics in particular, it is vital to 

incorporate psychological perspectives to the designs of these machines, and 

into research exploring human—robot interactions (HRIs), in order to create the 

robots that can successfully assist people in our society (Broadbent, 2017a; 

Cross, Hortensius, et al., 2019; Henschel et al., 2020; Kompatsiari et al., 2018). 

In order to establish the foundations for this thesis, in the following section, I 
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begin by defining what social robots are, as well as an overview of some of the 

key findings we have learned about them so far from psychological perspectives. 

 

1.1. The definition of social robots 

In the current literature, a universal definition of social robots is not agreed 

upon (Dautenhahn, 2007). Although the definitions adopted by individual 

researchers are similar to some extent, there is not a consensus in terms of what 

specific social characteristics or abilities social robots should equipped with. For 

example, in Fong et al.'s (2003) study, they proposed that ‘socially interactive 

robots’ should be able to perceive and display emotions, communicate smoothly, 

use natural gestures, have personalities, and form social relationships with 

others. On the other hand, Breazeal (2003) defined social robots by four sub-

classes: (1) socially evocative robots (i.e., robots that engage people in social 

interactions); (2) social interfaces (i.e., robots that can foster communications 

through natural social cues and social intelligence); (3) socially receptive robots 

(i.e., robots that learn from social interactions with people but do not actively 

engage others in interactions); and (4) sociable robots (i.e., robots that have 

anthropomorphic cognition processes in order to form their own motivations and 

goals in social interactions) (Breazeal, 2003).  

 

Other researchers have stressed the physical embodied characteristics of social 

robots and include a more human-centred perspective in their definitions. For 

instance, Bartneck and Forlizzi (2004) proposed that social robots are semi- or 

fully autonomous embodied robots that interact with users in a way that follow 

human social norms. Also, Duffy (2003) underscored social robots’ general 

purposes to reach their own and societal goals. Finally, Dautenhahn (2007) 

defined social robots by their different purposes and settings in which they 

might be deployed in our society (e.g., cleaning, entertainment, or healthcare). 

A robot companion at home is expected to have sophisticated enough social 

skills and intelligence to engage in day-to-day social interactions with users, as 

well as physical abilities to assist in household tasks (Dautenhahn, 2007). 

 

Overall, previous researchers defined social robots with diverse focuses on 

robots’ functionality, artificial intelligence, social skills, and the value to human 
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users and to the society. They also coined various terms to describe the subtypes 

of social robots as exemplified above (Breazeal, 2003; Fong et al., 2003). In this 

thesis, I am most interested in exploring how people interact with social robots 

that are physical embodied (as opposed to appearing as images or videos on a 

screen). Therefore, I define social robots as embodied artificial agents that are 

capable of engaging in social interactions with others (Dautenhahn, 2007; Hegel 

et al., 2009; K. M. Lee et al., 2006). In psychology, interpersonal social 

interaction refers to the process where two or more individuals exchanging 

verbal information and/or nonverbal social cues (e.g., affective signals, 

gestures) (U. Frith & Frith, 2001). Here in the context of HRI, I define social 

interactions between human users and social robots from a human-centred 

perspective. Such human—robot social interactions entail social robots 

responding to and interacting with people in a humanly readable way (for 

example, through verbal communication, displays of emotional cues, or bodily 

gestures) so people can perceive and understand social signals sent from robots 

and act accordingly.  

 

1.2. A psychological perspective of human—robot 

interaction 

The emergence of social robots has provoked interest among multiple 

disciplines, including robotics, engineering, and psychology (Broadbent, 2017a; 

Cross, Hortensius, et al., 2019; Cross & Ramsey, 2021; Hortensius & Cross, 2018). 

Research into the design of and human engagement with social robots has 

brought about brand-new challenges and questions to each of these fields, since 

these devices exist somewhere between the categories of objects and real social 

beings, and most people still have extremely limited real-life experience with 

them (Alves-Oliveira et al., 2016; Cross, Hortensius, et al., 2019; Cross & 

Ramsey, 2021; Hortensius & Cross, 2018). Particularly, psychology (the science 

of human perception, cognition, emotions, and behaviours) has been considered 

one of the most relevant fields through which we can gain insights into human-

centred robotic design and development (Broadbent, 2017a; Cross, Hortensius, 

et al., 2019; Henschel et al., 2020; Kompatsiari et al., 2018). Some of the bigger 

theoretical questions psychologists are grappling with through investigations into 

HRI include: could social robots ever become authentic social beings to us? 
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(Gasser, 2021; Hortensius & Cross, 2018; Pender, 2018); how do people’s 

expectations and attitudes towards robots shape their behaviours in real-life HRI 

(Nomura et al., 2008; Syrdal et al., 2009)?; and will social robots’ human-like 

characteristics (e.g., anthropomorphic appearances and emotional displays) 

make us interact with them in a way that is similar to interactions with other 

people (Hoegen et al., 2018; Kayukawa et al., 2017; Krach et al., 2008; Leite et 

al., 2008)?. 

 

So far, a large number of empirical studies have investigated the research topics 

that are conventionally examined in interpersonal settings in the context of HRI. 

These include, for example, people’s empathic responses to robots (Cross, 

Riddoch, et al., 2019; Riddoch & Cross, 2021; Rosenthal-von der Pütten et al., 

2014), trust relationships with robots (Correia et al., 2016; Hamacher et al., 

2016; Hancock et al., 2011; Schniter et al., 2020), and personalities factors that 

shape HRI (Robert, 2018; Walters et al., 2005).  However, some unique 

challenges and limitations have also been identified in HRI as a field (Alves-

Oliveira et al., 2016; Baillie et al., 2019; Cross & Ramsey, 2021; Jost et al., 

2020; Złotowski et al., 2015). I have selected what I believe to be some of the 

more major challenges in this space, and outline each of these in the following 

sections.  

 

1.2.1 ‘Wizard of Oz’ experiments versus autonomous robot 

experiments 

The ‘Wizard of Oz (WoZ)’ research approach, in the context of HRI research, 

refers to the experimental designs that a social robot participants interact with 

is controlled by an experimenter behind the scenes (Belpaeme, 2020). Currently, 

the WoZ design has been adopted by many studies since not many social robots 

are yet capable of fully autonomous operation in natural social interactions with 

naïve human users (Broadbent, 2017; Cross & Ramsey, 2021; Riek, 2012). 

Although this approach might ostensibly iron out the present technical 

limitations of social robots (e.g., in natural dialog generation) and could provide 

insights into what HRI might look like in the future when social robots are more 

advanced, it remains questionable whether the interactions happening via WoZ 

can be regarded as real HRIs or whether we should interpret the interactions as 
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interpersonal interactions between a participant and an experimenter (or 

confederate) embodied as a robot (Belpaeme, 2020; Broadbent, 2017; Riek, 

2012).  

 

Given the possible difference between interacting with a fully autonomous robot 

and with a robot controlled via WoZ means, researchers who adopt the WoZ 

approach are advised to report explicitly how robots are controlled manipulated 

in WoZ experiments (Belpaeme, 2020; Riek, 2012). Also, Riek (2012) suggested 

that it would be helpful for experimenters who play the role of a ‘wizard’ to 

receive some experimental training beforehand, to minimise the possibility of 

procedures and manipulations being biased by personal factors. Furthermore, 

Innes and Morrison (2020) suggest that researchers should consider conducting 

double-blind experiments where neither participants nor experimenters who 

control the robots are aware of the experimental manipulations and research 

purposes. By double-blinding experimental processes, researchers could prevent 

the undesirable situation where experimenters’ expectations and beliefs either 

consciously or unconsciously influence the research processes, thus helping to 

avoid biased results and conclusions (Innes & Morrison, 2020).  

 

On the other hand, fully autonomous robots mean that robots are equipped with 

the capacities to interact with people without the assistance of human 

operators. Though HRI research using autonomous robots might be limited to the 

social and physical abilities that currently available robots can perform, such 

research provides a more precise and realistic snapshot of how people might 

interact with social robots “in the wild”, given the present development of 

robotic platforms. Moreover, since experimenters don’t necessarily need to be 

present in the same room with participants when they interact with robots, any 

undesirable “experimenter bias” can be avoided. Experimenter bias, or 

observer-expectancy effect, means that experimenters who have the knowledge 

of experimental manipulation might either consciously or unconsciously 

influence participants’ behaviours and responses during experiments (Bierman & 

Jolij, 2020; Phillips et al., 2000). Even the mere presence of experimenters 

could have social facilitation effects where people’s behaviours when they feel 

the presence or observation of experimenters might be different from when they 

are on their own (Guerin, 1986). For example, people might behave in a more 
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socially desirable way, or even just pay more attention to the task, when others 

are around. The adoption of autonomous robots in HRI research therefore has 

the potential to sidestep some of these potential biases, and ensure that 

participants’ behaviours measured in HRI experiments truly reflect the ways 

people respond to social robots instead of the ways participants want to present 

themselves in front of experimenters, or the ways in which participants interact 

with a human-controlled robot. 

 

1.2.2 Physically embodied robots versus virtual robots on-screen 

As mentioned in the Section 1.1, not all definitions of social robots suggest 

robots should have physically tangible bodies. For example, in Lee et al.'s (2006) 

study, they suggested that social robots can be embodied either physically in 

real-life or virtually on-screen, as long as they are able to interact socially with 

others. A significant amount of studies have investigated people’s attitudes and 

reactions towards robots through online experiments where robots are two-

dimensionally presented as images or in videos (e.g., De Jong et al., 2021; 

Stroessner & Benitez, 2018; Tulk & Wiese, 2018). Although online research or 

research that displays videos or images of robots via screens provides a valuable 

point of departure for understanding real-life HRIs, we must still be mindful that 

interactions with robots on-screen are in no way equivalent to interactions with 

physically embodied robots (Grossman et al., 2019; Henschel et al., 2020; 

Hortensius & Cross, 2018; K. M. Lee et al., 2006; Wykowska et al., 2016). A 

growing amount of empirical evidence supports this very point. For instance, 

research has demonstrated that people empathise an physically embodied robot 

more than a virtual robot on-screen (Kwak et al., 2013; Seo et al., 2015). Also, 

people evaluate an physically embodied robot more positively than the virtual 

one (K. M. Lee et al., 2006; Li, 2015). 

 

Due to the impact of the COVID-19 global pandemic, which shut down in-person 

experimentation for most researchers around the world in early 2020 (just about 

halfway through this thesis), online experimentation emerged as a safer and 

more feasible alternative for continuing to conduct HRI research. However, we 

should be more careful when thinking about the extent to which findings from 

online experiments apply to investigations of embodied or real-life HRI (Jost et 
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al., 2020). Ultimately, given the current evidence revealing people’s differential 

responses induced by robots’ physical embodiment (Kwak et al., 2013; K. M. Lee 

et al., 2006; Seo et al., 2015; Wykowska et al., 2016), lab-based experiments 

and field studies remain irreplaceable by online experiments or screen-mediated 

interactions (Grossman et al., 2019; Henschel et al., 2020; Hortensius & Cross, 

2018; K. M. Lee et al., 2006; Wykowska et al., 2016).  

 

1.2.3 Generalisability of empirical HRI studies 

The robotic platforms researchers have used for HRI studies vary dramatically in 

terms of robots’ physical appearances and functions (Henschel et al., 2021; 

Stock-Homburg, 2021). There are humanoid robots that inspired by human 

shapes (e.g., Pepper, iCub, NAO) as well as robots that resemble animals (e.g., 

Paro, Miro, KAROTZ). Also, there is an example of Cozmo robots whose designs 

are shaped and informed by the media (i.e., the titular character in the 

animated film ‘Wall-E’). Researchers have found that robots’ physicality can  

elicit differential expectations towards them, thereby shaping people’s attitudes 

and responses (Duffy, 2003; Goetz et al., 2003). As such, it is essential to 

acknowledge that just because researchers report people engage with a 

particular robot in a particular manner, these findings might not be replicated 

by other robots of different types (Henschel et al., 2020; Hortensius et al., 2018; 

Hortensius & Cross, 2018; Innes & Morrison, 2020; Jost et al., 2020).  

 

In addition to the diverse robotic platforms researchers have adopted so far for 

HRI research, different study designs (e.g., lab-based vs online; short-term 

interaction vs long-term interaction; lab study vs field study) also make 

generalisability of research findings challenging. For example, as mentioned in 

the Section 1.2.2, different embodiments of social robots used in research — 

either physically embodied in the real world or virtually embodied on-screen — 

can profoundly shape people’s responses and attitudes to these agents (Kwak et 

al., 2013; K. M. Lee et al., 2006; Li, 2015; Seo et al., 2015). Also, in Section 

1.2.1, differences between WoZ studies and studies using autonomous robots 

were illustrated. It is therefore imperative to use caution when interpreting 

findings from different study designs, using different agents, or different 
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stimulus presentations, and to be realistic about the scope findings from 

individual studies can be generalised to (c.f., Cross & Ramsey, 2021). 

Another issue related to generalisability of HRI studies is the concern of 

ecological validity of lab-based HRI research (Belpaeme, 2020). For experimental 

psychologists, it is important to minimise the impact of confounding variables 

and to perform well-controlled experiments to, for example, clarify causal 

relationships between variables. However, this approach is usually criticised by 

others for the lack of ecological validity since the real world is full of noise and 

all manner of unpredictable, dynamic change (Belpaeme, 2020; Holleman et al., 

2020). Similarly, in lab-based HRI studies, researchers have questioned the 

extent to which people’s attitudes and behaviours measured in artificial and 

controlled lab environments represent the kinds of social interactions people 

might actually engage in with robots encountered in real-life (Belpaeme, 2020; 

Henschel et al., 2020). One way to address this issue is to conduct field studies 

where participants interact with robots in natural settings, such as their homes, 

workplaces, or hospitals (Agrawal & Williams, 2018; Stubbs et al., 2007; Van der 

Putte et al., 2019). Though data collected in the wild may involve more noises 

and confounding factors, and it is not always feasible to move expensive robots 

out of laboratories, field studies on HRI could provide valuable exploratory 

insights and are sometimes more suitable for specific research questions (e.g., 

the application of social robots in autistic therapy and in hospitals) (Belpaeme, 

2020; Van der Putte et al., 2019). 

In addition to consider the feasibility of field studies, one of the solutions to 

increase ecological validity in laboratory environments is to prolong the duration 

of HRI (Belpaeme, 2020; Cross, Riddoch, et al., 2019; Leite et al., 2013). 

Compared to one-off and short-term interactions, long-term HRI studies prevent 

potential false conclusions due to the novelty effect (Sung et al., 2009). Several 

studies of long-term HRI have been carried out (see a review by Leite et al., 

2013). For example, in Cross, Riddoch, et al.'s (2019) study, participants took a 

small Cozmo robot home for a five-day interaction period. Using functional 

neuroimaging techniques, participants’ brain activity when seeing the Cozmo 

robot and a human actor displaying pain were measured both before and after 

the five-day interactions. Although the results did not provide evidence 
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supporting that the five-day socialisation with Cozmo led to human-like 

empathic brain responses when viewing a robot “in pain”, the study 

demonstrated the feasibility, importance and value of investigating long-term 

HRI (Cross, Riddoch, et al., 2019). 

 

Another potential solution to improve ecological validity of experimental 

research is by adopting virtual reality techniques (Parsons, 2015). Parsons (2015) 

proposed that virtual reality can provide more dynamic and real-life stimuli 

while keeping experimental environments well-controlled in psychological and 

neuroscientific research. HRI researchers have also started to use virtual reality 

for studying human interactions with robots, and have verified the utility of 

virtual reality as useful research tool in this space (in a way, serving as a mix 

between embodied and screen-based investigations of HRI; Liu et al., 2017; 

Villani et al., 2018). Though virtual reality enables more realistic depth 

perception than screen presentation, the heavy headsets used for virtual reality 

are not always tolerable or preferable to users (Liu et al., 2017; Villani et al., 

2018).  

 

In addition to ecological generalisability of experimental HRI research, it is 

equally important to discuss whether the results of a specific sample can be 

generalised to and replicated by participants with other cultural backgrounds, in 

different experimental settings (Lim et al., 2020). As this issue is not unique to 

HRI but instead relates to the whole of psychological research in general, I will 

discuss this in the next section. To sum up this section, I outlined three 

challenges in HRI research, including Wizard of Oz, online experiments using 

two-dimensional robots, and generalisability across robotic platforms and from 

the lab to real life. While there are undoubtedly many more challenges to 

consider when carrying out investigations of HRI (c.f., Cross & Ramsey, 2021), I 

have focused on the main areas that are particularly relevant to this thesis. More 

comprehensive discussions and guidelines can be found in the literature (e.g., 

Innes & Morrison, 2020; Jost et al., 2020, Cross & RAmsey 2021). In the following 

section, I turn my attention to another challenge, which, again, is not unique to 

HRI, but is of serious concern to researchers across many fields, including 

medicine, biology, and artificial intelligence (Hutson, 2018; Munafò, 2016; Open 

Science Collaboration, 2015). As one of the meta-goals of the experimental work 
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in this thesis was to ensure the research was conducted as responsibly and 

reproducibly as possible, in the next section I turn my attention to the 

reproducibility crisis (as it relates to the field of psychology in particular), and 

why this is relevant to my thesis work and the field of HRI in general. 

 

1.3. Reproducibility crisis in psychology 

Recently, the research validity and reliability of psychological studies has been 

questioned on a field-wide level via large-scale replication studies (Klein et al., 

2018; Open Science Collaboration, 2015). Through this initiative, it has been 

found that the findings from a large proportion of published studies failed to 

replicate, and the effect sizes found in the replications were mostly smaller than 

the original reported values. For example, in Open Science Collaboration’s 

(2015) large-scale replications, the average effect size found in the results of 

the replications was 0.197, which was much smaller than the average of the 

original published studies (mean effect size = 0.403). Also, in another 

collaborative replication project ‘Many Labs 2’, 75% (21 out of the 28 replication 

studies) of the effect sizes were smaller than the original reported values, and 

only half of the study results (14 out of 28) found supporting evidence the 

original findings at the criterion of p < .0001 (Klein et al., 2018).  

 

The issue of sample representative was also examined in Klein et al.’s (2018) 

‘Many Labs 2’ project. Commonly, psychological studies have been criticised for 

carrying out experiments mostly on undergraduate university students in Europe 

and North America, a population that has been described as ‘WEIRD’ (an 

acronym that stands for Western, Educated, Industrialised, Rich, Democratic) 

(Henrich et al., 2010). In ‘Many Labs 2’, Klein et al. (2018) looked into the 

variation between study samples and also between settings. Although they found 

only three effects (out of the 28 being studied) that showed differences between 

typical WEIRD and “less WEIRD” samples, their results of heterogeneity tests 

revealed that the effects that showed the most variation across samples and 

setting are usually the larger and reliable effects (Klein et al., 2018). In other 

words, a null effect would show little variation across samples and settings 

(Klein et al., 2018). This all highlights the importance of replication and the 
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essentiality of taking participants’ demographic information into account, 

especially when investigating effects of interest that are supposed to be larger.  

 

Although the reproducibility crisis is not unique to psychology (Hutson, 2018; 

Munafò, 2016), this does not mean that we can ignore it or hope other 

researchers will find solutions to this crisis without as many researchers as 

possible getting involved. Immediate and visible changes are needed. In the next 

section, I summarise the Open Science practices that researchers are advised to 

adopt in order to improve the reproducibility and robustness of our scientific 

work, and why I believe these practices will be particularly beneficial for the 

fledgling field of social robotics. 

 

1.3.1 Strategies of tackling reproducibility crisis 

The reproducibility crisis not only calls for immediate alteration to publication 

bias (the fact that statistically significant results are more likely than null results 

to be published in journals), but also for researchers to adopt more transparent 

and rigorous research approaches (Munafò, 2016; Open Science Collaboration, 

2015, 2017). Some good practices that are conducive to research reproducibility 

and credibility include: 

 

(1) Explicitly report the experimental procedures and analysis plans in 

preregistration or registered reports.  

Practices like preregistered a study plan before data collection on a repository 

like Open Science Framework (OSF): http://osf.io/ or choosing to the submission 

option of registered reports could, at least to some extent, prevent p-hacking, 

selective analysing and reporting (Nosek et al., 2019; Open Science 

Collaboration, 2017). Registered report is a form of journal articles where an 

article will undergo two peer-review processes (one before data collection and 

one after a complete paper written up). The additional first peer-review is to 

ensure study plans (including hypothesis formation, sample size calculation, and 

sampling and analysis plans) are legitimate and rigorously designed before 

collecting data, and if a study plan is approved (which is called “in-principle 

accepted”), the study results will be publish regardless of null or significant 

http://osf.io/
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results (Nosek & Lakens, 2014). There are an increasing number of journals that 

accept articles to publish in the format of registered report (see a list here: 

https://www.cos.io/initiatives/registered-reports) and evidence has revealed a 

marked contrast between the results of studies published in conventional ways 

(the positive result rate = 96%) and results from registered reports (the positive 

result rate = 44%) (Scheel et al., 2021).  

Preregistration and registered reports push researchers to think more rigorously 

about their hypotheses, analysis, and sample sizes before data collection. This 

point is strengthened further via registered reports, where research and analysis 

plans are peer-reviewed and data collection is only carried out after the plans 

are approved by field experts (Nosek & Lakens, 2014). Another advantage of this 

practice is to distinguish differences between confirmatory hypothesis testing 

and exploratory analyses. By differentiating the two approaches, researchers 

should be able to more precisely interpret statistical results (especially of p-

values) (Nosek & Lakens, 2014; Open Science Collaboration, 2017). 

(2) Perform high-powered research:

In null hypothesis significance testing (NHST), higher statistical power enables us 

to more accurately falsify a null hypothesis (thereby providing evidence for an 

effect), when that effect truly exists. As power is determined by the alpha level, 

sample sizes, and effect sizes of interest, the most straightforward way to 

increase power is by increasing sample sizes. Given the status quo that low-

powered designs are prevalent in literature (Klein et al., 2018; Open Science 

Collaboration, 2015, 2017), it is important to plan to test a sufficient sample size 

to achieve high power (ideally higher than 0.9; Lakens, 2014) and thereby 

prevent false conclusions (Open Science Collaboration, 2017). Unfortunately, 

recruiting a large sample size is not always feasible for individual research 

teams, and several useful strategies have been mentioned. Lakens (2014) 

proposed that sequential analyses — conducting planned interim analyses with a 

stricter alpha level — allow researchers to have an earlier stop of data collection 

while controlling for Type I error rates. Furthermore, the Open Science 

Collaboration (2017) suggests that within-subject designs and stronger 

experimental manipulations which reduce confounding effects could also help 

https://www.cos.io/initiatives/registered-reports
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detect effects of interest. Finally, the strength of multi-lab collaboration to 

integrate resources of individual teams has been perfectly demonstrated in the 

examples of Open Science Collaboration (2015) and Many Labs 2 (Klein et al., 

2018). 

 

(3) Ensure materials and data are made available to the science 

community 

Making the research procedures, materials, and analyses transparent can help 

alleviate the difficulties of replication studies and meta-analyses (Open Science 

Collaboration, 2017). There are already platforms where researchers can 

transparently report or share their study materials, for example, the Open 

Science Framework (OSF): http://osf.io/. Additionally, although most journal 

editors and reviewers have been aware of the publication bias issue and are 

more open to considering paper submissions that report null results, it is still 

useful to make research findings and reports available as preprints (on platforms 

like PsyArXiv: https://psyarxiv.com/) so colleagues from the same field can keep 

up with the cutting-edge advancements in a timely manner (Bourne et al., 

2017), or, as the COVID-19 crisis has shown us, so the world can access breaking 

research findings before they have gone through the peer review process (with 

the usual caveats in place that preprints have not yet undergone the same kind 

of peer review that published papers have). 

 

1.3.2 The implications of reproducibility crisis to HRI research 

As a considerable number of HRI studies share the same methodology with 

psychological research, the issue of reproducibility is crucial to consider in the 

field of HRI (Belpaeme, 2020). As Belpaeme (2020) states in the quote below, 

the recent reproducibility crisis in psychology is not only relevant but also 

extremely informative to the investigations of HRI: 

 

“HRI is lucky to mature during one of the biggest revolutions in 

experimental psychology: the “replication crisis” was one of the most 

seminal moments in psychology and its repercussions are felt far and 

wide, including in HRI.” (Belpaeme, 2020, p.355) 

http://osf.io/
https://psyarxiv.com/
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A call for more rigorous experimental designs, manipulations, and reporting in 

the HRI field is urgently needed, since Innes and Morrison's (2020) recent 

demonstration of the prevalent experimental artefacts and biases in HRI after 

reviewing articles in the two journals — ACM Transactions on Human–Robot 

Interaction and the International Journal of Social Robotics) — as well as papers 

from the proceedings of the Annual ACM/IEEE International Conference on 

Human Robot Interaction. Some of the biases identified by Innes and Morrison 

(2020) relate to the points I discussed in Section 1.2 above, for example, most 

experimenters who played the role of ‘wizards’ in studies using WoZ designs had 

complete understanding of the experiments, including manipulations and 

hypotheses, which can easily bias results. Similarly, there were a number of 

studies where experimenters were both coders of participants’ behaviours and 

the persons who made predictions of the results (Innes & Morrison, 2020). In 

both cases, few of them discussed explicitly how these procedures might be 

biased (Innes & Morrison, 2020). Another limitation brought up by Innes and 

Morrison (2020) was the outdated theoretical references of psychological 

theories cited in the HRI studies that sought to examine psychological 

phenomena — for example, obedience by Milgram’s study design, cognitive 

dissonance, etc. — in the context of HRI. In these examples, the authors did not 

appear to be aware of recent developments and theoretical updates in the 

topics, nor did they mention the potential methodological limitations that have 

been discussed at length in the psychological literature, and how these 

limitations could impact the result interpretations (Innes & Morrison, 2020). 

In a multi-disciplinary field like HRI, it might be unrealistic to expect all 

researchers to excel in every domain of knowledge and methodological practice 

that is relevant to a topic. However, since the investigations of HRI will 

nevertheless involve human participants, it is crucial to incorporate 

psychological perspectives and be aware of some caveats in experimental 

designs as this may significantly impact the research validity and development of 

the field (Belpaeme, 2020; Cross, Hortensius, et al., 2019; Eyssel, 2017; 

Henschel et al., 2020). In addition to the room for improvement in HRI 

experimental designs, researchers in HRI have been advocating the good 

research practices in line with Open Science initiatives, for example, being 

transparent in results reporting, acquiring diverse samples, and valuing 
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replication studies (Belpaeme, 2020; Innes & Morrison, 2020). Although 

psychology itself is still evolving, HRI and related fields could already gain 

considerable insights from the knowledge psychologists built up on experimental 

control and measurements. Moreover, the recent reproducibility crisis in 

psychology should inspire HRI researchers to adopt a more rigorous research 

approach at this early stage. 

 

1.4. Game theory for understanding HRI 

As stated by Innes and Morrison (2020), HRI experiments that involve human 

subjects require structural interactions and sophisticated designs that allow 

researchers to clarify effects and the relationships between variables of 

interest. Therefore, in this thesis, I chose to adopt game theory and the designs 

of economic games for investigating people’s decision-making processes in HRI.  

 

Game theory — the theoretical framework that seeks to characterise human 

decision-making processes via structural games and mathematical models — is 

traditionally a subject in mathematics and economics. Over the past several 

decades, however, game theory has been applied to an increasing number of 

fields that extend beyond mathematics and economics, including politics, 

computer science, biology, and the social sciences, including psychology 

(Osborne, 2004; Sanfey, 2007). The reason why game theory paradigms hold 

great psychological interest is due to abundant empirical evidence suggesting 

that people’s decisions in interactive economic games are not entirely ‘rational’ 

(i.e., always maximising individual profits) but are often more cooperative, 

altruistic, and reciprocal (Colman, 2003; Fehr & Fischbacher, 2004; Rapoport & 

Chammah, 1967; Sanfey, 2007), in contrast to the propositions of classical 

economic theories (Swanson, 1996). Specifically, our social behaviours in 

interpersonal settings are mostly in line with social norms (Fehr & Fischbacher, 

2004). A famous example of people’s ‘irrational’ social behaviours has been 

reported in ultimatum games. In an ultimatum game, two players are involved, 

with one being a ‘proposer’ and the other being a ‘receiver’. The proposer can 

freely decide the amount of money they are willing to share with the other. The 

receiver, on the other hand, can only choose to accept or reject the offer. By 

accepting, both players receive the amounts of money according to the 
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proposer’s allocation, whereas by rejecting, both players receive noting. The 

frequently found result in this game is that approximate half of receivers reject 

offers that are less than 30% of the total amount of money (Bland et al., 2017). 

This contradicts the prediction of rational economic decisions, which should be 

to accept all the possible offers so long as an offer is greater than zero. 

Moreover, the finding demonstrates how people take interpersonal factors into 

account when making decisions. Even in situations where they should play 

strategically to earn money, they would rather forgo individual profits in order 

to ‘punish’ the greedy players. 

 

Other empirical research has demonstrated effects of numerous social factors — 

including trust, attitudes, and expectations towards the game opponent(s) — on 

social decision-making processes in interpersonal economic games (Berg et al., 

1995; Charness et al., 2016; Chaudhuri et al., 2002; Murphy & Ackermann, 2015; 

Peshkovskaya et al., 2017). Given the valuable insights into human social and 

economic behaviours revealed via game theory approaches, more and more 

researchers interested in HRI and in human—computer interaction (HCI) have 

started to examine how people behave when playing economic games with 

artificial agents (Correia et al., 2016; de Melo, Carnevale, et al., 2014; de Melo, 

Gratch, et al., 2014b; Hoegen et al., 2018; Tulk & Wiese, 2018). The two types 

of games theory that are most frequently used by HRI and HCI researchers are 

prisoner’s dilemma games and ultimatum games. In the following, I detail each 

of these paradigms in turn. 

 

1.4.1 Prisoner’s dilemma games 

In a classical prisoner’s dilemma scenario (Figure 1-1), two prisoners (“prisoner 

A” and “prisoner B” in Figure 1-1) are imprisoned in individual jails without any 

communicational channel, and each of them can choose either to confess their 

crime or to remain silent (i.e., not to confess). The consequences of individual 

prisoners’ decisions will depend on both of their choices. First, if both prisoner A 

and B want to cooperate with each other and remain silent. Each of them will 

serve only one year in jail. However, choosing to confess is tempting since, if 

one of them chooses to confess, the one confessing will be set free immediately, 

and the one remains silent will be sentenced to life-time imprisonment, which is 
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the worst possible outcome. In this sense, choosing to confess is regarded as 

betraying the other. Finally, if both of them are tempted by the potential 

freedom after confessing, they will all serve 20 years in jail, which is much 

longer than the 1-year imprisonment (i.e., the outcome of mutual cooperation). 

This scenario of prisoner’s dilemma games depicts the situation when individual 

profit is at odds with collective profit, and the games are usually used to 

measure people’s cooperative tendencies in social interactions (Pothos et al., 

2011b; Rapoport & Chammah, 1967). 

 

 

Researchers usually adopt a monetary version of prisoner’s dilemmas where the 

consequences of decisions become different amount of monetary rewards or 

game points proportional the eventual monetary payoffs (Moisan et al., 2018; 

Rapoport & Chammah, 1967). Figure 1-2 present an example of such games. In 

the situation of one player cooperating while the other does not, the player who 

chooses not to cooperate earns the highest amount of reward (Figure 1-2; e.g., 

£10), whereas the player who cooperates receives the worst outcome (e.g., £0). 

When both players choose to cooperate with the other, each of them will 

receive a moderate reward (e.g., £7). When both players choose not to 

cooperate with the other, both are given a minimal payoff (e.g., £1).  

Figure 1-1. A classical scenario of a prisoner's dilemma. 
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Numerous studies in HCI have adopted the game design to examine the extent to 

which people would cooperate with virtual agents and to explore the relevant 

factors (such as agents’ emotional displays) shaping the cooperative tendencies 

(de Melo, Carnevale, et al., 2014; de Melo, Gratch, et al., 2014b; de Melo & 

Terada, 2019; Hoegen et al., 2018). However, much less is known about people’s 

cooperative tendencies when they play these kinds of games against physically 

embodied robots. Some researchers have probed reciprocity in games played 

with a humanoid NAO robot (Sandoval et al., 2016), and the extent to which 

human-like dialog with a robot influences people’s cooperative tendencies 

towards them (Maggioni & Rossignoli, 2021). The current evidence of human 

behaviours in human—robot prisoner’s dilemma games remains limited, however, 

in terms of the topics examined and the robotic platforms used. It is important 

for investigate questions in this area further because people’s cooperative 

willingness towards social robots in prisoner’s dilemma games could shed light on 

future human—robot cooperation in the real world where choosing to work with 

robot assistants (e.g., business, healthcare, or educational settings) might 

denote forgoing short-term individual profit (e.g., monetary expenses, time 

investment in learning how to cooperate robots) in exchange for better 

collective payoffs (e.g., better and more efficient work performance, as robots 

don’t need to rest or sleep). Cooperative tendencies towards embodied robots in 

the context of prisoner’s dilemma games therefore could be regarded as 

approximations of the extent to which people would be willing to cooperative 

with embodied social robots in real life (Kayukawa et al., 2017; Sandoval et al., 

2016). 

Figure 1-2. An exemplified payoff matrix in prisoner's dilemma games. R = rewards; T = 

temptation; S = sucker’s payoff; P = punishment. The dilemma is defined by two rules: T > 

R > P > S, and 2R > T + S.  Adapted from Hsieh, TY., Chaudhury, B. & Cross, E. S. 

(2020). Human-robot cooperation in economic games: People show strong reciprocity but 

conditional prosociality toward robots. PsyArXiv. https://psyarxiv.com/q6pv7/    
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https://psyarxiv.com/q6pv7/
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1.4.2 Ultimatum games 

As introduced above, an ultimatum game is played by two players: one 

‘proposer’ who decides the allocation of money or rewards, and one ‘receiver’ 

who accepts or rejects the offer. If a participant plays the role of a proposer, 

their allocation of money/rewards can be regarded as the extent to which they 

wish to be fair to the other participant. One the other hand, a receiver’s 

decision is a measure of their preference of fairness and how the perception of 

fairness influences their treatment of the proposer (Bland et al., 2017; Osborne, 

2004). HRI researchers have adopted ultimatum games to examine how people 

make social decisions in games played with robot players, compared to human 

players. For example, Sandoval et al. (2016) reported that participants who 

played the proposer role made fairer decisions to a human confederate than a 

NAO robot. In Torta et al.'s (2013) online study, participants played ultimatum 

games with a human, a humanoid robot, and a computer. They found a 

marginally significant effect that participants (playing the receiver’s role) 

rejected a computer more than they did to a humanoid robot and a human. Also, 

participants took more time to decide whether to accept or reject a computer’s 

offer, compared to a robot’s or a human’s offer. Torta et al. (2013) explained 

the findings by the level of anthropomorphic characteristics of the three agents, 

which made participants respond to a human and a humanoid robot opponent in 

a more similar way. However, in Nishio et al.'s (2018) study, the authors did not 

find any evidence for the main effect of agents’ human-like appearance on 

participants’ decisions as receivers. In other words, they found that after 

engaging in short verbal dialogs with game opponents, participants’ game 

responses to highly human-like android, but not a mechanical robot or a 

computer, would become more similar to the responses to a human opponent. 

Finally, Terada and Takeuchi (2017) found that a robot’s emoji-like facial 

expressions displayed on a monitor “head” could induce more generous offers 

from human participants when these human participants played the role of 

proposers. While these findings are beginning to inform our understanding of 

how people behave in reciprocal economic interactions with embodied robots, 

much remains to be explored in this space. For example, it remains unclear the 

extent to which people’s social decisions in ultimatum games are shaped by 
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agent types or human likeness of agents, due to conflicting findings in this space 

(Nishio et al., 2018; Torta et al., 2013). However, these studies demonstrate 

that investigations of HRI or HCI in the context of ultimatum games holds great 

potential to provide important new insights into how people’s sense of fairness 

and willingness to offer might be shaped by the type of player they interact with 

(e.g., human vs. artificial, human-like vs. mechanoid, embodied vs. screen-

based, etc.). 

 

Research into social decision-making processes in economic games carries 

further implications for real-life social interactions (Chaudhuri et al., 2002; Rand 

& Nowak, 2013). Interpersonal research on economic game behaviours has 

demonstrated that people’s social decisions measured in experiments are linked 

with their real-life cooperative and charitable behaviours (Capraro et al., 2019; 

Capraro & Perc, 2021). Similarly in HRI and HCI research, researchers are 

becoming increasingly interested in people’s cooperative behaviours towards 

artificial agents (de Melo & Terada, 2019; Hoegen et al., 2018; Kayukawa et al., 

2017), since gaining in-depth understanding in cooperation with robots or with 

virtual agents could yield profound practical values in, for example, industry, 

education, and healthcare settings. In contrast to self-report data ,which might 

be biased by social desirability (Fisher & Katz, 2000), behavioural measures in 

structural games can offer a more robust and well-controlled approach to 

provide insights into the factors and contexts that shape real-life HRI. 

 

1.5. The current research approach 

In this thesis, I adopt a research approach that incorporates both psychology and 

game theory perspectives in an attempt to gain better understanding of how 

people make social decisions during interactions with a physically embodied 

robot. More importantly, I aim to identify relevant factors that shape our 

cooperative tendencies towards robots. The reason why the research focus is on 

human—robot cooperation is that social robots have considerable practical 

applications in healthcare, education, and industrial settings (Broadbent, 2017a; 

Dautenhahn, 2007; Fong et al., 2003). As such, it is easy to foresee a future 

where humans will need to work with robots in these highly complex social 

settings. This near-future prospect highlights the importance and urgency of 
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acquiring better understanding in the factors shaping people’s tendencies to 

cooperate with robots, to maximise the utility of robots (Schrempf et al., 2005). 

In order to address the overarching goal, the research approach I use in this 

thesis has the following components: 

 

• Psychological perspective of HRI: To predict how people would behave in 

economic games played with robots, the literature on interpersonal games 

was extensively reviewed. Largely informed by interpersonal literature, 

the thesis explores the roles of personal factors — including social value 

orientation, predisposition to anthropomorphism, negative attitudes 

towards robots, and individual differences in emotion recognition — in 

human—robot cooperation. 

 

• Open Science practices: Two empirical studies (Chapters 2 and 4) were 

preregistered, and the study in Chapter 4 was submitted and conducted as 

a registered report (in-principle-acceptance granted by Cognition and 

Emotion). The study materials, anonymous data, and analysis codes for all 

studies (Chapter 2-4) are fully reported on the Open Science Framework 

(OSF; see individual chapters for study-specific OSF links).  

 

• Physically embodied, autonomous robot: Except for the online study 

reported in Chapter 3, most of the HRI investigations that compose this 

thesis were conducted with physically embodied robots that operated 

autonomously as they played games with participants. Specifically, the 

robot platform used in the thesis was the Cozmo robot (manufactured by 

Anki Inc.). These palm-size edutainment robots have high flexibility to be 

programmed and feature extremely expressive LED screen faces. 

Researchers have also proposed that they can be suitable research tools 

for HRI experiments (Chaudhury et al., 2020; Cross, Riddoch, et al., 

2019). 
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• Game theory and economic games: The experimental designs of the 

main embodied HRI studies (Chapters 2 and 4) are based on the principles 

of game theory (prisoner’s dilemma games), in order to systemically and 

structurally examine the social dynamics in the interaction processes. The 

choice of iterated prisoner’s dilemma games is mainly because we can 

observe the changes of people’s cooperative tendencies during iterated 

game rounds. For example, by plotting people’s decisions made in a series 

of game rounds, we can identify when their cooperative willingness start 

to decrease. This could provide richer insights into people’s social 

decisions-making process compared to other one-off decision-making tasks 

(e.g., ultimatum games). 

 

• Mixed effects modelling: Given the strengths of mixed effects statistical 

approach to model both fixed and random effects (Debruine & Barr, 2019; 

Field & Wright, 2011), most analyses in the thesis were conducted with 

mixed effects models. Furthermore, mixed effects models enable us to 

carry out analyses at a trial-by-trial level, instead of doing it only on 

aggregate data. 

 

 

 

 

 

 

 

 

Figure 1-3. Cozmo robots used throughout the thesis. Cozmo 

robots are portable (5 x 7.2 x 10 inches) and highly expressive 

with an LED screen (128 x 64 resolution). 
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1.5.1 Topics and variables examined in the thesis 

 

 

 

Figure 1-4 summarises the variables examined in the three empirical studies 

that compose the body of this thesis (Chapters 2-4). Overall, the variables can 

be categorised into three groups: contextual variables, personal variables, and 

robotic variables. Contextual variables refer to the manipulation made in 

experimental settings, which in this case, the designs of economic games. 

Personal variables mean the factors relates to individuals’ personality traits and 

temperaments. Specifically, I explored the impact of social value orientation 

(i.e., temperamental orientation of altruism) (Chapter 2), negative attitude 

towards robots (Syrdal et al., 2009) (Chapter 2), predisposition to 

anthropomorphism (Ruijten et al., 2019) (Chapter 2), temperamental empathic 

traits (measured by Interpersonal Reactivity Index; Davis, 1983a) (Chapter 3), 

and cooperative predisposition (i.e., people’s default cooperative level when 

facing a prisoner’s dilemma).  As we cannot manipulate personal variables, most 

of the personal variables we examined in this thesis are necessarily exploratory. 

Contextual variables 

Robotic variables Personal variables 

Incentive structures of games 

Physically embodied emotional 
displays Negative attitudes towards robots 

Social value orientation 

Predisposition to anthropomorphism 

Cooperative predisposition 

On-screen emotional displays 

Chapter 2 

Empathic traits Chapter 3 

Chapter 4 

Figure 1-4. The variables examined in the three empirical studies (in Chapter 2-4). Mainly three 

categories of variables pertain to human—robot cooperation are investigated, including contextual, 

personal, and robotic variables. 
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Robotic variables involve characteristics of robots, and in this thesis, the focus is 

particularly on robots’ displays of emotional expressions. 

 

1.5.2 An overview of the three empirical studies 

In this section, I present an overview of the main research question asked in 

each chapter and summarise the empirical studies below.  

 

Chapter 2 — Are people’s cooperative tendencies towards a robot opponent 

shaped by incentive structures of prisoner’s dilemma games?  

Prisoner’s dilemma games have been used to investigate human cooperative 

behaviours for a long history (Rapoport & Chammah, 1967) and currently, the 

games have also been adopted for examining people’s willingness to cooperate 

with artificial agents (de Melo, Carnevale, et al., 2014; Hoegen et al., 2018; 

Kayukawa et al., 2017). However, the experimental set-up and game designs 

vary dramatically in the HRI literature, which makes it challenging to form a 

conclusive perspective about how people cooperate with artificial agents in such 

economic games. Furthermore, interpersonal evidence has revealed that 

people’s cooperative intentions are shaped by the levels of incentives provided 

for cooperation in human—human games (Moisan et al., 2018; Rapoport, 1967). 

Therefore, we developed a lab-based human—robot prisoner’s dilemma games 

played with Cozmo and examined whether different incentive structures of the 

games led to different cooperative tendencies among participants. In the 

results, we did not find evidence supporting the effects of contextual incentives 

on people’s cooperative decisions, which stands in contrast to the findings from 

interpersonal games (Moisan et al., 2018). However, we found significant 

evidence for a reciprocal pattern in participants’ game decisions via exploratory 

analyses of this dataset.  

 

Chapter 3 — How well can people recognise Cozmo’s emotional displays 

and to what extent the emotion recognition is shaped by individuals’ 

empathic traits? 

In the online investigation, we acquired high recognition rates for Cozmo’s 

happy, sad, and angry emotion displays, which were higher than the average 
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recognition rates of the previous 43 studies on emotion recognition of other 

robots (e.g., NAO, Pepper, Keepon robot, and KOBIAN robot; Stock-Homburg, 

2021). Contrary to our predictions, we found the empathy subtype ‘empathic 

concern’ (Davis, 1980) was negatively associated with participants’ (n = 103) 

recognition accuracy.  

 

Chapter 4 — Are people’s cooperative tendencies towards a robot 

influenced by the robot’s emotional displays and do the influences of 

emotions differ by individuals’ cooperative predispositions? 

After validating the recognisability of Cozmo’s emotional displays, in Chapter 4, 

the influence of Cozmo’s sad and angry expressions on people’s cooperative 

tendencies was examined in prisoner’s dilemma games. We also investigated the 

interaction between the robots’ emotions and people’s cooperative 

predispositions on cooperative decisions. In the results of 60 datasets, we found 

significant impact from people’s cooperative predispositions and emotion 

recognition accuracy on their cooperative decisions in the games. However, 

contrary to our preregistered predictions, no significant difference was found 

between the effects of the robots’ sad and angry emotions. 

 

To conclude, the thesis incorporates the psychological and game theory 

approaches to investigate people’s cooperative tendencies in economic games 

with robots. The investigation includes the factors of contextual incentives 

(Chapter 2), personal temperament and traits (Chapters 3 and 4), and agent-

related factors (Chapter 4) in human—robot cooperation. The overall findings are 

conclusively discussed in Chapter 5. The studies outlined here provide a point of 

departure for rigorous investigations of human—robot cooperation and identify 

relevant factors shaping people’s cooperative willingness to robots. 

 

 

1.6. Summary 

Considering the utilities and advantages social robots can generate for human 

society (e.g., across clinical, commercial, and educational settings; Broadbent, 

2017; Duffy, 2003; Fong et al., 2003), it is important to gain better 
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understanding in how people interact with robots designed to engage us on a 

social level, and how we can improve the social quality of HRI. In this chapter, I 

reviewed the unique challenges faced by those conducting HRI research, and the 

current movement that is gaining momentum among psychologists and other 

researchers, including those interested in HRI, for conducting more reproducible 

science. In response to the challenges highlighted by the Open Science 

movement, the approach I adopt in the thesis is to adhere to Open Science best 

practices as much as is possible while incorporating the perspectives of 

psychology and game theory into my empirical work. There is a long history of 

psychologists building knowledge of the human mind and behaviour via well-

controlled experiments and valid measures. On the other hand, game theory and 

economic game designs provide a structural way to investigate human behaviour 

and decision-making process in a relatively engaging and entertaining context. 

Importantly, using tasks derived from game theory for HRI research allows us to 

base evidence upon the well-developed literature on economic behaviours and 

social decision-making studies. With this approach, three empirical studies were 

conducted to build a more complete understanding in people’s cooperative 

tendencies towards robot and to identified relevant factors shaping such 

tendencies. The factors being explored in the thesis include contextual, 

personal, and robotic factors. Through the approach I have used and the findings 

presented via the following chapters, I am hopeful this work highlights the value 

and utility of using rigorous research methods grounded in well-defined theory 

from the social sciences for understanding and improving human—robot 

interactions.  
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Chapter 2  Human-robot cooperation in economic 

games: People show strong reciprocity but 

conditional prosociality toward robots  

 

 

This chapter is a more recent, updated version of the following preprint: 

 

Hsieh, TY., Chaudhury, B. & Cross, E. S. (2020, July 8). Human–robot 

cooperation in economic games: People show strong reciprocity but conditional 

prosociality toward robots. https://psyarxiv.com/q6pv7/ 

  

https://psyarxiv.com/q6pv7/
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2.1. Abstract 

Understanding how people interact socially with robots will be important for 

designing robots to work on social tasks. Here, we investigate undergraduate 

participants’ situational cooperation tendencies towards a robot opponent using 

prisoner’s dilemma games. With two conditions where incentives for cooperative 

decisions were manipulated to be high or low, we predicted that people would 

cooperate more often with the robot in high-incentive conditions. Our results 

showed incentive structure did not predict human cooperation overall, but did 

influence cooperation in early rounds, where participants cooperated 

significantly more in the high-incentive condition. Exploratory analyses revealed 

other two behavioural tendencies: (1) participants played a tit-for-tat strategy 

against the robot (whose decisions were random); and (2) participants only 

behaved prosocially toward the robot when they had achieved high scores 

themselves. Our findings highlight ways in which social behaviour toward robots 

might differ from social behaviour toward humans, and inform future work on 

human–robot interactions in collaborative contexts. 

 

 

KEYWORDS: 

Human-robot interaction, human-robot cooperation, prisoner’s dilemma games, 

Rapoport’s K-index, reciprocity 
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2.2. Introduction 

Social robots are becoming valuable tools for assisting people with daily life, as 

they take on new roles in healthcare, education, and therapy (Broadbent, 

2017a). However, many commercially available social robots suffer from the 

criticism of not fitting users’ expectations, especially in terms of the richness or 

appropriateness of their social responses, which in turn diminishes people’s 

ability to build long-term, enduring social relationships with these machines 

(Frennert & Östlund, 2014; Graaf et al., 2016). On one hand, robot designers and 

engineers are endeavouring to build more socially-sophisticated robots, mostly 

by increasing robots’ human-likeness in terms of physical features, motion, and 

behaviours (Dautenhahn et al., 2009; Ishiguro, 2006; Yu Ogura et al., 2006). On 

the other hand, however, others have argued that it is equally, if not more, 

imperative to gain deeper understanding into the psychological mechanisms and 

factors that underpin and shape the quality of human-robot interaction, which 

might not necessarily or solely be the level of human-likeness (Broadbent, 

2017a; Cross, Hortensius, et al., 2019; Henschel et al., 2020; Hortensius & Cross, 

2018; van Straten et al., 2020). 

 

One important aspect of HRI that calls for further psychological investigation is 

human–robot cooperation (Sandoval et al., 2016; Schrempf et al., 2005; Wu et 

al., 2016). Cooperation is a pivotal theme in human social behaviours and is key 

to building mutual and group interests (Axelrod, 1984; Fehr & Fischbacher, 

2004). Forming amiable and cooperative relationships with robots should also 

maximize the utility of robots (Schrempf et al., 2005). Taking eldercare robots 

as an example, an ideal healthcare robot might take care of various aspects of 

an elderly individual’s everyday life, such as administering medicine, updating 

family on health status, and providing social interaction to combat loneliness. If 

elderly individuals do not comply with a robot’s health instructions, engage with 

a robot socially, or accept a robot as a collaborator, the robot’s utility is 

diminished and human users miss out on the potential benefits the robot can 

offer. A clearer understanding of humans’ willingness to cooperate with robots, 

and the possible factors that shape such willingness, are thus required to reap 

the social and economic benefits socially assistive robots could offer. 

 



44 

In literature examining human-human and human-robot cooperation, prisoner’s 

dilemma (PD) games are often used to explore collaborative behaviour between 

individuals (or agents) (Axelrod, 1984; Van Lange et al., 2013). In a classic PD 

game, two players make simultaneous decisions – to cooperate or defect – with 

their individual payoff determined by both players’ decision on any given trial. If 

both players choose to cooperate, they each earn a moderate amount but not 

the highest rewards (R in Figure 2-1; e.g., £7 each). If only one chooses to 

cooperate, the defecting player receives the most rewarding payoff (T; e.g., 

£10), while the cooperating player gets the worst outcome (S; e.g., £0). Finally, 

if both players choose to defect, both receive a minimal payoff (P; e.g., £1 

each). Thus, while defection might be a profitable choice in terms of individual 

gain, cooperation brings about better chances of forming cooperative social 

relationships and of higher mutual gain in the longer term. 

 

 

Different designs of payoff matrices in PD games significantly influence people’s 

cooperative tendency (Moisan et al., 2018). To standardize PD game incentive 

structures, Rapoport (1967) (Rapoport, 1967) proposed the K-index as a measure 

of anticipated cooperation, which is calculated as follows: 

(𝑅 − 𝑃)

(𝑇 − 𝑆)
 

Simply put, the K-index represents the incentives for cooperation provided by a 

PD game’s payoff matrix (Rapoport, 1967). A higher K-index means more 

incentives for cooperation are provided by the game context, leading to higher 

cooperation rates among human players (Moisan et al., 2018; Rapoport, 1967). 

The propositions of Rapoport’s K-index are in line with several social behaviour 

models, such as preferences for social efficiency (Charness & Rabin, 2002) and 

the cooperative equilibrium model (Capraro, 2013). These models, coupled with 

Figure 2-1. Payoff matrix of prisoner’s dilemma games. R = rewards; T = temptation; S 

= sucker’s payoff; P = punishment. Designs of payoff matrix should follow the two rules: 

T > R > P > S; 2R > T + S. 



45 

empirical evidence from interpersonal PD games (Capraro et al., 2015; Moisan et 

al., 2018), suggest that people’s cooperative tendency is shaped by payoff 

structures in PD games. This stands in contrast to the neoclassical economic 

theory’s prediction (Swanson, 1996) that people should act rationally to 

maximise self-gain and therefore defect all along. 

 

Prior work suggests that people employ similar social behaviours in human-robot 

and human-human economic games. For example, participants in previous 

studies were equally cooperative with human or artificial opponents (de Melo et 

al., 2010; Krach et al., 2008; Wu et al., 2016); and have demonstrated the same 

reciprocal responses to a Nao robot (a child-sized humanoid robot) as to a human 

confederate (Sandoval et al., 2016). Moreover, other research reports human 

cooperative behaviours to be impacted by emotions displayed by artificial 

agents, in line with the appraisal theory of emotion (de Melo, Carnevale, et al., 

2014; de Melo et al., 2010, 2012). However, the experimental set-up and designs 

of these studies varied considerably, making it difficult to assess the role played 

by contextual factors or draw conclusions about how people behave and 

cooperate with artificial agents in such economic games. Moreover, most work 

on understanding human cooperation with artificial agents has been conducted 

using online economic games (de Melo, Carnevale, et al., 2014; de Melo et al., 

2012; de Melo & Terada, 2019; Hoegen et al., 2018; Moisan et al., 2018). As 

such, we have a limited understanding of human cooperative and competitive 

behaviours toward a physically present robot (Kayukawa et al., 2017; Sandoval 

et al., 2016); a gap in knowledge that is becoming increasingly important to fill 

(K. M. Lee et al., 2006; Seo et al., 2015; van Straten et al., 2020). Therefore, in 

this study, we examined people’s willingness to cooperate with a physically 

embodied social robot in PD games’ where the incentive structures (i.e., K-

index) are manipulated. In line with previous research findings (Moisan et al., 

2018), we predict that participants who play a high K-index PD game against a 

robot will make more cooperative decisions than those who play a low K-index 

game, regardless of a robot opponent’s random ordered game decisions. Given 

that defection is always a preferable option in terms of individual payoff in a 

single PD game, people’s willingness to cooperate with a robot might suggest 

that we confer some manner of social status to the robot, since cooperation in 
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this context requires a mindset of focusing on collective payoff, and accepting 

possible betrayal from a robot. 

 

2.3. Methods 

2.3.1. Open Science Statement 

Prior to data collection, all manipulations, measures, and the sample size 

justification and main hypotheses were pre-registered on the Open Science 

Framework (OSF): https://osf.io/res67/. Consistent with recent proposals (Galak 

et al., 2012), we report all manipulations and all measures in the study. In 

addition, following open science initiatives (Munafò, 2016), the data, stimuli, 

and analysis code associated with this study are freely available on the Open 

Science Framework. By making the data available, we enable others to pursue 

tests of alternative hypotheses, as well as more exploratory analyses. All study 

procedures were approved by the College of Science and Engineering Ethics 

Committee (University of Glasgow, Scotland) – approval number: 300180201. 

 

2.3.2. Participants 

We recruited seventy participants (Mage = 23.6, SD = 3.62; 50 females), who had 

normal or corrected to normal vision and no history of neurological or psychiatric 

disorders, from the University of Glasgow’s psychology subject pool system. The 

sample was composed of people from diverse national backgrounds, but all 

currently living in the UK –– 25 (35.71%) of them report being from the UK, 8 

(11.43%) from China, 6 (8.57%) from the US, 4 (5.71%) from India, and the other 

27 (38.57%) from the rest of 20 different countries (Appendix A, Table S1). The 

pre-registered sample size was determined by a simulation-based power analysis 

for generalised mixed-effects models, and the parameters used for simulation 

were based on Moisan and colleagues’ study (Moisan et al., 2018). In order to 

make sure that our sample was naïve to robots, we measured their daily 

exposure to robots and also to robot-relevant films or series they had seen (e.g., 

Westworld, Star Wars, Wall-E) (Riek et al., 2011) before taking part in the PD 

games. On a scale from 1 (never) to 7 (daily), the median of daily engagement 

with robots for our sample was 2, with an interquartile range (IQR) of 2. The 

https://osf.io/res67/
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median number of robot films seen by participants is 3 (IQR = 3) out of 14 films. 

Two Wilcoxon rank sum tests were performed to test whether the participants in 

high K-index and low K-index conditions differed in their daily engagement with 

robots or in the number of films featuring robots seen. We found no difference 

between the two samples’ scores for either of the scales (daily engagement with 

robots: W = 730, p = .15; numbers of robotic films seen: W = 759, p = .083), 

which verified that the two samples had a similar level of prior exposure and 

were generally naïve to robots. Participants’ informed consent was obtained 

prior to the experiment beginning, and participants were reimbursed with £6 

(per hour) or 4 course credits at the end of the study.  

 

2.3.3. Game Design 

Participants played one practice game and one formal PD game with a 

commercially available Cozmo robot (manufactured by Anki Inc.— Figure 2-2). 

Equipped with four motors, Cozmo fork-lift style arm and head can move in the 

vertical plane, and its steering wheels can drive in all directions. The Cozmo 

robot also has a well-developed software development kit (SDK) platform, which 

users can use to customize its programming using Python language and which we 

used to develop our human–robot PD game.  

 

Figure 2-2. The Cozmo robot used in this study. Cozmo 

is palm-sized (5 x 7.2 x 10 inches), with an LED screen 

(128 x 64 resolution) as a face, which allows it to produce 

variable and expressive facial expressions, such as 

happiness, anger, sadness, and surprise. Along with its 

emotionally expressive face, Cozmo also produces 

robotic vocal interjections, and can be programmed to 

speak simple words and phrases with a mechanical 

sounding voice. However, in the current study, Cozmo’s 

emotionality remained neutral across two conditions. 
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Before the games started, the experimenter presented a short introductory 

video to participants about the PD game rules and verbally explained the cover 

story of the experiment with the following text: “In this study, we are running a 

robot competition and aim to know which Cozmo is the best economic game 

player (showing participants five other Cozmo robots on the shelf). In each game 

round, a certain amount of coins will be available to you and Cozmo, and both 

players will make simultaneous decisions either to keep all the coins or to share 

coins with the other. Your individual payoff will depend on both of your 

decisions. The more coins you get the higher possibility you’ll win a shopping 

voucher in the end, and the Cozmo that wins will be used in our following 

study, but if Cozmo loses the game, its memory and data will be entirely 

erased.” 

 

We used the script of erasing Cozmo’s memory as its punishment for losing 

because prior work has demonstrated that such a prompt is useful in eliciting 

people’s real concerns and empathy towards a robot (Seo et al., 2015), and in 

the case of this study, should further convince participants that the game is 

meaningful to Cozmo with real consequences. Participants were randomly 

assigned to either the high K-index (K=(7-1)/(10-0) = 0.6) game or the low K-

index (K=(6-4)/(10-0) = 0.2) game (Figure 2-3A, B, respectively). The 

experimenter also answered participants’ questions and made sure that they 

fully understood how to play the game before it started. 
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2.3.4. Setup and Apparatus 

We developed the human-robot PD game via Python 3.5.3 to examine people’s 

cooperative tendency in different game contexts (technical details and 

programmes can be found on the Github page: 

https://github.com/CozmoGame4Sobot/Prisonner-s-Dilemma). The setup of the 

experiment is shown in Figure 2-4. Participants faced a screen demonstrating 

the payoff matrix, real-time outcomes, and game scores during the game. 

Cozmo was placed on the right side of the screen, on a custom-built 4.3 cm thick 

Figure 2-3. The schematic of game screens. Panel A illustrates a high K-index PD game (K = 0.6). 

Panel B illustrates a low K-index PD game (K = 0.2). 

https://github.com/CozmoGame4Sobot/Prisonner-s-Dilemma
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paper box with an overhang on the side between the two players to prevent 

participants from seeing Cozmo’s interactive cube (see below). This design was 

to prevent participants from cheating, as some might try to observe Cozmo’s 

decision first before deciding which cube to choose for themselves to maximise 

payoff. However, the setup still allowed participants to see the whole body of 

Cozmo since Cozmo would drive backwards to a point where its entire body was 

visible by participants (panel B of Figure 2-4), and where it could “watch” the 

screen until it made a choice for how to respond. This ensured that the robot 

was within participants’ sight for all of the experiment except when it made its 

choice to keep or share. 

 

 

Players used interactive cubes equipped with LED lights inside to make decisions 

in each game. Each participant was given two interactive cubes, illuminated in 

different colours to reflect their different choices (participants tapped the blue 

cube to keep the coins and the yellow cube to share the coins). Cozmo used only 

one cube to respond, in order to prevent participants from anticipating Cozmo’s 

choices from the direction it drove towards. We designed practice games to 

familiarise participants with the ways of responding and with the payoff 

matrices. When practising, participants were asked only to respond to specific 

goals on the screen (e.g., tap the yellow cube to get 7 coins), to avoid their 

gaining actual PD game experience before the formal game started.  In formal 

PD games, we manipulated Cozmo’s game decisions to share for 10 trials and to 

keep for 10 trials, randomized across participants. This decision structure was 

Figure 2-4. The experimental setup: (A) the PD game environment from participants’ perspective. 

Participants faced a game screen and the Cozmo robot, and made responses via tapping two 

interactive cubes, which represented “to keep” and “to share” decisions (B) Cozmo turning to face the 

screen to ‘see’ the updated game scores after it had made a decision. 
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chosen to control Cozmo’s behavioural competitiveness. Both human players and 

Cozmo made their responses by tapping the top of the cubes, which were 

connected to a controlling laptop via WiFi, and the players’ responses were 

recorded by Python log files. 

 

2.3.5. Measures 

Participants also completed several questionnaires, which were used to explore 

the role of different human factors in human–robot cooperation, and to measure 

participants’ evaluation of Cozmo after the PD games. First, a social value 

orientation (SVO) (Murphy et al., 2011) questionnaire was used to measure 

people’s temperamental pro-sociality. The SVO scale has a significant 

relationship with cooperative decisions in interpersonal social dilemmas 

(Andrighetto et al., 2020; Murphy & Ackermann, 2015). Participants are asked a 

series of questions regarding how much endowment a person was willing to 

ascribe to themselves and to an unknown other, to evaluate the main drive of 

their social decisions —— whether it was self-profit, collective profit, or relative 

profit (Murphy et al., 2011). Second, the negative attitudes toward robots scale 

(NARS) (Syrdal et al., 2009) was included to understand people’s prior attitudes 

to robots in HRI research. Although no study has yet directly tested the 

relationship between negative attitudes and cooperative behaviours toward 

robots, the general correlation between such attitudes and people’s social 

behaviours toward robots is suggestive of a possible relationship. Third, we 

measured participants’ predisposition to anthropomorphism (Ruijten et al., 

2019), to explore whether an individual’s temperamental tendency to humanize 

non-living things influenced the decision-making process in the current game 

environment. These three scales were administered before the PD games were 

performed. Upon completion of these games, participants were asked to 

evaluate Cozmo’s game performance and strategy. Both pre-game and post-

game questionnaires were pre-registered and administered via the FormR survey 

framework (Arslan et al., 2020) (https://formr.org). 

 

https://formr.org/


52 

2.3.6. Procedure 

The experiment comprised three main sections. First, participants were given 

instructions and asked to provide written informed consent. Cozmo would then 

introduce itself by saying “Hello participants, I’m Cozmo.” Afterwards, 

participants completed a series of PC-based questionnaires, including prior 

experience with robots scale, NARS, SVO, and the predisposition to 

anthropomorphism scale. Second, participants completed one practice and one 

formal PD game with Cozmo in a lab booth. Third, participants completed a final 

set of questionnaires, including subjective evaluation of Cozmo’s performance 

and strategies, and their demographics. Following all procedures, participants 

were debriefed, paid, and thanked for their participation.  

 

2.3.7. Data Analysis 

We pre-registered the use of a mixed effects logistic regression model to 

examine the main research question: the extent to which people’s decisions to 

cooperate with a robot would be impacted by the different incentive structures 

of PD games. Additionally, we used a multiple regression model to explore the 

role of several additional factors on human players’ cooperation rates in the 

human–robot PD games. These factors were assessed via questionnaire and 

included negative attitudes toward robots, social value orientation traits, and 

predisposition to anthropomorphism. Finally, for exploratory purposes, we 

employed two additional mixed effects models to investigate the impact of (1) 

Cozmo’s prior game decisions; and (2) the presentation of players’ game scores 

on individual human decision. Findings from the final two exploratory models 

can offer insights for future experimental designs on related questions and can 

help to identify additional factors that shape human cooperative behaviours in 

the current context.  

 

2.4. Results 

To investigate our main research question – whether participants’ 

cooperative/non-cooperative game responses in the iterated PD games were 

influenced by the incentive structure of the PD games – we adopted a mixed 
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effects logistic regression model as our main pre-registered analysis. We 

followed Barr et al.’s suggestion (Barr et al., 2013) and started with the 

maximum random effects structures –– see Equation (1) below. The model 

successfully converged with a fixed effect of incentive structure, subject-level 

random intercepts, round-level random intercepts, and random slopes for the 

conditional effects on game rounds. Results of the analysis are shown in Table 2-

1. 

 

decision ~ incentive structure + (1 | subject) + (1 + incentive structure | round)  

(1) 

 

Table 2-1 

Results of the mixed effects logistic regression model that examined the effects 

of incentive structures on human cooperative decisions towards a robot 

 Main model  

 
decision ~ incentive structure + (1 | subject) + (1 + incentive 

structure | round) 

 Estimate SE z p-value Low CI High CI 

intercept -0.467 0.190 -2.46 0.014* -0.838 -0.095 

incentive 
structure 

-0.301 0.232 -1.30 0.194 -0.756 0.153 

AIC 1756.8      

BIC 1788.2      

Log-
likelihood 

-872.4      

CI = 95% confidence interval. *p < .05; **p < .01; ***p < .001 
Abbreviations: SE = standard error; CI = confidence interval. 
 
 

The overall incentive structure of PD games was not found to be predictive of 

participants’ game decisions ( = -0.301, p = .194, 95%CI = [-0.756, 0.153]) 

across 20 game rounds, which means participants in the high K-index game did 

not share coins more frequently than those in the low K-index game did, in 

contrast to our prediction. 
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2.4.1. Impact of Incentive Structures on Cooperative Decisions in 

PD Games 

For descriptive statistics, we calculated cooperation rates by dividing the 

number of cooperative decisions participants made by the number of total game 

rounds they performed. The mean cooperation rate of participants playing in the 

high K-index condition was 0.40, while that of participants in the low K-index 

condition was 0.34. We also visualized the binary game data (see Figure 2-5) to 

assess the distribution of the participants' decisions (in the two conditions – high 

and low K-index) across 20 game rounds. The tendency difference between these 

two conditions was salient especially at the start of games (Figure 2-5). When 

playing the high K-index game, participants began with a high tendency to 

cooperate, but this tendency declined rapidly after the first 5 game rounds. 

Conversely, the curve in the low K-index condition remained relatively flat 

throughout the 20 rounds. 

 

 

High K-index condition Low K-index condition 

Figure 2-5. Distribution of game decisions (sharing coded as 1; keeping coded as 

0) across 20 game rounds. A nonparametric smoothed curve was added to 

provide a clearer view of the cooperative trends. Cooperative decisions were 

notably more frequent in the high K-index condition than in the low K-index 

condition, especially in the first few game rounds. 
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We calculated the average cooperation rates (N of subjects who shared / N of 

total subjects) per game round and per K-index condition, and further observed 

that the cooperation tendency declined and fluctuated across both conditions 

(Figure 2-6 and Appendix A, Table S2). In the first game round, 80% of people 

in the high K-index game chose to share coins with Cozmo, but only 57.1% of 

participants in the low K-index condition did so. Similarly, cooperation rates in 

both game conditions dropped after the first few rounds and fluctuated till the 

end. We then examined statistically if the participants in these two conditions 

had different cooperation tendencies, especially in the first game round. Such 

an analysis can be meaningful because it extracts the possible impact of 

incentive structure on cooperation from other potentially influencing factors, 

such as quality of HRI, the order of Cozmo’s presented decisions, and all the 

relevant experiences during the game. In this analysis, we treated decisions 

made by participants in their first game as one-shot PD games and used a logistic 

regression model, which revealed that participants’ first-game decisions were 

significantly affected by the game structure (  = -1.10, p = .043); participants 

shared coins (cooperated) more often in the high K-index game than did those in 

the low K-index game. Odds ratio calculations also suggested that the odds of 

cooperation in condition one (high K-index, 28/20 = 1.4) was three times more 

likely than that in condition two (low K-index, 7/15 = 0.47). Below we present 

High K-index 

Low K-index 

Figure 2-6. Changes of cooperation rates (N of subjects who shared / N of 

total subjects) across 20 game rounds. A higher percentage of participants 

in high K-index game chose to cooperate (compared to those in the low-K-

index condition), but people in both conditions showed decrease and 

fluctuation in cooperation rates after the initial rounds. 
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exploratory analyses conducted in order to identify possible factors driving the 

fluctuations in participants’ cooperation tendencies. 

 

2.4.2. Exploratory analyses 

Reciprocity in HRI 

Reciprocity is an important theme in human social behaviour and plays a major 

role in the decision-making process of cooperation (Axelrod, 1984; Fehr & 

Fischbacher, 2004; Sandoval et al., 2016; Van Lange et al., 2013). Evidence 

shows that people can behave reciprocally toward social robots in certain 

contexts (Sandoval et al., 2016). We were therefore also interested to know 

whether our participant samples responded reciprocally to Cozmo’ game 

decisions (i.e., chose to share coins after Cozmo shared or chose to keep coins 

after Cozmo kept) in our specific experimental context. To probe this possibility, 

every game decision made by participants was paired with Cozmo’s decision 

from the previous round, and the data were examined by a mixed effects logistic 

regression model. Again, we started with a maximal model in terms of random 

structures (Barr et al., 2013). We then trimmed the complexity to arrive at a 

model that converged by removing random slopes for incentive structure (given 

that the focus of this analysis is more on Cozmo’s decisions).  The final model is 

provided in equation (2), which included Cozmo’s decision and incentive 

structure as the fixed effects and controlled subject-level and round-level 

random effects. 

 

decision ~ Cozmo’s decision*incentive structure + (1+Cozmo’s decision | subject) 

+ (1 | round) (2) 

 

The results of exploratory model 1 are presented in Table 2-2. This analysis 

yielded a significant fixed effect of Cozmo’s decision ( = 0.516, p = .046, 95%CI 

= [0.010, 1.020]), suggesting that participants were more likely to share coins if 

Cozmo shared in the previous round, and more likely to keep if Cozmo did so 

previously. However, neither the incentive structure (p = .544) nor the 

interaction between Cozmo’s decision and the incentive structure (p = .110) 

were predictive of the participants’ game decisions. 
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Table 2-2 

Results of exploratory analysis 1: mixed effects logistic regression model that 

examines reciprocity in human–robot interactions 

 Exploratory model 1  

 
decision ~ Cozmo’s decision*incentive structure + (1+Cozmo’s 

decision | subject) + (1 | round) 

 Estimate SE z p-value Low CI High CI 

intercept -0.850 0.195 -4.36 0.000*** -1.230 -0.468 

Cozmo’s 
decision 

0.516 0.256 2.00 0.046* 0.010 1.020 

incentive 
structure 

0.011 0.272 0.04 0.968 -0.522 0.544 

Cozmo’s 
decision* 
incentive 
structure 

-0.609 0.367 -1.66 0.097 -1.330 0.110 

AIC 1624.5      

BIC 1666.0      

Log-
likelihood 

-804.3      

CI = 95% confidence interval. *p < .05; **p < .01; ***p < .001 

 

 

The influence of presenting real-time game scores to participants 

The designs of PD games that probe human–agent (social robots or virtual 

agents) interactions differ considerably in the literature (de Melo, Carnevale, et 

al., 2014; de Melo & Terada, 2019; Hoegen et al., 2018; Kayukawa et al., 2017; 

Sandoval et al., 2016). One variable among many published studies was the 

revealing of real-time game scores or not to participants during iterated PD 

games. In some studies, real-time game statistics (i.e., the players’ scores after 

each round has been played) were shown to participants (de Melo, Carnevale, et 

al., 2014; Hoegen et al., 2018; Kayukawa et al., 2017), but not in other studies 

(de Melo & Terada, 2019; Sandoval et al., 2016). In the current study, we 

presented each player’s game scores on the game screen to create a sense of 
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competitiveness and to increase the entertainment value of the game. However, 

little is known about the extent to which such score presentation drives people’s 

cooperative decisions in games, and to what extent it might affect their 

decisions. In order to clarify this, we ran a second exploratory mixed effects 

model – as shown in equation (4) – using subjects' scores and Cozmo's scores as 

the fixed effects, with subject-level, round-level, and condition-level random 

effects included. The equation (3) represents the model that converged after 

removing random slopes for subject’s score, and random slopes for Cozmo’s 

score from the maximal model. 

 

dcision ~ Cozmo’s score*subject’s score + (1 | subject) + (1 | round) + (1 | 

incentive structure condition) (3) 

 

The results of this second exploratory model 2 (see Table 2-3) revealed a 

significant main effect from Cozmo's score (  = -0.023, p = .009, 95%CI = [-

0.041, -0.006]). In other words, participants were less likely to make 

cooperative decisions when Cozmo's scores were higher. Additionally, the 

interaction between Cozmo's score and the participant’s own score (  = 0.000, p 

= .001, 95%CI = [0.000, 0.000]) was a significant predictor of a subject’s 

cooperative decisions, which is visualized by the R package “effects” (Fox & 

Weisberg, 2018) in Figure 2-7. From this analysis, we observed that as subjects’ 

scores increased incrementally, the relationship between Cozmo’s score and the 

probability of making cooperative decisions changes from a negative correlation 

to a positive correlation. In other words, if players earned very little, they were 

less likely to cooperate with or be generous to Cozmo. However, when players 

had a considerable endowment, they were more willing to share, especially if 

Cozmo also achieved high scores. 
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Table 2-3 

Results of exploratory analysis 2: mixed effects logistic regression model that 

examines the impact of real-time game scores on cooperative decisions 

 Exploratory model 2  

 
decision ~ Cozmo’s score*subject’s score + (1 | subject) + (1 | 

round) + (1 | incentive structure condition) 

 Estimate SE z p-value Low CI High CI 

intercept 0.018 0.216 0.08 0.933 -0.406 0.442 

Cozmo’s  
score 

-0.023 0.009 -2.61 0.009** -0.041 -0.006 

subject’s   
score 

-0.010 0.006 -1.67 0.095 -0.022 0.002 

Cozmo’s 
score* 
subject’s   
score 

0.000 0.000 3.26 0.001** 0.000 0.000 

AIC 1645.1      

BIC 1681.4      

Log-
likelihood 

-815.6      

CI = 95% confidence interval. *p < .05; **p < .01; ***p < .001 
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Human factors 

Three pre-game scales – NARS, SVO, and predisposition to anthropomorphism – 

were selected to explore the relationships between human factors and 

cooperative decisions in PD games, and to inform future research into relevant 

human factors that shape cooperative and competitive behaviour toward robots.  

 

Results of a multiple regression model (F(3, 65) = 4.05, p = .011, R2 = .119) 

showed that only the predisposition to anthropomorphism scale ( = .01, p 

= .046) had significant impact on the participants’ overall cooperation rates 

(i.e., dividing the sum of times people shared by the total game rounds played). 

This result suggests that participants who anthropomorphized Cozmo also tended 

to cooperate with it more. In our further pre-registered and exploratory 

analyses, we account for the impact of dispositional anthropomorphism by 

Figure 2-7. Interaction between Cozmo’s and subjects’ scores on probability of 

cooperation. Although both participants’ scores and Cozmo’s scores were continuous 

variables, we used Cozmo’s score to define the x-axis as it is a more influential factor 

(Fox & Weisberg, 2018). The figure demonstrates that, if participants earned low scores 

(e.g., subj_score = 0), the probability of cooperation with Cozmo decreased as Cozmo 

won more, but if participants already had earned high scores (e.g., subj_score = 96), 

the probability of cooperation increased as Cozmo earned more. Pink vertical lines 

represent standard errors of each value. 
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including subject-level random effects. Apart from anthropomorphism scale, 

neither SVO ( = .01, p = .137) nor NARS ( = -.00, p = .145) were found to have 

a relationship with cooperation rates.  

 

Subjective Evaluation of Cozmo’s performance and game strategy 

After participants played PD games against Cozmo, we asked them to guess 

Cozmo's cooperation rate (i.e., what percentage of Cozmo's decisions were 

cooperative — choosing to share) and to report Cozmo's and their own game 

strategies, for the purpose of a manipulation check and exploration. The mean 

cooperation rate participants guessed was 49.6% (SD = 19.64), which suggested 

that generally, participants thought Cozmo was neither too cooperative nor too 

competitive. A two-sample t-test further validated that both groups’ estimates 

of Cozmo’s cooperation rates did not significantly differ (Mhigh-K = 49.39, Mlow-K = 

49.429, t(60.3) = -0.007, p = .994). This was in line with our manipulation of 

Cozmo's cooperation rate – 50% in each game – which was set to control its 

behavioural competitiveness. 

 

Regarding the open-ended question of whether Cozmo adopted any strategy in 

games, 80% (56 out of 70) participants said yes: 24 participants indicated that 

Cozmo was reciprocal or responsive to their decisions in games; 18 participants 

thought Cozmo adopted intentional strategies, such as being cooperative at first 

to gain participants’ trust and then betraying them to win the most coins, or 

mostly sharing so both players could win the maximum coins. The subjective 

evaluation of Cozmo’s game strategy varied tremendously among participants, 

but generally showed that participants attributed considerable intelligence and 

agency to Cozmo, which was not grounded in the reality of Cozmo’s 

programming/behaviour.  

 

2.5. Discussion 

In the current study, we examined whether people’s willingness to cooperate 

with a social robot is impacted by different incentive structures of prisoner’s 

dilemma games, as has been shown to be the case in when these types of games 

are played between human competitors (Moisan et al., 2018). We developed a 
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computer-mediated human-robot PD game and examined the frequencies of 

participants sharing coins (cooperating) with a Cozmo robot in high and low K-

index conditions. We hypothesized that people in the high K-index condition 

(when cooperation is a relatively more rewarding choice) would share coins more 

often. Our findings suggest that the game’s incentive structure did not exert any 

general influence on people’s cooperative decisions across 20 rounds of 

gameplay. Instead, only in initial game rounds, participants in the high K-index 

condition cooperated significantly more than those in the low K-index condition. 

This unexpected result highlights the differential responses people make to 

embodied robots compared to the screen-mediated human agents in Moisan et 

al.'s (2018) study. However, the quick decay of cooperation rates and people’s 

reciprocal tendencies were consistent with prior evidence from interpersonal 

economic games showing that people are less likely to cooperate or make public 

contributions after experiencing others’ uncooperativeness (Gunnthorsdottir et 

al., 2007; Houser & Kurzban, 2002). Future studies will need to replicate the 

current findings and further explore the extent to which the gradually 

diminishing effect of incentive structures is a unique phenomenon to embodied 

HRI.  

         

Exploratory analyses revealed two other influential factors underpinning 

participants’ cooperative decision making. First, people showed a strong 

tendency to respond reciprocally toward Cozmo - a tit-for-tat strategy - 

regardless of the game condition they were assigned to. Reciprocity is regarded 

as a fundamental feature of human social behaviours (Chaudhuri et al., 2002; 

Fehr et al., 2002; Gintis, 2000) and has also been reported in studies examining 

interactions between humans and robots (Kahn et al., 2004; S. A. Lee & Liang, 

2016; Sandoval et al., 2016). In our experiment, not only did participants react 

reciprocally toward Cozmo, but they also regarded Cozmo as behaving 

reciprocally toward them, while in reality, Cozmo carried out randomly ordered 

decisions. This observation ties in to the three factor theory of 

anthropomorphism proposed by Epley et al (Epley et al., 2007). According to this 

theory, when people have limited understanding about an agent, and when they 

are motivated to interact effectively with an agent to clarify a situation, they 

are more inclined to anthropomorphize the agent and to apply rules for 

interacting with other humans. This account fits our experimental context well, 
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where players did not have extensive prior experience with robots in general, or 

the Cozmo robot specifically, and were attempting to anticipate Cozmo’s next 

decisions in order to win a bigger payoff. It is thus understandable that 

participants tended to overinterpret cues from Cozmo’s action and regard them 

as meaningful and intentional.  

         

Additionally, our findings show that score presentation significantly affected 

participants’ game decisions, especially for the presentation of the robot 

opponent’s scores. Overall, participants were less likely to share coins when 

Cozmo’s scores were high. However, such impact was more intricately shaped by 

participants’ own scores (Figure 2-7). Participants behaved prosocially toward 

the robot (i.e., were more willing to share coins) only when they had personally 

achieved high scores. This seemingly counter-intuitive benevolent behaviour 

might be explained by two possible scenarios: first, participants were motivated 

to win more coins to beat other (human) participants’(and not Cozmo’s) game 

records to win a shopping voucher, which means their chance of winning a prize 

did not have a direct relationship with the relative performance against Cozmo. 

This consequently allowed for the possibility of a win-win situation, in which 

participants were satisfied with their coin earnings, and could also help Cozmo 

escape punishment (i.e., by not having its data wiped) after losing. Second, 

feeling powerful and competent can increase individuals’ sense of control and 

empathy toward others, which further leads people to engage in more prosocial 

behaviours and activities (Bhargava & Chakravarti, 2009; Côté et al., 2011; 

Magee & Langner, 2008). Our participants generally displayed a prosocial 

temperament, as evidenced by their SVO scores, which might have led them to 

act prosocially toward Cozmo as long as their self-interests were fulfilled. This 

point is also supported by the self-reported data participants gave when asked to 

identify the strategies used in games (e.g., “I tried to keep 10 coins advantage. 

When I had 20 coins more than the robot, I shared.”, “I aimed to have a certain 

gain by going for safe decisions (keeping coins for myself), accumulating some 

wealth, and only then I felt comfortable to take the risk of cooperating.”).  

 

Nevertheless, an alternative explanation could be that the interaction between 

Cozmo’s and participants’ scores on cooperation tendency was an outcome of 

participants’ reciprocal behaviours in games. Specifically, we observed that 
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participants, when earning low scores, were less likely to cooperate with Cozmo, 

and especially when Cozmo’s score was much higher. This was likely the case 

because participants perceived that Cozmo had taken advantage of them (i.e., 

participants cooperated while Cozmo defected) previously for multiple times. It 

is thus conceivable that people would be unwilling to cooperate after the robot 

gained high scores by being uncooperative toward them. On the other hand, we 

found that participants, when already earning high scores, were more likely to 

cooperate with Cozmo, and this effect was even more pronounced when 

Cozmo’s scores were also high. This could be explained by previous mutual 

cooperation and therefore mutual benefit (in terms of score). After such win-win 

cooperative experiences, participants would presumably keep cooperating and 

reciprocate Cozmo’s prior cooperation. Granted, in this study we are not able to 

provide a decisive answer as the underlying social and psychological motives 

underpinning participants’ game play decisions. Nevertheless, our study 

advances our understanding of human-robot cooperation, as well as human social 

behaviour in general, by providing several factors for researchers to consider 

when using economic games to exploring human–robot cooperation, including 

incentive structures, reciprocity, and the presentation of game status. 

Researchers should be aware of the impact of incentive structure when 

interpreting the results in one-shot PD games and when comparing human–robot 

cooperation rates between different game designs. Our findings also highlight 

how personal factors— such as predisposition to anthropomorphism—influenced 

human behaviours during HRI, and demonstrate the power of mixed effects 

model to control such subject-level random effects.  

         

However, our findings also raise several questions and limitations for future 

research to address. First, although the vignette of erasure of Cozmo’s memory 

(adapted from Seo et al.’s study) was found effective in convincing participants 

of the real and meaningful consequences happening to Cozmo if it lost games (as 

evidenced by the self-reported data). We acknowledge the possible confounding 

impact caused by individuals’ empathetic responses and therefore adopted 

mixed effects models to better control for possible subject-level random effects. 

Future studies could use more structured quantitative measures to assess how 

meaningful each participant thinks an economic game is to a robot or any other 

non-human agent, to ensure the validity of this kind of paradigm. For example, 
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researchers could manipulate (e.g., increase or decrease) the extent of 

punishment and rewards a robot receives during human–robot PD games, and 

measure how these manipulations impact participants’ perceptions and 

cooperative willingness. 

         

Secondly, previous work has highlighted the risks of generalising findings from 

one robotic platform to HRI overall (Henschel et al., 2020; Hortensius et al., 

2018; Hortensius & Cross, 2018), underscoring the need to clarify the extent to 

which different robot manifestations (in terms of size, function, sophistication, 

human-likeness, etc) influence human cooperation. The Cozmo robot we used in 

the study is rather toy-like, and small in size. Future research will need to 

replicate this work with larger (or even human-sized) robots if such findings are 

to be generalised to real-life situations where the robots we cooperate with and 

look to for assistance and companionship might be larger, more advanced, and 

more capable of assisting people in daily life scenarios. Another aspect of 

generalisability concern is related to the sample diversity. Although our sample 

was comprised of 24 different nationalities, a majority of participants came 

from a western cultural background. Future research could investigate human–

robot cooperation in more diverse cultural contexts as it is important to take 

cultural influences into consideration when designing and studying HRI (Lim et 

al., 2020). 

 

Thirdly, we did not directly compare here cooperation with a robot to 

cooperation and with a human confederate, but instead borrowed the insights 

from human-human interaction to predict human behaviours in HRI. The main 

aim of our study was to investigate the impact of situational incentives on 

human-robot cooperation, rather than to examine possible differential responses 

to robot and human competitors in economic games. However, future studies 

might wish to include a human confederate as well, to examine in more detail 

the extent to which the effects of incentive structures depend on the agents 

that people interact with. Finally, in the current study we only examined the 

difference between K-indices of 0.6 and of 0.2. Future research could include 

more levels of K-indices to acquire a fuller understanding of how our willingness 

to cooperate with a robot changes according to different incentive structures of 

human–robot PD games. 
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To conclude, our findings show that the incentive structure of a human–robot PD 

game influenced human cooperation only at the beginning of the game. 

Throughout the whole game, participants’ cooperative/non-cooperative 

decisions were driven more by the robot’s decision (following a tit-for-tat 

strategy) and by the presentation of game scores in each round.  
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Chapter 3  The Role of Empathic Traits in Emotion 

Recognition and Emotion Contagion of Cozmo 

Robots 

 

This chapter is an exact copy of the manuscript submitted as a Late-Breaking 

Report to the 2022 ACM/IEEE International Conference on Human-Robot 

Interaction (under review): 

 

Hsieh, TY. & Cross, E. S. (2021) The Role of Empathic Traits in Emotion 

Recognition and Emotion Contagion of Cozmo Robots. Manuscript submitted for 

publication in HRI '22: Companion of the 2022 ACM/IEEE International 

Conference on Human-Robot Interaction. 
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3.1. Abstract 

In this online study, we investigated how well people could recognise emotions 

displayed by video recordings of a Cozmo robot, and the extent to which 

emotion recognition is shaped by individuals’ empathic traits. We also explored 

whether participants who report more empathic tendencies experienced more 

emotional contagion when watching Cozmo’s emotional displays, since emotion 

contagion is a core aspect of empathy. We tested participants’ perceptions of 

Cozmo’s happiness, anger, sadness, surprise, and neutral displays. Across 103 

participants, we report high recognition rates for most emotion categories 

except neutral animations. Furthermore, the mixed effects modelling revealed 

that an empathy subtype (the empathic concern subscale from the Interpersonal 

Reactivity Index) significantly impacted emotional contagion. Contrary to 

predictions, participants with high empathic concern subscale scores were less 

likely to find the robot’s videos emotionally contagious. The study validates the 

utility of Cozmo robots to display recognisable emotional cues, and further 

suggests that empathic traits could shape our affective interactions with robots, 

though perhaps in a counterintuitive way.  

 

 

Keywords— Human–robot interaction, Dispositional empathy, Emotion 

recognition, Emotion contagion 
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3.2. Introduction 

Accurate recognition of others’ emotional cues is a crucial factor that 

contributes to effective and smooth interpersonal interactions (Barrett et al., 

2019; Hess et al., 2016; Van Kleef, 2009). Similarly in human—robot interaction 

(HRI), the capacities for social robots to display appropriate and recognisable 

emotion cues can be conducive for forming meaningful and socially sophisticated 

relationships with users (Hortensius et al., 2018; Tsiourti et al., 2019). On the 

other hand, emotion recognition abilities for people to recognise robots’ 

emotional cues might differ by individuals, by robotic platforms, and by emotion 

types (Stock-Homburg, 2021). The current psychology literature has well 

documented the individual differences in recognising human facial expressions 

(Barrett et al., 2019; Besel & Yuille, 2010). In particular, individual differences 

in empathic traits have been linked with differential performances in emotion 

recognition. For example, empathic people have been found to perform better 

in facial expression recognition tasks (Konrath et al., 2014);  emotional empathy 

(i.e., the ability to feel the emotions others experience) is related to better 

recognition of facial expressions within a short period of time (Besel & Yuille, 

2010); and people with autism spectrum conditions who have difficulties with 

emotion recognition tasks also record low scores in self-report empathy scales 

(Martin et al., 2019; Sucksmith et al., 2013). Given the relationship between 

empathic traits and people’s recognition abilities for human emotional 

expressions, it is important to examine whether similar links exist between 

dispositional empathy and accurate recognition of robots’ emotional displays. 

Current evidence has suggested that people could correctly recognise about 50% 

to 60% of embodied robots’ emotional displays (based on 43 HRI studies reviewed 

in Stock-Homburg, 2021), the research here could help explain the individual 

differences in emotion recognition of robots and set the foundations of bespoke 

social robots based on users’ personality traits.  

 

Empathy, as a multidimensional construct, refers to not only a person’s ability to 

cognitively understand others’ perspectives, but also the tendencies of being 

affectively connected to another person’s inner experience (Davis, 1983b). The 

affective component of empathy is therefore associated with emotional 

contagion, which is a phenomenon that occurs when we automatically 
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synchronize our own emotional states with others’ (Hatfield et al., 1993; 

Prochazkova & Kret, 2017). Previous studies have found that highly empathic 

people are more likely to experience emotions from non-human targets like art 

(Stavrova & Meckel, 2017) and music (Vuoskoski & Eerola, 2012). It is therefore 

of interest to determine whether people’s baseline empathic tendencies might 

also make them more likely to experience vicarious feelings from robots’ 

emotional displays. 

 

In this study, we used Cozmo entertainment robots (manufactured by Anki Inc., 

Figure 3-1) as the robotic platform to display emotional expressions. Cozmo 

robots’ affordability, portability and flexibility to be programmed have made 

them suitable tools for HRI research (Chaudhury et al., 2020; Cross, Riddoch, et 

al., 2019). Consequently, a better understanding of people’s emotion 

recognition of Cozmo’s simple emotional displays stands to benefit future 

studies aiming to investigate the display of human readable emotions by 

embodied robots. Additionally, the current research could help bridge the gap 

between psychology and HRI research by raising awareness of a personal factor – 

empathic traits – in social and affective interactions with robots. Specifically, 

based on human psychological evidence (Besel & Yuille, 2010; Konrath et al., 

2014; Stavrova & Meckel, 2017; Vuoskoski & Eerola, 2012), we predicted that 

people who reported high empathic traits could more accurately recognise 

Cozmo’s emotional displays, and would be more likely to feel the vicarious 

feelings from the robot’s emotional expressions. 
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Figure 3-1. Screenshot of the online emotion rating task. Participants would report the emotion(s) 

they recognised from a short video of Cozmo’s emotional displays and also the feeling(s) they 

experienced after watching the video. 

 

 

3.3. Methods 

We devised an online experiment via formR (Arslan et al., 2020) to explore the 

relationships between people’s empathic traits and emotion recognition and 

emotion contagion of the Cozmo robot’s emotional displays. The online 

experiment involved three sections: (1) participants filled out the Interpersonal 

Reactivity Index (IRI) (Davis, 1983a) as a measure of their empathic traits; (2) 

they watched and rated a series of videos showing Cozmo’s different emotional 

displays (each approximately 10 seconds long) (Figure 3-1); (3) they answered 

demographic questions of their age and gender. The details of the first two 

sections are explained below. 

 

3.3.1. Empathy Measures 

The Interpersonal Reactivity Index (IRI) is a widely used empathic trait measure 

from the psychological literature (Besel & Yuille, 2010; Davis, 1983a). The IRI 

involves four subscales: perspective taking, fantasy, empathic concern, and 
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personal distress. Perspective taking (PT) focuses on the cognitive component of 

empathy, which is the readiness to see things from others’ points of view. 

Fantasy (FT) scale measures whether people tend to imagine themselves as 

characters in novels or movies, and how easily they become emotionally engage 

with fictional characters. Empathic concern (EC), ascribed to emotional aspect 

of empathy, is about how often people experience feelings of others’ sufferings. 

Lastly, personal distress (PD) subscale assesses whether observing others’ 

misfortunes usually results in their own anguish. Each subscale contains seven 

items and items are rated on a five-point Likert scale from 0 (does not describe 

me well) to 4 (describes me very well). 

 

3.3.2. Cozmo Emotion Rating Task 

Three experimenters watched all the 348 Cozmo animations from the Github 

repository – https://github.com/cozmo4hri/animations (Chaudhury et al., 2020)– 

and selected five emotion categories that were most salient. The final set of 

videos displayed happy (animation numbers: 92, 94, 100, 193), angry (73, 74, 

136, 137), sad (63, 134, 152, 190), surprising (24, 65, 91, 200), and neutral (25, 

99, 160, 208) emotions. In the emotion rating session (Figure 3-1), participants 

watched a video of Cozmo displaying a specific emotion type (around 10 seconds 

long) and answered what they recognised from the video: “neutral”, “happy”, 

“sad”, “angry”, “surprise”, “other” (with a text space for more  details), or “I 

don’t know”. Furthermore, participants also reported their subjective feeling(s) 

after watching each video, using the same options provided. The first question 

was a measure of participants’ emotion recognition accuracy (i.e., that the 

emotion a person recognised from a Cozmo’s video was in line with the emotion 

the experimenters intended the robot to display). The second question about 

their personal feelings was to know whether participants’ emotional states were 

influenced by Cozmo’s emotional displays (emotion contagion). Participants 

rated a total of 20 videos (four videos for each category and five emotion 

categories) and video order was randomized across participants. 

 

https://github.com/cozmo4hri/animations
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3.4. Results 

We report the relevant research materials, anonymous data, and analysis codes 

on the Open Science Framework (OSF) project page – 

https://osf.io/p49jv/?view_only=3148c25ace084c6db5d2760778a2d8b9 – 

following open science initiatives (Munafò, 2016). All analyses were done with R 

v4.0.1 (R Core Team, 2020). In total, one hundred and three valid samples 

(average age = 32.3 years old; 43 females, 57 males, one non-binary, and 2 

preferring not to report) were collected for the online experiment. 

 

3.4.1. Emotion Recognition and Subjective Feelings for Cozmo’s 

emotional displays 

We calculated the recognition rates of Cozmo’s five emotions and the report 

rates of subjective feelings after watching the robot’s videos (Figure 3-2). The 

emotion type most accurately and consistently recognised by participants was 

Cozmo’s anger (mean recognition rate = 78.40%), followed by Cozmo’s sadness 

(recognition rate = 69.18%), happiness (recognition rate = 62.38%), and surprise 

(recognition rate = 63.35%). For neutral animations, participants’ recognition 

was less in consensus. On average, only 19.42% of participants perceived the 

neutral videos as neutral. 18.2% of them reported “I don’t know” and 17.48% of 

participants classified them as “happy”. 

 

https://osf.io/p49jv/?view_only=3148c25ace084c6db5d2760778a2d8b9
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As for participants’ subjective feelings after watching Cozmo’s different 

emotional displays, happy and sad animations were the emotion categories that 

showed stronger effects of emotional contagion. 46.60% of participants felt 

happy after the robot’s happy displays and 50.49% of them felt sad after the 

robot’s sad displays. For angry, surprising, and neutral videos, participants 

mostly felt neutral after watching them: 49.52% of them felt neutral after the 

robot’s angry displays (compared to only 9.95% of them feeling angry); 53.16% of 

them felt neutral after surprising displays (compared to 18.45% of them feeling 

surprised); 59.95% of them felt neutral after watching neutral displays. 

 

A. 

B. 

Figure 3-2. (A) Recognition rates of Cozmo’s emotional displays. (B) Participants’ 

report rates of their subjective feelings after watching the robot’s animation videos. 
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3.4.2. Dispositional Empathy and Emotion Recognition of Cozmo 

We calculated the mean scores of participants’ IRI reports (M = 2.55, SD = 0.43; 

on a 5-point Likert scale from 0 to 4) and the means of their IRI subscale scores 

(perspective taking: M = 2.77, SD = 0.7; fantasy: M = 2.66, SD = 0.75; empathic 

concern: M = 2.98, SD = 0.66; personal distress: M = 1.77, SD = 0.88). Reliability 

analysis revealed that Cronbach’s alpha for IRI is .76. We then analysed the 

correlations between IRI scores and emotion recognition rates (Figure 3-3). 

None of the Pearson’s correlation coefficients between variables was significant. 

Overall, the relationship between emotion recognition of all emotions and IRI 

scores was r = -0.14, p = .150. 

 

 

subj_IRI = IRI overall scores 

subj_PD = scores of personal distress subscale 

subj_FT = scores of fantasy subscale  

subj_PT = scores of perspective taking subscale 

subj_EC = scores of empathic concern subscale. 

Figure 3-3. Correlations between emotion recognition and IRI scores. Redder and 

bigger dots represent stronger positive correlations, and the bluer and bigger dots 

show stronger negative correlations. 
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3.4.3. The Influence of Dispositional Empathy on Emotion 

Recognition and Emotion Contagion 

The Influence of Dispositional Empathy on Emotion Recognition 

We ran a generalised linear mixed effects model with the lme4 package 

(v1.1.23) (Bates et al., 2015) to examine the impact of empathic traits on 

participants’ trial-by-trial emotion recognition (correctly recognising an 

emotional display was coded as 1; incorrectly recognising a display was 0). In the 

model, we had IRI overall scores as the fixed factor, emotion recognition 

accuracy as the binary dependent variable, and controlled subject-level and 

trial-level random effects. In the result, the effect of empathic traits was non-

significant on trial-by-trial recognition,  = -0.46, 95% CI [-1.02, 0.11], p = .116. 

Considering previous evidence showing that empathy subtypes could 

differentially impact recognition of human facial expressions (Besel & Yuille, 

2010), we conducted another generalised linear mixed effects model with the 

four IRI subscales (PT, PD, FT, EC) as fixed factors while the rest of model design 

remained the same. The results showed that none of the subscales significantly 

impacted emotion recognition: perspective taking (PT) —  = -0.10, 95% CI [-

0.47, 0.27], p = .604; personal distress (PD) —  = -0.14, 95% CI [-0.42, 0.14], p 

= .315; fantasy (FT) —  = -0.04, 95% CI [-0.38, 0.29], p = .795; empathic 

concern (EC) —  = -0.17, 95% CI [-0.58, 0.23], p = .402.  

 

The Influence of Dispositional Empathy on Emotion Contagion. 

To investigate the influence of empathic traits on emotion contagion of Cozmo’s 

expressions, we conducted a generalised linear mixed effects model, with IRI 

scores as the fixed factor, emotion contagion as the binary dependent variable 

(if what they felt was the same as what they recognised from the videos, it was 

coded as 1; otherwise it was 0). We controlled subject-level and trial-level 

random intercepts. We did not find a significant effect from subjects’ IRI overall 

scores,  = -0.10, 95% CI [-0.65, 0.44], p = .711. Again, we explored whether the 

four IRI subscales had differential influences on emotion contagion, and ran 

another model with the four subscales as the fixed factors while keeping the rest 

of the model design the same. We found a significant effect of empathic concern 
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(EC) subscale ( = -0.40, 95% CI [-0.78, -0.01], p = .042), but the other three 

subscales were non-significant (PT:  = 0.009, 95% CI [-0.34, 0.36], p = .957; PD: 

 = 0.02, 95% CI [-0.25, 0.28], p = .909; FT:  = 0.26, 95% CI [-0.06, 0.58], p 

= .113). The effects of the four IRI subscales were visualised with the R package 

“effects” (v4.1.4) (Fox, 2003) in Figure 3-4. 

 

 

 

3.5. Discussion  

Here we designed an online experiment to investigate people’s emotion 

recognition of a Cozmo robot’s emotional expressions and whether such emotion 

recognition is shaped by individuals’ dispositional empathic traits (measured by 

the IRI (Davis, 1983a). We also explored the extent to which participants’ 

affective states might synchronize with the robot after watching the robot’s 

emotional displays, which is also known as emotion contagion — an important 

aspect of empathy. We expected empathic participants to be more accurate in 

recognising the robot’s emotional displays and also to report the displays more 

emotionally contagious. Below we discuss each part of our findings in detail.  

Figure. 3-4. The effects of the four empathy subtypes (IRI subscales) on emotion contagion 

participants experienced after watching the Cozmo’s emotional expressions in videos. Only the 

“empathic concern” subscale was found to significantly predict emotion contagion. The items of these 

subscales were all rated on a five-point Likert scale from 0 (does not describe me well) to 4 (describes 

me very well). The effect plot was generated with the R package “effects” (v4.1.4)  
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First, the emotions participants recognised from Cozmo’s videos were generally 

in line with the experimenters’ predictions, except for the neutral videos. 

Contrary to human emotion recognition evidence suggesting that happiness is 

the most easily recognised emotion (Montagne et al., 2007) and usually shows 

high agreement rates among testing samples (Barrett et al., 2019), our results 

show that participants most consistently recognised Cozmo’s anger. Moreover, as 

we compared the current emotion recognition rates with the mean recognition 

rates of 43 previous HRI studies reviewed in Stock-Homburg’s paper (Stock-

Homburg, 2021), we found that Cozmo’s anger (recognition rate = 78.40%), 

sadness (recognition rate = 69.18%), and happiness (recognition rate = 62.38%) 

performed better than the literature’s average recognition rates of robotic 

emotions displayed by both facial and bodily expressions (anger: 56.77%; 

sadness: 55.95%; happiness: 62.09%; Stock-Homburg, 2021). However, Cozmo’s 

surprise (recognition rate = 63.35%) performed worse than the average of the 

literature (76.08%). The findings validate that, even in the context of online 

experiment, Cozmo is capable of displaying perceivable and recognisable 

emotion animations. It is also worth noting that participants recognised various 

different emotions – such as happiness, surprise, curiosity, fear – from the videos 

we regarded as neutral. The diverse responses we received for the neutral 

stimuli point to Kuleshov effect, which proposes that people evaluate the 

emotion of a neutral face by contextual cues (such as the emotional stimuli 

preceding the face) (Barratt et al., 2016; Mobbs et al., 2006). Consequently, 

researchers who wish to manipulate a robot to be neutral in expression (e.g., in 

a control condition) should be aware of the potential Kuleshov effect, especially 

in online experiments where we have less control over participants’ 

environments. 

 

Second, we explored the influence of empathic traits on the emotion recognition 

and emotion contagion effects of Cozmo by mixed effects models. None of the 

empathy variables – neither the overall IRI scores nor the scores of IRI subscales – 

significantly impacted recognition of Cozmo’s emotional displays. However, 

when we looked into the relationship between empathic traits and emotion 

contagion, we found a significant effect from the empathic concern (EC) 

subscale of IRI. Surprisingly, people who scored higher in the EC subscale were 

less likely to report the same feeling as what they had just recognised from 
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Cozmo’s display. Although the result confirms that empathy subtypes could have 

unique links with emotional mental processes like emotion recognition (Besel & 

Yuille, 2010) and facial mimicry (Perugia et al., 2020), we urge replication of 

this finding before attempting to explain why the relationship was opposite to 

our prediction. It is worth reiterating that IRI is a scale to measure individuals’ 

empathy toward other people (not robots), and therefore it might not be a 

suitable or precise measure for this research question. Further research is 

needed to clarify this and to gain insights into the mechanism(s) underpinning 

emotion contagion effects of robots and influence of personal empathy traits. 

Future research could also deploy an embodied Cozmo robot to investigate 

emotion recognition embodied emotion displays, since physical embodiment 

crucially shapes real-life HRI (Grossman et al., 2019; Henschel et al., 2020; 

Hortensius & Cross, 2018). Also, researchers could include additional emotion 

categories for Cozmo to display, to test whether it is able to display an even 

more diverse range of emotional cues. 

 

Acknowledgment: We thank Dominic Munro and Nadine Mekari for stimuli 

selection.  
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Chapter 4  People’s dispositional cooperative 

tendencies towards robots are unaffected by 

robots’ negative emotional displays in prisoner’s 

dilemma games 

 

The chapter is an exact copy of the registered report published in Cognition and 

Emotion: 

 

Te-Yi Hsieh & Emily S. Cross (2022): People’s dispositional cooperative 

tendencies towards robots are unaffected by robots’ negative emotional displays 

in prisoner’s dilemma games, Cognition and Emotion, DOI: 

10.1080/02699931.2022.2054781 
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4.1. Abstract 

The study explores the impact of robots’ emotional displays on people’s 

tendency to cooperate with a robot opponent in prisoner’s dilemma games. 

Participants played iterated prisoner’s dilemma games with a non-expressive 

robot (as a measure of cooperative baseline), followed by an angry, and a sad 

robot, in turn. Based on the Emotion as Social Information model, we expected 

participants with higher cooperative predispositions to cooperate less when a 

robot displayed anger, and cooperate more when the robot displayed sadness. 

Contrarily, according to this model, participants with lower cooperative 

predispositions should cooperate more with an angry robot and less with a sad 

robot. The results of 60 participants failed to support the predictions. Only the 

participants’ cooperative predispositions significantly predicted their 

cooperative tendencies during gameplay. Participants who cooperated more in 

the baseline measure also cooperated more with the robots displaying sadness 

and anger. In exploratory analyses, we found that participants who accurately 

recognised the robots’ sad and angry displays tended to cooperate less with 

them overall. The study highlights the impact of personal factors in human–robot 

cooperation, and how these factors might surpass the influence of bottom-up 

emotional displays by the robots in the present experimental scenario. 

 

 

KEYWORDS 

EASI model, social robotics, Human-robot interaction, prisoner's dilemma games, 

social decision making 
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4.2. Introduction 

Social robots are becoming increasingly valuable tools for assisting people in 

industrial, educational, and health care settings (Broadbent, 2017b; 

Dautenhahn, 2007). The COVID-19 pandemic has further highlighted the 

potential utility for robots in replacing human labour to reduce the risk of 

infection, but also for their social abilities, such as helping to alleviate 

loneliness during lockdown (Kim et al., 2021; Odekerken-Schröder et al., 2020; 

Yang et al., 2020). As the world is likely to embrace a “new normal” after 

COVID-19, including remote education, increased working from home culture, 

and more autonomous industry (Cahapay, 2020; Jamaludin et al., 2020), the 

necessity of welcoming social robots into our lives is becoming even clearer. It is 

consequently imperative to gain deeper understanding of the factors shaping 

people’s willingness to work with robots in their households and workplaces, and 

how best to promote the social and cooperative behaviours during human–robot 

interaction (HRI). 

 

Previous research has used economic games as an analogy of real-life social 

decision-making settings to investigate human cooperative behaviours (Bland et 

al., 2017; Chaudhuri et al., 2002; Rand & Nowak, 2013; Rapoport & Chammah, 

1967). By manipulating the payoffs rewarded to participants after making a 

decision (for example, to cooperate or not), researchers can test the boundaries 

of people’s willingness to cooperate across various settings, and more 

importantly, examine the factors that induce cooperative behaviours (Bland et 

al., 2017; Pothos et al., 2011a; Rapoport, 1967). One pivotal factor that affects 

our decision-making process is the extent to which, and how, others display 

emotion  (George & Dane, 2016; Lerner et al., 2015; Rick & Loewenstein, 2008; 

Van Kleef, 2009). As social animals, we use other people’s emotions to make 

sense of current situations; thus, our decision-making is susceptible to influence 

by others’ emotional expressions (Darwin & Prodger, 1998; Kjell & Thompson, 

2013; Moors et al., 2013). Our sensitivity to emotion displays is so pronounced 

that even if an agent that displays emotions is artificial by nature (e.g., an 

animated avatar or a manufactured robot), research evidence is accumulating to 

suggest such emotional displays are similarly influential in shaping people’s 
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social decisions (de Melo et al., 2010; de Melo, Gratch, et al., 2014a; Kayukawa 

et al., 2017; Terada & Takeuchi, 2017). 

 

However, most of this evidence informing our knowledge of cooperative 

behaviours in HRI comes from online studies (for example, de Melo et al., 2010, 

2014, 2019; Hoegen et al., 2018). While online research provides a useful point 

of departure for understanding people’s cooperative tendencies, physically 

embodied interaction is a key feature of real-life HRI and it can be regarded as a 

distinct scenario from screen-mediated interaction (Grossman et al., 2019; 

Henschel et al., 2020; Hortensius & Cross, 2018; S. A. Lee & Liang, 2016; 

Wykowska et al., 2016). For example, people gave more positive evaluation and 

showed more empathy towards an embodied robot than a disembodied one 

(Kwak et al., 2013; K. M. Lee et al., 2006) In order to clarify the psychological 

mechanisms supporting human–robot cooperation, the present study focused on 

the impact of robots’ emotional expressions and displays on people’s tendency 

to cooperate with a robot opponent in prisoner’s dilemma games. A clearer 

understanding of the role a robot’s emotion display plays on human cooperative 

behaviour can bring crucial insight into the design of social robots that can be 

effectively deployed as assistants in our society across several settings (e.g., 

education, healthcare and workplace support).  

 

4.2.1. The social functions of emotions in human psychology 

literature 

Emotional expressions are prominent social cues that influence decision making 

during interpersonal interactions (George & Dane, 2016; Lerner et al., 2015; Rick 

& Loewenstein, 2008; Van Kleef, 2009). Others’ emotions offer useful 

information for us to infer their feelings, intentions, and desire, and help us 

reason about the current situation (Frijda, 1986; Moors et al., 2013; Roseman & 

Smith, 2001). Furthermore, others’ emotions often have context-dependent 

meaning, and impact on our own behaviours, as claimed in the Emotion as Social 

Information (EASI) model (Van Kleef et al., 2010). In competitive situations, 

people have been shown to make strategic and epistemic judgements in 

response to opponents’ emotions. For instance, people are more likely to 

concede to angry emotion displays (to avoid destructive dispute), while they 
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might either become irresponsive to or seize the chance to exploit sad 

opponents. Conversely, in cooperative settings, the EASI model proposes that 

humans prioritise social harmony over strategy, and thus seeing others’ angry 

displays, which erodes the cooperative atmosphere, makes us less willing to 

cooperate with those who act or express angrily. However, observing another 

express sadness evokes empathy and promotes cooperative and supportive 

behaviours within a group (Van Kleef et al., 2010).  

 

In the present study, we focused on the impact of robots’ displays of anger and 

sadness. In contrast to positive emotions, which imply fulfilment and 

satisfaction, negative emotions often connote a goal unfulfilled or dissatisfaction 

with an outcome (Frijda, 1986; Moors et al., 2013; Roseman & Smith, 2001; Van 

Kleef et al., 2010). This is precisely the crucial situation where social cues 

promoting cooperation are likely to be needed in real-life settings. In human 

psychology, researchers have attempted to validate the interpersonal impact of 

angry and sad displays by either online or in-person experiments. For example, 

using computer-mediated interactions, Van Kleef et al. (2004) found that people 

made more concessions to the negotiator who sent an angry message about the 

offer (e.g., “This offer makes me really angry,”), in comparison to the 

negotiator who sent a happy message about the offer (e.g., “I am happy with 

this offer”). In another more interactive scenario, Kopelman et al. (2006) 

examined the impact of positive, negative, and neutral emotions in negotiation 

situations with two different approaches of emotional manipulation: first, 

coaching participants to express specific emotions in their negotiation dyads, 

and second, playing pre-recorded videotapes of a professional actor displaying 

the three types of emotions while giving a business offer. The researchers found 

that participants were more likely to make a business deal with negotiators with 

the positive manner than with the negative or neutral one. However, Kopelman 

et al. (2006) also acknowledged the limitations of such emotional manipulation 

that might be constrained by individuals’ emotional expressivity (people feign 

negative emotions worse than positive emotions) and by the unnatural and 

artificial aspect of interacting with a videotaped person.  

 

Given the difficulty in manipulating human emotions to examine the 

interpersonal impact of emotion displays on social decisions, evidence 
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supporting the appraisal theory or EASI model was mainly derived from studies 

examining computer-mediated interactions (Van Dijk et al., 2008, 2018; Van 

Kleef et al., 2004, 2006) or interactions without rigorous control of the 

emotional stimuli (Kopelman et al., 2006). Fortunately, these limitations are 

greatly diminished in the context of HRI where robots can be programmed to 

perform identical behaviours, and can thus convey embodied emotional stimuli 

precisely for every participant and every trial. 

 

4.2.2. Artificial agents’ emotion displays in human–robot 

cooperation 

Considering the vital role of emotional expressions in our social life, an 

increasing number of artificial agents (robots and virtual agents) are being built 

to display human-readable emotions by facial or bodily expressions (Hortensius 

et al., 2018). Some researchers report that people behave similarly with 

artificial agents and with human agents in economic games (de Melo et al., 

2010; Krach et al., 2008; Wu et al., 2016), and provided empirical findings on 

the utility of artificial agents’ emotion displays to promote cooperative 

behaviours (de Melo et al., 2011; de Melo, Gratch, et al., 2014a; Terada & 

Takeuchi, 2017). For instance, in online gaming settings, manipulation of virtual 

agents’ facial expressions (showing joy after mutual cooperation and guilt after 

making a selfish decision) according to the appraisal theory of emotion have 

been proved effective in eliciting people’s cooperative behaviours in economic 

games with artificial agents (de Melo et al., 2010, 2011; de Melo, Gratch, et al., 

2014a). The social functions of agents’ facial expressions were not only found by 

highly human-like virtual agents. Terada and Takeuchi (2017) have demonstrated 

that emotions displayed by an embodied robot’s simple line drawing face 

(showing on its monitor head) could induce people’s altruistic behaviours in 

ultimatum games. However, when emotions were displayed merely by modalities 

like bodily movements and verbal expressions (rather than by facial expressions) 

the emotional impact on cooperative behaviours was less clear. Kayukawa and 

colleagues (2017) applied de Melo et al.'s (2010) emotional manipulation to an 

embodied Nao robot (manufactured by SoftBank Robotics) but found that the 

Nao being programmed to induce cooperation via different emotional responses 

(i.e., displaying joy after mutual cooperation, anger after being betrayed, 
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shame after betraying, and sadness in a lose-lose situation) did not bring about 

more cooperative behaviours among participants in prisoner’s dilemma games 

(which the authors suspect could also be due to the limited sample size of 14 

subjects). Nevertheless, the participants did regard the emotional Nao robot as 

more friendly and cheerful than the non-expressive Nao (Kayukawa et al., 2017). 

 

In addition to manipulating artificial agents’ emotion displays based on emotion 

theories, Hoegen et al. (2018) programmed virtual human characters to mimic 

participants’ facial expressions during prisoner’s dilemma games and found a 

correlation between perceived rapport and cooperation rates only when 

interacting with the agent mimicking. All in all, according to the literature 

reviewed above, legitimate emotion displays (either based on psychological 

emotion theories or in congruence with people’s own emotional states) by 

virtual humans appears to be at least somewhat effective in shaping people’s 

cooperative decisions (de Melo et al., 2010, 2011; de Melo, Gratch, et al., 

2014a; Hoegen et al., 2018). However, evidence from HRI is still not sufficient 

for us to decisively and reliably understand the relationship between embodied 

robots’ emotion displays and people’s cooperative behaviours. Furthermore, this 

topic warrants empirical examination now if we are to develop real-life robot 

assistants to appropriately serve people’s social needs with apt and effective 

emotion displays. Our study therefore aimed to address this question through a 

study performed with the highly expressive Cozmo robots (detailed in Method) 

and to examine the impact of the robots’ emotion displays on cooperative 

behaviours in the context of human–robot prisoner’s dilemma games. 

 

4.2.3. Prisoner’s dilemma games 

To study human cooperative behaviours, the prisoner’s dilemma (PD) game is 

one of the most widely used paradigms in research spanning the social sciences 

(Pothos et al., 2011a; Rapoport, 1967; Rapoport & Chammah, 1967). A classic PD 

game involves two people making simultaneous decisions to cooperate or to 

defect. Each player’s payoff depends on both players’ decisions, as illustrated in 

Figure 4-1. In the situation of mutual cooperation, both players are rewarded 

with a moderate amount of endowment (R in Figure 1; £7 each, for example). 

Meanwhile, players might be tempted by the highest profit (T; e.g., £10) for 
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being the only one who defects, and render the other who cooperates in the 

worse situation (S; e.g., £0). However, choosing to defect also comes with a 

risk. If both players opt to defect, they both receive punishment of little gain (P; 

e.g., £1). 

 

 

In this scenario, a social dilemma happens when collective group profit is at odds 

with individual profit, and as a cooperative decision involves the risk of being 

exploited, and players have the freedom to choose between the two opposite 

actions to take. An extensive body of literature on interpersonal PD games has 

used both experiments and data simulation to model and theorise on the 

emergence and evolution of human cooperative behaviours (Axelrod & Hamilton, 

1981; Embrey et al., 2018; Rapoport & Chammah, 1967). With mathematical 

modelling, more recent research has provided considerable insights into the 

mechanisms and factors supporting or hampering cooperation across various 

social dilemma situations (e.g., in dyads and in groups) (Bravo et al., 2012; Ito & 

Tanimoto, 2018; Kopp et al., 2018; Perc et al., 2017).  Also, from empirical 

evidence of interpersonal PD games, multiple factors are at play during people’s 

decision-making process in the scenario, such as the trust in the other player 

(Chaudhuri et al., 2002; Janssen, 2008; Wu et al., 2016), their social value 

orientation (Pletzer et al., 2018), and perceived environmental 

cooperativeness/competitiveness (Elliot et al., 2018; Moisan et al., 2018). 

However, when it comes to PD games played with robots (let alone the Cozmo 

robotic platform specifically), our current understanding of people’s decision-

making process remains limited. Recent research on human–robot PD games has 

provided preliminarily insights into the impacts of reciprocity (Sandoval et al., 

Figure 4-1. An exemplified payoff matrix in prisoner's dilemma games. R = rewards; T = 

temptation; S = sucker’s payoff; P = punishment. The dilemma is defined by two rules: T > 

R > P > S, and 2R > T + S.  Adapted from Hsieh, TY., Chaudhury, B. & Cross, E. S. 

(2020). Human-robot cooperation in economic games: People show strong reciprocity but 

conditional prosociality toward robots. PsyArXiv. https://psyarxiv.com/q6pv7/    

 (£7) 
 (£7) 

 (£0) 

 (£0) 
 (£10) 

 (£10) 

 (£1) 
 (£1) 

https://psyarxiv.com/q6pv7/
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2016), trust (Paeng et al., 2016), dialogic verbal reactions (Maggioni & 

Rossignoli, 2021), and a Nao robot’s emotion displays (Kayukawa et al., 2017) on 

HRI. Yet, the preliminary evidence raises more questions than answers at this 

stage, especially with respect to the effects of robots’ emotion displays in PD 

games. 

 

Meanwhile, researchers in HRI are becoming increasingly alert to generalisability 

concerns that empirical findings from research performed with a specific robotic 

platform might not necessarily apply to a different robot (Henschel et al., 2020; 

Hortensius et al., 2018; Hortensius & Cross, 2018). Therefore, in order to 

eliminate any confounding impact from robot-specific or context-specific factors 

(like people’s trust and perceived agency towards Cozmo), we employed a 

baseline measure of people’s cooperative tendencies (where the emotional 

manipulation was not yet administered), to be compared with the cooperative 

behaviours under the impact of the robots’ emotion displays. This comparable 

baseline measure was more appropriate than a human condition (where, for 

example, a human confederate was trained to perform sad and angry 

expressions) for distilling the difference made by robots’ emotions, since our 

aim was to examine the utility and social impact of robots’ emotion displays, 

instead of comparing and contrasting the emotional effects of robots than that 

of humans. 

 

Another advantage of having a baseline measure of cooperative tendencies was 

that we were able to further investigate whether the impact of the robots’ 

emotions differ by people’s baseline cooperative tendencies. According to the 

EASI model, the meaning and impact of emotional cues can depend on the 

nature of context (Van Kleef, 2009; Van Kleef et al., 2010). In the scenario of PD 

games, the perceived nature of such context might be individual-dependent. 

Some people might opt for mutual profit and strive to build cooperative 

relationship, but others might act strategically and resort to the highest self-

gain (Balliet et al., 2009). It is hence plausible that the factor of robots’ emotion 

displays would very to some degree across individuals given the personal 

differences in social-decision and emotion processing (Franken & Muris, 2005; 

Hamann & Canli, 2004). Specifically, we were intrigued to examine whether the 

emotional effects depend on individuals’ baseline cooperative tendencies, in an 
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attempt to identify the precise and effective emotions for robots to display to 

bolster people’s cooperative behaviours in HRI. 

 

4.2.4. The current study 

In the present study, we wished to examine whether the context-dependent 

impact of emotions proposed in the EASI model (Van Kleef et al., 2010) still 

holds true when (1) the discrimination of competitive and cooperative context is 

defined subjectively by people’s cooperative baseline, as opposed to by 

experimental manipulation of a task (e.g., Adam & Brett, 2015; M. Lee et al., 

2018; Novak et al., 2014); and (2) the emotions are displayed by a robot 

opponent. Based on the EASI model (Van Kleef et al., 2010), we hypothesised 

that the social meaning and consequent effects of sad and angry emotions 

diverge between people with high and low cooperative predispositions. Here we 

used the term ‘predisposition’ to refer to the default cooperative tendency 

people have when facing prisoner’s dilemmas, independent of any external 

factor related to an opponent. More specifically, we predicted that a robot that 

exhibits sad emotional displays leads participants with more cooperative 

predispositions to behave more cooperatively (here sadness should be seen as a 

cue of needing support), while the same sad emotional displays should lead 

participants with more competitive predispositions to play even more 

competitively (in this case, sadness should be seen as a sign of weakness in an 

opponent that can be exploited). On the other hand, an angry robot should 

induce more cooperative actions among participants with a competitive 

predisposition (where anger is seen as a warning of a bigger dispute on the 

horizon), but reduce cooperative intentions among participants with more 

cooperative predispositions (where anger is perceived to signal an inadequate 

collaborator) (Van Kleef et al., 2010). 

 

People’s willingness to cooperate in PD games denotes the intention of building 

cooperative relationship with the other while forgoing the possibility of the 

highest self-gain (Rapoport & Chammah, 1967), which, in the context of HRI, 

could be seen as a social milestone for people to accept robots as their social 

partners and commit to a collective task. Past research has also substantiated 

that people’s decisions made in PD games reflect their temperamental 
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cooperative willingness and real-life social-decision making process and 

behaviours (Balliet et al., 2009; Mokros et al., 2008; Pothos et al., 2011a; Viola 

et al., 2019). Our research here could provide insight into the possible factors 

promoting human–robot cooperation and highlight the possibility that bottom-up 

emotional cues might interact with top-down personal factors, thus making one-

size-fits-all robotic programming problematic, and establishing further empirical 

foundations for adaptive and bespoke programming for social robots. Moreover, 

investigation into the topic could have several practical consequences as well. 

First, social dilemmas emerging between humans and robots have the potential 

to someday, possibly soon, feature in daily life, where robots need to decide 

between benefits of individual people and the collective interests of human 

society. These types of discussion are already well underway in the autonomous 

vehicle development community, where debate and discussion continues over 

the situations in which people might accept their self-driving cars to sacrifice 

their own lives to save the lives of (multiple) pedestrians (Bonnefon et al., 2016; 

Perc et al., 2019). Second, some research evidence has verified that 

experimental procedures to promote people’s cooperative tendencies and 

altruism (for example, by moral nudging) could have cross-situational effects on 

their real-life charitable behaviours (Capraro et al., 2019; Capraro & Perc, 

2021). Our research here could therefore have implications for real-life HRI, 

especially to the utility of social robots’ emotion displays to enhance the social 

quality in human–robot cooperation. 

 

4.3. Methods 

4.3.1. Open science statement 

Prior to data collection, we reported our pilot data, stimuli, and power analysis 

codes on our Open Science Framework (OSF) page: 

https://osf.io/tjs8m/?view_only=d52ffba154ed4236b07c663291a5b053. 

Additionally, we had anonymous data, analysis codes, and materials associated 

with the study freely available on this OSF page after the study was finished, in 

keeping with the best research practices proposed by the open science 

initiatives (Galak et al., 2012; Munafò, 2016). 

https://osf.io/tjs8m/?view_only=d52ffba154ed4236b07c663291a5b053
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4.3.2. Setup and apparatus 

 We used the commercially-available Cozmo edutainment robots (manufactured 

by Anki Inc., Figure 4-2A&B) in the experiment as participants’ opponents in PD 

games. The Cozmo robot has been chosen for its capability of expressing diverse 

facial expressions with its LED face screen (128 x 64 pixel resolution). 

Additionally, Cozmo is portable (5 x 7.2 x 10 inches in size), affordable, and is 

flexibly programmed and manipulated via its software development kit (SDK), 

which make it especially suitable for HRI experimental research (Chaudhury et 

al., 2020; Cross, Riddoch, et al., 2019). We deployed two separate Cozmo robots 

for the actual PD games, a blue Cozmo model (named Botz) and a red Cozmo 

model (named Roxon). One of the robots would consistently display anger, and 

the other would consistently display sadness (colour and emotion pairing were 

counterbalanced across participants). By having different coloured Cozmos 

associated with the two different emotions, this should help prevent the 

undesirable situation that people would think the same robot was displaying 

sadness and anger.  

 

Figure 4-2. Setup and apparatus. (A) Illustration of the experimental setup. During the experiment, 

participants played games with the robot situated in front of them on a desk, and made game 

responses by tapping the cubes on the desk. The payoff matrix and real-time game outcomes were 

shown by a monitor before them. (B) The blue Cozmo (Botz) and the red Cozmo (Roxon) used in 

the experiment. (C) The interactive cubes that players tapped to make game decisions. 
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Cooperative and non-cooperative decisions in the current PD game were framed 

as sharing coins with the other or keeping all coins for oneself, respectively. In 

each game round, a certain amount of coin endowment was provided to both 

players, and each was required to make an individual and simultaneous decision 

as to whether they wanted to share or keep the coins. The exact amount given 

to each player depended on both of their choices (detailed in the “Game design” 

section, Figure 4-5). During the PD games, a monitor showing the payoff matrix 

and real-time game outcomes was placed in front of participants (Figure 4-2A). 

Every participant was provided two interactive cubes (Figure 4-2C), which 

illuminated with different colours representing different decisions (blue meant 

to keep coins for oneself, and yellow meant to share coins with Roxon or Botz). 

Participants tapped one of these cubes in a round to make a game decision, and 

the robots used only one interactive cube in games to prevent participants from 

trying to anticipate the robots’ choice by observing the direction it drove to. 

Also to avoid people peeking over the robots’ decision during the responding 

time, the robots’ cube was hidden from participants’ sight using a partition 

between participants and the robot. However, this partition sat above a 4.3 cm 

thick cardboard box, to ensure the body and expressions of the robots can be 

fully seen by participants (Figure 4-2A). In reality, the robots’ game decisions 

were pre-programmed and they tapped the cube only to make participants 

believe that the robots were making decisions in real time. All the cubes and the 

robots were connected via WiFi to the Cozmo application installed on a tablet, 

and the tablet was paired with a laptop which ran the Python programme to 

operate the game and the robot, and to record players’ game responses by 

Python log files. The experimental setup followed that developed by previous 

work by Hsieh et al. (2020). 

 

4.3.3. Manipulation and stimuli 

We manipulated the robots’ game strategy to always start with a fixed sequence 

in the first five rounds (share, share, keep, keep, share), followed by a tit-for-

tat strategy (i.e., repeating a human player’s previous decision) (Figure 4-3). 

This strategy manipulation was adopted by previous studies (de Melo et al., 

2010; Kayukawa et al., 2017) to diminish the predictability of agents’ actions, 

and to increase the possibility of experiencing all the four outcomes in the 
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payoff matrix and therefore a higher chance of being exposed to the robots’ 

emotions in the initial five rounds. 

 

The robot expressed emotions not only by its face, but also via vocal 

interjections (like sighs, laughter, and grunts) and by body movements from its 

forklift-like arm, head motion, and track directions. In order to select the most 

appropriate and representative emotional expressions for the robots to display in 

the main experiment, we required four categories of emotional stimuli (happy, 

angry, sad, and neutral expressions), with happiness shown after mutual 

cooperation, anger or sadness displayed after the robots being betrayed by a 

human, and neutral expression in the rest of situations. We carried out an online 

pilot experiment via formR platform (Arslan et al., 2020), where participants (n 

= 64, Mage = 27.6, 43 females) watched video clips (around 10 seconds each) of a 

Cozmo robot performing one of the four kinds of emotional animations (happy, 

angry, sad, or neutral), and answered following each short video clip whether 

they perceived the expression to be “happy”, “angry”, “sad”, “neutral”, 

“other” (needed to specify in text), or “I don’t know”. When the answers were 

happy, angry, or sad, participants were also asked to rate the intensity of the 

emotion, with slider ratings from “very slight” (1) to “extreme” (100). 

 

The stimulus set for the pilot involved 13 videos clips selected by the 

experimenters after reviewing all Cozmo’s repertoire of default animations (a 

total of 348 animations are available on the Github repository – 

https://github.com/cozmo4hri/animations – created by Chaudhury et al., 2020). 

Three animations were chosen for each of the three categories – happy 

(animation numbers: 103, 338, 348), angry (55, 84, 130), and sad (59, 63, 134) – 

and four (69, 91, 158, 169) for neutral since it is more ambiguous to determine 

Figure 4-3. The strategy manipulation of the robots. In this exemplified game block, the robot 

started with a fixed sequence of five decisions and followed tit-for-tat strategy till the end. 

Details of the block design are in the "Game design" section. 

https://github.com/cozmo4hri/animations
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what made neutral expressions. We analysed the mean accuracy rates (the 

number of answers matching the experimenters pre-defined emotion label / the 

total number of participants) for each emotional animation, as well as the mean 

emotional intensity rated by the subjects. The animations with the highest 

accuracy rate in each category were chosen, which included animation number 

348 for happy (accuracy = 81.2%, Mintensity = 76.1), number 84 for angry (accuracy 

= 98.4%, Mintensity = 85.4), number 63 for sad (accuracy = 90.6%, Mintensity = 57.0), 

and number 68 (accuracy = 39.1%) for neutral. The low accuracy rate for the 

neutral animations corresponds to the Kuleshov effect, which suggests that 

people tend to interpret a neutral face or expression by its context or what 

immediately preceded it, and may perceive a constant face to express different 

emotions given different contexts (Barratt et al., 2016; Mobbs et al., 2006). 

Participants in our pilot also reported diverse emotions perceived from the 

animation number 68, such as doubtful, confused, and surprise. To prevent the 

possibility that people in the main experiment will also overly interpret the 

animation which is supposed to be depict neutral emotion, we removed the 

neutral expression from our manipulation and let the robots directly move on to 

the next round without displaying any animation. Stimuli and analysis codes for 

the pilot experiment are available on the OSF page: 

https://osf.io/tjs8m/?view_only=d52ffba154ed4236b07c663291a5b053 

 

Figure 4-4 shows the demos of the final set of emotion animations to be used to 

programme the robots in the main PD game experiment. For the anger 

animation, the robot’s fork arm hits the table violently, frowns, utters sharp and 

rapid sounds, and drives left and right repeatedly with apparent agitation 

(Figure 4-4A). For the sad animation, the robot shows a downcast face, sighs, 

and slowly drops its head down (Figure 4-4B). Finally, the happy robot 

animation features laughing sounds, smiling eyes, arm waving, and driving in 

circles with excitement (Figure 4-4C).  

https://osf.io/tjs8m/?view_only=d52ffba154ed4236b07c663291a5b053
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4.3.4. Game design 

The experiment was introduced to participants as a robot competition where the 

experiments wished to know which robot (Roxon or Botz) was the most 

competent at playing economic games with human interaction partners. The 

winner robot would be used for future studies, whereas the loser robot would be 

erased its memory and left on the shelf. The script of memory erasure was 

adapted from Seo et al.'s (2015) study and has been proved effective to convince 

participants of the real consequences of the games to robot players (Hsieh et 

al., 2020). Participants, on the other hand, were monetarily incentivised. The 

average performance of the last two games blocks would determine their 

B. sad 

A. angry 

C. happy 

Figure 4-4. Demos of the robots’ emotional expressions. (A) Angry expression. (B) Sad expression. 

(C) Happy expression. Video records of theses demos are available on the OSF page: 

https://osf.io/tjs8m/?view_only=d52ffba154ed4236b07c663291a5b053  

https://osf.io/tjs8m/?view_only=d52ffba154ed4236b07c663291a5b053
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chances of winning a £20 shopping voucher as an extra prize in addition to the 

standard remuneration for their time.  

 

The experiment involved one practice block and three blocks of iterated PD 

games (Figure 4-5A). In each round PD game, players would decide to share 

coins with the other player or to keep all the coins by themselves. Different 

amounts of coins would be given to players depending on both of their decisions 

(Figure 4-5B). Since prior evidence shows that different designs of payoff 

matrices in PD games lead to different cooperation rates among human players 

(Moisan et al., 2018; Rapoport, 1967), we deliberately selected the present 

payoff from Hsieh et al.'s (2020) study, where two different designs of payoff 

matrices, one with higher incentives for cooperation and the other with lower 

incentives, were compared in human–robot PD games. The results revealed that 

the impact of incentive structures was only significant in the first game round, 

and over the 20 iterated PD game rounds, participants’ cooperative behaviours 

toward a Cozmo robot were similar in general (mean cooperation rate: 0.40 for 

the high-incentive game and 0.34 for the low-incentive game). In the high-

Figure 4-5. Experimental design. (A) The order and game rounds planned for the four blocks. 

Participants firstly familiarised themselves with the game rules in the practice block, and played 

with a non-expressive Cozmo in the baseline block (as a measure of their cooperative disposition). 

Finally, they played with Roxon and Botz (one programmed to be sad and the other to be angry) in 

turn in emotion block 1 and 2. (B) Payoff matrix design. (C) Emotion manipulation of the robots in 

emotion block 1 and 2. The main manipulation of the robot’s sad and angry emotional displays 

happened after a human player chose to keep coins, but the robot decided to share. The robots’ 

emotion manipulation for the rest of three game outcomes remained the same across emotion 

block 1 and 2. 
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incentive game condition, participants made significantly more cooperative 

decisions in the initial game round, which was followed by a quick reduction of 

cooperation. However, people’s decisions in the low-incentive game remained at 

a constant level throughout the whole game (Hsieh et al., 2020). Consequently, 

here we adopted the game design with relatively lower cooperatives (Figure 4-

5B) to forestall the possible initial spikes in cooperative decisions induced by the 

structure of payoff matrix, and meanwhile ensure that the game context would 

not bring about ceiling or floor effects on people’s cooperative decisions. 

Designs and content of the four blocks are: 

 

First, in the practice block, participants would familiarise themselves with the 

skills and the timing of tapping the cubes. The game screen placed in front of 

participants showed a goal sentence in each round (e.g., “try to earn 10 coins in 

this round.”). Participants only needed to take a corresponding action to make 

the goal possible (i.e., choosing to keep, in the example). The Cozmo robot used 

in the practice and the following baseline blocks was an extra robot in addition 

to Roxon and Botz, and it would always make correct responses to reach the 

same goal during the practice. By doing so, participants can become more 

familiar with the payoff matrix and the ways of tapping cubes, without starting 

to develop their strategies and confounding the following PD game. The length 

of the practice depended on participants’ performance. They can pass the 

practice by making three consecutive correct and successfully registered 

responses, otherwise, the practice game ended after 10 rounds. The 

experimenter supervised participants during the practice to ensure they fully 

understand how to play the game before moving on. 

 

Second, the baseline block involved ten rounds of PD games played with a non-

expressive Cozmo which did not have any emotional animation programmed 

after either game outcome. The block served as a baseline measure and an 

indicator of participants’ default behavioural tendency in the PD game context 

before having more extensive interaction with Cozmo robots. We used 

participants’ cooperation rates in the baseline block to predict how they would 

be influenced by Roxon’s and Botz’s emotional expression in the analyses.  
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Third, participants took turns playing PD games with Roxon and Botz, with one 

displaying sadness and the other showing anger (order and colours 

counterbalanced). Each emotion block involved 15 rounds of iterated PD games. 

The robot’s negative emotion (sadness/anger) was manipulated after a human 

player chose to keep but the robot shared. We focused on the particular 

situation because, firstly, it was a reasonable timing for the robot to show 

negative expressions as it was betrayed by a human; secondly, it may involve 

important practical implication to examine whether robot’s negative emotions 

(either sadness or anger) can increase people’s cooperative willingness after 

they already demonstrated non-cooperative behaviours. Throughout emotion 

block 1 and 2, the robots showed the happy expression after mutual 

cooperation, as a general signal of cooperative intention. All in all, both robots 

in the PD games were programmed to send cooperative signals through 

emotional expressions but in two different ways —— one through showing anger 

after being betrayed, and the other through displaying sadness after defection. 

We anticipated the two negative emotions would differentially influence people 

with different cooperative inclination and baselines in PD games. Participants 

were not aware the emotion manipulation before actual interaction with the two 

robots, but only knew that the two robots had different ‘personality’ and might 

act diversely.  

 

4.3.5. Measures and manipulation check 

The main measure of the study was people’s decisions made in the three game 

blocks. Their binomial decisions (to keep or to share) were saved directly with 

Python log files in the controlling laptop, and were used to compute the 

cooperation rates (the times sharing/ the total round) in each block.  

 

After participants completed the four blocks of games. We asked them to 

describe Roxon and Botz respectively, in terms of their emotionality and 

strategy, and also to report their own strategies adopted when playing with the 

robots in games. These open-ended questions helped us evaluate the validity of 

the manipulation on the robots’ emotions and strategy, and acquire the 

qualitative data of how people responded to the two different robots. The 
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manipulation check questionnaire was administered via formR platform (Arslan 

et al., 2020) on a lab PC. 

 

4.3.6. Procedure 

The experiment was planned to be conducted in quiet research laboratory 

booths located within the institute of Neuroscience and Psychology at the 

University of Glasgow and within the Department of Cognitive Science at 

Macquarie University, once behavioural testing was considered safe according to 

the UK government’s, the Australian government’s and both University’s 

guidelines concerning COVID-19.  Considering the pandemic situation in both 

sites when the research plan was written, data collection could commence at 

Macquarie University as soon as a decision was reached on our registered report 

submission. If lab-based experiments at Glasgow became feasible while data 

collection was still proceeding, we planned to collect data across both sites to 

increase participant numbers and diversity. Whenever data collection was 

carried out in two lab spaces, we would run additional analyses (detailed in 

“Sampling and analysis plan”) to confirm that no systematic difference occurred 

due to the data collection site. Participants and the experimenter would wear 

face masks at all times during the study, and we had spare masks prepared if 

participants required a new or additional mask. In order to reduce unnecessary 

face-to-face contact, introduction and instruction of the experiment were given 

to participants by playing a short video on the desktop PC in the lab. After 

participants provided their written informed consent and showed sufficient 

performance in the practice block, they were left alone playing games with the 

robots. The experimenter was seated outside the lab and because the games and 

robots were operated by a tablet and a laptop connected through the robots’ 

wifi, the experimenter can still monitor the game progress without being 

present. Finally, participants completed a series of open-ended questions on a 

PC for manipulation check, as well as their demographics. The whole experiment 

took approximately one to one and a half hour(s). Participants were debriefed, 

paid (£6 per hour), and thanked in the end. 
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4.3.7. Participants 

We planned to recruit participants aged 18 to 59, with normal or corrected to 

normal eyesight, and without neurological or psychiatric history. We also aimed 

to recruit participants who were naïve to robots and to our study. Consequently, 

people who owned a Cozmo robot, worked with robots on a daily bases, or had 

participated in our previous experiment (Hsieh et al., 2020) were eligible to the 

current experiment. Based on a simulation-based power analysis, a sample size 

of 180 was needed to have 0.9 power finding a significant interaction between 

the robots’ emotions and people’s cooperative predisposition on cooperation 

rates in PD games. The power analysis was carried out with the simglm (v0.8.0.) 

(LeBeau, 2019) and simr (1.0.5) (Green & Macleod, 2016) R packages, by the 

following steps.  

 

Firstly, to simulate data for the planned model – cooperative rate ~ 

cooperative predisposition*emotion + (1|subject) – we used relevant meta-

analysis results (Balliet et al., 2009; Lench et al., 2011; Pletzer et al., 2018) for 

our beta weight estimation. For the emotional effects on human judgment, 

Lench et al. (2011) reported the effect size of Hedges’ g = 0.18 (from 25 

previous studies) when comparing the impact of sad and anger emotions in 

particular. As to the effect of cooperative predisposition on decisions in 

economic games, there was no comparable experimental design we can find in 

the literature and the closest concept is social value orientation (SVO), which 

refers to people’s temperamental motivation to care for others (Murphy & 

Ackermann, 2014). Over two meta-analysis studies, SVO showed a consistent 

small to medium effect size on cooperative behaviours in economic games (r = 

0.30 in Balliet et al.’s, 2009; r = 0.32 in Pletzer et al.’s, 2018). However, what 

we aimed to measure was not people’s general traits but their default 

behavioural tendency in social dilemmas, albeit the two concepts might be 

closely related. We therefore adopted the ‘consevative smallest effect size of 

interest’ (SESOI) strategy (Anvari & Lakens, 2019) and used r = 0.20 (or the 

equivolent Hedges’ g = 0.40) for our parameter estimation. The interaction of 

the fixed effects would be generated automatically during the process of data 

simulation with simglm package (LeBeau, 2019), so we did not need to manually 

specify the beta weight of interaction.  



101 

 

Second, we simulated data based on aforementioned evidence and calculate 

statistical power (with the simr package, Green & Macleod, 2016) by the 

function of sample sizes (Figure 4-6). Our main research focus was the 

interaction between the robots’ emotion and people’s cooperative 

predisposition (measured in the baseline block), and the result showed that we 

needed 180 participants to have 0.9 power finding a significant interaction. 

 

 

 

4.3.8. Sampling plan 

Given the large sample size we might need to achieve high power for the effect 

of interest, we administered sequential analyses to collect data more efficiently 

(Lakens, 2014b). We planned to perform two interim analyses after 60 

participants and 100 participants were recruited, with alpha levels adjusted by 

Pocock boundary (p = 0.0221 for three planned analyses, Pocock, 1977). 

Following each interim analysis, we would stop data collection early if one of 

the two conditions was fulfilled: first, if the hypothesis was supported and we 

found a significant interaction between the robots’ emotion and people’s 

Figure 4-6. Power curve for finding an interaction between the robots’ emotion and people's 

cooperative predisposition. Each data point is noted by (sample size, power). The result of 

simulation suggests that 90% power can be achieved if the sample size reaches 180 

(participants). 

Sample size 

(20, 25.3%) 

(40, 34.9%) 

(60, 47.6%) 

(80, 56.7%) 

(100, 68.2%) 

(120, 73.3%) 

(140, 80%) 

(160, 85.2%) 

(180, 89.9%) 
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cooperative predisposition by the criterion of p = 0.0221; second, if the effect 

size of interaction was significantly smaller than SESOI (f2 < 0.02, Cohen, 1988). 

 

4.3.9. Analysis plan 

Main analysis 

All data analyses would be carried out in R v4.0.1 (R Core Team, 2020). Our 

hypothesis was that people with higher cooperative predisposition (i.e., high 

cooperation rates in the baseline block) in PD games cooperate even more when 

the robot responded with sadness, and would cooperate less when the robot 

displayed anger, and conversely, people with more competitive predisposition 

(i.e., low cooperation rates in the baseline block) would cooperate more after 

the robot displayed anger but became more competitive following the robot’s 

display of sadness. Cooperative and competitive decisions were framed as 

sharing (coded as 1) and keeping coins (coded as 0) in the current game context. 

Cooperative rates in the baseline block and in the two emotion blocks would be 

log-transformed before being feed into our model, where their normally 

distributed nature would enable values to range from positive to negative values 

(Benoit, 2011). 

 

The main research question would be examined by a linear mixed effects 

regression model with the lme4 package (Bates et al., 2015). We would have 

participants’ log-transformed cooperative rates in emotion block 1 and 2 as the 

dependent variable, and the robots’ emotions (anger and sadness) and 

participants’ cooperative predisposition as the fixed factors. For random effects, 

we would start from the model design specified as follows: 

 

cooperation ~ emotion*coop_predisposition + (1 | subj_id)  

 

If the results showed failure in model convergence or a singular fit, we would 

remove the random intercept term and ran the model as a multiple regression. 

We expected to find a significant interplay of the robots’ emotions and people’s 

cooperative predisposition in participants’ cooperative decisions in prisoner’s 

dilemma games (Figure 4-7). Post hoc analyses following a significant 
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interaction would be conducted by the effects (v4.1.4) (Fox, 2003) and the 

emmeans package (v1.4.7) (Lenth, 2020). We planned to examine the impact of 

cooperative predisposition for sad and angry emotion separately, and 

anticipated the effects of cooperative predisposition would be opposite in sad 

and angry conditions –– high cooperative predisposition predicted more 

cooperative behaviours in sad condition but fewer cooperative behaviours in 

angry condition (Figure 4-7). 

 

 

 

Exploratory analysis 

Even though our pilot experiment validated the emotion animations selected for 

the robots’ emotional manipulation for this proposed study, we appreciated that 

individual variation in human emotion perception, as shown in previous finding 

on human faces (Barrett et al., 2019), could still emerge among our participant 

sample. Also, due to the online nature of the pilot experiment, it was plausible 

Angry emotion Sad emotion 

Figure 4-7. Hypothetical plot of the expected interaction between the robots’ emotions (sad and 

angry) and people’s cooperative predisposition (log-transformed cooperation rates in the 

baseline block). Participants with higher cooperative predisposition were predicted to become 

less cooperative by the robot’s angry emotion but more cooperative by sad emotion. On the 

contrary, participants with lower cooperative predisposition were hypothesised to become 

cooperative by the robot’s anger but even less cooperative by its sadness. 
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to question whether people engaged in playing an embodied human–robot PD 

game would perceive the robots’ emotion displays in the same way as 

participants did in the online pilot experiment. Therefore, we planned to run an 

exploratory model with an additional factor – whether participants accurately 

perceived the robots’ emotion displays (subj_perception) – to examine whether 

the subjective perception of the robots’ emotion displays was an influential 

factor shaping the emotional effects: 

 

cooperation ~ emotion*coop_predisposition*subj_perception + (1 | subj_id) 

 

This ‘subj_percpetion’ factor was derived from participants’ subjective reports 

on “Did you see the robot displaying any emotion during the game? If you did, 

what emotion(s) did it display?” in the post-game questionnaires. When 

participants’ reports of perceived emotions were consistent with the actual 

emotion manipulation, their answer would be coded as “yes” (i.e., accurately 

perceived), otherwise their reports would be coded as “no” (i.e., did not 

accurately perceived). The coding process would be carried out by at least two 

researchers who were fluent in English. The inter-rater reliability would be 

analysed with kappa statistics (McHugh, 2012), and we aimed for a minimum of  

90% agreement among raters. 

 

Additionally, if the data collection was conducted in both University of Glasgow 

and Macquarie University, we would run a second exploratory model to control 

for the possible random variation caused by collecting data across two sites: 

 

cooperation ~ emotion*coop_predisposition + (1 | collection_site / subj_id) 

 

The term ‘(1 | collection_site / subj_id)’ was to express the nested random 

effects of subjects within collection sites. Similarly, we would also run the 

model with the factor ‘subject_perception’ added to examine the possible 

impact from participants’ subjective perception of the robots’ emotion displays: 

 

cooperation ~ emotion*coop_predisposition*subj_perception + (1 | 

collection_site / subj_id) 
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The above exploratory models would be compared with the main model by the 

anova() function in R, to examine the possible improvement in model fit by 

adding an additional factor or random structure. The model with the best model 

fit would be reported as the main result of the study, while all the other model 

output and the process of model selection would also be presented explicitly in 

our result section. 

 

4.4. Results 

We carried out the preregistered analyses when 60 participants (mean age = 

24.8; 39 females, 17 males, and 4 non-binary) were recruited as per our 

preregistered sequential analysis plan. Among this sample, 51.67% of 

participants were White; 38.33% were Asian or Asian British; 1.67% were Black, 

African, Black British or Caribbean; 1.67% belonged to mixed or multiple ethnic 

groups; 5% were from other ethnic groups; and 1.67% preferred not to report. 

Considering the COVID-related restrictions on in-person testing at University of 

Glasgow and Macquarie University between September and December 2021, all 

data were collected at the University of Glasgow. Therefore, the exploratory 

model to control for the potential random effects induced by collecting data at 

two sites were not performed. We measured participants’ daily exposure to 

robots (L. D. Riek et al., 2011) to ensure that they were generally naïve to 

robots. In the question of how many robot-related films participants had seen 

before (from a list of 14 films including Westworld, Real Humans, etc), the 

median number of robot films seen was 3, with an interquartile range (IQR) of 3. 

When asking participants how often they engaged with robots in their daily life 

on a scale from 1 (Never) to 7 (Daily), the median response was 2 (IQR = 2). The 

results confirmed that participants did not have extensive experience with 

robots before taking part in this study, and therefore their a priori understanding 

of robots was unlikely to impact the current HRI.  

 

First, we visualised the distribution of participants’ binomial game decisions (to 

share coins with the robots or not) in the three blocks in Figure 8. From Figure 

4-8, we could see that the cooperative trends of the three game blocks were 

similar. Participants started from a higher cooperative tendency in the beginning 

of each block, and this tendency decreased until the end of the game. The only 
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visible difference between the baseline block and the two emotion blocks was 

that participants were making slightly more cooperative choices near the end of 

the block. However, since we did not inform participants of the total number of 

rounds for each block, it was unlikely that the increasing cooperative decisions 

were planned deliberately by participants.  

 

 

 

Second, we calculated the mean cooperation rates for each block by dividing the 

numbers of participants’ cooperative decisions by the total numbers of game 

rounds (10 rounds in the baseline block and 15 rounds for each emotion block). 

In the baseline block, the mean cooperation rate was 37.13%; in the angry block 

it was 24.83%; in the sad block it was 30.34%. Following the registered analysis 

plan, we reported the main result of a linear mixed effects model to examine 

whether there was an interplay between cooperative predisposition and the 

robots’ emotions. For exploratory analyses, we presented the results of the 

registered model which included an additional factor of participants’ emotion 

perception accuracy. Additionally, we conducted and reported the results of 

unregistered exploratory analyses, which were the logistic version of the 

registered models. The logistic models used participants’ binomial decisions as 

Figure 4-8. Binomial game decision distribution across the three game blocks 

(sharing coded as 1; keeping coded as 0). Nonparametric smoothed curves were 

added to show the cooperative trends.  

Baseline block Angry emotion block Sad emotion block 



107 

the dependent variable, instead of the log-transformed cooperation rates. We 

carried out this additional modelling because we realised the process of log-

transformation (in order to feed the data of cooperation rates to linear models) 

led to information loss, while using mixed effects logistic regression models on 

the raw dataset might bring about higher power to detect the effects of 

interest. Below we present each part of these analyses in detail. 

 

4.4.1. Main model results 

The model successfully converged with the pre-registered model design. We 

included the fixed factors of the robots’ emotions (anger and sadness) and 

participants’ cooperative predisposition (i.e., log-transformed cooperation rates 

in the baseline block), the dependent variable of the log-transformed 

cooperation rates in the two emotion blocks, and the random effects of subject-

level random intercepts. As mentioned above, we adopted sequential analyses 

(with two interim analyses) and therefore we used p = .0221 as the adjusted 

alpha level (Pocock, 1977). We found a significant factor of participants’ 

cooperative predisposition in this model (  = 0.54, 95% CI [0.17, 0.92], p = .004, 

p
2  = .23). However, neither the fixed effect of the robots’ emotions (  = 0.34, 

95% CI [-0.01, 0.69], p = .058, p
2  = .07) nor the interaction between the two 

factors (  = 0.06, 95% CI [-0.41, 0.53], p = .795, p
2  = .001) was significant. 

Based on our registered sampling plan of sequential analyses, the data collection 

was stopped given that the effect size (Cohen’s f2 = 0.0004) of the interaction 

(the main effect of interest) is smaller than the SESOI (f2 = 0.02). Namely, the 

true effect size of the interaction might be smaller than what was considered to 

be practically meaningful. Therefore, we decided not to pursue such a minor 

effect with a bigger sample size. Overall, the R2 of the model was .330, with the 

fixed effects R2 = .178 and the random effects R2 = .153. 

 

4.4.2. Registered exploratory model results 

In the registered exploratory model, we included an additional fixed factor — 

the binomial records of whether participants had accurately perceived the 

robots’ emotion as we expected — into the design of the main model. The 

answers we coded as “successfully perceived the robot’s anger” included 
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participants’ reports of “angry”, “anger”, “furious” that were used to describe 

the robot programmed to display anger; the answers we coded as “successfully 

perceived the robot’s sadness” were the reports that explicitly used the words 

of “sad” or “sadness” to describe the robot programmed to display sadness. 

Since the manipulation check was measure by open-ended questions and we did 

not provide any word bank for participants to choose from, a few participants 

would use the words that were more ambiguous, like “disappointed”, 

“frustrated”, “discontent”, “displeasure”, to describe the robots’ emotional 

displays. We did not include those answers as evidence of successfully perceiving 

the emotional manipulation. Also, three participants reported perceiving both 

negative emotions in a single emotion block: two said they perceived both 

sadness and anger from the robot programmed to display sad expressions, and 

one perceived both anger and sadness from the robot programmed to display 

angry expressions. We also excluded these reports from correct emotional 

recognition. All in all, the successful perception rate for the robot’s angry 

display was 66.7%, and the rate for the sad display was 51.7%. 

 

We then added this binomial variable of whether participants perceived the 

robots’ emotional manipulation into the model, to examine the extent to which 

individual differences in emotion perception might influence the results. The 

model output was presented in Table 4-1. We found that none of the fixed 

factors, nor their interactions, significantly impacted people’s cooperative 

tendencies. 
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Table 4-1 

Results of the linear mixed effects model that examined the effects of the robots’ emotions, 

participants’ cooperative predisposition, and their emotion perception accuracy on 

subjects’ log-transformed cooperation rates 

  Registered exploratory model 

 
cooperation ~ emotion*coop_predisposition*subj_perception 

+ (1 | subj_id) 

 Estimate SE Low CI High CI    z p-value 

intercept -0.88 0.28 -1.43 -0.33  .002* 

emotion [sad-angry] 0.38 0.33 -0.27 1.03 .06 .250 

coop_predisposition -0.02 0.53 -1.04 1.01 .08 .977 

subj_perception  

[correct-incorrect] 
0.04 0.32 -0.60 0.67 .00005 .914 

emotion* 

coop_predisposition 
0.63 0.57 -0.48 1.74 .01 .265 

emotion * 

subj_perception 
-0.04 0.43 -0.89 0.81 .00009 .926 

coop_predisposition

* subj_perception 
0.63 0.56 -0.47 1.73 .008 .264 

emotion* 

coop_predisposition

* subj_perception 

-0.65 0.66 -1.95 0.65 .01 .326 

Subject-level 

random intercepts 
0.39      

Residuals 0.75      

CI = 95% confidence interval. *p < .0221 

Abbreviations: SE = standard error; CI = confidence interval. 
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Overall, the R2 of the registered exploratory model was .347, with the fixed 

effects R2 = .187 and the random effects R2 = .160. We conducted a model 

comparison test by the R function anova() to examine whether inclusion of the 

additional factor (“subj_perception”) improved the model fit. The result 

suggested that the difference between the main model (without the 

“subj_perception” factor) and the registered exploratory model (with the 

“subj_perception” factor) was not significant, 2(4, 106) = 1.72, p = .79. 

 

4.4.3. Unregistered exploratory model results 

Although the usage of log-transformed cooperation rates allowed the dependent 

variable values to range from negative to positive, instead of 0 to 1 (Benoit, 

2011), we lost some data points because if a participant made no cooperative 

decision in a game block, the 0 cooperation rate would lead to negative infinity 

after being log-transformed. This resulted in us having to exclude 14 data points 

(which resulted in this negative infinity value after log transformation) in order 

to run linear mixed effects models. Excluding these data points caused crucial 

information loss since those data represented performances by the most 

competitive individuals. Therefore, we conducted additional mixed effects 

logistic regression models to examine if the effects of interest would be better 

to detect by performing analyses on the raw and complete dataset (binomial 

game decisions: cooperative decisions coded as 1 and noncooperative decisions 

coded as 0). 

 

First, in the logistic version of the main model (Model 1 in Table 4-2&3), we 

used participants’ binomial game decisions as the dependent variable and added 

the random intercepts of game rounds into the random effect structure. The rest 

of the model design remained the same as the main linear model. Similar to the 

results of the main model, we found a significant effect from participants’ 

cooperative predisposition (  = 3.71, 95% CI [2.16, 5.26], p < .001) whereas the 

main effect of the robots’ emotions (  = 0.25, 95% CI [-0.41, 0.92], p = .452) 

and the interaction between the two factors (  = 0.15, 95% CI [-1.39, 1.69], p 

= .851) were nonsignificant. 
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Second, we ran a logistic version of the registered exploratory model which 

included the factor of individuals’ emotion perception. Again, we controlled for 

the round-level random effects in the logistic models. We started with the most 

complex random structure (Barr et al., 2013) for round-level random effects – (1 

+ emotion*subj_perception | round)  – but the model failed to converge and we 

therefore run the model with only the random intercepts of subjects (Model 2 in 

Table 4-2). Results yielded a significant effect from subjects’ emotion 

perception accuracy (  = -1.74, 95% CI [-3.15, -0.33], p = .015) whereas all 

other fixed effects and their interaction were nonsignificant (Model 2 in Table 4-

3). In general, people who correctly perceived the robots’ angry and sad 

emotions were less likely to cooperate with the robots in emotion blocks. Given 

the complexity of the three factors involved in the model, we visualised the 

overall results of the Model 2 in Figure 4-9 by the R package “effects” (v4.1.4) 

(Fox & Weisberg, 2018). From Figure 4-9, it is possible to see a positive 

correlation between people’s cooperative tendencies in the baseline block and 

their cooperative probability in emotion blocks, and the correlation might be 

shaped by people’s emotion perception accuracy (albeit the interaction was not 

significant p = .059, by the alpha level of p = .0221). 

 

Finally, for exploratory purposes, we ran the Model 3 without the factor of the 

robots’ emotions since its effect did not seem significant in either Model 1or 

Model 2. In the result of Model 3, the effect of people’s cooperative 

predisposition became significant (  = 3.05, 95% CI [1.23, 4.87], p = .001), and 

the effect of subjects’ emotion perception accuracy was not significant (  = -

0.70, 95% CI [-1.58, 0.17], p = .115) given the pre-defined alpha level of .0221. 

The output summary of three models and the result of model comparison are 

reported in Table 4-3. Among the three logistic models, none of these three 

models showed significant improvement in model fit compared to the other two 

models. 
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Table 4-2 

The designs of the three unregistered exploratory models to examine the effects of the robots’ 

emotions, participants’ cooperative predisposition, and their emotion perception accuracy on 

subjects’ binomial game decisions 

 Model design 

   Fixed factor(s) Random effects   Dependent variable 

Model 1 emotion*coop_predisposition 
(1 | subj_id) + (1 | 

round) 
game decisions 

Model 2 
emotion*coop_predisposition* 

subj_perception 
(1 | subj_id)  game decisions 

Model 3 
coop_predisposition* 

subj_perception 

(1 | subj_id) + (1 | 

round) 
game decisions 
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Table 4-3 

The result summary of the three unregistered exploratory models and the outcome of the model 

comparison.  

  Unregistered exploratory models 

 Model 1 Model2 Model 3 

 
Estimate 
(SE) 

p 
Estimate 
(SE) 

p 
Estimate 
(SE) 

p 

intercept 
-2.68 

(0.35) 
<.001* 

-1.20 

(0.64) 
.061 

-2.03 

(0.42) 
<.001* 

emotion [sad-angry] 
0.25 

(0.34) 
.452 

-1.07 

(0.71) 
.129   

coop_predisposition 
3.71 

(0.79) 
<.001* 

1.09 

(1.47) 
.460 

3.05 

(0.93) 
.001* 

subj_perception  

[correct-incorrect] 
  

-1.74 

(0.72) 
.015* 

-0.70 

(0.45) 
.115 

emotion* 

coop_predisposition 

0.15 

(0.79) 
.851 

2.52 

(1.59) 
.113   

emotion * 

subj_perception 
  

1.55 

(0.88) 
.077   

coop_predisposition* 

subj_perception 
  

3.09 

(1.64) 
.059 

0.95 

(1.00) 
.342 

emotion* 

coop_predisposition* 

subj_perception 

  
-2.71 

(2.04) 
.183   

df   3 0 

AIC 1973 1998 1976 

BIC 2006 2048 2009 

Log-likelihood -980 -990 -982 

2  0.00 0.00 

p  1 1 

CI = 95% confidence interval. *p < .0221 

Abbreviations: SE = standard error. 
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Figure 4-9. Effect plot of the unregistered Model 2. The model examined the effects of the 

robots’ emotions, participants’ cooperative predisposition and emotion perception accuracy 

on participants’ binomial decisions in the PD games.  

 Accurate emotion perception 

 

 Accurate emotion perception 
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4.5. Discussion 

In this study, we sought to examine the extent to which people’s cooperative 

tendencies in prisoner’s dilemma (PD) games are influenced by robots’ negative 

emotion displays and whether the influence of robotic emotion displays is 

shaped by individual participants’ cooperative predispositions (measured in a 

baseline game block where the robot did not display any emotion). Based on Van 

Kleef et al.'s (2010) Emotion as Social Information (EASI) model, we predicted 

that participants who were more cooperative in the baseline block would 

become even more cooperative when the robot displayed sadness (to show 

compassion), but less cooperative when the robot displayed anger (to punish 

who eroded cooperative atmosphere), whereas participants who were 

competitive in the baseline block would be made to cooperate by the robot’s 

anger (to avoid lose-lose dispute) and would be even more competitive by the 

robot’s sadness (to take advantage of the signs of weakness). The first interim 

analysis carried out when 60 participants were recruited failed to support these 

predictions. What has emerged is a significant effect of people’s cooperative 

predispositions on their cooperative tendencies towards both emotional robots. 

Based on our preregistered sequential analysis plan, we did not continue further 

data collection given that the effect size of the main effect of interest (the 

interaction between the robots’ emotions and people’s cooperative 

predisposition) was smaller than the pre-defined SESOI. Below we discuss our 

findings in detail. 

 

We performed a linear mixed effects model to examine the main research 

question and expected to find a significant interaction between the robots’ 

emotions and participants cooperative predispositions on their log-transformed 

cooperation rates in emotion blocks. However, only the main effect of people’s 

cooperative predisposition was found to be significant with a large effect size. 

Participants who showed stronger cooperative tendencies in the baseline block 

were more likely to cooperate with the robots in emotion blocks. The effect of 

cooperative predisposition was confirmed by the logistic version of the main 

model, which used people’s binomial decisions as the dependent variable 

instead of the log-transformed data. This high behavioural consistency within 

individuals might imply that participants’ game decisions in the baseline block 
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reflected their innate cooperative attitudes in this context. Previous research 

has pointed out the concept of Social Value Orientation (SVO), which refers to 

people’s dispositional prosocial tendencies during interpersonal interactions 

(Murphy & Ackermann, 2014). The impact of SVO on cooperative decisions when 

faced with a social dilemma has been confirmed by at least two meta-analysis 

studies (Balliet et al., 2009; Pletzer et al., 2018). This work has shown a 

consistent medium effect of SVO on social decisions. In the present study, we 

did not include a self-report SVO measure (e.g., the scale by Murphy et al., 

2011), because our previous work addressing related questions (Hsieh et al., 

2020), did not provide any evidence for a significant relationship between 

participants’ SVO scores and their cooperative decisions during PD games played 

with a Cozmo robot, and almost all participants were categorised to the 

“prosocial” SVO type. It is consequently worth questioning to what extent 

people’s self-reports of SVO are influenced by social desirability and whether 

there is a link between the SVO measure (which was not specifically designed to 

measure the attitudes towards robots) and people’s actual cooperative 

behaviours in HRI. Although we cannot say for sure if participants’ consistent 

cooperative tendencies throughout the three game blocks were associated with 

SVO, our current finding highlights the strong effects of personal factors in 

cooperation with robots. Furthermore, it seems such top-down personal effects 

might surpass the bottom-up emotional displays presented by the robots in our 

experiment. Also, this finding confirms the utility of the baseline measure. Even 

though our baseline block only involved 10 game rounds (compare to 15 rounds 

in each emotion block), participants’ cooperation rates were still predictive as 

to what they would do in similar scenarios. 

 

However, we were surprised to find that participants’ cooperative decisions in 

the final two rounds of the baseline block seemed to increase a little, reversing 

the decline in cooperation rates that was observed in previous rounds of the 

baseline block and in both emotion blocks (Figure 4-8). One possible reason 

behind this could be the robot’s reciprocal (tit-for-tat) game strategy adopted in 

the second half of the baseline block. A previous study has shown that a robot’s 

tit-for-tat strategy, compared to a random strategy, in PD games led to higher 

cooperation rates among participants (Sandoval et al., 2016). We programmed 

our three robot players to always start with a fixed sequence of decisions, 
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followed by a tit-for-tat strategy, across all the game blocks, in order to make 

their game strategies less predictable and to increase the chances of exposing 

participants to the robot emotion manipulation. Still, it was possible that near 

the end of the baseline block, participants realised the robot’s tit-for-tat 

strategy, especially when the robot did not display any emotional reaction to 

distract them, and therefore became more willing to cooperate. However, this 

interpretation remains speculative at this stage, and we futher research will be 

required to substantiate this explanation. Currently, we cannot exclude the 

possibility that this finding was simply due to random variance within our 

sample. 

 

In light of the well-documented individual differences in emotion perception of 

human facial expressions (Barrett et al., 2019) and of robots’ emotion displays 

(Stock-Homburg, 2021), we planned to explore if the variation in emotion 

perception would influence participants’ cooperative tendencies in PD games 

and the effects of the robots’ emotions. In participants’ self-report data 

concerning observed emotions from the two emotional robots, we did find 

considerable individual differences in perceiving and reporting the robots’ 

emotional displays. Although more than half of the participants correctly 

recognised that one of the robots showed sad expressions and the other was 

angry, some participants described them only in comparative terms (e.g., saying 

one robot was less angry than the other) or were not aware of any emotional 

displays by the robots. Quite a few participants seemed to perceive and describe 

only the negativity of the emotions displayed by the robots and reported the 

expressions as “displeasure”, “frustration”, or “disappointment”, without 

explicitly identifying them as sadness or anger. The result of the accuracy rates 

in perceiving the robots’ sadness and anger suggested that the robot’s angry 

expression was easier for participants to recognise, which verifies the conclusion 

of Stock-Homburg’s (2021) review paper suggesting that robots’ higher arousal 

emotions (e.g., anger and happiness) are more consistently and accurately 

perceived by people (Stock-Homburg, 2021). In the review paper, Stock-

Homburg (2021) extensively reviewed 43 studies that examined the emotional 

expressions displayed by (1) the robots that only have robotic faces (e.g., 

Barthoc robot, EMYS robot); (2) the robots with anthropomorphic full bodies 

(e.g., NAO, Pepper robot); and (3) zoomorphic robots (e.g., Keepon robot, 
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KAROTZ robot). Our findings of Cozmo robots therefore added another example 

of non-humanlike robots whose high-arousal emotional displays are better 

recognised by people. 

 

To statistically examine the impact of individual differences in perceiving 

robots’ emotional displays, we ran both linear and logistic mixed effects models. 

We found a significant effect of emotion perception only in the logistic model 

with all the factors – including the robots’ emotions, people’s cooperative 

predisposition and individual emotion perception – involved (Model 2 in Table 3). 

Participants who correctly perceived the robots’ negative emotions displayed 

after being betrayed by a human player in PD games were less likely to 

cooperate with the robots in PD games. However, the effect was not 

significantly shaped by the robot’s emotion types (sadness or anger), nor by 

people’s cooperative predisposition, against our predictions. In the current 

study, the effect of the robots’ emotional displays might be constrained by the 

low recognition rates for robotic emotions in the embodied human–robot PD 

games (66.7% accuracy for anger; 51.7% for sadness), which were much lower 

than the recognition rates we measured in our online pilot (98.4% accuracy for 

anger; 90.6% for sadness). When engaging in economic games played with 

embodied robots, people might attend mostly to strategic decision-making in 

order to win, and have limited attention paid to the robot opponents’ emotional 

expressions during games. Although we manipulated the robots so that their 

emotional displays occurred after each round, when participants were not 

required to make any other game response, it is still possible that participants 

were more focused on their next step in the game, and therefore were not fully 

aware (or focussed on) what the robots were doing.  

 

Contrarily, when examining the influence of individual emotion perception via a 

linear mixed effects model on the log-transformed dependent variable, we did 

not find any significant effect from the fixed factors and their interactions. We 

think these results can be explained by the fact that, when running the linear 

model, we excluded 14 data points to fix the issue of zero cooperation rates 

leading to values of negative infinity. This data exclusion also meant we lost 

performance data from the most competitive participants. Therefore, the usage 

of mixed effects logistic regression models gave us more power to the detect the 
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effects of interest, and brought about more complete results since the analyses 

were performed on the entire dataset. The reason why we did not plan on 

logistic models in the first place was due to the difficulty in performing beta 

weight estimation for power analyses given the limited number of studies 

adopting logistic mixed effects model approach in the literature. One study by 

Moisan et al. (2018) that used this statistical approach focused on the effects of 

incentive structures on cooperation in interpersonal PD games, rather than 

robots’ emotional displays in human–robot PD games. Consequently, we suggest 

that more research could consider using mixed effects logistic regression models 

for analysing such binomial decision data. The strengths of mixed effects models 

to control for subject-level and stimulus-level random variation also make them 

outperform ANOVAs or t-tests in many cases (Debruine & Barr, 2019; Field & 

Wright, 2011). 

 

Among the three exploratory logistic models we conducted, only the personal 

factors (including cooperative predisposition and individual emotion perception) 

were found to be relevant to people’s cooperative tendencies towards the 

robots in PD games. Individual differences in emotion perception and 

cooperative predisposition, compared to the robots’ emotion displays, seemed 

to play a more important role in explaining people’s cooperative decisions in the 

current human–robot PD games. Similar to our finding in the main model, the 

personal factors drove participants’ game decisions more than the robots’ 

emotion types did. Kjell and Thompson's (2013) study also demonstrated the 

power of personal factors in social decision-making process and found that 

individuals’ SVO outweighed the influence of the essay emotion manipulation 

tasks on the subjects’ cooperative decisions in a computer-mediated PD game. 

However, since the emotion recognition rates for Cozmo’s sad and angry displays 

were lower than our expectations in this current study, we are unable to state 

decisively whether personal factors are more relevant than robots’ emotional 

displays to people’s cooperative willingness during HRIs in general. Follow-up 

studies are warranted for a more robust understanding of the effects of robots’ 

emotional dis- plays on people’s cooperative decisions in embodied HRIs, and for 

clarifying how the effects of robotic emotions relate to personal factors, such as 

coopera- tive predispositions and emotion perception. Future research could 

consider adopting less cognitive demanding game scenarios to examine the 
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effects of robotic emotional displays on people’s cooperative tendencies, in 

order to ensure participants have the cognitive resources available to process 

robots’ emotional displays (and other responses) while enga- ging in social 

decision-making tasks.  

 

So far, we cannot reject the null hypothesis and cannot claim that people’s 

cooperative decisions in the human–robot PD games are influenced by the 

interaction between the robots’ emotions displays (anger and sadness) and 

people’s cooperative predisposition in the way as the EASI model proposed (Van 

Kleef et al., 2010). However, it is important to emphasise that the EASI model 

was derived from human psychological literature and was originally intended to 

explain and predict interpersonal effects of emotional cues during interpersonal 

interactions between two people. Therefore, the EASI model might not be the 

most suitable model to predict the impact of embodied robots’ emotional 

displays on people’s cooperative decisions. This also demonstrates the 

limitations of understanding HRIs merely through the lens of human social 

cognition, while disregarding the fact that social robots may be seen or 

categorised variably across a continuum that ranges from simple inanimate 

objects through to humans, given the vast variety in robots’ physical features 

and social character- istics (Cross & Ramsey, 2021). As such, a robot-specific 

theoretical framework would be helpful if we are to better explain and predict 

the social effects of artificial agents’ emotional displays on people’s behaviours.  

 

Moreover, other factors are also likely to influence people’s cooperative 

tendencies towards robots that were not adequately captured in this study, such 

as individuals’ intergroup perceptions towards robots (De Jong et al., 2021; 

Fraune et al., 2017), anthropo- morphism (Torta et al., 2013), trust towards 

robots (Paeng et al., 2016; Tulk & Wiese, 2018; Wu et al., 2016) and the type of 

game strategy adopted by robot opponents (de Melo & Terada, 2020). In this  

study, we focused exclusively on the effects of Cozmo robots’ sad and angry 

displays, while attempting to control for other individual random variation via 

mixed effects modelling. Future studies have the opportunity to expand the 

present investigation by examining the social effects of other robotic emotional 

displays, since current evidence has shown that virtual agents’ joy and regret 

expressions might be particularly impactful on people’s cooperative tendencies, 
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compared to displays of sadness and anger (de Melo, Carnevale, et al., 2014; de 

Melo & Terada, 2019, 2020). Also, follow-up studies could further investigate 

additional personal, robotic, and contextual factors in PD games for an in-depth 

and comprehensive understanding of the decision- making process in human–

robot cooperation.  

 

Nevertheless, the present findings underscore the utility and importance of 

performing a manipulation check for emotion manipulation on robots and 

deploying a baseline measure for people’s dispositional cooperative tendencies. 

Especially for between-subject design or small sample size studies, it is essential 

to ensure that people’s cooperative decisions are driven by the experimental 

manipulation, rather than by their innate cooperative tendencies or by 

individual differences in perception. Also, when investigating the social effects 

of embodied robotic emotions, it is worth conducting pilot studies in more 

realistic scenarios where people are observing real-life, embodied HRIs, rather 

than simply checking stimulus validity via online experiments (c.f., Cross & 

Ramsey, 2021; Henschel, Hortensius & Cross, 2020). It could be the case that the 

actual effectiveness of emotional manipulation on robots is overestimated in 

complex and dynamic embodied HRIs. By taking these considerations into 

account, researchers could truly reveal the potential effects of robots’ 

emotional displays on shaping people’s cooperative decisions. 

 

 

Acknowledgements: We thank Kohinoor Darda and Nathan Caruana for the 

feedback on the manuscript submitted for stage 1 registered report review and 

Bishakha Chaudhury and Amol Deshmukh for the technical support. The work was 

supported by the European Research Council under the European Union’s 2020 

research and innovation program (Grant agreement 677270 to ESC) and 

Leverhulme Trust (PLP-2018-152 to ESC). 

 

 

 

 

 

 



122 

 

Chapter 5 General discussion  

Through this thesis, I developed a research approach that integrates psychology, 

Open Science initiatives, and game theory paradigms to rigorously and 

structurally examine social behavioural aspects of human—robot cooperation. 

Through three empirical studies (two lab-based and one online), I have provided 

preliminary evidence revealing relevant factors that shape our cooperative 

tendencies towards the small, playful Cozmo robots. In this final chapter, I 

summarise the current findings and discuss the implications and limitations of 

my work. Furthermore, I reflect on the contribution and challenges of this 

research approach, and also provide some future directions for researchers in 

the relevant fields. 

 

5.1. Factors shaping cooperative tendencies towards 

robots in prisoner’s dilemma games 

Social interaction is, by its nature, dynamic and shaped by multi-level 

determinants (Fehr & Fischbacher, 2004; C. D. Frith & Singer, 2008; Van Lange 

et al., 2013). Similarly, in the context of human interactions with artificial 

agents, researchers have adopted multi-dimensional perspectives to understand 

human behaviour and perception towards physically embodied robots and virtual 

agents (Epley et al., 2007; Fiebich, 2018). For example, in Epley et al.'s (2007) 

‘three-factor theory to anthropomorphism’, people’s tendencies to humanise 

non-human agents depend on personal knowledge of the non-human agents, 

cognitive motivations for understanding current situations, and social 

motivations for relational connection. Furthermore, these three factors are at 

play at the levels of an individual’s disposition, the situation they find 

themselves in, their stage of development, and the cultural context (Epley et 

al., 2007). If we take sociality motivation as an example, people’s need to 

connect with others could be shaped by their current affective states, how 

lonely they are in a situation, their attachment styles formed in developmental 

processes, as well as their cultural background (e.g., whether they come from a 

more individualistic or collectivist culture; Epley et al., 2007). On the other 
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hand, Fiebich (2018) claimed that ideal cooperation entails three key 

dimensions: (1) shared intentions between two (or more) agents; (2) a certain 

level of behavioural coordination; and (3) interrelated affective states between 

collaborators. Therefore, from a robotic design perspective, three domains of 

skills — including behavioural, cognitive, and affective domains — should be 

attended to in order to model cooperative robots (Fiebich, 2018).  

 

This thesis took the perspective of human-users in HRIs, and delved into human—

robot cooperation via psychological approaches. In line with the theoretical 

frameworks proposed by Epley et al. (2007) and Fiebich (2018), the current 

research also incorporates multi-aspect investigations — including contextual, 

personal, and robotic factors — in order to examine their relevance in human—

robot cooperation. Throughout the three empirical studies (Chapters 2 to 4), 

some factors that shape people’s cooperative tendencies in prisoner’s dilemma 

games were revealed that warrant further discussion and synthesis, which the 

following sections detail.  

 

5.1.1. Contextual factors 

In Chapter 2, we investigated people’s situational cooperative tendencies 

towards the Cozmo robot via manipulating the incentive structures of prisoner’s 

dilemma games. Though we did not find evidence to support that people’s 

cooperative decisions throughout the whole game (20 rounds) were significantly 

influenced by these incentive structures, exploratory analyses revealed that 

participants’ first game decisions were significantly different between high-

incentive and low-incentive game conditions. Higher contextual incentives for 

cooperation led people to make more cooperative decisions towards the robot in 

the first game rounds, even though defection was always a more profitable 

decision for individual payoffs in either condition. However, the higher 

cooperative tendencies in the high-incentive condition dropped off quickly after 

the initial game rounds, and the rest of people’s decisions were mainly driven by 

the robot opponent’s decisions. In both incentive conditions, people 

demonstrated a reciprocal (tit-for-tat) behavioural pattern in response to the 

robot. These findings further informed us of the experimental design of the 
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study in Chapter 4, where we only adopted the low-incentive game structure to 

better distil the possible effects from the robots’ emotional displays. 

 

Over the two human—robot prisoner’s dilemma game studies, we found a 

consistent behavioural pattern that people started from higher cooperative 

tendencies and these tendencies gradually decreased until the end of the game, 

regardless of the games’ incentive structure (Figure 5-1). A similar behavioural 

pattern has also been demonstrated in interpersonal prisoner’s dilemma games 

(Gunnthorsdottir et al., 2007; Houser & Kurzban, 2002; Rand et al., 2011).  

 

 

In order to explore the impact of incentive structures on people’s cooperative 

decisions across the two main laboratory studies (Chapter 2 and 4), I carried out 

Figure 5-1. Binomial cooperative decision distribution across the two lab-based studies on prisoner’s 

dilemma games played with Cozmo robots (sharing/cooperating coded as 1; keeping/defecting coded as 

0). ‘High incentive’ is defined by Rapoport’s K-index = 0.6; ‘Low K-index’ is defined by K-index = 0.2. 

Nonparametric smoothed curves are added to visualise the cooperative trends. Mean cooperation rate 

for each game block is calculated by dividing the numbers of participants’ cooperative decisions by the 

total numbers of game rounds. The left two panel plots (orange tags) are from the results of the Chapter 

2 study where the robot adopted a random strategy, and the right three panel plots (blue tags) are from 

the Chapter 4 study where the robots started from a fixed sequence of five decisions and played a tit-for-

tat (reciprocal) strategy.  
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exploratory analyses to examine the impact of incentive structures on the 

combined datasets of the two studies (Chapter 2 and 4; Figure 5-1). I only 

analysed the first game decisions because the first decisions represent people’s 

initial cooperative intentions without being influenced by other factors like the 

robots’ game strategies or the robots’ emotional displays. The mixed effects 

logistic regression model used for this new analysis is specified as follows: 

 

Cooperative decision ~ incentive_structure + (1|study) 

 

In this model, participants’ game decisions (1 as cooperative decisions; 0 as non-

cooperative decisions) are treated as a binomial dependent variable, and the 

fixed factor is the incentive structure of a game, which is either high-incentive 

(K-index = 0.6) or low-incentive (K-index = 0.2). The random variation between 

the two studies (random intercepts) are controlled for in this model. The results 

do not reveal a significant impact by incentive structures on the first game 

decisions,   = -0.78, 95% CI [-1.90, 0.34], p = .171. As one of the advantages of 

mixed effects model is to deal with unbalanced designs and missing data 

(DeBruine & Barr, 2021), the model result should not be biased too much by the 

unequal sample sizes between the high-incentive (n = 70) and low-incentive (n = 

130) conditions. This finding suggests that, at least when playing prisoner’s 

dilemma games with an embodied Cozmo robot, people’s decisions are not as 

impacted by incentive structures as evidence from online versions of these kinds 

of games played with human opponents suggests (Moisan et al., 2018). However, 

as already mentioned in Chapter 2, it is important to acknowledge that we only 

compare the difference between two inventive structures (K-index = 0.6 and 

0.2). Further investigations which, for example, include more K-index levels and 

use different robotic platforms will be required to more robustly and reliably 

understand the potential impact of incentive structures on people’s cooperative 

decisions in prisoner’s dilemma games played with robots. 

 

In addition to incentive structures of prisoner’s dilemma games, current 

literature on interpersonal games has revealed other relevant contextual factors 

that promote cooperative relationships, including increased time pressure (Rand 

et al., 2014) and dynamic social networks (i.e., allowing participants to play 

with new players in games; Rand et al., 2011). Finally, apart from the attempts 
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to uncover contextual factors that enhance people’s cooperative willingness 

towards robots, it might be worth also considering the situations where we might 

be ‘too cooperative’ to robots. For example, in Salem et al.’s (2015) study, 

which was set up in an actual house than in a lab, the majority of participants 

followed an embodied robot’s instructions to help with uncommon and unethical 

tasks, such as logging into the experimenter’s laptop with the password told by 

the robot (100% of the 40 participants), and pouring orange juice into a plant 

(67.5% of the 40 participants; Salem et al., 2015). Though these behaviours by 

the participants (who might have been aware that the robot was intentionally 

programmed by the experimenter for the experiment) might not necessarily 

equate to what people would actually do in real-life HRIs, their qualitative data 

of participants reporting being in ‘autopilot’ when following the robot’s 

suggestions provide valuable insights for designing (and studying) future 

scenarios of real-life human—robot cooperation (Salem et al., 2015). 

 

Taken together, throughout the two empirical studies on human—robot 

prisoner’s dilemma games in this thesis, we do not provide compelling evidence 

suggesting that people’s cooperative decisions toward robots are influenced by 

the incentive structures of the games. Instead, we found consistent declines in 

cooperative willingness toward a robot opponent as more game rounds were 

played. Future studies could probe other contextual factors, such as time 

pressure and dynamic social networks (Rand et al., 2011, 2014), in the context 

of HRIs, as well as further explore people’s cooperative relationships with social 

robots in other experimental set-ups in addition to economic games. 

 

5.1.2. Personal factors 

Several personal factors were explored in this thesis given the well-documented 

individual differences in social decision-making (Andrighetto et al., 2020; Murphy 

& Ackermann, 2014; Pletzer et al., 2018) and emotion perception (Barrett et al., 

2019). Figure 5-2 summarises the significant personal factors revealed by each 

chapter. In this section, I focus my discussion on the factors of people’s 

dispositional anthropomorphism, cooperative predisposition and individual 

differences in perceiving embodied robots’ emotional displays. The empathic 

trait factor we studied in Chapter 3 is discussed in the next section (“5.1.3 
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Robotic factors”), since this specific investigation was more related to the 

emotional contagion effects of the Cozmo robot’s emotion displays. 

 

 

 

(1) Dispositional anthropomorphism  

In Chapter 2, we explored three personal factors that might influence people’s 

cooperative decisions in prisoner’s dilemma games played with a Cozmo robot, 

including negative attitudes towards robots (Syrdal et al., 2009), social value 

orientation (Murphy et al., 2011), and predisposition to anthropomorphism 

(Ruijten et al., 2019). We found a marginally significant effect from people’s 

predisposition to anthropomorphism on their overall cooperative rates in 

prisoner’s dilemma games played with an embodied Cozmo robot, suggesting 

that dispositional anthropomorphism traits predict higher cooperative rates with 

this particular robot in this particular task. Anthropomorphism involves both the 

cognitive aspect of attributing human-like characteristics to non-human agents 

and also the behavioural aspect of treating non-human agents in a similar way to 

how we respond to other people (Fischer, 2021; Ruijten et al., 2019). In the 

Contextual variables 

Robotic variables Personal variables 

Incentive structures of games 

Physically embodied 
emotional displays 

Negative attitudes towards robots 

Social value orientation 

Predisposition to anthropomorphism 

Cooperative predisposition 

On-screen emotional displays 

Chapter 2 

Empathic traits 
‘empathic concern’ subscale 

Chapter 3 

Chapter 4 

Figure 5-2. An overview of the variables examined across the three empirical studies (Chapter 2 and 

4: human—robot cooperation in prisoner’s dilemma games played with a physically embodied robot; 

Chapter 3: emotion recognition and emotion contagion of robotic emotional displays viewed as videos 

online). The particularly relevant and influential personal factors found by this thesis are highlighted in 

yellow.  

emotion recognition 
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current literature on HRIs, relatively less attention has been paid on 

dispositional anthropomorphism, compared to situational anthropomorphism. 

Most HRI studies have investigated situational anthropomorphism in human—

robot economic games via manipulating the agents’ human-like features to 

examine if this induces stronger anthropomorphising responses towards these 

artificial agents (Fraune, 2020; Nishio et al., 2018; Torta et al., 2013). For 

example, in Torta et al.’s (2013) online ultimatum game experiments, 

participants accepted the unfair offers made by a human opponent and a 

humanoid opponent more frequently than they did those made by a computer 

opponent. As shown by the scores of anthropomorphism scales towards the three 

agents (anthropomorphism: human > humanoid > computer), Torta et al. (2013) 

suggested that participants’ differential responses to the three players were due 

to the level of anthropomorphism (Torta et al., 2013). Another study on human—

robot ultimatum games by Nishio et al. (2018) found that having short verbal 

dialogs with an android opponent (e.g., the android greeted participants by 

saying “Hello. How are things going?”) made people’s game responses to it more 

similar to the responses to a human player. As a consequence, participants were 

thus becoming less likely to reject unfair offers made by the android. However, 

the effect of verbal dialog (which the authors considered to engage 

mentalisation processes) was not found on the less human-like agents included in 

this study, including a computer and a humanoid robot (Nishio et al., 2018). The 

authors explained this as an interaction between agents’ appearances and verbal 

dialog on (situational) anthropomorphism (Nishio et al., 2018). Similar to this, 

Pipitone et al.'s (2021) preliminary results suggested that a robot’s inner speech 

(i.e., talking to itself while collaboratively setting a table for a meal according 

to etiquette rules with participants) made people anthropomorphise and like it 

more. However, Pipitone et al. (2021) did not measure the levels of people’s 

cooperative tendencies, nor did they look at participants’ social decisions in 

these recent experiments. These studies focus on how to enhance 

anthropomorphism towards robots via more human-like robotic forms or 

behaviours (mostly verbal behaviours). So far, much less is known about the role 

played by dispositional anthropomorphism in HRIs or in prisoner’s dilemma 

games played with robots. It is important to investigate these questions further, 

because this could help researchers better interpret and clarify the extent to 
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which people’s anthropomorphising responses are driven by robots’ 

characteristics or by individual differences in anthropomorphism tendencies. 

 

In human psychology literature, the importance of measuring individual 

differences in anthropomorphism has been revealed, and measures of 

dispositional anthropomorphism have been found to predict people’s differential 

moral decisions and behavioural responses towards non-human agents (Epley et 

al., 2007; Ruijten et al., 2019). Furthermore, as introduced before, Epley et al. 

(2007) proposed that anthropomorphism should be studied from dispositional, 

situational, developmental, and cultural perspectives. Neurocognitive evidence 

has also demonstrated that dispositional and situational anthropomorphism are 

correlated, but differentially associated, with the Theory-of-Mind brain network 

(Hortensius et al., 2021). Finally, this thesis provides evidence supporting the 

relevance of dispositional anthropomorphism in shaping people’s cooperative 

decisions in human—robot prisoner’s dilemma games. Given the previous and 

current work, it is crucial to consider both dispositional and situational 

anthropomorphism when researching cooperative tendencies during HRIs.  

 

(2) Cooperative predisposition and individual differences in perceiving 

embodied robots’ emotional displays 

In the second lab-based study on people’s cooperative tendencies in prisoner’s 

dilemma games played with Cozmo robots (Chapter 4), we used a within-subject 

design and found that participants’ cooperative decisions (throughout the three 

game blocks) demonstrated high consistency within individuals, regardless of the 

emotion manipulations of the robots. In other words, cooperative/competitive 

participants tended to remain similarly cooperative/competitive even when 

Cozmo showed sad and angry expressions after being betrayed by human 

players. The dominant impact of people’s dispositional cooperative tendencies 

has also been studied and affirmed in interpersonal prisoner’s dilemma games 

where people’s cooperative decisions are mainly driven by their social value 

orientation, instead of the emotional manipulations on participants’ subjective 

affective states (Kjell & Thompson, 2013). 
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Further exploratory analyses (Chapter 4, Table 4-3) revealed that participants’ 

cooperative decisions in games could be best explained by their cooperative 

predisposition (i.e., cooperative rates in the baseline block) and their emotion 

recognition of Cozmos’ emotions (i.e., whether they had accurately recognised 

the robots’ sad and angry displays). Our data demonstrate profound personal 

differences in perceiving artificial emotions displayed by embodied robots 

(Cozmo robots, specifically). In general, people who correctly recognised 

Cozmo’s emotions were less likely to cooperate with them, regardless of the 

emotions displayed by the robots (sadness or anger).  

 

Currently, we failed to provide evidence to support that Van Kleef et al.'s (2010) 

Emotion as Social Information (EASI) model still applies when (1) emotional 

stimuli are displayed by embodied robots; or (2) differentiation of cooperative 

and competitive contexts is defined by baseline measures of people’s 

cooperative tendencies in prisoner’s dilemma games. However, these findings 

highlight the necessity to deploy manipulation checks and baseline measures 

when evaluating people’s cooperative tendencies towards social robots, as well 

as the potential biases when comparing small-sample and between-subject-

design conditions.  

 

5.1.3. Robotic factors 

In this thesis, the focus on robotic factors is on robots’ emotional displays. We 

explored people’s emotion recognition of both disembodied Cozmo robots 

presented on a screen (Chapter 3 and the online pilot in Chapter 4) and 

physically embodied Cozmo robots (Chapter 4). Additionally, we looked into the 

emotion contagion effects of the robots’ emotional displays (Chapter 3), and the 

effects of embodied artificial emotions on people’s cooperative tendencies in 

prisoner’s dilemma games (Chapter 4). In the following sections, I discuss each 

of these points in detail. 
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(1) Emotion recognition of physically embodied and on-screen Cozmo 

robots 

The results of the mean recognition rates measured in the three experiments are 

summarised in Table 5-1.  

 

Table 5-1. Recognition rates (%) of Cozmo’s emotional displays in the three experiments. 

   Recognition rates (%) 

 n embodiment Angry Sad Happy Surprise Neutral 

Chapter 3 103 On-screen 78.4 69.2 62.4 63.4 19.4 

Chapter 4 pilot 64 On-screen 90.6 85.4 75.0  26.6 

Chapter 4 60 
Physically 

embodied 
66.7 51.7    

Recognition rate is defined by the percentage of people who recognise the same emotion 
category as what the experimenters intend the robot to display. 

 

Across the three experiments that measured people’s emotion recognition of 

Cozmo robots (Table 5-1), we found that the robots’ angry expressions, 

compared to sad expressions, were more consistently and accurately recognised 

by people. Additionally, recognition rates for on-screen emotional displays 

(which were measured in online experiments) were generally higher than 

embodied emotions displayed by physical Cozmos in the lab. However, it is 

worth noting that, the recognition rates of embodied emotions were measured 

during the prisoner’s dilemma games played with the Cozmo robots (Chapter 4), 

which served as a manipulation check. Therefore, the nature of the tasks to 

measure emotion recognition were considerably different between the Chapter 4 

experiment and the other two experiments. Nevertheless, the findings here 

emphasise the importance of administering manipulation checks when examining 

the effects of embodied robots’ emotional displays. Although we had 

administered a stimulus validation pilot to confirm the validity of robotic 

emotional stimuli, the actual emotion recognition rates measured in in-person 

testing were generally lower than the results of the online pilot. This suggests 

that it might be more difficult for people to realise and recognise the emotions 

that embodied robots are displaying when engaging in a task with them. In 

hindsight, it would have been valuable to run an emotion recognition task/pilot 
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with the embodied robots in the laboratory, to determine whether the low 

recognition rates during game play are due to the fact that the robot is 

physically embodied vs. screen based (less likely), or the fact that participants’ 

focus and attention is divided due to the prisoner’s dilemma task requirements 

(more likely).  

 

(2) Emotion contagion of Cozmo’s emotional displays and its 

relationships with empathic traits 

Chapter 3 explored the extent to which people’s emotion recognition of an 

online Cozmo robot’s emotional displays are affected by individual empathic 

traits (measured by Interpersonal Reactivity Index, IRI; Davis, 1983), and the 

extent to which people’s subjective feelings might synchronise with the robot’s 

emotional expressions (which is known as emotion contagion). Only the 

‘empathic concern’ subscale was found to be negatively associated with the 

emotion contagion effects of the robot’s emotional displays. Specifically, 

participants who reported higher tendencies in ‘empathic concern’ (i.e., more 

likely to have vicarious feelings for others’ situations) tended to find the robot’s 

emotional expressions less contagious.  

 

According to a psychological theoretical framework of empathy, empathy is a 

multi-dimensional construct, involving the cognitive component of understanding 

others’ perspectives and the affective component of feeling for others’ 

situations (Davis, 1983a; Zaki, 2014). The current finding provides evidence 

supporting the existence of empathic subtypes and these subtypes might be 

associate with different mental processes and affective responses (Besel & 

Yuille, 2010; Perugia et al., 2020). However, one of the limitations of this study 

is that in the videos participants watched and rated for the experiment 

described in Chapter 3, the Cozmo robot was displaying emotions devoid of any 

specific context. Therefore, the relevance of the robotic emotion rating tasks to 

real-world empathy might be limited. This online study was derived from the 

stimulus validation pilot in Chapter 4, and the main purpose was to examine 

whether Cozmo is a suitable robotic platform for displaying recognisable 

artificial emotion stimuli. For future research that specifically focuses on the 

role of empathy traits in affective interactions with social robots, other 
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experimental tasks might be more suitable, for example, the tasks to measure 

people’s hesitance to harm a robot (Darling et al., 2015; Riddoch & Cross, 2021) 

and people’s reactions when witnessing a robot in pain (Cross, Riddoch, et al., 

2019; Rosenthal-von der Pütten et al., 2014; Seo et al., 2015). Nonetheless, the 

work described in Chapter 3 provides preliminary evidence suggesting that 

people’s dispositional empathic traits could shape their affective reactions 

towards a Cozmo robot’s emotional displays and counterintuitively, people who 

reported higher tendencies in feeling for others’ situations (affective empathy) 

showed less emotion contagion effects of the robot’s emotional displays. 

 

(3) The impact of Cozmo’s sad and angry displays on people’s 

cooperative tendencies 

When examining the effects of the Cozmo robots’ negative emotional displays 

(sadness and anger) on people’s cooperative tendencies (Chapter 4), we did not 

find evidence for the differential effects from the robots’ sad and angry 

displays, in contrast to what the EASI model proposes (Van Kleef et al., 2010). 

Instead, our current results revealed that people who accurately recognised 

Cozmo’s sad and angry expressions tended to cooperate less with the robots, 

regardless of the emotion types. These findings contradict evidence reported 

from online prisoner’s dilemma games played with virtual agents, which suggests 

that virtual agents’ differential emotional displays do indeed shape people’s 

cooperative decisions in a similar way to how we are influenced by other 

people’s emotional expressions in the real world (de Melo et al., 2010, 2011; de 

Melo, Gratch, et al., 2014a; Hoegen et al., 2018). However, our results are 

somewhat consistent with Kayukawa et al.'s (2017) study which failed to 

replicate de Melo et al.'s (2010) findings when applying the same emotional 

manipulation to an embodied NAO robot. In order words, Kayukawa et al (2017) 

found that people preferred the emotionally expressive NAO, compared to the 

non-expressive NAO, but emotional manipulations of the NAO robot did not lead 

to more cooperative decisions, as demonstrated in de Melo et al.'s (2010) online 

study. Our study, along with Kayukawa et al.'s (2017), might denote that it is 

more challenging to produce effective and strong emotional manipulations on 

embodied robots that can surpass people’s pre-existing cooperative tendencies. 

However, the discrepant findings reported across screen-based and physically 
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embodied artificial agents in this domain will require further examination in 

order to understand whether differences are due to the specific type of artificial 

agent being studied (more likely) or the agent’s physical presence/embodiment 

(less likely). 

 

The finding of robots’ negative emotional displays impeding human—robot 

cooperation is consistent with Kopelman et al.'s (2006) study on interpersonal 

negotiation. Kopelman et al. (2006) report that participants were more like to 

make a business deal and cooperate in the future with negotiators who showed 

kindness and positive attitudes, but not with those who strategically expressed 

hostility in negotiations (Kopelman et al., 2006). Also, people tended to make 

more demanding requests to hostile and tough negotiators compared to the 

positive negotiators (Kopelman et al., 2006). However, this result stands in 

contrast with Van Kleef et al.'s (2004) findings that people made concessions 

more easily to angry negotiators but not happy ones. These inconsistent findings 

between the two studies might be at least partly explained by their different 

ways of emotional manipulations. In Kopelman et al.'s (2006) study, the authors 

trained participants to display either positive or negative emotions during 

negotiations; in Van Kleef et al.'s (2004) study, the authors adopted computer-

mediated communicational approach for negotiators to interact. Though 

psychologists have developed a great amount of theoretical work on the social 

meanings of interpersonal emotion displays (Manstead & Fischer, 2001; Moors et 

al., 2013; Van Kleef et al., 2010), to empirically examine the effects of 

interpersonal emotions in a way that is both well-control and socially natural 

presents significant challenges. On the other hand, although robots can be used 

as flexible and reliable research tools for displaying well-controlled emotional 

stimuli, an outstanding challenge for HRI researchers might be to equip 

embodied robots with the abilities to express recognisable and effective 

emotional expressions in dynamic social interactions, given profound 

interpersonal differences in emotion perception (Barrett et al., 2019; Stock-

Homburg, 2021). 

 

There has been growing interest among the affective computing community to 

understand and characterise the social impact of artificial emotion displays 

during HRIs (Stock-Homburg, 2021). However, so far, the effects of embodied 
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robots’ emotional expressions on people’s cooperative tendencies are still 

unclear, and the artificial emotions displayed by the currently available robotic 

platforms — including the Cozmo robots used here, and the popular and widely 

available NAO robot (used by Kayukawa et al., 2017) — seem ineffective in 

shaping people’s cooperative decisions in prisoner’s dilemma games. This thesis 

suggests that there are more factors to take into consideration when 

understanding the effects of social robots’ emotional displays during human—

robot cooperation, including people’s cooperative predispositions and individual 

differences in recognising artificial emotions. 

 

 

5.2. Contribution, limitations and future directions 

5.2.1. Contribution 

This thesis proposes an integrative approach to investigate questions related to 

HRI that draws on theory and methods from a number of complimentary 

disciplinary perspectives. Below I outline the three key messages that the 

current work contributes to the field. These contributions mainly concern the 

methodology of HRI research, reproducibility, and human—robot cooperation. 

 

(1) Structural experimental designs for more rigorous HRI investigations 

This approach emphasises the value of adopting perspectives drawn from 

established psychological theories and empirical findings to design rigorous 

experimental manipulations and define predictions of people’s social decisions 

during HRIs. This work demonstrates that conducting research in structural HRI 

(e.g., human—robot economic games) could have several advantages especially 

when examining causal relationships between factors is the main research 

interest. First, structural experimental contexts allow researchers to explore 

people’s situational social responses and the impact of environmental factors. In 

Chapter 2, I revealed that people’s initial cooperative decisions towards Cozmo 

robots would be shaped by the slightly different game structures. This finding 

highlighted the importance of taking experimental contexts into account when 
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examining people’s social decisions towards robots, and further informed the 

design of the follow-up study in Chapter 4.  

 

Second, another advantage of structural and evidence-based experimental 

designs is that studies can be linked with and be comparable to the previous 

literature using similar experimental contexts. For example, the use of 

prisoner’s dilemma games in this thesis allowed me to standardise and 

manipulate the incentive structures of the game contexts according to the well-

developed literature (Moisan et al., 2018; Rapoport, 1967; Rapoport & 

Chammah, 1967), and to compare the present findings with the evidence from 

interpersonal prisoner’s dilemma games (Moisan et al., 2018) or games played 

with virtual agents (de Melo et al., 2010; de Melo, Gratch, et al., 2014a).  

 

In short, the empirical investigations in the thesis demonstrate a feasible way to 

structurally and rigorously investigate people’s cooperative tendencies towards 

small-size robots by adopting the prisoner’s dilemma game paradigm. Future 

research could build evidence on the topic by adopting the similar experimental 

context to examine, for example, whether people’s cooperative decisions in this 

type of games differ by different robot opponents or by different characteristics 

of robot opponents.  

 

(2) Incorporate open science practices in HRI studies to ensure 

reproducibility of the field 

Given the current Open Science movement, which emphasises high quality, more 

rigorous research practices (including preregistration, accessible research 

materials and data, and performing high-powered experiments), I suggest that 

these research practices should be more common in the HRI fields for more 

reproducible science. The Open Science practices mentioned in the method 

sections of the empirical chapters in the thesis provide examples of some steps 

HRI researchers may wish to consider taking in an attempt to conduct more 

reproducible science. In the three empirical chapters of the thesis, I hope to 

have highlighted the importance and value of power analyses and pre-defined 

data collection plans. Especially with the adoption of sequential analyses in 

Chapter 4, data collection could be more efficient and come to an earlier stop 
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given the adjusted and stricter alpha level. Moreover, all the research materials 

in relation to the thesis are freely available on the Open Science Framework 

platform. This not only shows the transparency of the research processes but 

also makes it easier for future replication studies or relevant work. 

 

Having a clear research proposal planned prior to data collection could force 

researchers think rigorously about their study designs and sampling plans. This 

could help tackle the research validity threats which have currently been 

identified in the field (Innes & Morrison, 2020). This present work therefore 

contributes to the field by pointing out the importance of Open Science 

practices and provides actual examples of how these practices can be 

incorporated into the research processes of HRI.  

 

(3) Take personal factors into account when investigating human—robot 

cooperation 

From the empirical studies in Chapter 2 and 4, I provide evidence suggesting 

that people’s cooperative tendencies towards robots in human—robot prisoner’s 

dilemma games are mainly driven by individual factors (i.e., a person’s 

cooperative predisposition), and less by external factors including the incentive 

structures of the games or by the robot’s emotional displays. These findings urge 

that social interactions between people and robots should be investigated 

thorough a more comprehensive perspective. Namely, the impact of personal 

factors, as well as contextual factors, in HRIs should be considered when 

examining people’s social responses towards robots. At least in the study in 

Chapter 4, participants’ individual differences in perceiving Cozmo’s emotional 

displays were profound. Therefore, measurements of individual differences or 

manipulation checks should be administered for a valid and rigorous conclusion 

of the social effects of robots’ emotional cues. 

 

Furthermore, in this thesis, I reveal the utility and strengths of mixed effects 

models to control individual-level variation when personal factors are not the 

main research focus. To ensure research validity and reproducibility of research 

findings in the field, more powerful and sophisticated analysis approaches should 

be adopted (Belpaeme, 2020). The current work points to the necessity of taking 
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personal factors into consideration when looking into the social dynamics of HRI, 

and provides an approach (mixed effects models) to control individual variation 

for valid interpretations of research findings.  

 

In the following sections, I consider several limitations related to these findings 

and the current research approach. Finally, several ideas for future directions to 

address these limitations are provided in each of the below sections. 

 

5.2.2. Limitations and future directions 

(1) The use of Cozmo robots in HRI research 

While I contend that this research aids our current understanding in human—

robot cooperation, some limitations exist in the thesis that also require careful 

consideration. In the present research, we only used Cozmo robots for 

understanding people’s cooperative willingness. Our choice of a single robotic 

platform necessarily constrains the generalisability of these findings to other (let 

alone all) social robotic platforms (Henschel et al., 2020; Hortensius et al., 

2018; Hortensius & Cross, 2018).  

 

Cozmo robots (manufactured by Anki inc.) are highly flexible and customisable, 

and can be relatively easily programmed to carry out autonomous behaviours for 

specific research purposes. Furthermore, their affordability and portability make 

them highly suitable for HRI investigations (Chaudhury et al., 2020). A growing 

number of researchers have also used these robots for exploring the social and 

cognitive mechanisms underpinning HRIs (Abubshait et al., 2020; Ciardo et al., 

2020; Cross, Riddoch, et al., 2019; Currie & Wiese, 2019; De Jong et al., 2021; 

Lefkeli et al., 2021; Tan et al., 2018). Additionally, in Chapter 3, we have 

demonstrated that the emotional expressions (anger, sadness, and happiness) 

displayed by a Cozmo robot on screen are highly recognisable, and the emotion 

recognition rates we recorded for Cozmo’s emotional displays are considerably 

better than the average recognition rates from the previous 43 HRI studies (using 

various other robots, such as NAO, Pepper, Barthoc, Keepon, etc.) recently 

reviewed by Stock-Homburg (2021).  
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Although the utility and advantages of Cozmo robots for HRI investigations have 

been demonstrated by a number of studies, it remains questionable whether the 

findings based on this specific robotic platform can apply to other different 

robots (related to the section in Chapter 1 “1.2.3 Generalisability of empirical 

HRI studies”). More careful interpretations of psychological and HRI findings 

should be stressed, in order to ensure this field progresses in a reliable, 

replicable and robust manner (Ramsey, 2021). For the findings presented this 

thesis, replications on other robotic platforms would be valuable to better 

understand how Cozmo’s behaviours generalise to different kinds of social 

robots. The purpose of this thesis is to provide a point of departure for building 

a better understanding of the mechanisms and consequences of human—robot 

cooperation, and the evidence provided here should be used and interpreted 

keeping these limitations in mind. 

 

(2) Ecological validity of prisoner’s dilemma games 

There has been a long history of researchers adopting the prisoner’s dilemma 

paradigm for understanding human cooperative behaviours (Axelrod, 1984; 

Rapoport & Chammah, 1967; Van Lange et al., 2013). The game represents an 

analogy of real-life decision-making processes, and evidence suggests clear links 

between social decisions in economic games and real-world moral judgements 

and charitable behaviours (Capraro et al., 2019; Capraro & Perc, 2021). In 

classic prisoner’s dilemma games, a cooperative decision means a participant 

forgoes short-term individual profit in favour of potentially bigger and longer-

term collective interest. This decision-making process seems like it holds some 

real-life relevance to decisions that might be undertaken during real-world HRIs. 

For example, business owners might need to decide whether or not to make 

monetary investments (as well as physical and mental efforts; i.e., short-term 

individual interests) to use robots for potentially boosting productivity (i.e., 

bigger long-term collective profit). Though the purchase and maintenance of 

robots could be expensive and new skills and knowledge will be required for 

businesses to incorporate robot assistants, in the long run, adoption of these 

robots might cut down the expenses of labour cost and might generate higher 

productivity as robots do not require rest or sleep the same way human workers 

do. This possible future scenario provides a window into the real-world 
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implications that investigations of human—robot prisoner’s dilemma games could 

apply to. However, as psychologists have been well aware for some time, real-

life social interactions and decision-making processes are usually far more 

complex and dynamic than what can be captured in laboratory experiments 

(Sanfey, 2007; Van Lange et al., 2013). We will need to collect further explicit 

and concrete evidence to substantiate the relationships between cooperative 

decisions measured in lab-based prisoner’s dilemma games and actual 

cooperative willingness in real-world and long-term HRIs. 

 

(3) Beyond behavioural measures 

Another limitation of the thesis relates to the fact that I only investigated 

people’s cooperative tendencies at a behavioural level, leaving a number of 

interesting and important questions related to the underlying cognitive or 

neuropsychological mechanisms supporting cooperative decisions towards robots 

unexplored. A growing number of researchers are emphasising the importance of 

incorporating the knowledge and methodology from social cognition and 

neuroscience to gain a fuller and more in-depth understanding of HRIs 

(Chaminade et al., 2012; Cross, Hortensius, et al., 2019; Cross, Riddoch, et al., 

2019; Henschel et al., 2020; Hortensius & Cross, 2018; Wykowska et al., 2016). 

Also, current empirical studies have used the neurocognitive and physiological 

techniques like functional magnetic resonance imaging (fMRI) (Chaminade et al., 

2012; Cross, Riddoch, et al., 2019; Rosenthal-von der Pütten et al., 2014), eye-

tracking (Berg et al., 2019; Peshkovskaya et al., 2017), and 

electroencephalogram (EEG) (Kompatsiari et al., 2018; Wykowska et al., 2016) 

to acquire a fuller mind, brain, and behavioural understanding of HRIs. 

 

In addition to quantitative measures, which mainly address questions of how we 

interact with social robots and if specific manipulations will affect the ways we 

interact with them, qualitative approaches shed light on why individuals respond 

to robots in certain ways (Lyons et al., 2019; Riddoch & Cross, 2021). In this 

thesis, my focus was on the extent to which people are willing to cooperate with 

Cozmo robots and whether this willingness is shaped by contextual, personal, 

and robotic factors. Many questions have arisen from this work that warrant 

answers, which might be well-served by qualitative approaches. These include 
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why people decide to cooperate (or not) with a robot and the thought process 

people undergo when interpreting the meaning(s) of emotions displayed by a 

robot during prisoner’s dilemma games. Future research on the topic could 

adopt a multi-method approach (e.g., Hortensius et al., 2021) to expand and 

deepen the current understanding of human—robot cooperation via 

neurocognitive, physiological, and qualitative measures. 

 

5.3. Conclusion 

The thesis presents an integrative research approach that draws together 

psychological perspectives, Open Science practices, and game theory paradigms 

in an attempt to generate robust and reproducible evidence to advance our 

understanding of how humans cooperate with robots. Through two lab-based 

studies on people’s cooperative tendencies towards embodied Cozmo robots in 

prisoner’s dilemma games, we did not find evidence supporting that people’s 

cooperative decisions are affected by incentive structures of the games or by the 

robots’ negative emotional displays (sad and angry emotions). Instead, people’s 

behaviours in games demonstrate a strong reciprocal tendency towards the robot 

opponent, and their cooperative tendencies show high consistency within 

individuals across a series of game blocks, regardless of the emotion 

manipulations on the robots. Additionally, via an online investigation of people’s 

emotion recognition of Cozmo’s emotional displays on screen, Cozmo’s 

emotional expressions, especially anger, sadness, and happiness, are highly 

recognisable to participants, which further validates the utility of this particular 

robotic platform as a suitable tool for examining emotion-related questions in 

online experiments. However, the current findings also underscore that 

significant challenges will still need to be overcome to manipulate effective 

emotional displays on embodied robots. Although our robotic emotional stimuli 

have been validated via online experiments, the actual recognition rates of 

embodied Cozmo robots’ emotional displays were generally lower than the 

results of online measures. Future research on this topic could examine the 

generalisability of current findings by using other robotic platforms and adopt 

neuropsychological or qualitative approaches to gain better understanding of the 

cognitive mechanisms underpinning people’s cooperative willingness towards 

social robots. Overall, this thesis contributes to the HRI fields by presenting a 
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research approach that examines the cooperative and social aspects of HRIs in a 

structural, multidisciplinary and rigorous manner. As social robotics is still in a 

nascent state, it is important to develop in-depth and comprehensive 

perspectives of how people interact and collaborate with embodied robots, in 

order to set solid foundations for future robotic designs that better meet our 

expectations and that enable us to form cooperative relationships with robots at 

a psychological level. 
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Appendix A: 

Supplementary materials for Chapter 2 

 

Table S1 

 Participants’ nationality distribution 

nationality n percentage 

Australia 1 1.43 

Brazil 1 1.43 

Bulgaria 2 2.86 

China 8 11.43 

Colombia 1 1.43 

Dual 

nationality 

2 2.86 

Greece 1 1.43 

Honduras 1 1.43 

Hong Kong 1 1.43 

India 4 5.71 

Ireland 1 1.43 

Israel 1 1.43 

Mexico 1 1.43 

Nepal 1 1.43 

Nigeria 1 1.43 

Pakistan 1 1.43 

Philippines 1 1.43 

Polland 2 2.86 

Portugal 1 1.43 

Singapore 3 4.29 

Spain 3 4.29 

Thailand 1 1.43 

UK 25 35.71 

US 6 8.57 

Percentage of each nationality category was calculated by n/70 (sample size) 
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Table S2 

Participants’ cooperation rates (%) across 20 game rounds. 

 High K-index 

condition (condition 

1) 

Low K-index 

condition (condition 

2) 

Round1 80.00 57.14 

Round2 54.29 40.00 

Round3 60.00 28.57 

Round4 45.71 40.00 

Round5 42.86 34.29 

Round6 28.57 42.86 

Round7 22.86 40.00 

Round8 45.71 22.86 

Round9 28.57 34.29 

Round10 45.71 28.57 

Round11 37.14 31.43 

Round12 31.43 31.43 

Round13 34.29 17.14 

Round14 25.71 28.57 

Round15 31.43 28.57 

Round16 31.43 28.57 

Round17 45.71 28.57 

Round18 37.14 40.00 

Round19 25.71 45.71 

Round20 34.29 22.86 

Cooperation rate (per round) = n of subjects who shared / 70 (sample size) 
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Appendix B: 

Rebuttal for “Human–robot cooperation in 

economic games: People show strong reciprocity 

but conditional prosociality toward robots.” 

NB: Shared with the permission from the chief editor of Royal Society Open 

Science. 

 

Reviewer 1 

Comments to the Author(s): 

This paper reports an experiment testing the effect of incentives on iterated 

cooperation in human-robot interactions. 

 

The paper is well written and interesting. I am positive towards it. However, I 

have to report a major shortcoming: the sample size is very small, 70 

subjects. I am not sure what is the policy of the journal regarding single-

study papers based on only 70 subjects. I am aware of (and sensible to) the 

Replicability Crisis and I tend to not recommend publication of small studies. 

Maybe the authors can consider replicating their study? Below are the 

detailed comments that I have taken while reading the paper. 

 

Authors’ response:  

We thank Reviewer 1 for their positive comment, and for raising this question 

regarding the sample size. As mentioned in our manuscript, the sample size was 

determined by a simulation-based power analysis, with the simr R package 

(v1.0.5) (Green & Macleod, 2016) and with the parameters estimated by Moisan 

et al.’s (2018) study. The sample size and study procedures were preregistered 

prior to data collection, adhering to the open science initiatives (Galak et al., 

2012; Munafò, 2016). 
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Although we agree that a replication study will be useful to validate current 

findings, we still regard the current manuscript as worth publishing at this stage, 

since it points to the necessity of taking payoff structure into account when 

assessing human cooperative tendency in human-robot prisoner’s dilemma 

games. A recent paper by Innes and Morrison (2020) has proposed that studies in 

human–robot interaction (HRI) are generally lacking a rigorous experimental 

approach. Our study aims to take positive steps toward rectifying this issue, and 

presents the utility of game theory and structural economic games to examine 

human social behaviours in HRI. As research on human–robot cooperation has 

begun to proliferate in recent years, we argue that it will  be imperative for 

researchers in this field to at least be aware of the possible impact of incentive 

structure and of the relevant factors in the context as early as possible, to 

prevent false interpretation and to ensure research validity. Below we 

responded to each of Reviewer 1’s additional comments in detail. 

 

R1-1: 

Page 3, line 4. Another work showing that the level of cooperation in PD is 

related to the benefit of cooperation is Capraro, Jordan and Rand (2014). I 

think the authors should also mention that this is inconsistent with 

neoclassical economic theory, which predicts defection regardless of the 

payoff structure. However, this is consistent with other models of behaviour, 

such that preferences for social efficiency (Charness and Rabin, 2002) and 

the cooperative equilibrium model (Capraro, 2013). 

 

Authors’ response:  

We thank Reviewer 1 for providing suggestions for us to include additional 

relevant work in this area. We now include these papers into our introduction 

(p.2) to link the current topic with previous broader literature better. 

 

P. 2: “…The propositions of Rapoport’s K-index are in line with several social 

behaviour models, such as preferences for social efficiency [19] and the 

cooperative equilibrium model [20]. These models, coupled with empirical 

evidence from interpersonal PD games [17,21], suggest that people’s 

cooperative tendency is shaped by payoff structures in PD games. This stands in 
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contrast to the neoclassical economic theory’s prediction [22] that people 

should act rationally to maximise self-gain and therefore defect all along.” 

 

R1-2: 

Figure 1. I don’t think it is needed a figure to describe the PD in an academic 

paper. 

 

Authors’ response:  

Considering the broad readership of RSOS, we included Figure 1 to illustrate the 

basic logic underpinning a prisoner’s dilemma scenario, and to allow readers to 

easily make sense of the K-index equation, as well as the two rules defining a 

prisoner’s dilemma (T > R > P > S; 2R > T + S).  

 

Several previous papers also used both text and a figure (or a table) of a typical 

payoff matrix to introduce prisoner’s dilemma (Bell et al., 2017; Moisan et al., 

2018; Sandoval et al., 2016). We therefore believe that there is added value in 

Figure 1, which should help non-specialist readers to understand the 

fundamental background of the research topic better. 

 

R1-3:  

Page 4, line 28. Which two groups? The high K-index and the low K-index? At 

this stage of the paper the design is not yet clear, so it is not clear which 

groups you are referring to. 

 

Authors’ response:  

We thank Reviewer 1 for bringing this point to our attention, and have amended 

the relevant text for clarification. 

 

P. 3: “…Two Wilcoxon rank sum tests were performed to test whether the 

participants in high K-index and low K-index conditions differed in their daily 

engagement with robots or in the number of films featuring robots seen, in 

order to control for possible confounds in prior experience.” 

 

R1-4: 
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Page 4, line 31. A p-value of 0.083 is rather small, especially for such a small 

sample. 

 

Authors’ response: 

We used the benchmark of p = .05 to decide whether there was a significant 

difference between the two groups of subjects in previous experience with 

robots, and therefore concluded that a result of p = .083 did not reach our 

significance threshold, and thus we cannot conclude that a significant difference 

emerged between the two groups. However, we understand that the two groups 

of participants would not be exactly the same and the between-subject design 

could have its potential weakness and limitations. Yet, with the adoption of 

mixed effects models, we consider the impact of possible subject-level random 

differences should be controlled and minimised.  

 

We answer the question regarding our sample size in detail in comment (14).  

 

R1-5: 

Page 6, line 49. The fact that Cozmo’s choices were manipulated in this way 

should be clarified earlier in the paper, in my opinion. 

 

Authors’ response: 

We added a sentence about Cozmo’s strategy in introduction (p. 2) to make the 

context of current investigation more specific, and kept the detailed illustration 

in the Materials and Methods section. 

 

P. 2: “…we predict that participants who play a high K-index PD game against a 

robot will make more cooperative decisions than those who play a low K-index 

game, regardless of a robot opponent’s random ordered game decisions.” 

 

R1-6: 

Page 6, line 60. A useful meta-analysis on the relationship between svo and 

cooperation has been recently published by Andrighetto et al (2020). It could 

be useful. 

 

Authors’ response: 
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We thank Reviewer 1 for bringing this meta-analysis to our attention. We have 

now added this into the “Measures” section and our reference list. 

 

P. 5: “The SVO scale has a significant relationship with cooperative decisions in 

interpersonal social dilemmas [36,37].” 

 

P. 14: “37. Andrighetto G, Capraro V, Guido A, Szekely A. 2020 Cooperation, 

Response Time, and Social Value Orientation: A Meta-Analysis. 

(doi:10.31234/osf.io/cbakz)” 

 

R1-7: 

Figure 5 is not very informative. To be honest, it’s the first time that I see 

someone to report the variability of intercepts and fixed effects. The fact 

that, in the first rounds, the K-index does have an effect is already very clear 

from Figure 6. It is sufficient to report the stats in the main text. 

 

Authors’ response: 

We appreciate the reviewer’s comment and removed the original Figure 5. 

 

R1-8: 

Also, Figure 7 does not add much above Figure 6, so it can be deleted. 

Instead of describing figures with words, it would much better to report the 

statistical analysis. Perhaps the authors might consider adding a table with 

average cooperation by round and by treatment and, for each round, report 

the statistical difference. (In the current version of the paper, the authors 

report the stat only of round 1) 

 

Authors’ response: 

We thank Reviewer 1 for sharing this feedback. We could see that the original 

Figures 6 and 7 (now Figures 5 and 6 in the revised manuscript) were conveying 

similar information; however, we believe that Figure 7 (now Figure 6 in the 

revised manuscript), which visualises cooperation rates across 20 rounds, still 

adds value, as such cooperation trends and fluctuations are difficult to discern 

either in Figure 6 or a table. Therefore, we prefer to keep Figure 7, but as per 

Reviewer 1’s suggestion, we have also added a table (Table S1) that lists the 
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exact values of average cooperation rates per round and per condition, in 

supplementary materials.  

 

Our original intention of running an analysis on the subset of first game decisions 

was because this demonstrated participants’ initial cooperative intention in the 

games before being impacted by Cozmo’s decisions from round 2 onwards. For 

the remaining game rounds (rounds 2–20), we did not intend to run an individual 

analysis per round due to concerns over multiple comparisons (Shaffer, 1995), 

and also due to our motivation to examine the general impact of incentive 

structure (as demonstrated by the results of mixed effects model, Table 1) 

rather than its impact per game round.  

 

However, we appreciate that readers might be interested in different 

perspectives of our data beyond the pre-registered analyses that we focus on in 

the current report. For that reason, all anonymous data and analysis codes are 

available on the study’s OSF page (https://osf.io/res67/) to enable others to 

make use of these research materials for their individual interests and purposes. 

 

R1-9: 

Page 9, line 50: “inventive structure” -> incentive 

 

Authors’ response: 

Thanks for spotting the typo. We have now corrected it. 

 

P. 8: “…We then trimmed the complexity to arrive at a model that converged by 

removing random slopes for incentive structure…” 

 

R1-10: 

Pag 10: “we observed an interesting phenomenon…” To be honest, I don’t 

find this to be very surprising: when Cozmo’s score is high and subject's 

score is low, it means that it is more likely that, in the previous round(s), 

Cozmo defected and the subject cooperated, therefore in the next round the 

subject is more likely to defect. On the other hand, when  Cozmo’s score is 

high and subject score is high too, it means that is more likely that, in the 

previous round(s), Cozmo cooperated and the subject cooperated, therefore 

https://osf.io/res67/
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in the next round, the subject is more likely to cooperate. In sum, I think 

that you are just re-seeing tit-for-tat from another angle. 

 

Authors’ response: 

We thank the reviewer for providing an explanation of the result. We removed 

the possibly controversial word (“interesting”) and adjusted the phrasing into: 

“From this analysis, observed that…” (p. 8). 

Also, we incorporated this possible explanation raised by Reviewer 1 into the 

discussion. 

 

P. 10-11: “…Nevertheless, an alternative explanation could be that the 

interaction between Cozmo’s and participants’ scores on cooperation tendency 

was an outcome of participants’ reciprocal behaviours in games. Specifically, 

we observed that the participants, when earning little scores, were less likely 

to cooperate with Cozmo especially when its score was much higher. This was 

likely because Cozmo had taken advantage of them (i.e., participants 

cooperated while Cozmo defected) previously for multiple times. Imaginably, 

people would be unwilling to cooperate with Cozmo after the robot beat them 

in scores by being uncooperative with them. On the other hand, we found that 

the participants, when earning high scores already, were more likely to 

cooperate with Cozmo especially when its scores were also high. This could be 

explained by previous mutual cooperation and therefore mutual beneficial 

outcomes. After such win-win cooperative experiences, participants would 

presumably keep cooperating and reciprocate Cozmo’s prior cooperation. 

Granted, in this study we are not able to provide a decisive answer as to what 

participants’ underlying social and psychological motives were for their game 

play decision. Nevertheless, the current study provides evidence of dynamic 

cooperative willingness which changes with the status of human–robot PD 

games. An important challenge for future research to address will be the 

factors underpinning people’s decision-making process in these scenarios. ” 

 

R1-11: 

Human factors. The coefficients of SVO and NARS are similar to that of the 

anthropomorphism scale, the p-values are also relatively small. It’s possible 
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that you do have an effect, but you were unable to detect it because of 

insufficient power (the sample size is very small). 

 

Authors’ response: 

Here again, we used the benchmark of p = .05 to decide whether a predicter 

significantly impacted the dependent variable (i.e., cooperation rates), and 

therefore regarded the p-value of .137 (SVO) and the p-value of .145 (NARS) as 

non-significant predictors, given our pre-registered sample size.  

 

However, we acknowledge the possibility that the current sample size might be 

insufficient to detect all human factors as it was not specifically calculated to 

find human factors. Instead, the sample size was estimated by a simulation-

based power analysis, with the simr R package (v1.0.5) (Green & Macleod, 2016) 

and parameters estimated by Moisan et al.’s (2018) study, to detect a significant 

fixed factor of incentive structure in a mixed effects model. This is also the 

reason why we included this in exploratory analyses, mainly to provide relevant 

human factors in the context for future researchers to be aware of. 

 

R1-12: 

Did you incentivise cooperation guesses? 

 

Authors’ response: 

No. The cooperation rate guesses were involved in the post-game questionnaires 

and served as a manipulation check of the robot’s game strategy. 

 

R1-13: 

Ah, another paper is actually Gunnthorsdottir et al. (2007) 

 

We thank Reviewer 1 for pointing out this relevant paper, which we have now 

incorporated into our revised discussion. 

 

P. 10: “…However, the quick decay of cooperation rates and people’s reciprocal 

tendencies were consistent with prior evidence from interpersonal economic 

games showing that people are less likely to cooperate or make public 

contributions after experiencing others’ uncooperativeness [43,44].” 
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P. 15: “43. Gunnthorsdottir A, Houser D, McCabe K. 2007 Disposition, history 

and contributions in public goods experiments. J. Econ. Behav. Organ. 62, 304–

315. (doi:10.1016/j.jebo.2005.03.008)” 

 

R1-14: 

A major limitation of this work is the small sample size. Perhaps it makes 

sense to replicate the study. 

 

Authors’ response: 

We appreciate Reviewer 1’s advice, and do not disagree that direct replications 

are a service to science. We are also well aware of the importance of achieving 

sufficient statistical power with a large enough sample size to detect effects of 

interest, and the proper scientific practices of conducting a power analysis for 

sample size estimation prior to data collection to ensure any given study is 

appropriately powered to detect the effect size(s) of interest (Cohen, 1988; 

Maxwell et al., 2008). Therefore, as mentioned in our manuscript, our sample 

size (N = 70) was determined by a simulation-based power analysis, with the 

simr R package (v1.0.5) (Green & Macleod, 2016) and parameters estimated by 

Moisan et al.’s (2018) study, rather than by any other rule of thumb or 

subjective experiences.  

 

We acknowledge that the current research topic is rather novel and any chosen 

power analysis can provide only a statistical estimation of a required sample size 

rather than the definite answer. Further, we agree that research findings in 

general should be examined with extensive replication studies. However, 

although our results did not perfectly fit our initial hypotheses, it was not 

necessarily caused by an insufficient sample size, but could possibly be people’s 

unique behavioural responses to robot opponents in prisoner’s dilemma games, 

which has not been well studied before. We thus would argue that the current 

study, which strictly followed open science practices, is worth publishing at this 

stage, in order for researchers in the nascent field of HRI to gain insights from 

our findings and experimental approach. Further, we would argue that, by such 

collective efforts, researchers from HRI and any other field that studies human 

behaviour will be moving in the right direction for building knowledge and 
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understanding on a topic in a cumulative and rigorous way that enables the 

community to improve the quality of experimental designs and methods based 

on others’ past experiences (Munafò et al., 2017; Open Science Collaboration, 

2017).  

 

R1-15: 

Moreover, the fact that you did not find incentive effect with two incentives 

does not mean that there is no incentive effect in general. 

 

Authors’ response: 

This is indeed a very good point that Reviewer 1 raises, which we now include as 

one of the study’s limitations in the discussion. 

 

p. 11: “…Finally, in the current study we only examined the difference between 

K-indices of 0.6 and of 0.2. Future research could include more levels of K-

indices to acquire a fuller understanding of how our willingness to cooperate 

with a robot changes according to different incentive structures of human–robot 

PD games.” 

 

 

Reviewer 2 

Comments to the Author(s): 

In this manuscript, the authors develop a computer-mediated human-robot 

PD game and examine the frequencies of participants sharing coins 

(cooperating) with a Cozmo robot in high and low K-index conditions. They 

mainly study the impact of incentive structures on cooperative decisions and 

explore the impact of interactive behavior on participants and the impact of 

real-time game performance on participants. The results show that the 

incentive structures of a human–robot PD game have an effect on human 

cooperation only at the beginning of the game. Throughout the whole game, 

participants’ cooperative/noncooperative decisions are driven more by the 

robot’s decision (following a tit-for-tat strategy) and the presentation of 

game scores in each round. I think that this work is interesting. Here I have 

some following comments or questions about this work. 
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R2-1: 

In Figure 7, the cooperation rate of some low K-index is obviously higher 

than that of high K-index. I suggest the author provide some detailed 

explanations for this. 

 

Authors’ response: 

The fact that some cooperation rates in the low K-index conditions were higher 

than that in the high K-index condition could be explained by the first part of 

our exploratory analyses, where we found that participants’ decisions after the 

first game round were mainly driven by Cozmo’s previous decisions rather than 

the incentive structures. This appears to have caused random fluctuations in 

cooperation rates across both conditions, due to the way we manipulated 

Cozmo’s game strategies (random but resulting a 50% cooperation rate). 

We thank Reviewer 2 for raising this issue and we have now added a sentence 

before the exploratory section to make it clearer. 

 

p. 8: “…Below we present exploratory analyses which we conducted in order to 

identify possible factors driving the fluctuations in participants’ cooperation 

tendencies.” 

 

R2-2: 

The result shows that empathetic response could confound results to some 

unknown degree. I wonder whether changing the degree of the punishment 

can reduce its impact on the results. 

 

Authors’ response: 

In the discussion, we pointed out the possible confounding effect caused by the 

cover story of the experiment (i.e., erasing Cozmo’s memory if it lost) as a 

caveat for future researchers if they wish to adopt the same (or a similar) script. 

However, in the current study, this kind of individual-level random effect should 

be already controlled by the random effects modelling of our mixed effects 

models, and should not confound our results. We appreciated Reviewer 2’s 

question nonetheless, and have rephrased the description to prevent confusion. 
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P. 11: “…We acknowledge the possible confounding impact caused by 

individuals’ empathetic responses and therefore adopted mixed effects models 

to better control for possible subject-level random effects.…” 

As to the question regarding changing the degree of punishment, we think any 

script that is effective in convincing participants of the real consequences of the 

games to a robot can be a valid manipulation in this context. We used this 

specific script since it has previously been proven effective by Seo et al.'s (2015) 

study, but also agree that future research could further explore the best way to 

make the game scenario as meaningful as possible to both human and to robot 

players alike. 

 

R2-3: 

If the punishment for Cozmo is increased, I wonder whether the final results 

of the experiment will be affected. 

 

Authors’ response: 

We would not expect any significant change in the final results if Cozmo’s 

punishment were increased, because our mixed effects models already control 

such subject-level random effects (if any). However, we agree with Reviewer 2 

that it would be insightful for future studies to manipulate the degrees and the 

content of the rewards and punishment to a robot, to find out if there is a more 

suitable way to frame the game scenario to be meaningful to both humans and 

robots. Thus, we now have added this point into our discussion as one of the 

directions for future researchers to look further into: 

 

P. 11: “Future studies could use more structured quantitative measures to 

assess how meaningful each participant thinks an economic game is to a robot 

or any other non-human agent, to ensure the validity of this kind of paradigm. 

For example, researchers could manipulate (e.g., increase or decrease) the 

extent of punishment and rewards a robot receives in human–robot PD 

games, and measure whether and how participants’ perception and 

cooperative willingness are changed.” 
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Appendix C: 

Rebuttal for “Examining how the display of 

emotions influences human–robot cooperation in a 

prisoner's dilemma game.”  

NB: Shared with the permission from the anonymous reviewers and editor at 

Cognition and Emotion 

 

Reviewer 1 

How and why cooperation emerges in social dilemmas is an intensely 

investigated subject with obvious practical ramifications. Methods of 

mathematical modeling and network science have been applied successfully 

and with much effect in recent years to shed light on the problem from many 

different perspectives, and also to outline many different ways on how 

solutions could be obtained. The authors are certainly right in pointing out 

that the interactions between humans and robots are bound to increase in 

the near future, and that thus the subject is very much worth investigating.  

I would be happy to review a revised submission that takes into account the 

following comments.  

 

Authors’ response: 

We thank Reviewer 1 for their positive comment and agreement on the 

importance of the topic. Below we respond to each of Reviewer 1’s additional 

comments in detail. 

 

R1-1:  

There are a couple of useful reviews that would fit very well to the 

introduction and to the subject in general, and also promote reading across 

fields, namely Social and juristic challenges of artificial intelligence, Palgrave 

Commun. 5, 61 (2019) and Mathematical foundations of moral preferences, 

J. R. Soc. Interface 18, 20200880 (2021), which both concern social 
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dilemmas and how this could play out in settings involving human-machine 

interactions.  

 

Authors’ response: 

We thank Reviewer 1 for bringing these relevant review papers into our 

attention. We have now incorporated them into our introduction, to link the 

research topic better with real-life human–machine interactions. 

 

▪ Page 12, line 254-266:  

“Moreover, investigation into the topic could have several practical 

consequences as well. First, social dilemmas emerging between humans and 

robots have the potential to someday, possibly soon, feature in daily life, where 

robots need to decide between benefits of individual people and the collective 

interests of human society. These types of discussion are already well underway 

in the autonomous vehicle development community, where debate and 

discussion continues over the situations in which people might accept their self-

driving cars to sacrifice their own lives to save the lives of (multiple) pedestrians 

(Bonnefon et al., 2016; Perc et al., 2019). Second, some research evidence has 

verified that experimental procedures to promote people’s cooperative 

tendencies and altruism (for example, by moral nudging) could have cross-

situational effects on their real-life charitable behaviours (Capraro et al., 2019; 

Capraro & Perc, 2021). Our research here could therefore have implications for 

real-life HRI, especially to the utility of social robots’ emotion displays to 

enhance the social quality in human–robot cooperation.” 

 

R1-2:  

In general, I would expect the introduction to cover a bit better research 

dedicated to cooperation in the prisoner's dilemma game, especially also 

related to modeling, where a lot of results has accumulated in recent years 

concerning various settings and interactions. Here misinformation and trust 

strike me as particularly relevant in human-robot cooperation, and the 

introduction and discussion could in this regard be much improved and 

brought more up-to-date. 

 

Authors’ response: 
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We thank Reviewer 1 for the suggestion to enrich our introduction with coverage 

of more recent studies on prisoner’s dilemma games. We now include more 

recent research modelling human-decision making process in social dilemmas, 

and current findings on human–robot prisoner’s dilemma games. We hope this 

will give readers a clearer understanding of the recent development in the 

relevant fields. At the same time, we are mindful of not going into too much 

detail about individual factors so as not to depart too far from the main study 

focus on robots’ emotion displays. However, in the future discussion section, we 

will incorporate a broader discussion over the relevant factors in human–robot 

cooperation (such as misinformation and trust) thanks to these helpful 

suggestions provided by Reviewer 1 at this stage. 

 

▪ Page 9, line 176-182: 

“An extensive body of literature on interpersonal PD games has used both 

experiments and data simulation to model and theorise on the emergence and 

evolution of human cooperative behaviours (Axelrod & Hamilton, 1981; Embrey 

et al., 2018; Rapoport & Chammah, 1967). With mathematical modelling, more 

recent research has provided considerable insights into the mechanisms and 

factors supporting or hampering cooperation across various social dilemma 

situations (e.g., in dyads and in groups) (Bravo et al., 2012; Ito & Tanimoto, 

2018; Kopp et al., 2018; Perc et al., 2017).” 

 

▪ Page 9-10, line 188-193: 

“Recent research on human–robot PD games has provided preliminarily insights 

into the impacts of reciprocity (Sandoval et al., 2016), trust (Paeng et al., 2016), 

dialogic verbal reactions (Maggioni & Rossignoli, 2021), and a Nao robot’s 

emotion displays (Kayukawa et al., 2017) on HRI. Yet, the preliminary evidence 

raises more questions than answers at this stage, especially with respect to the 

effects of robots’ emotion displays in PD games.” 

 

R1-3: 

It would also improve the paper if the figure captions would be made more 

self contained. In addition to what is shown, one could also consider a 

sentence or two saying what is the main message of each figure, where 
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applicable. 

 

Authors’ response: 

We thank Reviewer 1 for the advice to improve our figure captions, and have 

now added more description in the following figures (underlined text shows the 

amendment made to the captions): 

 

▪ (page 14) Figure 2. Setup and apparatus. (A) Illustration of the 

experimental setup. During the experiment, participants will play games 

with the robot situated in front of them on a desk, and make game 

responses by tapping the cubes on the desk. The payoff matrix and real-

time game outcomes will be shown by a monitor before them. (B) The 

blue Cozmo (Botz) and the red Cozmo (Roxon) used in the experiment. (C) 

The interactive cubes that players tap to make game decisions.  

 

▪ (page 19) Figure 5. Experimental design. (A) The order and game rounds 

planned for the four blocks. Participants will firstly familiarise themselves 

with the game rules in the practice block, and play with a non-expressive 

Cozmo in the baseline block (as a measure of their cooperative 

disposition). Finally, they will play with Roxon and Botz (one programmed 

to be sad and the other to be angry) in turn in emotion block 1 and 2. (B) 

Payoff matrix design. (C) Emotion manipulation of the robots in emotion 

block 1 and 2. The main manipulation of the robot’s sad and angry 

emotional displays happens after a human player chooses to keep coins, 

but the robot decides to share. The robots’ emotion manipulation for the 

rest of three game outcomes remains the same across emotion block 1 

and 2. 

 

▪ (page 25) Figure 6. Power curve for finding an interaction between the 

robots’ emotion and people's cooperative predisposition. Each data point 

is noted by (sample size, power). The result of simulation suggests that 

90% power can be achieved if the sample size reaches 180 (participants).  

 

▪ (page 26) Figure 7. Power curve for the main effect of Cozmo's emotion. 

Each data point is noted by (sample size, power). The result shows that 
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sufficient statistical power (90% power) is already achieved when we have 

40 samples (or more).  

 

R1-4: 

The abstract does not communicate any conclusions or findings, only what 

has been done and what the implications of this might be. As a reader, I 

would certainly be curious to learn whether the display of negative emotions 

hinders cooperation or not, and whether positive emotions promote 

cooperation.  

 

Authors’ response: 

We thank Reviewer 1 for the suggestions regarding the abstract. We have now 

revised it to include a short description of methods and expected results. 

However, since the data collection will only be carried out after we receive an 

in-principle acceptance from Cognition and Emotion (given the manuscript is 

submitted for Stage 1 Registered Report review), we are not yet able to state 

the effects of robots’ emotion displays, but only our predictions concerning 

them. 

 

▪ Page 2, line 7-14: 

“Participants will play iterated prisoner’s dilemma games with a non-expressive 

robot (as a measure of cooperative baseline), followed by an angry, and a sad 

robot, in turn. Order of sad and angry robot opponents will be counterbalanced. 

Based on the Emotion as Social Information model, we expect that participants 

with higher cooperative predispositions will become less cooperative when a 

robot opponent displays anger, and more cooperative when sadness is displayed. 

Contrarily, according to this model, participants with lower cooperative 

predispositions should become more cooperative towards an angry robot and less 

cooperative toward a sad robot.” 

 

R1-5: 

Staying with the abstract, I am not sure that the rather lengthy background 

and referencing to COVID-19 is needed in that much detail. There are 

numerous other reasons why robots are likely to play an ever more important 

role in our lives. And sentences like "As the world is likely to embrace a “new 
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normal” after COVID-19, including remote education, increased working from 

home..." will surely be perceived as highly contentious by many. Maybe it is 

true and maybe it is not, we will see, but this has not place being stated like 

this in a paper that has very little to do with COVID-19 in the first place. I 

would strongly recommend a rewrite there. 

 

Authors’ response: 

We thank Reviewer 1 for raising the questions concerning the abstract. We have 

now included more descriptions about our methods and result predictions in the 

abstract. Hopefully, the revised version provides a better outline of the 

proposed research, and we wish to further update the abstract after conducting 

data collection and analyses, if an in-principle acceptance is received.  

 

R1-6: 

The title could then also be more factual, like "The display of negative 

emotions hinders human-robot cooperation in prisoner’s dilemma games". 

 

Authors’ response: 

We thank Reviewer 1 for the suggestion of a more informative title. Again, as 

the manuscript is still at stage 1 registered report review and we haven’t carried 

out our data collection and result analyses, we are reluctant to change the 

paper’s title to reflect findings that are only expected at this stage. However, if 

the regulations of registered reports in Cognition and Emotion permits a change 

in title, we are more than happy to change the current title to a more factual 

one after robust results are found.  

 

 

 

Reviewer 2 

The topic of building cooperation between humans and robots is highly 

significant and studying the role of emotion in accomplishing this is timely.  

The study builds on prior work with emotional agents, but research with 

robots - and of this type in particular - is missing.  
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The hypotheses are motivated based on some of the prior work, though it's 

not entirely clear to me that those with different cooperative orientations 

will behave differently given certain emotions (what would be the 

explanation from appraisal theory). Nevertheless, the hypotheses will be 

appropriately tested through the proposed procedure. 

 

The materials (e.g., robot emotion displays) were appropriately selected and 

validated. The experimental design and task are also well motivated from 

prior work. 

 

The sample size seems appropriate and the sampling plan reasonable.  

The main and exploratory analyses are adequate to test the hypotheses and 

provide insight on this topic. 

I look forward to the results. 

 

Authors’ comments: 

We are grateful for Reviewer 2’s positive comments and the general agreement 

on our research plan proposed here. Indeed, we are motivated to gain a deeper 

understanding in human–robot cooperation via psychological emotion theories, 

and wishing the eventual findings could shed light on both psychological fields 

and robotics development.  
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