
Controlling and Learning Constrained
Motions for Manipulation in Contact

João Miguel Pousa de Moura

Submitted for the degree of

Doctor of Philosophy

Heriot-Watt University

School of Engineering and Physical Sciences

Awarded Jointly With

The University of Edinburgh

July, 2021

The copyright in this thesis is owned by the author. Any quotation from the thesis
or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.

Abstract

Many practical tasks in robotic systems involving contact interaction with the envi-
ronment, such as cleaning windows, writing or grasping, are inherently constrained,
in that both the task and the environment impose constraints on the robot’s motion.
While constraints from manipulation motions in contact represent a challenge when
modelling and controlling such robotic systems, they might also be an opportunity,
if exploited for decomposing complex controllers into simpler ones that are easier to
design, implement, test and even learn from data.

Modelling such systems requires incorporating these constraints in the robot’s dy-
namic model. In this thesis, I define the class of Task-based Constraints (TbCs) and
prove that the forward dynamic models of a constrained system obtained through
the Projected Dynamics (PD) and the Operational Space Formulation (OSF) are
equivalent. Establishing such equivalence required: reformulating the PD constraint
inertia matrix, generalizing all its previous distinct algebraic variations; and gener-
alizing the OSF to rank deficient constraint Jacobian matrices. This generalization
allows us to numerically handle redundant constraints and singular configurations,
without having to use different controllers in the vicinity of such configurations.

Furthermore, I show that we can recover both operational space control with con-
straints and the hybrid position/force control in the operational space from a mul-
tiple Task-based Constraint abstraction. I then propose a control and trajectory
tracking approach for wiping the train cab front panels, using a velocity controlled
robotic manipulator and a force/torque sensor attached to its end-effector, with-
out using any surface model or vision-based surface detection. The control strategy
consists of a hybrid position/force controller, adapted from the Operational Space
Formulation, that aligns the cleaning tool with the surface normal, maintaining a set-
point normal force, while simultaneously moving along the surface. The trajectory
tracking strategy consists of specifying and tracking a two dimensional path that,
when projected onto the train surface, corresponds to the desired pattern of motion.
An experiment with the Baxter robot to wipe a highly curved surface with both a
spiral and a raster scan motion patterns validates the approach. I also implemented
the same approach in a scaled robot prototype, specifically designed to wipe a 1/8
scaled version of a train cab front, using a raster scan pattern.

Learning these type of control policies subject to constraints is a challenging prob-
lem. This thesis proposes a Constraint-aware Policy Learning (CaPL) method that
solves the policy learning problem on redundant robots which execute a policy acting
in the null-space of a constraint. This learning approach allows the generalization
of learnt control policies across constraints that are unknown during the training
phase. The CaPL method splits the combined problem of learning constraints and
policies into: first estimating the constraint, and then estimating an unconstrained
policy using the remaining degrees of freedom. For a linear parametrization, there

is a closed-form solution for the problem of estimating constraints based on Singular
Value Decomposition (SVD). In this thesis, I propose another closed-form solution
for constraint estimation for the TbC case, which includes estimating the task com-
ponent without affecting the norm of the constraint matrix, based on Generalized
Singular Value Decomposition (GSVD). I also discuss a metric for comparing the
similarity of estimated constraints, which is useful to pre-process the trajectories
recorded in the demonstrations. An experiment consisting in: learning a wiping
task from human demonstration on flat surfaces; and reproducing it on an unknown
curved surface using a force/torque based controller, to achieve tool alignment, vali-
dates the CaPL method. Despite the differences between the training and validation
scenarios, the learnt policy still provides the desired wiping motion.

Dedico esta etapa à minha mãe e ao meu pai,
Maria da Assunção e Edgar Firmino,

por todo o amor, dedicão e amparo.

Acknowledgements

When coming to the conclusion of this last four years journey, I ought to recognize the
ones that in so many ways contributed to my accomplishments and propelled me forward
along the way.

First, I would like to thank my supervisors Mustafa Suphi Erden, for all his wise advice
and the most thorough reviews, and Sethu Vijayakumar, for welcoming me in his research
group and providing me all the support in pursuing my research.

I would like to acknowledge the School of Engineering & Physical Sciences (EPS) at Heriot-
Watt University for awarding me the Postgraduate Research James Watt Scholarship to
fund my studies. I would also like to acknowledge the Edinburgh Centre for Robotics (ECR)
for accepting me in the Centre for Doctoral Training in Robotics and Autonomous Systems
(CDT-RAS) programme, for supporting my research and enriching my overall experience
as PhD student, with countless events and training opportunities. Many are the people
responsible for the ECR success story, but I have particular appreciation for Anne Murphy,
who made my life so much easier by helping me navigate the complex administrative mazes,
and the ECR founders and directors, David Lane and Sethu Vijayakumar, who taught me
a great deal in all the executive meetings I have attended in the past four years, as the
2015 cohort students rep.

I would like to thank all my colleagues from the CDT 2015 cohort, for creating such a
community like environment, my colleagues from the Institute of Perception, Action and
Behaviour (IPAB) at The University of Edinburgh, for integrating me in the institute and
providing me with the opportunity for attending numerous events and engaging talks from
its members and, finally, to all my colleagues from the Statistical Machine Learning and
Motor Control Group (SLMC), for welcoming me in all the meetings, labs and research
discussions, teaching me so much about robotics and profoundly impacting my growth as
a researcher. Some of these colleagues became very close friends. A very special thanks to
Tatiana López-Guevara and Theodoros Stouraitis, for the companionship and friendship,
when getting through the downs and ups of the PhD, and for our countless chats about
research and life.

Outside of academia, I would like to praise my very dear friend and travelling companion

Petchroi Petchreing, for all the kindness in constantly presenting me with words of opti-

mism and encouragement. I would like to thank my Portuguese best friends Tiago Silva

and Sandra Monteiro, for their longstanding friendship and always being there for me. I

would like to express my gratitude to all my extended family — aunts, uncles, cousins

and grandparents — for the kind of attachment that only family can give, making my

life complete and meaningful. Finally, I would greatly like to thank my brother Lúıs Pe-

dro, my father Edgar Firmino and my mother Maria da Assunção, for all their love and

unconditional support and dedication. To them I dedicate all my work and successes.

Contents

List of Acronyms v

List of Symbols vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Thesis Outline . 6

2 Task-based Constrained Dynamics 7
2.1 Introduction . 7
2.2 Background . 11

2.2.1 Holonomic Equality Constraints 11
2.2.2 Gauss’s Principle of Least Constraint 13
2.2.3 Operational/Task Space Dynamics 14

2.3 Task-based Constraints . 16
2.3.1 Task-based Constrained Dynamics 16
2.3.2 Projected Dynamics . 17
2.3.3 Projected Dynamics Reformulation 18
2.3.4 The Dynamically Consistent Inverse Solution 22

2.4 Multiple Task-based Constraints . 23
2.5 The Fallacy of the Equivalent Projections 24
2.6 Discussion . 29

3 Simultaneous Position/Force Control for Constrained Motions 33
3.1 Introduction . 33
3.2 Background . 35

3.2.1 Hybrid Position/Force Control 35
3.2.2 The Operational Space Formulation 36

i

3.2.3 Manipulation Interaction Tasks 37
3.3 Operational Space Control with Constraints 39
3.4 Surface Tracing with a Kinematic Robotic Manipulator 41
3.5 Case Studies . 48

3.5.1 Verifying the Equivalence of Task Controllers with Constraints 48
3.5.2 Wiping a Non-flat Surface . 51
3.5.3 Automation of Train Cab Front Cleaning 58

3.6 Discussion . 63

4 Learning Generalizable Constrained Policies by Demonstration 65
4.1 Introduction . 65
4.2 Background . 68

4.2.1 Direct Policy Learning . 68
4.2.2 Receptive Field Weighted Regression 70
4.2.3 Modelling Constraints . 72
4.2.4 Learning from Constrained Policies 73
4.2.5 Metrics for Evaluating Performance 75
4.2.6 Learning Constraint-consistent Policies 76
4.2.7 Handling Task-Space Component 78
4.2.8 Learning Null-Space Projections 79
4.2.9 Summary . 82

4.3 Learning Constraint-aware Policies 82
4.3.1 Closed-form Constraint Estimation 83
4.3.2 Constrained Policy Estimation Decomposition 86

4.4 Case Studies . 91
4.4.1 Learning a 2D Policy . 91
4.4.2 Learning a 2D Policy with Task Component 97
4.4.3 Learning Cartesian Circular Trajectories 99
4.4.4 Learning Planar-Constrained Policies 105
4.4.5 Task Generalization using a Force Sensor 110

4.5 Constraint Similarity Analysis . 112
4.6 Discussion . 115

5 Conclusions 119
5.1 Summary and Contributions . 119
5.2 Discussion and Future Directions . 121

Appendix A Contributed Proofs/Results 123
A.1 Constrained Inertia Matrix with Minimum Condition Number 123
A.2 Projected Forward Dynamics Equivalence 125
A.3 Singular Dynamically Consistent Jacobian 126
A.4 Partitioned Task-space Inertia Matrix 127
A.5 Direct Policy Error Decomposition 129
A.6 Estimating parameters with GEVD 131

ii

A.7 Estimating parameters with GSVD 133

Appendix B Supplementary Proofs/Results 137
B.1 Receptive Field Weighted Regression error cost decoupling 137
B.2 Regression of a weighted combination of locally linear models 139
B.3 Estimating parameters with EVD . 141
B.4 Estimating parameters with SVD . 143
B.5 Inertia-Weighted Generalized Inverses and Projection Equalities . . . 144

Bibliography 145

iii

iv

List of Acronyms

CaPL Constraint-aware Policy Learning.
CCL Constraint Consistent Learning.
CCPE Constraint Consistent Policy Error.
CPE Constrained Policy Error.
CSE Constraint Space Error.

DMP Dynamic Movement Primitive.
DoF Degrees of Freedom.
DPE Direct Policy Error.
DPL Direct Policy Learning.

EVD Eigenvalue Decomposition.

GEVD Generalized Eigenvalue Decomposition.
GMM Gaussian Mixture Model.
GSVD Generalized Singular Value Decomposition.

LfD Learning from Demonstration.
LS Least Squares.
LWPR Locally Weighted Projection Regression.

MSE Mean Square Error.

nCPE normalized Constrained Policy Error.
nDPE normalized Direct Policy Error.
NSPE Null Space Policy Error.
nUPE normalized Unconstrained Policy Error.

OSF Operational Space Formulation.

PbD Programming by Demonstration.
PD Projected Dynamics.
PID Proportional-Integral-Derivative.
POE Projected Observation Error.
ProMP Probabilistic Movement Primitive.

v

QP Quadratic Programming.

SVD Singular Value Decomposition.

TbC Task-based Constraint.

UPE Unconstrained Policy Error.

WLS Weighted Least Squares.

vi

List of Symbols

The following list describes the notation and symbols used throughout this thesis.

[]× transformation of a vector in a skew-symmetric matrix, page 55

β control policy parameters, see equation (4.1), page 81

q̈ configuration acceleration or vector of generalized accelerations, page 16

q̈? unconstrained configuration acceleration, page 16

ẍ task-space acceleration, page 18

∆t sampling interval, page 83

Ȧ(·) time derivative of the constraint Jacobian, page 15

q̇ configuration velocity or vector of generalized velocities, page 14

q̇ε arbitrary configuration acceleration, page 16

q̇ε arbitrary configuration velocity, page 14

ẋ(·) task-space velocity, see equation (2.20), page 20

β̂ estimated control policy paramters, see equation (4.3), page 82

π̂ estimated control policy, see equation (4.4), page 82

κ(·) condition number, page 23

λ task-space external force, page 18

〈 , 〉 Euclidean inner product, page 15

〈 , 〉M Inertia-weighted inner product, page 15

R set of real numbers, page 14

Sn++ set of symmetric positive definite matrices, page 16

Z set of integer numbers, page 82

G(·) Gauss’s function, see equation (2.10), page 17

vii

X dataset containing pairs of observed states and actions, see equation (4.5),
page 82

µ mean value, page 68

Ω selection matrix, see equation (3.1), page 43

⊗ Kronecker product operator, see equation (4.13), page 84

ωm importance weighting for model m, page 83

A inertia-weighted generalized inverse of A, page 15

φ(·) contraint forward model, see equation (2.1), page 14

σ standard deviation value, page 68

τ vector of generalized forces, page 16

τε aribitrary generalized force, page 18

π(·) control policy function, see equation (4.1), page 81

ε(·) error metric, see equation (4.4), page 82

ς(·) singular values, page 23

A(·) constraint Jacobian, see equation (2.2), page 14

A† Moore-Penrose inverse of A, page 15

A#
1 partial dynamically consistent inverse of A1, page 29

b(·) constraint-space velocity, see equation (2.2), page 14

c(·) constraint-space acceleration, see equation (2.5), page 15

f task-space force, page 18

G generalized inverse of A, page 14

h(·) Coriolis, centrifugal and gravitational generalized force contribution, page 16

In n× n identity matrix, page 14

M(·) robot inertia matrix, page 16

Mc constraint inertia matrix, see equation (2.26), page 21

Mx task-space inertia matrix, see equation (2.16), page 18

nb constraint-space or task-space dimensionality, page 14

nq number of generalized coordinates or configuration dimensionality, page 14

P Orthogonal projection matrix, equivalent to PI , page 15

viii

PM inertia-weighted projection matrix, page 15

q robot configuration or vector of generalized coordinates, page 14

R Rotation matrix, see equation (3.14), page 54

s robot state, see equation (4.1), page 81

t time variable, page 14

u robot commands or actions, see equation (4.1), page 81

x(·) task-space position, page 19

ix

x

List of Figures

2.1 Illustration of different constraints imposed by the robot’s surround-
ings or required behaviour. 8

2.2 Diagram categorizing two forward dynamic approaches, regarding their
underlying equality holonomic constraint. 10

2.3 Free fall simulation of a frictionless planar serial robot arm with three
links and with the end-effector constrained to a vertical slider 20

2.4 Time evolution of the condition number for different constrained in-
ertia matrices and for the unconstrained inertia matrix 20

2.5 Planar serial robot arm with three links in a fixed configuration . . . 26

3.1 Manual cleaning operation of two train cab fronts 34
3.2 Diagram of a hybrid position/force controller for simultaneous motion

and force control of a robot manipulator in the operational space . . 37
3.3 Simultaneous force and position control diagram, using resolved mo-

tion rate control . 42
3.4 A two dimensional illustration of a robot end-effector interacting with

a curved surface . 43
3.5 Illustration of the result of projecting a 2D path onto a given surface

geometry, resulting in a 3D path . 47
3.6 Planar serial robot arm with four links 49
3.7 Baxter orienting the end-effector to be perpendicular to the hand . . 52
3.8 Baxter robot and detail of the end-effector used in the experiment . . 52
3.9 Interface elements: the surface and a compliant tip 53
3.10 Position and force measurements corresponding to the Baxter experi-

ment and the spiral motion . 54
3.11 Position and force measurements corresponding to the Baxter experi-

ment and the raster scan motion with turning diameter of 3 cm . . . 55
3.12 Position and force measurements corresponding to the Baxter experi-

ment and the raster scan motion with turning diameter of 6 cm . . . 56
3.13 Examples of train mechanic washers from two train maintenance de-

pots in London . 59
3.14 Cab Front Cleaning scaled robot prototype and detail of the end-

effector used in the experiment . 60

xi

3.15 Position and force measurements for the functional prototype experi-
ment and the turning diameter of 1.5 cm 61

3.16 Position and force measurements for the functional prototype experi-
ment and the turning diameter of 3 cm 62

4.1 Manual cleaning/wiping of an electric train. 67
4.2 Example of Robot PbD for teaching a circular motion on a table. . . 68
4.3 Illustration of the Averaging and Indetermination problems resulting

from DPL . 74
4.4 Vector field of the ground truth control actions in a 6×6 grid overlaid

with 40 state trajectories generated under the constraint Au = 0 . . . 92
4.5 State space of the 2D example . 93
4.6 Unconstrained and constrained policy error evolution when increasing

the number of trajectories . 94
4.7 Unconstrained and constrained policy error evolution when increasing

the level of noise of the control actions 96
4.8 Computation time evolution when increasing the number of trajecto-

ries used for training the unconstrained policy 97
4.9 Vector field of the ground truth control actions in a 6×6 grid overlaid

with 40 state trajectories generated under the constraint Au = b . . . 98
4.10 Unconstrained policy error evolution when increasing the number of

trajectories and the level of noise . 100
4.11 Computation time evolution when increasing the number of trajecto-

ries used for training the unconstrained policy 100
4.12 Unconstrained policy error evolution when increasing the number of

trajectories and the level of noise . 101
4.13 Two circular trajectories of a particle moving constrained to two dif-

ferent two dimensional planes in a three dimensional Cartesian space 102
4.14 Vector field of two policies learned through DPL and CaPL 104
4.15 A two dimensional illustration of the robot motion on a flat surface . 106
4.16 Demonstration of a circular wiping trajectory on a flat surface 109
4.17 Twelve wiping trajectories from human demonstration and respective

closed-loop policy trajectories . 109
4.18 Two dimensional illustration of a robot performing a constrained task

on a curved surface . 111
4.19 KUKA LWR 3 robotic arm equipped with a force/torque sensor wiping

a curved surface . 112
4.20 Resulting three dimensional trajectory when replaying the wiping pol-

icy trained from human demonstrations on flat surfaces 113
4.21 KUKA lightweight robotic arm end-effector Cartesian positions for a

full unseparated dataset . 114
4.22 Normalized εCSE,l,h cost for the window h using the estimated param-

eters from the window l . 115

xii

List of Tables

2.1 Results of testing the Lemma of equivalent linear operators for a class
of inverse dynamics’ controllers . 28

3.1 Tracking error and contact forces for the wiping experiments 58

4.1 Publications addressing learning from constrained observations 83
4.2 Estimation costs for four of the constrained wiping circles 110

xiii

xiv

Chapter 1

Introduction

“Art lives from constraints and dies from freedom”

Leonardo da Vinci

This chapter introduces the thematic of the constrained nature of motions in contact and

its relevance to the field of robotics. It states the goal and original contributions of the

thesis and, finally, presents the thesis outline.

1.1 Motivation

Motions in Contact

Our unique ability to physically interact with the surrounding environment is one of
those key skills that we strongly rely upon in most of our daily life activities, such as:
walking, where we use the contact with the floor to propel our body forward; moving
and manipulating all sorts of objects; assisting our mobility when, for instance,
partially supporting our weight in an handrail; or even in activities that involve
motion in permanent contact with the environment, such as cleaning a surface or
ironing our clothes. Therefore, in our quest for taking robots out of the factories into
more unstructured environments, we must empower them with similar capabilities,
so they can also explore and exploit the world through physical interactions.

Physical interactions require robotic agents to have the capability of establishing
and maintaining contact with the surroundings, which poses great robotic research
challenges. Some of those challenges, widely explored in the robotics literature, range
from contact sensing [16] and perception, to control [77, 167], planning [122] and
learning [86, 127]; “proper representation of the contact mechanics for modeling and
dynamic simulation of multi-body systems is still a challenge”, according to Flores
and Lankarani [56]. Vukobratovic et al. [168] categorizes essential force tasks as the

1

2 1. Introduction

contact tasks whose very nature requires the robot end-effector (i.e. last link or tool)
to establish physical contact with the environment and exert a given specific force,
therefore, requiring simultaneous control of position and interaction force, stating
that “The future will certainly hold more tasks for which the interaction with the
environment is fundamental”.

Constrained Motions

One way of regarding those interactions is as constrained motions, i.e., when inter-
acting with the environment we are effectively restricting the range of motion of our
limbs by constraining their position and orientation to the object or surface we are
interacting with. For example, when holding a cup of water, we restrict our hand
motion to prevent spilling the water by avoiding squeezing or rotating the cup. The
same goes for when grabbing the handrail while going up the stairs — we limit our
arm motions by fixing the hand position in a specific point of the handrail.

However, constraints can encompass more than just contacts. Kanoun et al. [75] use
the same expression to represent constraints (as in rigid-body contacts) and tasks,
and mention that this distinction “is just a question of context”, which is the same
terminology adopted by Dehio [36]. Sentis and Khatib [152] highlight the similari-
ties between the constrained multi-body dynamics problem and the operational space
formulation (that deals with tasks), in that both share a common mathematical de-
scription. This thesis follows the line of research unifying the treatment of kinematic
task motions and rigid body constraints by proposing a new approach defining a class
of Task-based Constraint (TbC) that encompasses both concepts. From this point of
view, tasks and constraints (as traditionally defined) are one and the same problem.
More recently, Nenchev et al. [113] employs the notion of motion task constraints in
a similar fashion.

Goal of the Thesis

Effectively dealing with contacts and other motion constraints poses major challenges
in the field of robotics that already led to many past research endeavours, and will
certainly continue demanding further research efforts. The goal of this thesis is to
explore further the dynamic modelling, control and learning of manipulation motions
in contact with the environment — or constrained by the environment. More specif-
ically, this thesis explores the Task-based Constraint representation for addressing
the dynamic modelling, control and learning of manipulation motions with contacts.
The hypothesis is that the TbC abstraction represents a useful mechanism of de-
coupling the robotic motion control policies into simpler motions, bringing us better
understanding, ease of implementation and, finally, generalization capabilities of such
simple motions across different environments.

1.2. Contributions 3

Many robotics’ researchers or practitioners have, at some point, realized that, quite
often, designing controllers for complex robotics’ tasks is as much art as science.
Therefore, one might wonder that if, in the same way that “Art lives from constraints
and dies from freedom”, rather than searching for free/unconstrained motions that
avoid contact with obstacles at all cost, how can we use the notion of constraints such
that robots can exploit contacts for more effective interactions with the environmnet.

1.2 Contributions

List of Contributions

The work in this this thesis resulted in the following list of contributions to the field
for robotics:

(C1) Proposal of a class of holonomic equality constraints — the Task-based Con-
straint (TbC) — that unifies the mathematical treatment and interpretation of
rigid-body constraints and kinematic tasks; (Section 2.3)
(C1.1) Reformulation of the constraint inertia matrix used in the Projected

Dynamics (PD) approach, generalizing the multiple algebraic expressions
originally proposed by Aghili [1]; (Subsection 2.3.3)

(C1.2) Derivation of the expression of the constraint inertia matrix with mini-
mum possible condition number; (Subsection 2.3.3 and Appendix A.1)

(C1.3) Proof of the mathematical equivalence of the forward Projected Dynam-
ics, from Aghili [1], and the analytical solution for the forward constrained dy-
namics from Udwadia [163], for Task-based Constraints; (Subsection 2.3.4
and Appendix A.2)1

(C1.4) Generalization of the dynamically consistent inverse principle, originally
proposed by Khatib [77], to rank deficient Jacobian matrices; (Subsec-
tion 2.3.4 and Appendix A.3)

(C2) Derivation of the expression of the partitioned task-space dynamics for a
robotic system subject to two task-based constraints; (Section 2.4 and Ap-
pendix A.4)
(C2.1) Proof of the equivalence of the operational space equations of motion

with rigid-body constraints independently developed by De Sapio and Khatib
[34] and Mistry and Righetti [101]; (Section 3.3)

1Note that at the writing of this document I discovered that Nenchev et al. [113] got to the
same conclusion in a book published in the very same year of our publication. However, they got to
that conclusion by realizing that both the formulation from Aghili [1] and the result of the Gauss’
principle of least constraint, which is used by Udwadia [163] to obtain the analytical solution, are in
turn equivalent Maggi’s Equations (Null-space Projection Method) [23, 83, 161]. In our publication
we produced expressions directly equating both formulations stated in the contribution above.

4 1. Introduction

(C3) Adaptation of the Operational Space Formulation for the simultaneous posi-
tion and force control of a velocity controlled robot; (Section 3.4)
(C3.1) Proposal of a tracking strategy for performing planar motion patterns in

non-flat surfaces with smooth but unknown geometry; (Subsection 3.5.2)
(C3.2) Experimental validation of the adapted simultaneous position and force

control strategy for the task of wiping a curved surface using a standard
robotic manipulator. (Subsection 3.5.2)

(C3.3) Demonstration of the application of the simultaneous position and force
control strategy for the automation of train’s cab front cleaning process;
(Subsection 3.5.3)

(C4) Validation of the Constraint-aware Policy Learning (CaPL) method, based on
the Singular Value Decomposition (SVD); (Section 4.4)
(C4.1) Simulation comparison of the Constraint-aware Policy Learning (CaPL)

method with Direct Policy Learning (DPL), on low dimensional examples;
(Subsections 4.4.1 and 4.4.3)

(C4.2) Experimental validation of the CaPL generalization capabilities across
different tasks and constraints on real robot hardware, for the task of wiping
a curved surface using force sensing information; (Subsection 4.4.5)

(C5) Proposal of a metric for computing the similarity of the estimated constraints
across a dataset; (Section 4.5)

(C6) Theoretical analysis of closed-form solutions for constraint estimation that
lead to the decomposition of the direct policy error; (Subsection 4.3.2)
(C6.1) Proof of the direct policy error decomposition into the sum of the con-

straint space error and the constrained policy error, under the condition of
a semi-orthogonal constraint matrix; (Appendix A.5)

(C6.2) Proof of closed-form constraint estimation solution based on the Gener-
alized Eigenvalue Decomposition (GEVD), for the problem of the constraint
matrix without task controller and under the condition of a semi-orthogonal
constraint matrix, on average; (Appendix A.6)

(C6.3) Derivation of closed-form solution, based on the Generalized Singu-
lar Value Decomposition (GSVD), for the simultaneous estimation of the
constraint matrix and task controller, and under the condition of a semi-
orthogonal constraint matrix, on average. (Appendix A.7)

Contributions by publication

Most of the contributions listed above originally appeared in the following publica-
tions:

[105] Contribution item (C3.3) — (Subsection 3.5.3) — João Moura, Mustafa
Suphi Erden. Formulation of a control and path planning approach for a cab front

1.2. Contributions 5

cleaning robot. In Procedia CIRP, 5th International Conference on Through-life
Engineering Services (TESConf), 2017.

[10] Contribution item (C4.2) — (Subsection 4.4.5) — Leopoldo Armesto, João
Moura, Vladimir Ivan, Antonio Salas, and Sethu Vijayakumar. Learning con-
strained generalizable policies by demonstration. In Robotics: Science and Sys-
tems XIII (R:SS), 2017.

[106] Contribution item (C3) — (Section 3.4) — João Moura, William Mccoll,
Gerard Taykaldiranian, Tetsuo Tomiyama, Mustafa Suphi Erden. Automation
of Train Cab Front Cleaning with a Robot Manipulator. In IEEE Robotics and
Automation Letters (RA-L), 2018. [selected for presentation at the 14th IEEE
International Conference on Automation Science and Engineering (CASE)]

[12] Contribution items (C4) and (C5) — (Section 4.4) and (Section 4.5) —
Leopoldo Armesto, João Moura, Vladimir Ivan, Mustafa Suphi Erden, An-
tonio Salas, and Sethu Vijayakumar. Constraint-aware Learning of Policies by
Demonstration. In International Journal of Robotics Research (IJRR), 2018.

[107] Contribution item (C1) — (Section 2.3) — João Moura, Vladimir Ivan,
Mustafa Suphi Erden, and Sethu Vijayakumar. Equivalence of the Projected For-
ward Dynamics and the Dynamically Consistent Inverse Solution. In Robotics:
Science and Systems XV (R:SS), 2019. [Best Paper Award Finalist]

Unpublished Contributions

There are, however, some listed unpublished contributions, including:

• Despite the result from Contribution (C2) appearing in [107], the published
work omits the derivation itself and the numerical condition for which the
partitioning — and, hence, the final expression — is valid;

• The Contribution (C4.1) includes two examples, and only the second compar-
ing CaPL with DPL, described in the Subsection 4.4.3, appears in [12]. The
first example, described in the Subsection 4.4.1 is an additional two dimensional
example that more carefully compares the CaPL method, based on SVD, with
both the CCL from Howard et al. [67] and the DPL baseline;

• The Contribution (C6.1) is a more detailed and formal proof than the anal-
ogous proof used in [12], which also identifies the relation of the resulting
decoupled error costs with error costs presented by previous literature;

• The Contribution (C6.2) extends the analogous proof used in [12] to multiple
constraints and also identifies one key validity condition, missed in [12], which
renders the solution based on GEVD only valid for constraints without task
controller, therefore, invalid for task-based constraints;

• The Contribution (C6.3) proposes a new solution based on GSVD which is
valid for task-based constraints.

6 1. Introduction

1.3 Thesis Outline

The main body of the thesis consists of three chapters, each containing an introduc-
tion, relevant background, main sections, case studies and discussion. Chapter 2 —
Task-based Constrained Dynamics — presents the modelling and formulation of the
dynamics of constrained robotic rigid-body systems. Chapter 3 — Simultaneous
Position/Force Control for Constrained Motions — develops control approaches for
controlling robots constrained by the contact with the environment. Chapter 4 —
Learning Generalizable Constrained Policies by Demonstration — proposes learn-
ing methods for obtaining robotic constrained motions from demonstration. Finally,
the Conclusions chapter summarizes the main discussion points and contributions of
the thesis and lays out possible future research avenues. Appendix A — Contributed
Proofs/Results — contains the main theoretical results of this thesis, whereas Ap-
pendix B — Supplementary Proofs/Results — complements the thesis with some
known results that are interesting and relevant for the presented material.

Chapter 2

Task-based Constrained Dynamics

“If you can’t explain it simply, you don’t understand it well
enough”

Albert Einstein

This chapter introduces the Task-based Constraint (TbC) abstraction as a type of equal-

ity constraint with decoupled time and configuration dependence. It presents the forward

dynamics of a TbC multi-body system, using the Principle of Least Constraint, and it

proves its equivalence with the Reformulated Projected Dynamics (PD). It also generalizes

the concept of dynamically consistent inverse, proposed in the Operational Space Formu-

lation (OSF), to rank deficient Jacobian matrices. Finally, it presents the expression for

the task-space dynamics of a partitioned task-based constraint Jacobian.

2.1 Introduction

Motion planning, control, learning, and state estimation, often rely on modelling a
robot as a dynamical system. We refer to the robot’s motion as unconstrained when
its state evolves solely according to its dynamic equations of motion. Any interaction
with the environment imposes constraints on the dynamical system, in the form of
contacts, rigid connections, tasks and behaviours. For example, consider a floating
base robot, such as a humanoid (Figure 2.1), carrying a jar of water. This robot
needs to exploit the contact constraints for locomotion while maintaining balance
without spilling the water. The latter are tasks that also constrain its dynamic
motions. Another example is a robot with structural constraints, such as closed
kinematic loops (Figure 2.1). The same robot, might require a compliant behaviour
towards safe human robot interaction, which also constrains the dynamical motion
of the robot. Our motivation is to model dynamical systems with a generic class
of constraints that are useful in developing motion planning and control algorithms.

7

8 2. Task-based Constrained Dynamics

(b)

(a)

(d)

(c)

Figure 2.1: Illustration of different constraints imposed by the robot’s surroundings
or required behaviour. Examples are: (a) using contacts for bipedal locomotion;
(b) keeping the balance while executing a critical task such as holding a jar of water;
(c) having a compliant behaviour while following a given trajectory; (d) and robots
with closed kinematic loops.

However, even for identical multi-body systems, there are distinct motion representa-
tions in the literature. These formulations differ in terms of both their algebraic form
and some key properties. The main goal of this chapter is to present a derivation
for the forward dynamics model of a constrained system, based on known analytical
principles of dynamics [164], and relate this result with two of the most widely used
approaches of formulation of dynamics of motion found in the robotics literature,
namely the Operational Space Formulation (OSF) [77] and the Projected Dynam-
ics (PD) [1]. Based on these two motion representations, various authors propose
numerous control structures designed to achieve particular desired behaviours, by
optimizing different criteria.

Khatib [77] proposes the Operational Space Formulation (OSF) as a methodology
for the description of the end-effector/tool constrained motion task. This work relies
on the definition of a dynamically consistent inverse Jacobian, as a way of controlling
redundant robots without affecting the specified end-effector task motion. Numer-
ous studies follow and extend this formulation. For instance: Sentis and Khatib
[150, 151, 152] propose a task prioritization framework for control of humanoid
robots, achieving complex behaviours by the activation or deactivation of differ-
ent tasks and constraints, and their ordering in the pool of control primitives; Park
and Khatib [125] address multiple contacts and the transition between those contacts
in the control of humanoid robots; Nakanishi et al. [110] compare it with velocity
and acceleration based controllers, concluding that this formulation is quite sensitive
to modeling errors when compared to the other kinematic-based approaches; and
De Sapio and Khatib [34] incorporate time independent equality constraints (sclero-
nomic constraints) into the operational space formulation, highlighting the symmetry

2.1. Introduction 9

between constraints and tasks.

Aghili [1, 2] proposes a Projected Dynamics (PD) approach for the derivation of
the rigid multi-body dynamic equations of motion, subject to scleronomic equality
constraints. This work relies on the definition of a constraint inertia matrix, in order
to represent the constrained forward dynamics in the configuration space. Numerous
studies follow and extend this approach. For instance: Mistry and Righetti [101] de-
rive operational space controllers for constrained systems with passive joints; Ortenzi
et al. [118] integrate the Projected Inverse Dynamics in an optimal control frame-
work for robots in contact; Lin et al. [91] propose a control framework for multi-
arm Cartesian impedance control; Dehio et al. [38] model and control multi-arm
and multi-legged robots, while compensating for object dynamics, enabling human-
robot interaction; Pardo et al. [122] present a planning and control approach in the
constraint-consistent subspace for dynamic legged robot locomotion.

When contrasting these two main approaches, we need to analyse both their domain
of application and key properties. Regarding the domain of application, the OSF is a
framework for describing and controlling task space motions, such as the motion of a
humanoid’s centre of mass or an industrial robot’s end-effector, whereas the PD is an
approach for modelling and controlling constrained multi-body systems, for instance
two serial arms physically linked together resulting in a closed kinematic loop. De
Sapio and Khatib [34] extend the OSF to include constrained systems, and Mistry
and Righetti [101] extend the PD to include task motions, in which case the domain
of application is the same. Regarding their key properties: the OSF requires a full
rank robot Jacobian while the PD handles a rank deficient constraint Jacobian; and
the OSF uses an oblique projection (based on the dynamically consistent inverse)
whereas the PD relies on an orthogonal projection.

Despite these differences, we show that the expressions for the forward dynamics
derived from both these approaches are analytically equivalent. Our work takes
inspiration from the more general treatment of equality constraints from Udwadia
and Kalaba [164], and the parallels between task space and constraint formulations
drawn by De Sapio et al. [35]. We start by defining a class of constraints called Task-
based Constraint (TbC), with the aim of unifying both OSF and PD in terms of their
domain of application. This class of constraints is in itself a sub-class of a general type
of equality time dependent constraint (rheonomic constraints). Figure 2.2 illustrates
the relationship between the different types of equality constraints mentioned, and
their relation to OSF and PD.

An immediate repercussion of proving the equivalence between OSF and PD is that
we can use either formulation for computing the forward dynamics of a constrained
system, with both leading to the same dynamically consistent result. From this
point of view, regarding the simulation of a multi-body system, the only reason
for choosing one method over the other is seeking some numerical advantage, as
reduced numerical errors or reduced speed of computation. There are studies that

10 2. Task-based Constrained Dynamics

rheonomic constraint
Φr(q, t) = 0

Task-based Constraint
Φ(q) = x(t)

scleronomic constraint
Φs(q) = 0

Projection-based
Dynamics

Operational Space
Formulation

Figure 2.2: Diagram illustrating the categorization of the two forward dynamic ap-
proaches discussed in this chapter, regarding their underlying equality holonomic
constraint. A rheonomic constraint is a time dependent constraint, a scleronomic
constraint is a time independent constraint, and a Task-based Constraint is a time
dependent constraint with decoupled dependence on the configuration q and time t.
Note that despite the PD being mostly applied to scleronomic constraints, in an
earlier work Aghili and Piedbœuf [6] demonstrate its application to rheonomic con-
straint. The categorization in this diagram corresponds to the context of explicitly
considering a task component in the constraint formulation.

2.2. Background 11

demonstrate efficient computation of the dynamically consistent inverse Jacobian,
as [169] for a full end-effector Jacobian, and [53] for branched kinematic trees, that
might grant the OSF some computational speed gains for these particular cases. On
the other hand, given the flexibility of PD approach in choosing different algebraic
expressions for the constraint inertia matrix, theoretically we could find a matrix
that might grant us some ease in its inversion, both from a computational speed
and numerical errors perspective. However, so far we have found no evidence of
the numerical superiority of either method for a general case. Additionally, there
are some studies focusing on the stability analysis [53] and asymptotic stability for
the regulation case of passivity-based controllers [43] done for the OSF, that might
readily apply to the PD by using the results presented in this chapter.

Over the years, researchers and engineers have been relying on their ability to find
useful abstractions for modelling complex systems, so that they can understand and
modify them (prediction, design and control). Likewise, as highlighted above, the
synthesis of controllers for complex dynamic robotic systems relies upon appropriate
models of those systems. However, when researching the vast literature [7, 101, 111,
129, 162, 163] on dynamic multi-body systems, especially those involving contacts
and task goals, the complex expressions resulting from various different formulations
and approaches can easly become overwhelming. Yet, the Guass’ principle of least
constraint, that in principle should support any of the different formulations for
constrained dynamics, is remarkably simple and compact [29, 164], almost trivial to
understand. Therefore, this chapter aims at finding some clarity on some of these
modeling approaches for constrained dynamic systems, because modeling is about
explaining and understanding.

2.2 Background

2.2.1 Holonomic Equality Constraints

Let’s consider the following generic holonomic equality constraint [52, 164], expressed
as

φ(q, t) = 0, (2.1)

where q ∈ Dq ⊂ Rnq is the vector of generalized coordinates or configuration of a
rigid multi-body system, with nq being the number of generalized coordinates or
dimensionality of the configuration space, and with t ∈ R representing time and Dq
the constraint manifold. In fact, in a more rigorous classification, (2.1) represents
a rheonomic constraint, i.e a constraint which depends on both the configuration q
and time t. Another subtype of holonomic constraints would be the scleronomic
constraint φ(q) = 0, which only depends on the configuration. Figure 2.2 illustrates
a possible categorization of these constraints.

12 2. Task-based Constrained Dynamics

Differentiating (2.1) leads to
A(q, t)q̇ = b(q, t), (2.2)

where A(q, t) = (∂φ/∂q) ∈ Rnb×nq corresponds to the constraint Jacobian, with nb
being the dimension of the constraint space, i.e. number of constraints, q̇ ∈ Q ⊂ Rnq

is the generalized velocity and b = −(∂φ/∂t) ∈ Rnb . For the case of scleronomic
constraints then (2.2) becomes

A(q, t)q̇ = 0, (2.3)

which is the so called constraint in the Pfaffian form [84, 108], i.e. constraints are
linear with respect to the velocity.

Note that the expression (2.2) can also represent a type of non-holonomic con-
straints, in case of non-integrable constraint matrix A, i.e. we are unable to obtain φ
from A. One characteristic of such non-holonomic systems, represented by (2.2), is
the existence of more position Degrees of Freedom (DoF) than velocity DoF [52],
i.e. Q has larger dimensionality than Dq. Another typical non-holonomic constraint
is φ(q, q̇, t) = 0, or generally speaking any inequality constraint φ(. . .) ≤ 0.

Let’s consider the case where we want to know what are the admissible constrained
velocities, i.e. we want to solve Eq. (2.2) for q̇. However, for a redundant robotic
system (nb < nq), there is an infinite number of solutions. The general solution is

q̇ = Gb+ (Inq −GA)q̇ε, (2.4)

where G is any generalized inverse (or G-inverse) of A, q̇ε ∈ Rnq is an arbitrary
configuration velocity, and Inq is nq×nq identity matrix. A G-inverse of A is a matrix
that satisfies the condition AGA = A [15, 164].

The most widely applied type of G-inverse in the robotics literature is the Moore-
Penrose inverse (MP-inverse), often called pseudo-inverse [49, 154]. The MP-inverse
of A is the unique matrix G = A† that satisfies the 4 conditions: (i) AGA = A
(ii) GAG = G (iii) AG = (AG)> (iv) GA = (GA)>, and it emerges from the
solution q̇ = A†b to (2.2) of minimum-norm ‖q̇‖2 = 〈q, q〉 that minimizes the least-
square error ‖Aq̇−b‖2 [45, 164], where 〈 , 〉 represents an Euclidean inner product. For
full row rank A, the MP-inverse assumes the widely used closed form solution A† =

A>
(
AA>

)−1
, known as right inverse.

Another widely used unique G-inverse is the inertia-weighted generalized inverse G =
A [35], that arises from the solution q̇ = Ab to (2.2) that minimizes the instanta-
neous kinetic energy 1

2
‖q̇‖2

M = 1
2
〈q̇, q̇〉M = 1

2
〈q̇,Mq̇〉 of a multi-body system, with

inertia matrix M , while minimizing the least-square error ‖Aq̇− b‖2. This G-inverse
satisfies the first 3 MP-inverse conditions, with the additional condition MGA =
(MGA)> [15]. For full row rank A we get the closed form solution [77]

A = M−1A>(AM−1A>)−1. (2.5)

2.2. Background 13

The second term of the sum in (2.4) is a projection matrix (Inq −GA), that projects
any arbitrary configuration velocity q̇ε to the null space of A, i.e. (Inq − GA)q̇ε ∈
N (A). We can define this projection operator for both A, where PM , (Inq −AA) is

an oblique inertia-weighted projection matrix [35], and for A†, where P , (Inq−A†A)
is an orthogonal projection, i.e. P = P>. Where we use P to mean PI to simplify
notation.

Taking the time derivative of (2.2), corresponding to the second time derivative
of (2.1), results in

A(q, t)q̈ = ḃ(q, t)− Ȧ(q, t)q̇︸ ︷︷ ︸
,c(q,q̇,t)

, (2.6)

where q̈ ∈ A ⊂ Rn is the generalized acceleration, i.e (2.6) corresponds to the
constraint (2.1) written in the acceleration space. We can than write a more general
non-holonomic acceleration equality constraint as

A(q, q̇, t)q̈ = c(q, q̇, t), (2.7)

where in this case A is non-integrable.

Similarly to the general solution for the constrained velocity in (2.4), the general
solution for the constrained configuration acceleration from (2.7) is

q̈ = Gc+ (Inq −GA)q̈ε, (2.8)

with q̈ε ∈ Rn being an arbitrary configuration acceleration. Therefore, any forward
dynamics solution, i.e. expression for computing a q̈, will always be a particular
case of the general solution (2.8), corresponding to particular choices of G and q̈ε,
and resulting from optimizing different cost functions. For instance: q̈ = A†c mini-
mizes ‖q̈‖2, being a particular case of (2.8) for which G = A† and q̈ε = 0; q̈ = Ac
minimizes 1

2
‖q̇‖2

M and corresponds to the case where G = A and q̈ε = 0.

2.2.2 Gauss’s Principle of Least Constraint

In the search for describing the motion of a constrained system, let’s start by describ-
ing the equations of motion of an unconstrained system in the configuration space,
as

M(q?)q̈? + h(q?, q̇?) = τ (2.9)

where h ∈ Rn contains the Coriolis, centrifugal, and gravitational terms, M ∈ Snq++

is the unconstrained inertia matrix, τ ∈ Rnq is the generalized force vector in the
configuration space, and q?, q̇?, q̈? ∈ Rnq are, respectively, the unconstrained general-
ized position, velocity, and acceleration. For an unconstrained system where M is a
symmetric positive definite matrix, we can compute the forward dynamics by simply
inverting M as

q̈? = M−1(τ − h). (2.10)

14 2. Task-based Constrained Dynamics

There are of course more efficient methods for computing q̈? [52], we shall use this
expression just for derivation purposes.

The previous section ended with the presentation of a general solution for the con-
strained acceleration in (2.8). One can obtain a particular solution of (2.8), by using
a fundamental principle of mechanics - the Gauss’s Principle of Least Constraint
- which mainly states that if a given configuration acceleration q̈ simultaneously
satisfies the constraint and minimizes the Gauss function

G(q̈) = 〈q̈? − q̈, q̈? − q̈〉M , (2.11)

where q̈? is the unconstrained acceleration, then q̈ is the correct acceleration the
constrained system will acquire, i.e. that is the acceleration that actually material-
izes [29, 35, 164]. The result of that minimization is

q̈ = Ab+ PM q̈?

= Ab+ PMM
−1(τ − h) (2.12)

where we can see that it is a particular solution of Eq. (2.8) for which G = A and
q̈ε = q̈?.

Udwadia and Kalaba [164] derive the Fundamental Equation

q̈ = q̈? + A (b− Aq̈?) , (2.13)

which is an equivalent way of writing (2.12). Furthermore, Udwadia and Kalaba
[164] consider the case of a rank deficient A, by using the following inertia-weighted
generalized inverse,1

A = M−1A>
(
AM−1A>

)†
. (2.14)

In the following subsections and sections we will relate this remarkably simple result
with the constraint forward dynamic solutions from the OSF and the PD.

2.2.3 Operational/Task Space Dynamics

One way of taking into account the contribution of a task motion in the dynamics
equation of motion of a multi-body system is to simply add an extra force component
to the equation of motion (2.9) as,

Mq̈ + h− A>λ = τ, (2.15)

1Udwadia and Kalaba [164] discuss other expressions for the inertia-weighted generalize inverse
that still comply with the Gauss’s Principle of Least Constraint.

2.2. Background 15

where λ ∈ Rm is the force coming from the task-space. We obtain the task/-
operational space dynamics equation of motion by applying the operational space
formulation from [77], resulting in

Mxẍ+ hx − λ = f, (2.16)

where

Mx ,
(
AM−1A>

)−1
= A

>
MA (2.17)

is the task space inertia matrix [54], with hx , A
>
h−MxȦq̇, for A full row rank, f ,

A
>
τ being task-space commanded force and ẍ the task-space acceleration.

Similar to the case in (2.4) where we decompose q̇ into a task component and null-
space component using a G-inverse, Khatib [77] decomposes τ in its task and null-
space components using A> as

τ = A>f + (Inq − A>G>)τε, (2.18)

where τε ∈ Rn is an arbitrary generalized force vector.

Khatib [78] defines the Dynamically Consistent Inverse of a robot Jacobian A as the
matrix G that satisfies the condition

AM−1
(
Inq − A>G>

)
τε = 0, (2.19)

which corresponds to the solution that decouples the generalized force τ into a com-
ponent A>f only acting in the robot’s end-effector, and a component (Inq−A>G>)τε
that only affects the internal motion of the robot, i.e. the task space motion is unaf-
fected by τε. Furthermore, Khatib [78] proves that for full rank A, the only G-inverse
that satisfies such condition is the inertia-weighted generalized inverse [54].

Peters et al. [129] and Bruyninckx and Khatib [29] already discuss the equivalence of
the operational space control expressions with the results obtained using the Gauss’s
Principle of Least Constraint. We can easily show that by rearranging (2.16) with
respect to the constraint force λ and substituting it in (2.15) and then inverting the
inertia matrix M , we obtain the same solution of (2.12), for b = ẍ − Ȧq̇. However,
from a domain point of view, these are typically seen as two different formulations. In
the Fundamental Equation of the Analytical Dynamics [164], A refers to the Jacobian
of a constraint, whereas in the Operational Space formulation [77], A refers to the
robot Jacobian, mapping the joint space to some task space of interest — typically
the end-effector of a robot or it’s centre of mass. However, already highlighted by De
Sapio and Khatib [34], those two domains share the same mathematical machinery.
The following section formalizes a type of equality constraint that aims at unifying
the treatment of these two domains.

16 2. Task-based Constrained Dynamics

2.3 Task-based Constraints

As identified in the previous section, the treatment of task motions and constraints
can be identical, differing only from a domain point of view. While some works
explicitly differentiate motions and constraints as two seperate domains [34, 35], other
works treat these as one, for instance, using the term “motion task constraints” [67,
113]. Although, constraints such as a rigid connection have the unique property
of maintaining their own dynamic consistency [101], by sustaining — in theory —
any applied force, we can have task motion controllers that can also sustain applied
forces, acting effectively as constraints to the overall multi-body dynamic system
motion.

In order to unify these two domains, we define a Task-based Constraint as any
constraint written in the form

φ(q) = x(t), (2.20)

where x ∈ Dx ⊂ Rnx is the vector of the task space coordinates, with nx ≤ nq,
and t represents time. The function φ : Dq 7→ Dx - that maps the configuration
space to task space - is, in general, a non linear function that captures the geometric
model of the given task-based constraint. From a constraint categorization, (2.20)
represents a special type of rheonomic constraint — φr(q, t) — where we can decouple
dependence on the two variables, the configuration q and time t. Figure 2.2 captures
this constraint categorization. This definition is essentially an artifact to dress the
traditional forward kinematics expression, which is identical to (2.20), in the form of
a constraint definition. Note we can use x(t) to model any time dependent process
which is independent of the configuration.

From a robotics perspective, the task x might be: nonexistent, i.e. x = 0, correspond-
ing to some rigid link connection; externally enforced but still time varying, which
might be through connection to a moving rail or caused by another agent (human or
robotic); or enforced by the robot itself by an appropriate task controller. Regard-
less of task enforcing mechanism, the effect is always a reduction of the configuration
space domain q ∈ Dq = {q ∈ Rn, x ∈ Dx | φ(q) = x}.

2.3.1 Task-based Constrained Dynamics

By analogy with the more general rheonomic constraint in (2.1), we can easily observe
that the task-based constraint represented in the velocity space corresponds to (2.2)
where c(t) = ẋ(t), i.e.

A(q)q̇ = ẋ(t), (2.21)

with the respective general solution being

q̇ = Gẋ(t) + (Inq −GA)q̇ε. (2.22)

2.3. Task-based Constraints 17

Likewise, the task-based constraint represented in the acceleration space corresponds
to (2.6) where c(q, q̇, t) = ẍ(t)− Ȧ(q)q̇, i.e.

A(q)q̈ = ẍ(t)− Ȧ(q)q̇, (2.23)

and so we can write the forward dynamics of a task-based constrained multi-body
system, corresponding to (2.12) and (2.13), as

q̈ = A(ẍ− Ȧq̇) + PMM
−1(τ − h), (2.24)

= q̈? + A
(
ẍ− Ȧq̇ − Aq̈?

)
.

2.3.2 Projected Dynamics

The previous subsection derived the forward dynamics for a task-based constrained
system. We can find in the literature various other formulations for the forward and
inverse dynamics of constrained systems. Recent works in robotics [38, 91] started
using one of such particular formulations which relies on the concept of orthogonal
projections. Aghili [1, 2] defines the Projected Inverse Dynamics of a multi-body
system by pre-multiplying Equation (2.15) with the orthogonal projector P , obtain-
ing

PMq̈ = P (τ − h). (2.25)

For computing the forward dynamics equation of motion, as PM is singular, we
pre-multiply (2.23) with A†, obtaining

(Inq − P)q̈ = A†(ẍ− Ȧq̇), (2.26)

and combine it with (2.25), obtaining

Mcq̈ = P (τ − h) + Cc(ẍ− Ȧq̇) (2.27)

where Mc is the constraint inertia matrix. As Mc is invertible, we get

q̈ = M−1
c P (τ − h) +M−1

c Cc(ẍ− Ȧq̇), (2.28)

which Aghili [2] calls equation of motion of a constrained system in a compact form.2

Depending on different ways of combining Equation (2.25) and Equation (2.26),
both Mc and Cc take different forms. Aghili [1, 2] derives the following different
combinations of Mc and Cc:

2Note that here we followed the same derivation process as in [1] but adding as task accel-
eration ẍ. By making ẍ = 0, we recover the original results. Therefore, to accommodate ẍ we
removed Ȧ from Cc.

18 2. Task-based Constrained Dynamics

(1) M
(1)
c = PM + (Inq − P), C

(1)
c = −A†,

(2) M
(2)
c = M + PM + (PM)>, C

(2)
c = −MA†,

(3) M
(3)
c = PMP + (Inq − P)M(Inq − P),

C
(3)
c = −(Inq − 2P)MA†,

(4) M
(4)
c = PM + γ(Inq − P), C

(4)
c = −γA†,

where γ is a non-negative scalar. Aghili [2] also proves some key numerical prop-
erties for each of the previous results. For instance, for M symmetric and positive
definite, M

(2)
c is positive definite but not symmetric, M

(3)
c is both symmetric and

positive definite, and M
(4)
c is always invertible but it is neither symmetric nor pos-

itive definite. Trade-offs of using one result over the others are for instance M
(4)
c

requiring less computation effort than the other alternatives, while M
(3)
c entailing

three additional matrix multiplication operations, compared to M
(2)
c , but physically

exhibiting the numerical characteristics of an inertia matrix M .

2.3.3 Projected Dynamics Reformulation

We reformulate the constraint inertia matrix Mc as

Mc , PM +R(Inq − P), (2.29)

and Cc as
Cc , −RA†. (2.30)

It is straightforward to show, through simple algebraic manipulations, that all choices
of Mc and Cc presented by Aghili [2] are particular instances of (2.29) and (2.30),
where the matrix R respectively takes the following expressions:

(1) R(1) = Inq ,
(2) R(2) = M ,
(3) R(3) = (Inq − 2P)M ,
(4) R(4) = γInq .

We can then re-write (2.28) as

q̈ = M−1
c P (τ − h) +M−1

c RA†(ẍ− Ȧq̇). (2.31)

In fact, we will show later that R can be any square matrix provided that Mc is full
rank. We can even use a matrix R(r) with randomly generated elements, as long as
we check the rank of Mc, and the solution of Equation (2.31) will remain the same.
This happens, because the purpose of combining (2.25) and (2.26) is to invert the
projected inverse dynamics (2.25) and, therefore, we have to add some component
to (2.25) in order to make PM full rank. We can even look at this solution as
a special type of regularization, where the regularization term R only affects the
complement space of the motion of interest.

2.3. Task-based Constraints 19

Two important benefits of this reformulation are: firstly, any proof done for these
generalized Mc and Cc is directly valid for all the results discussed in the Subsec-
tion 2.3.2; and secondly, we have now a mechanism of obtaining new Mc and Cc
based on finding R such that Mc and Cc satisfy some desired property. We could try
to find R that would confer Mc a particular structure of interest, such as for instance
making it a block diagonal matrix, that would improve the computational efficiency
of its inversion. We have unsuccessfully attempted to find such structures. Alterna-
tively, we can find R that leads to the Mc with the smallest condition number among
all possible constrained inertia matrices, which is a desirable numerical property [2].
Lemma 2.3.1. The R(∗) that minimizes κ(Mc), where κ(.) represents the condition
number, is given by

R(∗) = µInq − PM, (2.32)

yielding M
(∗)
c = PMP + (µInq − P), for some µ ∈ R such that {ςmin(PMP) 6=

0} ≤ µ ≤ ςmax(PMP), where ς(.) represents singular values. Furthermore, κ(M
(∗)
c)

is equivalent to κ(Z>2 MZ2), where Z2 is a basis for N (A) such that P = Z2Z
>
2 .

Appendix A.1 contains the proof of Lemma 2.3.1.
Remark. Note that M

(∗)
c is inconsistent from a units point of view, i.e. we are

summing quantities of different physical units. The same problem arises for the
case of M

(1)
c , as noted by Aghili [1]. Doty et al. [45] warns about the development

of robotic methods with nonuniform physical units, that potentially will result in
physically inconsistent results. The reason that in this case the acceleration results
are unaffected by physical units inconsistency is because the R matrix is essentially
just an artifact for regularization purposes, with no physical meaning and, as we shall
see later, it vanished in the computation process of the generalized acceleration.

Case Study for the Inertia Matrix’s Condition Number

Aghili [2] provides a detailed analysis on the symmetry and positive definiteness
properties of eachMc proposed, key properties for its inversion. Another key property
to consider for the inversion of Mc is its condition number. For illustration purposes,
we simulated a free fall motion of a frictionless three link planar serial robot arm with
its end-effector constrained to a vertical slider, as shown in Figure 2.3, meaning that
the Task-based Constraint is φ(q) = x(q)−xc = 0 and the constraint Jacobian matrix
is A = ∂x

∂q
, where x is the robot’s end-effector coordinate in the axis perpendicular to

the vertical slider and xc is the position of the vertical slider in the same axis. We
then computed the condition number for M and for the different Mc’s discussed in
this chapter, as shown in Figure 2.4.

The robot arm used consists of a planar serial robot arm (Figure 2.3a), composed of
three identical links with equidistant centre of mass from the joints, and with length,
mass, and inertia of 1 m, 1 kg, and 0.1 kg m2, respectively. We used Corke’s [33] Mat-
Lab® toolbox for computing M , h, q̈?, and the robot’s Jacobian. For the for-

20 2. Task-based Constrained Dynamics

x

y

(a)

0 0.5 1 1.5 2
−2

−1

0

1

time [s]

jo
in
t
a
n
gl
es

[r
a
d
]

q1 q2 q3

(b)

Figure 2.3: Free fall (i.e. τ = 0) simulation of a frictionless planar serial robot arm
with three links and with the end-effector constrained to a vertical slider: (a) five
samples of configurations taken during the free fall motion, with less opaque config-
urations corresponding to further in the time of the simulation; (b) time evolution
of the arm joint angles, with q[1] being the angle of the base joint and q[3] the angle
of the last joint, and with markers placed at time instances corresponding to the
samples in (a).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

101

102

time [s]

co
n
d
it
io
n
n
u
m
b
er
κ

M M
(1)
c M

(2)
c M

(3)
c M

(r)
c M

(∗)
c

Figure 2.4: Time evolution of the condition number for different constrained inertia
matrices and for the unconstrained inertia matrix. We compute M

(∗)
c using R(∗)

from (2.32), and M
(r)
c using a different R(r) for every time iteration and with elements

sampled from an uniform distribution in the interval [0, 1].

2.3. Task-based Constraints 21

ward simulation of the motion we integrated (2.31) using a non-adaptive (fixed step)
Dormand-Prince solver of order 5, obtaining 200 samples corresponding to 2s. We
set τ = 0 and ẍ = 0, meaning the robot is non-actuated (free fall) and there is no
task space (scleronomic constraint). Figure 2.3b shows the resulting joint angles.
The initial robot configuration is

[
90◦ −90◦ 0◦

]
with the

[
0◦ 0◦ 0◦

]
configura-

tion corresponding to the robot being horizontally stretched along the x axis. Given
that the model of this planar robot excludes any friction component, the robot only
experiences conservative forces and, therefore, the simulated motion of the robot
consists in it bouncing up and down indefinitely.

We repeated the simulation for the various R’s discussed in the Subsection 2.3.3. The
resulting configurations, shown in Fig. 2.3b, are identical for any of the R options,
including the randomly generated one. In Figure 2.4 we can verify, as expected, that
the condition number curve corresponding to M

(∗)
c is a lower bound for all other

condition number curves. However, for this illustrative case study M is too well
conditioned, i.e. 1/κ(M) � round-off error, to expect any significant impact in the
numerical errors resulting from using different Mc’s. For example, if we compute
the joint accelerations for the trajectory in Figure 2.3b using any two of the Mc’s
discussed, the mean norm of their difference is in the order of magnitude of the
MatLab’s round-off error (10−15).

One could hypothesize that, for a badly conditioned M , using the method that re-
quires a matrix inversion with lower condition number would result in smaller simula-
tion errors, specially when using M

(∗)
c . However, in all our experiments (other simula-

tions involved serial arms with non-identical and larger number of links) this hypothe-
sis failed to hold, as we always obtained the same constraint error propagation regard-
less of the Mc employed or even when using (2.12), where we define constraint error as
simply the measure of how much the constraint is violated, i.e. the difference between
the horizontal positions of the end-effector and the slider εφ = φ(q) = x(q)− xc.

Featherstone [51] discusses that the ill-conditioning of M is more than a numerical
artifact, but a phenomenon of the underlying mechanism of the multi-body system
itself. We might reason that for systems and configurations where κ(M) is large,
i.e. 1/κ(M) ≈ round-off error, the minimum condition number κ(Z>2 MZ2) will also
approach a large value due to its dependence on M . Even though some of our ex-
periments confirm our reasoning, until proved or extensively tested, it will remain an
open question. We must point out that computing M

(∗)
c comes with a computational

penalty, due to the need of computing the bounds of µ for every iteration, given that
they depend on q.

Besides the implementation of the dynamics itself, when for instance using differ-
ent Mc’s in the constrained dynamics Equation (2.31), there are other factors that
also affect the propagation of the constraint error, such as the choice of integration
method. Note that by describing the constraint in the acceleration space, i.e. ẍ = 0,
the integration of the equations of motion will inevitably result in a deviation from

22 2. Task-based Constrained Dynamics

the constraint surface. We found slight variations of the constraint error and simula-
tion time when using different variable step integration solvers, that somehow prefer
some Mc structures over the others, but without identifying a distinct pattern. For
that reason, we choose a fixed step integration solver, so we could compare the ef-
fects of using different Mc’s in the constrained equations of motion and removing
the unknown influence of the more sophisticated variable step integration solvers.
The conclusion is that, for this simple case study and using a fixed step integration
method, the choice of Mc seems to have negligible effect in the propagation of the
constraint error when simulating the constrained motion of the robot.

2.3.4 The Dynamically Consistent Inverse Solution

In the case study experiments of the previous subsection we verified that using ei-
ther the Principle of Least Constraint or any of the PD solutions always resulted
in the same constrained accelerations. Equipped with our reformulated PD (2.28)
parameterized by R, we can now easily compare the Least Constraint solution for
task-based constraints, given by (2.24), with the PD. We hypothesize that they are
analytically equivalent, which by inspection of expressions (2.24) and (2.28) leads to
the following Lemma:
Lemma 2.3.2. For any R ∈ Rn×n such that Mc is invertible, we have that

A = M−1
c RA†, (2.33)

PMM
−1 = M−1

c P (2.34)

Appendix A.2 contains the proof of Lemma 2.3.2.

Therefore, we prove that the Forward Projected Dynamics is just another way of
writing the accelerations solution for a task-based constrained system, where the
original projected dynamics applies only to rigid constraints, i.e. ẋ(t) = 0. On the
other hand, we can also think of the Task-based Constraint formulations as a gener-
alization of the original OSF, where we just replace the end-effector robot Jacobian
by any constraint Jacobian A, that splits the space of motion into a task space of
interest and its null space. Aghili [1] points out that the PD handles rank defi-
cient A and other authors follow on referring to this property as a key differentiator
from OSF [77], which requires A to be full rank. However, it is fairly straightfor-
ward to extend the OSF to the case where A is rank deficient, which allow us to
numerically handle redundant constraints and singular configurations. For that we
simply use the inertia-weighted generalized inverse of (2.14) and redefine the task
space inertia matrix from (2.17) as

Mx ,
(
AM−1A>

)†
= A

>
MA. (2.35)

2.4. Multiple Task-based Constraints 23

Note that for A full rank, then (2.35) is equivalent to (2.17). Furthermore, we can
prove that any inertia-weighted generalized inverse is still dynamically consistent,
one important principle in the OSF to guarantee that task space controllers remain
unaffected by null space controllers.
Lemma 2.3.3. Let G = A be the unique inertia-weighted generalized inverse of a
rank deficient Jacobian A, then this generalized inverse satisfies the condition (2.19)
being, therefore, a dynamically consistent inverse of the Jacobian A.

Appendix A.3 contains the proof of Lemma 2.3.3.

2.4 Multiple Task-based Constraints

So far we treated A ∈ Rnb×nq as a single constraint, but in reality it can accommodate
multiple constraints acting simultaneously, i.e. nb > 1. This section considers the
case of splitting the constraint matrix A into two

A =

[
A1

A2

]
, (2.36)

and treating it as two separate constraints acting simultaneously.

When splitting the task space vector ẋ into two components ẋ1 and ẋ2, each of
these tasks correspond to a different constraint A1 and A2. Therefore, it might
be useful to obtain the separate task-space dynamics corresponding to each of the
constraint components, which requires partitioning the task-space inertia matrix.
Appendix A.4 proves that we can write the partitioned task-space inertia matrix,
corresponding to the constraint Jacobian partitioning (2.36) under the condition
that rank(A) = rank(A1) + rank(A2), as

Mx , (AM−1A>)
†

=

[
A1M

−1A>1 A1M
−1A>2

A2M
−1A>1 A2M

−1A>2

]†

=

[
M1 −A>1 A>2 M2

−A>2 A>1 M1 M2

]

=

[
M1 −M1A1A2

−M2A2A1 M2

]
,

(2.37)

where we define the partial task-space inertia matrices as

M1 ,
(
A1PM2M

−1A>1
)†
,

M2 ,
(
A2PM1M

−1A>2
)†
,

24 2. Task-based Constrained Dynamics

with A1 and A2 being, respectively, the dynamically consistent inverse of A1 and A2,
and PM1 and PM2 being the respective projection matrices.

Using (2.37), we can write the inertia-weighted inverse of the stack of the two con-
straints (2.36) as

A ,M−1A>Mx =
[
M−1P>M2A

>
1 M1 M−1P>M1A

>
2 M2

]
=
[
PM2M

−1A>1 M1 PM1M
−1A>2 M2

]
,
[
A#

1 A#
2 ,
] (2.38)

using the result M−1P>M = PMM
−1 from (B.35) (Appendix B.5), and where we

define A#
1 , PM2M

−1A>1 M1 and A#
2 , PM1M

−1A>2 M2 as the partial dynamically
consistent inverses. By partitioning the task force

f =

[
f1

f2

]
, (2.39)

we can then obtain the separate sub task dynamic equations, based on (2.16), poten-
tially allowing us to apply different control schemes to each task space. For example,
we have

f2 = M2(ẍ2 − Ȧ2q̇)− A2A
>
1 M1(ẍ1 − Ȧ1q̇) + A#

2

>
h− λ2

= M2(ẍ2 − Ȧ2q̇)−M2A2A1(ẍ1 − Ȧ1q̇) + A#
2

>
h− λ2

(2.40)

for the task 2, where we can easily identify the specific components of both tasks
that affect the task force of the task 2. The task force of the task 1 has an analogous
expression.

2.5 The Fallacy of the Equivalent Projections

We now need to contrast the chapter’s main finding — equivalence between the
forward OSF and PD approach — with the one from Righetti et al. [137, 138], who
also discuss the equivalence between the OSF and the PD, but from the perspective
of the inverse dynamics computation (controller). They claim that the output of a
torque controller is independent of the projection operator used in that computation,
assuming “controllers that achieve perfect tracking of the desired accelerations”.
Finally, they advocate for the use of an orthogonal projection (instead of an oblique)
due to its computational simplicity, free from the inertia parameters. According
to our finding, when computing the desired configuration acceleration (the forward
dynamics) for a desired task motion, both the OSF and the PD approaches are
equivalent, rendering none of these approaches as preferable, given that both of
them use kinematic and inertia parameters, only with a different combination.

2.5. The Fallacy of the Equivalent Projections 25

The claim that all projection operators lead to identical controllers is quite appealing
because it leads to simplified controllers — something one can definitely appreciate.
However, this section’s aim is to challenge that claim. We must start by clarifying
that despite [137] presenting the modelling for the quite general case of constrained
robots with floating base, which introduces a selection matrix S that indicates the
actuated generalized coordinates, i.e.

τ = S>τS, (2.41)

where τS corresponds to the force commands of the actuated joints, the experiments
and reasoning only contemplate the over constrained case, i.e. fully actuated systems.
This means we can immediately test the claim of the equivalent projection operators
in our example from Subsection 2.3.3. To test the claim for the case of under actuated
systems, one of the experiments uses the same robot example but with one of the
joints being passive.

Equivalent projections Lemma

The original Lemma in [137] goes as follows:

Lemma 2.5.1. “Given two different linear operators P1 and P2 that describe
the same system with constraints

P1S
>τS1 = P1(Mq̈d + h) (2.42)

P2S
>τS2 = P2(Mq̈d + h) (2.43)

with their parameterized set of possible controllers τS1(W, τ0) and τS2(W, τ0).
The following equality holds”

τS1(W, τ0) = τS2(W, τ0), (2.44)

where

τS(W, τ0) = (PS>)
W
P (Mq̈d + h) + (I + (PS>)

W
PS>)W−1τ0, (2.45)

with τ0 ∈ Rnq , W being any invertible square matrix, and with A
W

corresponding
to the W -weighted inverse of A. The W -weighted inverse of A is the unique ma-

trix G = A
W

that satisfies the 4 conditions [15]: (i) AGA = A (ii) GAG = G
(iii) AG = (AG)> (iv) WGA = (WGA)>. Note that the W -weighted inverse is

the general case of both the inertia-weighted inverse, for which we have A = A
M

,

and the Moore-Penrose inverse, where we have A† = A
I
. In Lemma 2.5.1, P repre-

sents any linear operator (can be a rectangular matrix), whereas in the remaining

26 2. Task-based Constrained Dynamics

x

y

Figure 2.5: Planar serial robot arm with three links in a fixed test configuration q>t =[
90◦ −45◦ −45◦

]
.

of this thesis we have been using it to represent only projection matrices (which are
squared matrices). Nevertheless, because projection matrices are a special case of
a linear operator [173], we can use projection matrices in a counterexample to test
Lemma 2.5.1.

Disproving by Counterexample

Let’s consider the same planar serial robot arm used in Subsection 2.3.3, composed of
three identical links with equidistant centre of mass from the joints, and with length,
mass, and inertia of 1 m, 1 kg, and 0.1 kg m2, respectively. Figure 2.5 illustrates the
robot arm for the test configuration

qt =

 90◦

−45◦

−45◦

 . (2.46)

We used Corke’s [33] MatLab® toolbox for computing the inertia matrix

M(qt) =

6.8784 3.4678 0.7036
3.4678 2.4071 0.7036
0.7036 0.7036 0.3500

 kg m2 rad−1 (2.47)

and the Coriolis, centrifugal, and gravitational terms

h(qt, 0) =

15.3101
15.3101
4.9050

N m, (2.48)

for the test configuration qt and assuming a static arm, i.e. q̇t = 0. We also computed
the constraint matrix

A(qt) ,
[
1 0

]
J(qt) =

[
−1.7071 −0.7071 −0.0000

]
m rad−1 (2.49)

2.5. The Fallacy of the Equivalent Projections 27

for the test configuration qt, where J ∈ R2×3 is the Cartesian end-effector Jacobian.
Given some desired acceleration

q̈d = (I3 − A(qt)
†A(qt))q̈ε =

−0.2009
0.4851
0.1270

 rad s−2, (2.50)

where we randomly generated

q̈ε =

0.8147
0.9058
0.1270

m s−2, (2.51)

we can then compute the torques corresponding to the test configuration qt, the
configuration velocity q̇t = 0 and the desired acceleration q̈d, as

τtd = M(qt)q̈d + h(qt, 0) =

24.1445
20.4050
6.1599

N m. (2.52)

For testing Lemma 2.5.1 we used the particular case where W = I and τ0 = 0 and,
therefore, (2.52) becomes

τS = (PS>)
†
P (Mq̈d + h). (2.53)

We then computed τS in (2.53) for two distinct scenarios: S = I3, i.e. the manipulator
is fully actuated; and

S =

[
1 0 0
0 0 1

]
, (2.54)

i.e. the second joint is passive, denoting the torques of the first scenario as τI3 and
the torques of the second simply by τS. Finally, as Lemma 2.5.1 implies that the
values τS remain unaffected by the choice of the operator P , we propose to test three
different projection operators. We obtain all the three projection operators based on
a N -weighted projection operator

PN = I − ANA, (2.55)

for which we use the following weighting matrices: (1) N1 = I3; (2) N2 = M ; and
(3) N3 = diag(3, 2, 1). Table 2.1 summarizes the results showing that, indeed, using
different projection operators Pi leads to different commanded torques τS for this
simple three link manipulator and for both cases of fully actuated and with passive
joints. This demonstration disproves Lemma (2.5.1).

28 2. Task-based Constrained Dynamics

T
ab

le
2.1:

R
esu

lts
of

testin
g

th
e

L
em

m
a

of
eq

u
ivalen

t
lin

ear
op

erators
for

a
class

of
in

verse
d
y
n
am

ics’
con

trollers.
T

h
e

fi
rst

row
s

refer
to

th
e
N

-w
eigh

ted
in

verse
of

th
e

con
strain

t
J
acob

ian
an

d
th

e
resp

ective
w

eigh
ted

p
ro

jection
m

atrix
for

th
ree

d
iff

eren
t

w
eigh

tin
gs:

(1)
N

1
=
I

3 ;
(2)

N
2

=
M

;
an

d
(3)

N
3

=
d
iag

(3,2,1).
T

h
e

last
fou

r
row

s
sh

ow
:

th
e

p
ro

d
u
ct

of
th

e
p
seu

d
o-in

verse
of

th
e

p
ro

jection
m

atrix
w

ith
th

e
p
ro

jection
m

atrix
;

an
d

th
e

resu
ltin

g
com

m
an

d
ed

torq
u
es
τ
S
,

for
a

fu
lly

actu
ated

case,
i.e.

S
=
I

3 ,
an

d
for

th
e

case
w

h
ere

th
e

secon
d

join
t

is
p
assive.

i
1

2
3

N
i

I
3

M
d
iag

(3,2,1)

(A
N
i) >

[−
0.5

−
0.2071

0.0]
[−

0.3636
−

0.5363
1.8090]

[−
0.4659

−
0.2895

0.0]
P
N
i


0.1464

−
0.3536

0.0
−

0.3536
0.8536

0.0
0.0

0.0
1.0 


0.3792

−
0.2571

0.0
−

0.9156
0.6208

0.0
3.0882

1.2792
1.0 


0.2047

−
0.3294

0.0
−

0.4941
0.7953

0.0
0.0

0.0
1.0 

(P
N
i I

3) †P
N
i 

0.1464
−

0.3536
0.0

−
0.3536

0.8536
0.0

0.0
0.0

1.0  
0.9642

−
0.0528

0.1782
−

0.0528
0.9221

0.2628
0.1782

0.2628
0.1137  

0.2785
−

0.4483
0.0

−
0.4483

0.7215
0.0

0.0
0.0

1.0 
τ
>I3
i

[−
3.3119

7.9955
5.1494]

[15.2165
15.1579

7.5524]
[−

2.7416
4.4125

5.1494]
(P

N
i S
>

) †P
N
i

[
1.0

−
2.4142

0.0
0.0

0.0
1.0]

[
1.0

−
0.6780

0.0
0.0

3.3731
1.0]

[
1.0

−
1.6095

0.0
0.0

0.0
1.0]

τ
>S
i

[−
22.6148

5.1494]
[4.9391

58.6812]
[−

9.8434
5.1494]

2.6. Discussion 29

Where is the fallacy?

We showed one particular example disproving Lemma 2.5.1, therefore its original
proof must contain some fallacy. Let’s start by reproducing the very first sentence
of the proof used in [138]:

“This can be shown first by noting that the two controllers τS1(W, 0) and τS2(W, 0)
must be equal since they both are controllers that minimize the cost τ>SWτS while

there exists only one controller that minimizes this cost.”3

The fallacy is in assuming that two optimization problems with the same objective
function but different constraints result in the same solution. Indeed, τS1(W, 0) is
the result of the constrained optimization problem

τS1 = arg min
τ

τ>Wτ

s.t. P1S
>τ = P1(Mq̈d + h),

(2.56)

and τS2(W, 0) is the result of the constrained optimization problem

τS2 = arg min
τ

τ>Wτ

s.t. P2S
>τ = P2(Mq̈d + h).

(2.57)

The optimization problems (2.56) and (2.57) are different, and in general produce
different results, because their equality constraints are different.

It was important to demonstrate the fallacy of Lemma 2.5.1 because it contrasts with
one of the main results of this thesis. When we proved that the expressions used in
the forward dynamics of the OSF and of the PD are equivalent, that does not mean
to say that the use of orthogonal or oblique projections is equivalent, but rather that
different particular derivations, one using an orthogonal projection and the other
using an oblique projection, lead to different expressions that compute the same
result. In [137, 138], the indication is that there is an inverse dynamics expression
that leads to the same results irrespectively of the linear operators employed, i.e.
we can swap out those linear operators by other ones. This section challenges that
conclusion.

2.6 Discussion

This chapter defines a class of Task-based Constraints (TbCs) and derives the equa-
tions of motion of a multi-body system subject to that type of constraint. By con-

3Here we added the subscript S to the variable τ in the original quote, in order to keep consistency
with our notation.

30 2. Task-based Constrained Dynamics

trasting our solution with the ones from the Operational Space Formulation (OSF)
and Projected Dynamics (PD), we proved in [107] that those approaches are equiva-
lent regarding the computation of the forward dynamics of a constrained multi-body
system. In order to enable such equivalence, we generalized the OSF to a rank
deficient Jacobian, and reformulated the PD to generalize all previous alternative
algebraic expressions of the constraint inertia matrix. A benefit of this Task-based
Constraint abstraction is the convenience in expressing constraints using a task space
formalization.

Section 2.4 splits a constraint matrix into two sub-constraints acting simultaneously
on a multi-body dynamical system. This split of the Jacobian originally appears
in [34] in order to devise a separate controller for contact force (using a contact
Jacobian) and a controller for the task motion (regular robot Jacobian). However,
Section 2.4 derives a more specific formula for each task force component (whereas De
Sapio and Khatib [34] only indicate the computation process), which will be essen-
tial for showing the equivalence between the operational/task space controllers with
constraints proposed independently by Mistry and Righetti [101] and De Sapio and
Khatib [34], in Section 3.3.

As future work, it will be interesting to analyse the relation between the formulas
obtained for simultaneous task-based constraints, derived in Section 2.4, and several
results from the extensive literature on hierarchical dynamic task controllers, such
as [26, 39, 40, 61, 131, 132, 142, 143]. The idea being to find what exactly are the
physical and/or numerical conditions for which these different results equate and/or
differ. For example, Siciliano and Slotine [153] and Chiacchio et al. [30] propose
kinematic hierarchical schemes with task priority strategies. Mistry et al. [102] prove
that stacking all the task Jacobian matrices in a single one, as we did in (2.36),
is equivalent to those hierarchical strategies under the condition that the extended
Jacobian be full rank, with the advantage that inverting a single extended Jacobian
is easier to implement and faster to compute. However, Chiacchio et al. [30] had
already noted such equivalence but for a more relaxed condition of that the sum of
the ranks of the individual Jacobian matrices be equal to the rank of the extended
Jacobian — the same condition we used for the result (2.37). There is also an
extensive literature on kinematic hierarchical task approaches [8, 14, 48, 75, 82, 94,
98, 124], which highlights the complexity of the topic and also the dissonant views
about what are preferable approaches. For instance, there is a disagreement between
the more optimization based prioritization approaches [96] or the more numerically
stable (singularity free) approach based on null-space projections [31]. Regarding
hierarchical controllers/models on multiple tasks there are also works on stability [42]
and works proposing other consistency metrics (besides the dynamical consistency
discussed in this chapter), such as stiffness [41].

Finally, we obtained a fairly complex expression for the task force (2.40) from a
simple constraint split (2.36). This splitting approach, in the case of the task force
expression, provides us with its condition of validity and a simpler way of implement-

2.6. Discussion 31

ing it computationally. From that standpoint, this chapter aimed at simplifying our
understanding of constrained multi-body systems, by: merging the existing concepts
of motion tasks and rigid constraints under a single Task-based Constraint abstrac-
tion; framing the Projected Dynamics as another result of the simple Principle of
Least Constraint; and finding that deficient Jacobian inverses are still dynamically
consistent.

32 2. Task-based Constrained Dynamics

Chapter 3

Simultaneous Position/Force Con-
trol for Constrained Motions

“Never confuse movement with action”

Ernest Hemingway

This chapter presents two widely used approaches for simultaneous control of position and

force tasks using torque controlled robotic manipulators — a selection matrix approach

and the operational space controllers with constraints. It relates these two approaches

with the task-space controller resulting from the multi Task-based Constraint modelling

from the previous chapter. We then implement the selection matrix approach for a velocity

controlled manipulator and validate it, together with a surface tracking strategy, using

both the Baxter robot and a robot prototype specifically designed for the task of cleaning

the front panels of the train cabs.

3.1 Introduction

Interaction with constrained environments, such as rigid surfaces, mainly relying on
haptic communication — using touch/force sensing — is a skill that humans often
employ in ordinary everyday tasks, such as cleaning a surface. This is considered
to be a constrained motion because the physical boundaries of the surface restrict
our hand motion. Therefore, the movement of the hand is constrained to the object
surface while keeping contact with it during the task [100]. We easily handle this kind
of interaction with a variety of rigid objects without breaking them or hurting our
arms, by properly adjusting our hands’ positions and stiffness [174]. Even without
using our vision — with our eyes closed — we can still trace an unknown surface
using only tactile information.

A robotic system endowed with similar capabilities would be able to automate a

33

34 3. Simultaneous Position/Force Control for Constrained Motions

(a) Manual cleaning of a fuel powered train.
Wembley depot, London.

(b) Manual cleaning of a electric train.
Willesden depot, London.

Figure 3.1: Manual cleaning operation of two train cab fronts. London, 9th of June
of 2016.

significant number of manual labour operations. One such operation is the cleaning
process of the train cab fronts. The current process includes mechanised train washers
that are unable to clean the train cab front ends due to complicated shapes. As a
result, human operators manually clean the train cab fronts, as shown in Figure 3.1,
raising health and safety concerns, including working in non ergonomic postures
while subject to bad weather conditions.

Despite being a task easily achieved by humans, few works address the challenge of
using a robot to clean a 3 dimensional (3D) surface. Hess et al. [62] state that at
that time they were unable to find any manipulator robot that could clean arbitrary
3D surfaces, and propose an algorithm to cover a 3D surface using a redundant
manipulator, by making use of an explicit surface model generated from a point cloud
obtained using a Kinect sensor. However, the known poor performance of Kinect
sensors in outdoor environments, under ambient infra-red radiation, renders this
sensing modality unsuitable for a train cleaning application. Moreover, guaranteeing
a safe pressure between the end-effector and the train surface would require fairly
precise measurements, which are hard to obtain in practice for such large surfaces
in outdoor environments. Notwithstanding, a skilful person would easily complete
this task (even with the eyes closed) by using haptic information to adjust the force
applied in the right direction, rather than guaranteeing a precise position of the hand.

The cleaning manipulator has to be able to wipe the train surface without dam-
aging it, while applying enough contact pressure to guarantee the contact between
the cleaning tool and the train surface. This particular application highlights the
importance of the study and implementation of force control techniques, a quite
mature and developed field — Villani and De Schutter [167] present us with a com-
prehensive review on the force control literature. Jamisola et al. [72, 73] and Oetomo
et al. [115] successfully employ a mobile manipulator in the operation of aircraft
canopy polishing, using simultaneous force and position control and the Operational

3.2. Background 35

Space Formulation (OSF), proposed in [77, 79]. The aircraft polishing manipula-
tor end-effector tool applies a roughly constant force (10 ± 4N) in a bidirectional
polishing motion along a surface without requiring its explicit model, while subject
to perturbations introduced by the operator moving the manipulator’s mobile base.
The controller adjusts the end-effector orientation in order to minimize the torques
between the polishing tool and the surface, resulting in a tool always perpendicu-
lar to the surface. By aligning the tool with the surface normal, the direction of
the polishing force is known, allowing the control of the polishing force in the right
direction.

For the process of cleaning a train cab front, we propose a similar control approach
used in the polishing manipulator work, with the adaptation that the output com-
mands are joint velocities rather than joint torques, similar to the hybrid position/-
force control from Raibert and Craig [135], allowing the use of typical industrial
robots that lack torque control capabilities. Moreover, we incorporate the global
information of the workspace area and location to satisfy coverage of the surface.
Furthermore, we show the equivalence of the simultaneous position/force control
approach, often used in these practical applications, with the multiple task-based
constrained abstraction discussed in the previous chapter. The previous chapter fo-
cused on modeling the equations of motion of a task-based constrained system, which
is key for understanding the movement of robots in contact, this chapter looks at
some of the control — action — aspects of robots moving in contact.

3.2 Background

This section overviews two of the main control strategies for manipulation with
contact/force interaction, namely the Hybrid Position/Force Control and the Oper-
ational Space Formulation.

3.2.1 Hybrid Position/Force Control

Impedance, stiffness and damping control are useful tools to actively change the
dynamic behaviour of a manipulator in order to improve the interaction with the
environment [144, 171]. These techniques belong to the class of indirect force control
methods, i.e. the robot regulates the force being applied by the end-effector via
motion control [167]. In the example of cleaning a surface, for a planar surface
with known positioning it might be enough to adjust the stiffness of the arm in
the direction perpendicular to the surface and set the goal positions to penetrate
the surface [85]. By being compliant in that direction, the arm would comply with
the surface and would apply a force to the surface proportional to the displacement
between the surface position and the penetration set-point position.

36 3. Simultaneous Position/Force Control for Constrained Motions

Direct force control, on the other hand, is a control scheme where the feedback clo-
sure happens on the measurement of the force instead of the position. Typically, a
force-torque sensor at the wrist of the robot measures the applied operational force at
the end-effector, rather than using the dynamic model of the manipulator to estimate
it through (2.15), as in [174]. A known — almost iconic — approach for direct force
control in interaction tasks with the environment, introduced by Raibert and Craig
[135] similar to Mason [99] theoretical work, is the hybrid position/force control ap-
proach. This approach combines force and position information to simultaneously
satisfy position and force constraints, and consists in dividing the operational space
into two subspaces. One of the subspaces implements a position controller - the posi-
tion controller can even be a compliant or impedance controller. The other subspace
implements a direct force controller. The hybrid position/force control approach as-
sumes that these two subspaces are orthogonal and, thus, avoids interference between
controllers. One needs to analyse and check this assumption, because for the case
where the assumption involves the orthogonality of the Twist and Wrench spaces, a
difference in units or referential origin can lead to misleading results, as evidenced
by Duffy [46].

For the example of tracing a surface, we could divide the constrained operational
space in a subspace containing the directions orthogonal to the surface and another
subspace containing the directions tangential to the surface. In the first one, a force
controller would track a given contact pressure between the manipulator and the
surface. In the directions tangential to the surface, a position controller would track
some end-effector trajectory for traversing all the surface area.

3.2.2 The Operational Space Formulation

Khatib [77] proposed a hybrid position/force control approach for simultaneous mo-
tion and force control of a robot manipulator in the operational space, where the
end-effector acceleration ẍ encompasses the two components from both controllers

ẍ = Ωẍm + Ωẍf . (3.1)

where ẍm and ẍf are, respectively, the task-accelerations resulting from the motion
and force controllers. The selection matrices Ω and Ω respectively define the direction
of motion and force control [126]. Therefore, a task-space constraint corresponds to
either a motion-task, with control over the position, or rigid constraint task, with
control over the interaction force. Note that all task-space accelerations belong to
the same space, i.e. ẍ, ẍm, ẍf ∈ Rnb , and consequently Ω,Ω ∈ Rnb×nb .

In a constrained task where the end-effector applies a desired force fd on a surface,
the external force applied is

λ = −Ωfd. (3.2)

3.2. Background 37

+ Inverse
Dynamics

Torque Controlled
Manipulator

Ω

Ω Ω

PIDm

PIDf

Forward Differential
Kinematics

Forward
Kinematics

ẍ τ

ẍm

ẍf

q̇

• •

•

q

ẋ

x

ẍd
ẋd
xd

fd
•

f

Figure 3.2: Diagram of a hybrid position/force controller for simultaneous motion
and force control of a robot manipulator in the operational space, using a torque
controlled robotic manipulator, i.e. we command the torques of each of the joints of
the manipulator.

By substituting (3.1) and (3.2) in the constrained inverse dynamics (2.15), and in
turn substituting (2.15) in the generalized force solution (2.18), for τε = 0, we get

τ = AT (q)
(
Mx(q)(Ωẍm + Ωẍf) + Ωfd

)
+ AT (q)hx(q, q̇), (3.3)

which computes the manipulator joint torques for a task with simultaneous force and
position control, and where A represents the robot manipulator Jacobian, which is a
specific type of task-constraint Jacobian matrix. Figure 3.2 illustrates schematically
the controller in Equation (3.3). The Manipulator block corresponds to a real physi-
cal torque controlled robot manipulator. We assume access to the forward kinematics
model — x = φ(q) — as well as the manipulator’s Jacobian — ẋ = A(q)q̇. There
are two Proportional-Integral-Derivative (PID) controllers regulating the end-effector
position x and force f to achieve the respective desired values xd and fd. The control
signal resulting from the PID controllers ẍ determines the joint torques τ , computed
using the inverse dynamics 2.15. One exemplary application of the operational hy-
brid position/force control approach is in haptic teleoperation based on contact force
control [126], which is particularly useful when employed in remote environments,
such as deep-sea manipulation [28].

3.2.3 Manipulation Interaction Tasks

Concerning interaction between a manipulator and objects, there are other works
that concentrate on exploring and tracking unknown surface geometries and proper-
ties. Ganesh et al. [57] propose a novel and unified control paradigm encompassing
position, force, and impedance control, where they estimate the texture of the surface

38 3. Simultaneous Position/Force Control for Constrained Motions

using information of the level of compensation of the arm impedance, for maintaining
a constant pressure on the tracking surface. Jamisola et al. [74] addresses the ex-
ploration of unknown surface with discontinuities, for the case of a two dimensional
task space. Their work presents two methods addressing the problem of exploring
discontinuous surfaces. The first method uses a relative weighting, dynamically ad-
justed according to the sensed torque, of force and position controllers simultaneously
active in both directions. The second method implements a hybrid position/force
controller, with force control on the axis normal to the surface and position control
on the axis perpendicular to the surface, where the axis constantly rotates according
to the sensed torques.

Back et al. [13] develop a new sensing device — a two dimensional robot finger —
endowed with force sensing. This system is able to estimate the geometry and fric-
tion properties of several smooth surfaces. Once again, the study is limited to a
two dimensional environment. Bosheng et al. [25] estimates the environment damp-
ing and stiffness parameters during interaction between robot and environment, by
making use of the Recursive Least Squares algorithm in an adaptive impedance con-
trol method, during a task of tracing a planar surface with arbitrary inclination and
varying damping and stiffness. While these two previous works estimate the material
properties of environment constraint, there are other works that focus on the esti-
mation of the constraint geometry itself, through the motion of the robot [24, 157].

On the application of cleaning robots, Hess et al. [62] propose a method for using
redundant manipulators for cleaning complex 3D surfaces. The paper addresses the
problem of path coverage planning constrained to a surface by using the manipulator
null space to minimize the joints movement. However, this strategy leads to an
erratic end-effector trajectory unlike typical human cleaning movements. Normal
human cleaning movements tend to resemble movements like a raster scan or a spiral
where the dirt goes from the inner to the outer side of the surface. Leidner et al.
[85] use a raster scan trajectory for wiping a window, leading to a more human like
movement. For control, they also use the selection matrix approach discussed in the
previous section. Another way of obtaining natural trajectories in the operational
space is through demonstration. Kormushev et al. [81] uses a humanoid to clean a
vertical board, where the trajectory and the required forces are acquired through
direct human demonstration. The robot uses a hybrid position/force controller to
apply the learned trajectories and forces. As the robot is a redundant system, it uses
the null space for keeping balance.

Polishing manipulators perform a similar job to cleaning manipulators — both have
to sweep through a surface while maintaining a specific contact pressure. Nagata
et al. [109] present a position/force controller implementation for a polishing robot,
where they provide a CAD model of the surface, allowing the use of a position
feed forward controller in conjunction with a compliant feedback controller. The
control of the polishing force serves the purpose of improving the final quality of the
polished surface. Some works, such as [72, 73, 115], show the applicability of the

3.3. Operational Space Control with Constraints 39

hybrid force/motion control in tasks such as polishing a smooth unknown curved
surface, using the operational space formulation from [77]. In [72], the end-effector
is able to apply a roughly constant force (10 ± 3N), while subject to perturbations
such as moving the position of the surface and the manipulator’s mobile base. For
the process of cleaning a train cab front, we shall use a similar control approach used
in the polishing manipulator work, with the adaptation that the output commands
are joint velocities rather than joint torques.

3.3 Operational Space Control with Constraints

Relation with Stack of Jacobian Matrices’ Approach

This section delves into the equivalence between the Operational Space Controllers
with Constraints independently proposed by De Sapio and Khatib [34] and Mistry
and Righetti [101]. To do so, we start by recalling the task force in (2.40) resulting
from deriving that specific task dynamics component from the task space dynam-
ics (2.16) for a stack of Jacobian matrices

A =

[
A1

A2

]
. (3.4)

We can then rewrite (2.40) as

f2 = M2

(
ẍ2 − Ȧ2q̇ − A2A1(ẍ1 − Ȧ1q̇) + A2M

−1P>M1h
)
− λ2. (3.5)

Here we take the idea for splitting a Jacobian matrix into a stack of two Jaco-
bian matrices from [34, 35]. However, De Sapio et al. [35] solely propose this split
concept without fully deriving the expression (3.5), which is valid for rank(A) =
rank(A1) + rank(A2). Moreover, De Sapio et al. [35] propose this stacking for the
specific case that A1 is a constraint Jacobian (rigid constraint), and A2 is the Ja-
cobian of the robot. In this thesis, the definition of task-based constraints unifies
these two categories and makes them belong to the same category of task-based con-
straints. But let’s consider the proposal of De Sapio et al. [35]. For that specific case
scenario, we will have ẍ1 = 0 for a rigid constraint and λ2 = 0 for a motion-task.
Therefore, (3.5) becomes

f2 = M2

(
ẍ2 − Ȧ2q̇ + A2A1Ȧ1q̇ + A2M

−1P>M1h
)
, (3.6)

which corresponds to the motion-task control, whereas its homologous f1 would
correspond to the constraint forces.

40 3. Simultaneous Position/Force Control for Constrained Motions

Regarding the approach based on the PD, using the equalities PMM
−1 = M−1P>M =

M−1
c P and A = M−1

c RA†, we see that for R = I, (3.6) becomes

f2 = M2

(
ẍ2 + A2M

−1
c1 P1h− (Ȧ2 − A2M

−1
c1 A

†
1Ȧ1)q̇

)
(3.7)

which is exactly the same as the operational space dynamics with constraints found
in [101]. We can find practical implementations of this controller in [117]. This re-
sult shows that a framework of multiple Task-based Constraints generalizes the task
space plus constraint formulations from De Sapio and Khatib [34] and Mistry and
Righetti [101] and, furthermore, allow us to reason about them as equivalent. Note
that both Park and Khatib [125] and Mistry and Righetti [101] propose equations for
the partial dynamically consistent Jacobian A#

2 and the partial task-space inertia ma-
trix M2, but using different formulations: the first based on the inertia-weighted pro-

jection matrix PM and the inertia matrix M , i.e. M2 =
(
A2PM1M

−1A>2
)−1

and A#
2 =

PM1M
−1A>2 M2; and the second based on the orthogonal projection matrix P and the

constraint inertia matrix Mc, i.e. M2 =
(
A2M

−1
c1 P1A

>
2

)−1
and A#>

2 = M2A2M
−1
c1 P1.

Relation with the Selection Matrix approach

We can find a second equivalence of the control law in (3.5) with the Generalized Task
Specification Matrices approach proposed by Khatib [77], which is another approach
widely used in the literature. By analysing the task acceleration computation (3.1)
from the hybrid position/force control approach for simultaneous motion and force
control [77], we see that despite ẍm and ẍf having the same dimensionality of ẍ,
the selection matrices Ω and Ω only pick some of their elements. In the original
formulation though [77], Ω and Ω, called the generalized task specification matrices,
are in general non-diagonal because they are the result of a rotation transformation
of the actual selection matrices that are diagonal. This happens because Khatib
[77] uses a Jacobian of the robot which maps the configuration velocities to the
operational space velocities relative to a global frame and, therefore, the direction of
the motion or force tasks might require a rotation of the global frame representation.
This thesis work, in line with the concept of always defining generic tasks-based
constraints, makes use of Jacobian matrices mapping directly to the task space of
interest, i.e. the task Jacobian already encodes the rotation rather than the selection
matrices encoding such transformation. Therefore, Ω and Ω are always diagonal
matrices with diagonal elements being either 0 or 1.

The reason why this distinction in definition of the selection matrices is important is
that for the case where they are always diagonal matrices, then all they do is to pick
specific elements of the vectors xm and xf , ignoring all the other ones. Therefore, we
can always permute the elements of xm and xf (permuting the respective matrices
such as Ω,Ω,A) such that

ẍ = Ωẍm + Ωẍf =

[
ẍ1

ẍ2

]
, (3.8)

3.4. Surface Tracing with a Kinematic Robotic Manipulator 41

where ẍ1 contains the acceleration selected elements resulting from the force control
component, and ẍ2 contains all the acceleration selected elements resulting from the
position control component. Similarly, the desired forces (3.2) would become

λ = −Ωfd =

[
0
λ2

]
, (3.9)

where λ2 contains the selected elements from the desired force −fd. We can then
easily see by inspection, that the task-space force in the torque commands Expres-
sion (3.3) resulting from Khatib [77]’s simultaneous position/force control approach,
corresponds to the task-space force (2.39) resulting from the stack of Jacobian ma-
trices, for which we use the task-space acceleration (3.8) and the task-space external
force (3.9). In this case, the acceleration ẍ1 is the result of the force PID com-
pensation and the acceleration ẍ2 is the result of the position PID compensation
in the intended directions. This result shows that the multi Task-based Constraint
approach, consisting in simply stacking the Jacobian matrices for each task, can also
generalize the simultaneous position/force controllers based on selection matrices (as
the one from the control diagram in Figure 3.2).

3.4 Surface Tracing with a Kinematic Robotic Ma-

nipulator

This section details the control strategy to simultaneously adjust the end-effector
orientation, the interaction force, and the end-effector motion tangential to the target
surface, for the application of using a redundant robotic manipulator for wiping a
surface. This involves combining force and position information in a single local
reference frame and specifying the force and position control axis. Then, the resolved
motion rate control — standard inverse differential kinematics solution — translates
the desired end-effector motion to the robot arm joint velocity commands. The
block diagram in Figure 3.3 summarizes the main components and transformations
described in this section.

Wiping Motion Description

When wiping a surface we can distinguish two distinct tasks: (i) aligning the wiping
tool with the surface and ensuring contact; (ii) moving the wiping tool along the
surface with a specified pattern of motion. The first task of aligning the wiping tool
would in principle require a good model of the surface geometry and its position
relative to the robot. However, it is impractical to precisely position a large object
such as a train, or to obtain a good scan of its geometry in an outside environment

42 3. Simultaneous Position/Force Control for Constrained Motions

+ Inverse Differential
Kinematics

Velocity Controlled
Manipulator

Ω

Ω

Position
Control

Force
Control

Forward
Kinematics

SPF

S ẋ q̇

S ẋp

S ẋf

• q

F fSf

Gx

S ẋd
Gxd

Sfd

Figure 3.3: Simultaneous force and position control diagram, using resolved motion
rate control, i.e. we directly command the velocities of the joints of the robotic
manipulator.

subject to varying lighting conditions. An alternative is to use force information to
ensure the contact and alignment requirements.

Figure 3.4 illustrates an end-effector wiping a curved surface, with its main compo-
nents, their respective reference frames, and possible interaction forces and torque. If
the surface geometry is unknown, the robot can use force feedback to align the tool,
given that when in contact with the surface, a misalignment between the wiping tool
and the surface results in a torque at the interaction point. Therefore, the robot can
align the end-effector by simply minimizing this interaction torque, and guarantee a
given contact pressure by controlling the normal contact force. While aligning the
tool, the robot also has to perform a wiping motion along the surface, suggesting
that it has to simultaneously control these interaction forces and torques and the
wiping motion.

Specification of Control Directions

The simultaneous position and force control, according to the Operational Space
Formulation [77], requires specifying the direction axis in the operational space (i.e.
end-effector task space) in which we control force or position independently. So, for
example, let u be the control input in the task space. The control u results from com-
bining the desired motion um and desired force interaction with the environment uf .
However, we must ensure that the motion component is unaffected by the force
component, and vice versa. In the Operational Space Formulation, this is accom-
plished by specifying the generalized task matrices Ω and Ω, so that u = Ωum+Ωuf ,
where Ω = I − Ω and I is the identity matrix with the appropriate dimension.

3.4. Surface Tracing with a Kinematic Robotic Manipulator 43

Gẽ3

Gẽ1

N ẽ3

N ẽ1

F ẽ3

F ẽ1

S ẽ3

S ẽ1ñ

LF

LN

motion

fn

ff

mc

n

Surface

Force Sensor

Sponge

Figure 3.4: A two dimensional illustration of a robot end-effector interacting with
a curved surface, portraying two particular configurations of the robot arm — with
different opacity. The end-effector wiping tool includes a force/torque sensor and a
soft interface material (sponge). The four coordinates systems represented are: the
global coordinate system G; the standard end-effector local coordinate system N; the
force sensor coordinate system F ; and the surface contact coordinate system S. The
interaction of the wiping tool and the surface causes a friction force ff , a normal
force fn, and a contact torque mc, where the arrows indicate the respective directions
of the values. The alignment of the tool with the surface normal ñ is achieved by
minimizing the contact torque mc, and the contact ensured by controlling the normal
force fn.

44 3. Simultaneous Position/Force Control for Constrained Motions

The form of the matrix Ω depends on the particular task the robot executes and
on the chosen reference frame. For the wiping motion, in order to simplify the
construction of this matrix, we can specify the control input in a local end-effector
frame as, for instance, Su (S is the reference frame with origin in the contact point
and aligned with the wiping tool as shown in Figure 3.4). Then, the generalized task
specification matrix becomes

Ω = diag(1, 1, 0, 0, 0, 1), (3.10)

meaning that the position control occurs in the ẽ1 and ẽ2 end-effector local axis
for translation (tangential directions to the surface for a fully aligned tool), and in
the ẽ3 axis for rotation. Note that the axis ẽ2 is missing from the illustration in the
Figure 3.4 due to it being a two dimensional illustration and ẽ2 being perpendicular to
the illustrated axes ẽ1 and ẽ3, i.e. ẽ2 is perpendicular to the page. The force control
occurs in the ẽ3 end-effector local axis for linear force (perpendicular direction to
the surface for a fully aligned tool), and around the ẽ1 and ẽ2 end-effector local
axis for torques (torques are set to zero to guarantee that the end-effector is always
perpendicular to the surface). Here we assume a 6 dimensional operational space,
composed of 3 linear positions/forces and 3 angular positions/torques.

Resolved Motion Rate Control

In the Operational Space Formulation [77] for simultaneous motion and force control
of robot manipulators, the task space control input u corresponds to the end-effector
acceleration, converted to joint torques through direct dynamics. However, even
though lab robots are often torque controlled, many industrial robots lack such torque
control capabilities, either due to hardware limitations, such as the joints lacking
torque sensors, or simply because velocity controllers are more widely available and
integrated in servo motors. Moreover, the computation of the joint torques requires
the dynamic model of the robot manipulator, which for industrial applications can
be difficult to obtain. For instance, a robot for washing the train front panels would
require the flow of water and detergent through flexible pipes to the wiping tool,
that might be external to the rigid links. Therefore, for this application, it would be
more viable to directly control the joint velocities instead of the joint torques.

Once we define the task space control input u to be the end-effector velocity Sẋ ∈ R6

(expressed in the local frame S), a particular solution for the joint velocities q̇ ∈ Rn,
for a robot with n joints, is simply

q̇ = A† Sẋ, (3.11)

where q ∈ Rn are measured joint position values and A† ∈ Rnq×6 is the pseudo
inverse of the manipulator Jacobian A. For a manipulator that has more Degrees
of Freedom than the number of task space variables (nq > 6), the pseudo inverse

3.4. Surface Tracing with a Kinematic Robotic Manipulator 45

Jacobian corresponds to the mapping that minimizes the square of the joint velocities’
euclidean norm ‖q̇‖2. For the case that nq = 6, the pseudo inverse degenerates into
the inverse, and the solution 3.11 for q̇ is unique. Whitney [170] and Umetani and
Yoshida [165] refer to this type control of the task velocities through a differential
kinematics solution (3.11) as Resolved Motion Rate Control, which is a solution
widely adopted in many robotic approaches [47, 88].

In summary, Resolved Motion Rate Control consists of: (i) defining the desired
end-effector velocities; (ii) computing the corresponding joint velocities using a gen-
eralized inverse of the robot Jacobian; (iii) and sending the resulting joint velocities
to the motor controllers. In order to specify the end-effector position instead of the
end-effector velocity, we just need to differentiate the desired position trajectory.

Admittance Control

Knowing how to control the end-effector velocity or position through joint velocity
control, the next step is to compute the end-effector displacement in a certain di-
rection to produce a desired force. As we perform compliant interaction with the
surface through a sponge, we can set a proportional control on the force giving the
resulting end-effector velocity as

Sẋf = Kp(
Sfd −S f), (3.12)

where Sfd is the desired generalized force vector, Sf is the measured force, and KP

is a diagonal matrix of the gains applied in each axis. For the case of the sweeping
robot that only controls the force in the end-effector ẽ3 direction and torques in the ẽ1

and ẽ2 directions, then

Kp = diag(0, 0, Kz, Kxy, Kxy, 0). (3.13)

Reference frames

The force/torque sensor returns the measurements with respect to a frame F , differ-
ent from the standard end-effector local frame N, which in turn differs from the frame
of interest S, with its origin at the contact point between the wiping tool and the
surface. Therefore, before any control considerations we address the transformations
of the measurements into the reference frame of interest.

We assume to have access to the robot forward kinematics model φ which, given q,
returns the end-effector position and orientation in the form of: the frame N origin
Cartesian coordinates GxN ∈ R3; and the rotation matrix GRN ∈ R3×3, relative to
the global frame G, as

(GxN ,
GRN) = φ(q). (3.14)

46 3. Simultaneous Position/Force Control for Constrained Motions

Then, given the position of the contact point relative to N (NxS ∈ R3), its coordinates
relative to the global frame are simply given by

GxS = GxN + GRN
NxS. (3.15)

Due to the distance between the contact point and the force/torque sensor, the
contact forces/torques are inaccessible and, therefore, we must estimate them from
the measured ones. Consider the example from Figure 3.4. We are interested in
minimizing the contact torquemc, which is the torque around the axis S ẽ2 (Sτ2 = mc).
However, due to the distance LF between the contact point and the force/torque
sensor, its reading F τy is a sum of the contact torque mc and the effect of the force ff
applied to the contact point. Therefore, we can estimate the contact torque at the
contact point as mc = F τy + LFff . More generally, given a generalized force

Ff =
[
Ff1

Ff2
Ff3

F τ1
F τ2

F τ3

]T
, (3.16)

obtaining the forces acting on the end-effector contact point consists in applying the
relation

Sf = STF
Ff. (3.17)

where STF is a transformation matrix given by

STF =

[
I3 0[

SxF
]
× I3

]
, (3.18)

and NxF is the position vector of the origin of the coordinate system F relative to
the coordinate system S. The operator []× represents the transformation of a vector
in a skew-symmetric matrix.

Trajectory Tracking

When assuming that the surface is unknown, one of the main questions is: how can
we specify a trajectory? Obviously, we are unable to specify an exact trajectory on
the surface without knowing its geometry, but even then we would like to cover a
region following a specific pattern of motion.

The solution we propose is specifying only a planar movement rather than specifying
the whole 3D trajectory. Then, the actual trajectory would be a projection of this
planar trajectory onto the surface. A set of assumptions are that: the dimensions of
the planar trajectory are smaller than the outer dimensions of the 3D surface; the
gap between the the paths that traverse the surface is small relative to the cleaning
tool size (so the tool covers all the surface area even for the most inclined surfaces);
and the robotic manipulator can reach the projected positions. Figure 3.5a shows
the result of projecting a raster scan in Figure 3.5b onto a spherical surface.

3.4. Surface Tracing with a Kinematic Robotic Manipulator 47

(a) Illustration of the projection of a vertical
raster scan onto a spherical surface.

KD
∂p̂
∂θ

KP (
Px− p̂)

(b) Example of a planar
trajectory - a raster scan.

Figure 3.5: Illustration of the result of projecting a 2D path onto a given surface
geometry, resulting in a 3D path. Point indicating a possible projection of the end-
effector position while tracking a desired trajectory. Vectors indicating the computed
projected end-effector velocity.

By describing the planar trajectory as a parametric function p(θ) ∈ R2, we simply
define the commanded velocity P ẋ ∈ R2 in the planar space as proportional to the
derivative of this function

P ẋ = KD
dp(θ)

dθ

∣∣∣
θ=θi

, (3.19)

where P stands for the planar trajectory space. By definition, the norm of the
parametric function derivative is always 1 for every value of θi. Then we project this
velocity onto the surface as

Sẋ =S TP
P ẋ, (3.20)

where STP ∈ R6×2 is a matrix that projects the planar trajectory to the local frame
S.

If, while sweeping, the end-effector drifts from the path, we have to compensate this
deviation. Figure 3.5a shows an example of a possible end-effector drift that, the
end-effector position (black dot) no longer coincides with the projected trajectory.
Given that the surface geometry is unknown, we will compute the deviation error in
the projection plane P .

We first project the current end-effector position in the global frame GpS to the plane
of the planar trajectory, obtaining Px. Figure 3.5b shows the respective representa-
tion of the Px next to the planar trajectory. Then, we compute

θ̂i = arg min
θ
‖Px− p(θ)‖, (3.21)

which minimizes the distance between the current position and the trajectory. By
plugging the estimated parameter θ̂i in the parametric function

p̂ = p(θ̂), (3.22)

48 3. Simultaneous Position/Force Control for Constrained Motions

we obtain the closest trajectory position.

The desired velocity in the planar space P results from adding the following two
terms as

P ẋ = KD
dp

dθ
+KP (Px− p̂), (3.23)

where one corrects the error between the current position and the trajectory and the
other is proportional to the derivative of the parametric function, so the end-effector
keeps moving forward while correcting the position. Equation (3.20) transforms the
result from (3.23) to the local surface frame S. Finally, if we wish the tangential
velocity of the end-effector to the surface to be constant and equal to Cv m s−1, then
we still need to normalize it as

Sẋp =
Ω Sẋ

‖Ω Sẋ‖Cv. (3.24)

The advantage of using a parametric representation of the planar trajectory is that
this isolates the implementation of different trajectories by simply specifying the two
functions — p(θ) and ∂p(θ)

∂θ
. Changing the desired motion pattern implies changing

the parametric function and its derivative.

3.5 Case Studies

3.5.1 Verifying the Equivalence of Task Controllers with Con-
straints

The goal of this first case study is to verify the equivalence between different task
controllers with constraints present in the literature. In order to do so, let us consider
the planar serial robot arm with four links, illustrated in Figure 3.6, which for a
given configuration qj is in perfect contact and alignment with a flat surface. We
then define two tasks for the robot to accomplish: a contact/force task consisting of
keeping contact and alignment with the surface; and a motion-task responsible for
the end-effector movement tangential to the surface.

We define the contact/force task coordinates as x>1 =
[
x ψ

]
and the corresponding

task commanded forces as f>1 =
[
fx fψ

]
, where x is the position coordinate of the

axis perpendicular to the surface and ψ =
∑4

i qj[i] is the global orientation of the end-
effector, coinciding with the orientation of the surface. The motion-task coordinate is
then x2 = y and the corresponding motion-task commanded force is f2 = fy, where y
is the position coordinate of the axis tangential to the surface. The corresponding
motion and contact task Jacobian matrices are then

A1 =

[
∂x
∂q
∂ψ
∂q

]
and A2 =

∂y

∂q
.

3.5. Case Studies 49

x

y

φ

Figure 3.6: Planar serial robot arm with four links in a configuration q>j =[
90◦ −45◦ −45◦ −45◦

]
.

More concretely now, the goal of this experiment is to use the different controllers
for motion-task with constraints found in the literature to compute the motion-task
force control fy, given a desired tangential motion acceleration ÿd and desired contact
force λd. These requirements result in the following desired task accelerations and
forces

ẍ1 =

[
0
0

]
, ẍ2 = ÿd, λ1 =

[
λd
0

]
, and λ2 = 0.

We now overview four alternative ways of computing the motion-task force com-
mands fy and categorize them, just for the purposes of this experiment, as con-
trollers A , B , C , and D , whose application will result in the computation of
the respective motion-task force commands fyA, fyB, fyC , and fyD, respectively.

A : The first controller requires simply stacking the task Jacobian matrices A> =[
A>1 A>2

]
, as proposed in Section 2.4, which implies stacking the task position vec-

tor x> =
[
x>1 x>2

]
and the task force commands vector f> =

[
f>1 f>2

]
. This entails

computing the task-space dynamics according to the Equation (2.16), repeated here
for convenience

f = Mxẍ+ hx − λ ,

for the extended task acceleration ẍ> =
[
ẍ>1 ẍ>2

]
and forces λ> =

[
λ>1 λ>2

]
. The

motion-task force command fyA corresponds to the last component of f .

B : The second controller corresponds to Equation 3.6, which is a result of the
multiple Task-based Constraints derivation in Section 2.4 followed by applying the
conditions for task-motion with rigid constraints proposed by De Sapio and Khatib
[34] and discussed in Section 3.3. The motion-task force command fyA corresponds
then to f2, where

f2 = M2

(
ẍ2 − Ȧ2q̇ + A2A1Ȧ1q̇ + A2M

−1P>M1h
)
.

C : The third controller is the operational space dynamics with constraints pro-
posed by Mistry and Righetti [101], shown in Equation 3.7, which we show to be

50 3. Simultaneous Position/Force Control for Constrained Motions

algebraically equivalent to the controller B , in Section 3.3. We have again that fyC

simply corresponds to f2 computed as

f2 = M2

(
ẍ2 + A2M

−1
c1 P1h− (Ȧ2 − A2M

−1
c1 A

†
1Ȧ1)q̇

)

D : Finally, the fourth controller is based on the selection matrix method, pro-
posed by Khatib [77], where we redefine the task coordinates vector and the task
commanded forces as

x′ =

x
y
ψ

 and f ′ =

fx

fy

fψ

 ,
given that in this context it is more customary to stack the coordinates starting
with Cartesian positions and then placing the orientations. For the task of moving
tangentially to the surface we then define the desired motion and force accelerations
and the desired contact forces as

ẍ′m =

 0
ÿd
0

 , ẍ′f =

0
0
0

 , and f ′d =

−λd0
0

 ,
and the generalized task specification matrices as

Ω = diag(0, 1, 0) and Ω = diag(1, 0, 1).

The computation of the motion-task force command consists in applying the Expres-
sion

f ′ = Mx′(Ωẍ
′
m + Ωẍ′f) + Ωf ′d + hx′ ,

discussed in Subsection 3.2.2. The motion-task force command fyD corresponds then
to the second component of f ′.

To verify the equivalence between the previously presented controllers we generated
a dataset {(qj, q̇j, ẍdj, λj)}Jj=1 of J = 1000 different scenarios by uniformly sam-
pling the robot configurations qj[1] ∈ [−π/2, π/2] and qj[2..4] ∈ [−2π/3, 2π/3] rad and
the robot configuration velocities q̇j[i] ∈ [−0.2, 0.2] rad s−1 and desired task space
acceleration ẍdj ∈ [−0.2, 0.2] m s−2 and contact force λdj ∈ [5, 10] N. Similarly to
the experiment in Subsection 2.3.3, the robot in Figure 3.6 has identical links with
equidistant centre of mass from the joints, and with length, mass, and inertia of
1 m, 1 kg, and 0.1 kg m2, respectively. We used Corke’s [33] MatLab® toolbox for
computing M , h, and the robot’s Jacobian.

We then computed the motion-task force commands for all the 1000 samples using
the four controllers detailed above. Using the controller A as reference we computed

3.5. Case Studies 51

the Mean Square Error (MSE) over the 1000 samples of the result of each controller
with respect to A . The results were

MSE(fyA, fyB) = 2.9644× 10−26 N2,

MSE(fyA, fyC) = 2.8273× 10−25 N2, and

MSE(fyA, fyD) = 4.9790× 10−27 N2,

indicating that here is almost no difference between the obtained force commands
with these four differently formulated controllers. In other words, as Sections 2.4
and 3.3 show the algebraic equivalence of the four controllers in study, the computa-
tion using the different controllers lead to identical results with very small deviation
between each other.

3.5.2 Wiping a Non-flat Surface

For the second case study we implemented the simultaneous position/force con-
trol approach for kinematic robots using one of the Baxter arms from Rethink
Robotics®, shown in Figure 3.7. Baxter features 7 DoF arms. The joints are
physically compliant by integrated springs, [55]. This feature makes the robot safe
to operate because if it hits a person or object, the springs will retract before dam-
aging the object or hurting the person. However, this features also makes interaction
movements more unstable, as it vibrates in certain movements, especially when mak-
ing contact with objects, by encountering some resistance. Nevertheless, we were still
able to use this platform for constrained motions. The goal of this case study is to
experimentally validate the feasibility of using a simultaneous position/force control
approach on a kinematic robot for wiping a surface of unknown geometry, without
any pretence of being an exhaustive study on the performance of the proposed con-
troller. We perform single trials using the physical robot, reporting the respective
tracking errors.

For reliably obtaining the forces and torques applied by the Baxter’s end-effector
we used the Gamma F/T sensor from ATI industrial automation, shown in Fig-
ure 3.8b. This sensor measures forces and torques along the three Cartesian axis
- 6 values in total. The sensor has a resolution of: 1/40 N for f1 and f2; 1/20 N
for f3; and 1/800 N m for the torques. The single-axis overloads are: ±1200 N for f1

and f2; ±4100 N for f3; ±79 N m for τ1 and τ2; and ±82 N m for τ3.

Given that the goal is to study the behaviour of the system when interacting with
a smooth and curved surface, we used a surface with varying slope to test the sys-
tem ability to adapt, as shown in Figure 3.9a. In order to have a compliant contact
between the end-effector and the surface, the interface material should be soft, there-
fore, we attached a sponge to the tip of the end-effector, emulating the cleaning tool.

52 3. Simultaneous Position/Force Control for Constrained Motions

Figure 3.7: Baxter orienting the end-effector to be perpendicular to the hand.

(a) Baxter robot wiping a curved surface. (b) Force sensor.

Figure 3.8: Baxter robot and detail of the end-effector used in the experiment.

3.5. Case Studies 53

(a) Surface used in the experiments. (b) Sponge used as compliant material to in-
teract with the surface.

Figure 3.9: Interface elements: the surface and a compliant tip (sponge).

Figure 3.9b shows the sponge used to contact the surface. This extra compliance
allows to accommodate some error in the positioning of the end-effector. However,
this material brings the same effect as the springs in the Baxter joints or any other
elastic material: reduced stiffness of the structure, adding some oscillation to the
movements. To attach the sensor to the Baxter and the sponge to the sensor, we
designed and 3D printed two plastic attachments. Figure 3.8a shows a general view
of the Baxter with the sensor and sponge attached, and Figure 3.8b shows a more
detailed view of the end-effector.

When observing the manual cleaning process of the train cab fronts, one of the
simpler movements widely repeated resembled a spiral motion, as we can see in
Figure 3.1a. Hence, we started by using a spiral as the motion pattern. For the use
case of having a specialized brush tool endowed with a rotational motion, — which
will be the case in the following subsection — it is reasonable to propose a raster
scan motion instead, for covering the surface, which we also tested.

Figure 3.10 shows the position and force measurements corresponding to the spiral
motion. Figures 3.11 and 3.12 show the position and force measurements correspond-
ing to the raster scan motions with turning diameters of 3 and 6cm, respectively.
Each figure is composed of three sub-figures with: (a) the projection of the end-ef-
fector trajectory on the ẽ1− ẽ2 plane and the two dimensional reference path; (b) the
three dimensional end-effector trajectory on top of the model of the surface; and
(c) the unfiltered 3rd component of the measured force, which should correspond to
the force perpendicular to the surface, when the wiping tool is perfectly aligned.

Note that the reference raster scans shown in Figure 3.11 and 3.12 have the parallel
lines connected by semi-circles instead of straight lines as in the example of Figure 3.5.
The requirement of using a smooth curve as a motion pattern comes from the chosen
parametric representation for trajectory tracking, where we use the derivative of this
curve to indicate the direction where the end-effector should move. Therefore, this

54 3. Simultaneous Position/Force Control for Constrained Motions

−5 0 5

−5

0

5

x[1] [cm]

x
[2
]
[c
m
]

(a) Projection of the end-effector trajec-
tory on the ẽ1− ẽ2 plane (solid line) and
two dimensional reference path (dashed
line).

−10
0

10 −10 0 10

−10

0

x[1] [cm]
x[2] [cm]

x
[3
]
[c
m
]

(b) Three dimensional end-effector trajectory
overlaid on the surface.

0 10 20 30 40 50 60 70
−20

−15

−10

−5

0

time [s]

f 3
[N

]

(c) Measurement of 3rd force component. When wiping tool is perfectly aligned with
the surface, this component corresponds to the force perpendicular to the surface.

Figure 3.10: Position and force measurements corresponding to the Baxter experi-
ment and the spiral motion, for a tangential velocity of Cv = 0.02 m s−1 and a normal
force set point of fd3 = −10 N.

3.5. Case Studies 55

0 5 10 15

−5

0

5

10

x[1] [cm]

x
[2
]
[c
m
]

(a) Projection of the end-effector tra-
jectory on the ẽ1−ẽ2 plane (solid line)
and two dimensional reference path
(dashed line).

0

20
−10 0 10

−10

0

x[1] [cm]
x[2] [cm]

x
[3
]
[c
m
]

(b) Three dimensional end-effector trajectory
overlaid on the surface.

0 10 20 30 40 50 60
−20

−15

−10

−5

0

time [s]

f 3
[N

]

(c) Measurement of 3rd force component. When wiping tool is perfectly aligned with
the surface, this component corresponds to the force perpendicular to the surface.

Figure 3.11: Position and force measurements corresponding to the Baxter exper-
iment and the raster scan motion with turning diameter of 3 cm, for a tangential
velocity of Cv = 0.02 m s−1 and a normal force set point of fd3 = −10 N.

56 3. Simultaneous Position/Force Control for Constrained Motions

0 5 10 15

−5

0

5

x[1] [cm]

x
[2
]
[c
m
]

(a) Projection of the end-effector trajec-
tory on the ẽ1 − ẽ2 plane (solid line) and
two dimensional reference path (dashed
line).

0

20
−10 0 10

−10

0

x[1] [cm]
x[2] [cm]

x
[3
]
[c
m
]

(b) Three dimensional end-effector trajectory
overlaid on the surface.

0 5 10 15 20 25 30 35
−20

−15

−10

−5

0

time [s]

f 3
[N

]

(c) Measurement of 3rd force component. When wiping tool is perfectly aligned with
the surface, this component corresponds to the force perpendicular to the surface.

Figure 3.12: Position and force measurements corresponding to the Baxter exper-
iment and the raster scan motion with turning diameter of 6 cm, for a tangential
velocity of Cv = 0.02 m s−1 and a normal force set point of fd3 = −10 N.

3.5. Case Studies 57

derivative has to be well defined in all points of the trajectory. Furthermore, we are
currently using gradient descent for computing (3.21), which again requires access
to the derivative of the reference curve.

To achieve smooth motions we experimentally (through trial-and-error) obtained
the following control gains: Kz = −0.03 m s−1 N−1; Kxy = −7.0 rad N−1 s−2;
KD = 1.0; and KP = 100.0 Hz, for the Baxter robot and the cleaning setup in

Figure 3.8a, where Kz and Kxy are the proportional gains for the admitance control
in (3.12) and KP and KD are the proportional and derivative gains of the trajec-
tory tracking control in (3.23). We also selected the set points Cv = 0.02 m s−1

and fd3 = −10 N to give a visually smooth motion. For example, the motion’s
smoothness would degrade when using too high or too low contact forces. This hap-
pens because the orientation mechanism depends on measuring the tangential torque
so to adapt the end-effector orientation to the surface’s normal. If the force applied
to the surface is small, then the reading of the tangential torque measurements will
be small, becoming at some point indistinct from the signal noise. Therefore, the
end-effector needs to apply sufficient pressure so that the torque resulting from the
misalignment is greater than the noise. However, if the force applied to the surface is
too large, then the motion becomes too sticky due to the neglected effects of friction.
For instance, for a fd3 of −5 N the robot would misalign and start losing contact with
the surface and for a fd3 of −15 N the wiping motion would become quite sticky and
unstable. Note that the determination of the set of parameters that would lead to a
better cleaning of the surface was out of the scope of this work.

Despite being unclear from the three dimensional plots, as the end-effector trans-
verses throughout the surface, the surface inclination changes significantly in rela-
tively short distances – which is having variations of up to 90◦ from the left to the
right sides of the surface in the ẽ2 direction. Therefore, the robot has to cope with
large variations of its end-effector orientation for being able to correctly align itself
with the surface. When unable to perfectly align the end-effector with the surface
normal we observe that: we are no longer controlling the force normal to the sur-
face (Figure 3.4 shows the tool slightly misaligned to help visualize this effect); and
the distance Lf between the surface and the force control sensor changes, becoming
different from the constant value we use in the transformation computations. As a
result, the velocity commands are no longer fully tangential to the surface, having a
component that is either against it, increasing the friction, or away from it, making
the end-effector slip out of the intended path and increasing the tracking error. Ad-
ditionally, the requirement for the end-effector to be perpendicular at all times to a
surface with such wide variations of inclination coupled with the large lenght of the
end-effector tool highly reduces the workspace of the robot.

Furthermore, the proportional controller for maintaining the force level might be am-
plifying the sensor noise, given that the interface material (the sponge) introduces
some unknown compliance/dynamics into the system. This could explain the in-
crease in the standard variation of the 3rd component of the force from 0.35 N, when

58 3. Simultaneous Position/Force Control for Constrained Motions

Table 3.1: Mean µ and standard deviation σ of the tracking error ε and the 3rd
component of the measured force f3, for the wiping experiment with the Baxter and
functional prototype.

µε σε µf3 σf3
[mm] [mm] [N] [N]

Baxter – spiral 2.44 1.64 −9.87 1.35
Baxter – raster scan 3 cm 3.92 3.36 −9.87 1.45
Baxter – raster scan 6 cm 3.06 2.20 −9.85 1.35
Prototype – raster scan 1.5 cm 2.79 1.84 −4.34 1.64
Prototype – raster scan 3 cm 1.78 1.78 −3.95 1.20

not in contact, to 1.35 N for the spiral motion and 1.45 N and 1.35 N for the raster
scan motion with lower and larger curvature radius, respectively. A more careful
tuning of the control gains as in [172] could attenuate the force variance. However,
the larger force standard deviation for the motions with narrower turns and higher
tracking error suggests that the performance of a controlled quantity depends both
on its respective control gains and the performance of the other controlled quantities,
such as the position and the tangential torques. Table 3.1 summarizes the mean µ
and the standard deviation σ for both the tracking error ε and the 3rd component of
the measured force f3, for all the previous experiments and the experiments of the
following subsection. The tracking error is defined here as ε = ‖Px− p̂‖, i.e. the Eu-
clidean norm of the distance between the projected sample Px and its corresponding
closest position p̂ on the reference trajectory.

3.5.3 Automation of Train Cab Front Cleaning

This case study is a feasibility study that looks at employing the position/force
control approach discussed in this chapter to the cleaning of the trains’ fronts. The
current cleaning process of the trains’ exterior includes mechanized washers, as shown
in Figure 3.13, that successfully wash the trains’ side panels but fail to clean the train
cab front nose and body-end panels between carriages. Due to the train cab front
being non-flat and having complex shapes, specialized automatic washers tend to be
fairly large, complex, and expensive. Moreover, such machines lack some flexibility
and are, in general, unsuitable for different train cab front geometries.

As a result, train cleaning operations still comprise depot workers manually washing
the front train panels. The resulting health and safety concerns include: workers
operating in non-ergonomic postures and subject to bad weather conditions; and
exposure to a highly humid environment close to 25kV overhead lines and 750V
rails. Hence, the emergence of safety regulations such as the orange “wash line”
marking the limit for manual washing. Figure 3.1 shows two examples of trains

3.5. Case Studies 59

(a) Train washer for fuel powered trains.
Wembley depot, London.

(b) Train washer for electric trains. Willes-
den depot, London.

Figure 3.13: Examples of train mechanic washers from two train maintenance depots.
London, 9th of June of 2016.

being manually cleaned.

We validated the same control and path tracking strategy, presented in Section 3.4
and validated with the Baxter robot in the previous case study, using a purposely
designed Cab Front Cleaning Robot functional prototype. This robot is flexible to ac-
commodate different train cab front geometries, which is a significant advantage com-
pared to many commercially available cleaning solutions. Moreover, the detection of
the surface geometry through force sensing provides a robust solution for the out-
door environments, where the cleaning process typically takes place. This prototype
came to life through a partnership project between Heriot-Watt University, Cran-
field University, Bombardier Transportation, Chiltern Railways, and Shadow Robot
Company, entitled “Cab Front Cleaning Robot”, awarded by the Railway Safety and
Standards Board (RSSB), via the Rail Research UK Association (RRUKA). This
project aimed at designing and building a scaled functional prototype of a robotic
manipulator specifically adapted to the task of cleaning the front part of a train cab.

Figure 3.14a shows the final scaled functional robot prototype wiping the surface
of a 1/8 scaled train cab front, using the strategy described in this chapter. This
is a 5 DoF robot with a rotating brush as the end-effector, Dynamixel AX12 servo
motors at the 5 joints, and a OPTOFORCE HEX-58-RE force/torque sensor con-
nected to the brush motor (Figure 3.14b). The contribution from the work developed
throughout this thesis to the project included: the implementation of the control and
path tracking strategy for sweeping the scaled train cab front; and the implementa-
tion of both the low level controllers for the prototype servo motors as well as the
communication between the low level controllers with a ROS interface.

In order to better cover the train front surface we used a raster scan motion instead
of a spiral. The brush at the end-effector rotates along its 3rd local axis, performing
the cleaning motion similar to the spiral movement. The rotational motion of the

60 3. Simultaneous Position/Force Control for Constrained Motions

(a) Scaled functional prototype wiping a scaled train cab front
using a force/torque sensor to detect the surface slope.

(b) Wiping brush and the
force/torque sensor.

Figure 3.14: Cab Front Cleaning scaled robot prototype and detail of the end-effector
used in the experiment.

brush also helped reducing the friction, leading to a more fluid motion.

Figure 3.15 and 3.16 show the position and force measurements corresponding to
the Cab Front Cleaning Robot prototype wiping the scaled train cab front using a
raster scan motion pattern with diameters of 1.5 and 3 cm, respectively. As in the
case of the Baxter figures, each figure is composed of three sub-figures with: (a) the
projection of the end-effector trajectory on the ẽ1 − ẽ3 plane and the reference two
dimensional path; (b) the three dimensional end-effector trajectory; (c) and the
unfiltered 3rd component of the measured force, which should correspond to the
force perpendicular to the surface, for a perfectly aligned wiping tool. To achieve a
smooth motion, we experimentally (through trial-and-error) obtained the following
controller gains: Kz = −0.1 m s−1 N−1; Kxy = −3.0 rad N−1 s−2; KD = 1.0; and
KP = 50.0 Hz, where Kz and Kxy are the proportional gains for the admitance

control in (3.12) and KP and KD are the proportional and derivative gains of the
trajectory tracking control in (3.23). To give a visually smooth motion, we selected
the set points Cv = 0.025 m s−1 and fd3 = −4 N.

Table 3.1 summarizes the mean µ and the standard deviation σ for both the tracking
error ε and the 3rd component of the measured force f3, for both experiments with
the Baxter and the functional prototype, corresponding to the trajectories plotted
in the Figures 3.10, 3.11, and 3.12 for the Baxter experiments and the Figures 3.15
and 3.16 for the prototype experiments. We can verify that for the raster scan with
larger radius and the spiral, i.e., the patterns with smoother change of motion, both
the tracking error mean and standard deviation and the force standard deviation are
lower.

3.5. Case Studies 61

−5 0 5

−20

−10

0

x[1] [cm]

x
[3
]
[c
m
]

(a) Projection of the
end-effector trajectory on
the ẽ1 − ẽ3 plane (solid
line) and reference two
dimensional path (dashed
line).

−5 0
5 −20

−10
0

−20

−10

0

x[1] [cm] x[2] [cm]
x
[3
]
[c
m
]

(b) Three dimensional end-effector tra-
jectory.

0 20 40 60 80 100 120
−20

−15

−10

−5

0

time [s]

f 3
[N

]

(c) Measurement of 3rd force component. When wiping tool is perfectly aligned
with the surface, this component corresponds to the force perpendicular to the
surface.

Figure 3.15: Position and force measurements corresponding to the functional pro-
totype experiment and the raster scan motion with turning diameter of 1.5 cm, for a
tangential velocity of Cv = 0.025 m s−1 and a normal force set point of fd3 = −4 N.

62 3. Simultaneous Position/Force Control for Constrained Motions

−5 0 5

−20

−15

−10

−5

0

x[1] [cm]

x
[3
]
[c
m
]

(a) Projection of the end-
effector trajectory on the ẽ1−
ẽ3 plane (solid line) and ref-
erence two dimensional path
(dashed line).

−5
0

5 −10
0

−20

−10

0

x[1] [cm] x[2] [cm]

x
[3
]
[c
m
]

(b) Three dimensional end-effector tra-
jectory.

0 10 20 30 40 50 60
−20

−15

−10

−5

0

time [s]

f 3
[N

]

(c) Measurement of 3rd force component. When wiping tool is perfectly aligned
with the surface, this component corresponds to the force perpendicular to the
surface.

Figure 3.16: Position and force measurements corresponding to the functional pro-
totype experiment and the raster scan motion with turning diameter of 3 cm, for a
tangential velocity of Cv = 0.025 m s−1 and a normal force set point of fd3 = −4 N.

3.6. Discussion 63

3.6 Discussion

This chapter contains two key contributions: the first is the discovery of the equiva-
lence between three main approaches for the simultaneous motion and force control
in the operational space for torque commanded (dynamic) robotic manipulators; and
the second is the experimental validation of the simultaneous motion and force con-
troller based on the selection matrices approach, in a simpler velocity commanded
(kinematic) robotic manipulator setting for a relevant industrial application — train
cab front cleaning operation. Regarding the first contribution, we showed that we
can derive the operational space controller with constraints, proposed by Mistry and
Righetti [101], by stacking the constraint and the robot Jacobian matrices and then
substituting that expanded Jacobian in the task-space dynamic equations, approach
proposed by De Sapio and Khatib [34]. Moreover, we showed that the selection matri-
ces approach (or originally denominated as Generalized Task Specification Matrices)
for the simultaneous motion and force control in the operational space, proposed
by Khatib [77], also corresponds to the approach of stacking the Jacobian matrices
for each of the force and motion-tasks and then pass it through the task-space dy-
namics. In essence, these equivalence becomes obvious when we consider that for the
constraint directions we perform force control and for the unconstrained directions
we perform motion/position control. This last equivalence should readily apply to
the simpler kinematic controlled robots case.

The choice of using the selection matrices method for the two case studies presented,
rather than using a stack of task/constraint Jacobian matrices, was purely because
these experiments preceded the discovery of the equivalence between these two ap-
proaches. The approach of using selection matrices remotes back to Raibert and
Craig [135]’s work, which means it is a much older and widely used approach. It
is also quite intuitive to think in this way of selecting specific spatial directions for
force or position control. These first case studies were useful to trigger our interest,
leading to the research of the different methods for simultaneous position and force
control of robotic manipulators.

The major limitations of the contributions from this chapter are: the lack of ex-
periments for simultaneous position/force control with a torque controlled robotic
arm, and subsequent comparison of the results with the ones obtained from the
velocity controlled arms; and the need for further comparisons between the three
control approaches for simultaneous motion and force control — despite being ana-
lytically equivalent, these methods might perform differently from a numerical point
of view, i.e speed of computation and numerical stability. The benefits of torque
controlled versus velocity/position controlled robots is still an ongoing debate on
the robotics community, and most probably an application dependent problem. On
one hand, torque controlled robots can provide compliance, which is an important
property when dealing with contacts and interactions, but on the other hand, they

64 3. Simultaneous Position/Force Control for Constrained Motions

require good models of the interaction and their own dynamics, which are often
inaccurate [110] or inaccessible. Many industrial robots simply lack torque control
capabilities, which requires specialized joint motors. Another consideration is the
need for real-time computations, where torque control loops commonly run at much
higher sampling frequency compared to velocity control loops [138]. Regarding the
numerical comparison, even though this is a worth pursuing experiment, in our ex-
perience, for the typical dimensionality of single arm manipulators (6-7DoF), the
numerical stability and computational speed differences between different controllers
tends to be unimportant, when factoring the current computational power and low
machine errors. Finally, this work only addresses the simultaneous position and force
control of a robotic manipulator once it is already in contact with a curved surface.
The making and breaking of contacts is in itself another challenging problem in the
robotics domain, both from a control and planning perspective [133, 139, 140], which
is out of the scope of this work. In our robotic experiments, we evaded this complex
problem by simply implementing a contact phase where the robot slowly approaches
the surface, avoiding any force spike due to impact. Once the force sensor would
sense a contact force, the robot would initialize the motion along the surface.

Regarding the case study of wiping/cleaning the train’s exterior surfaces, we vali-
dated the feasibility of the application of our simultaneous position and force control
strategy to this type of industrial tasks. Given that train cleaning solutions need to
handle a wide heterogeneity of train shapes, one of our questions was whether the
use of force sensing could aid an autonomous cleaning system to be more flexible and
adaptable to unknown or uncertain surface geometries. We addressed that question
by considering the extreme case scenario where we have access to minimal informa-
tion about the shape — only assuming that the surface is smooth and has known
boundaries — and can only rely on the measurement of the interaction force. As we
can see from the results, the robots successfully adapt their wiping tool orientation
while traversing the curved surfaces, albeit at a relatively slow pace. Therefore, we
believe that any viable/commercial industrial solution for the autonomous cleaning
of curved surfaces will benefit from the integration of interaction force information
with other modes of perception, such as vision, for improving their overall opera-
tion speed and reliability. The evaluation of criteria for cleaning effectiveness, such
as time or cleanliness, and subsequent comparison with the current human manual
cleaning process were out of the scope of this work. Finally, the “Cab Front Clean-
ing Robot” project, which motivated the study of our control approach, culminated
in the development of a scaled functional prototype which we used to verify our
technique and later led to a followup Innovate UK funded project — consisting of
a Knowledge Transfer Partnership (KTP) between Cranfield University and Gar-
randale Ltd, a UK based company which designs and manufactures various systems
for the UK railway industry – with the goal of designing and developing a full-scale
prototype.

Chapter 4

Learning Generalizable Constrained
Policies by Demonstration

“An idea is always a generalization, and generalization is a
property of thinking. To generalize means to think.”

Georg Wilhelm Friedrich Hegel

This chapter introduces and reviews a family of methods for learning control policies

from constrained demonstrations. It presents a novel Constraint-aware Policy Learning

(CaPL) method for learning underlying/unconstrained policies that generalize across dif-

ferent constraints/tasks. The method consists of a two step process that includes estimat-

ing/learning the task-constraint and using that estimation for learning the unconstrained

policy. The chapter contains two simulation case studies for comparing policy learning

methods and a case study with real hardware, using the KUKA LWR 3, for the validation

of the CaPL generalization capabilities. It also goes through a discussion on constraint

similarity analysis and theoretical analysis of closed-form solutions for estimation of dif-

ferent task-based constraints.

4.1 Introduction

An important function of the human upper body is to perform various force in-
teractive tasks when moving in contact with the external environment [116, 158].
Examples of common everyday tasks constrained by the physical environment are
opening a door, pulling out a drawer and turning a steering wheel [65, 116]. It
seems plausible to assume that humans exploit the constrained nature of those tasks
and the redundancy of their joint angles and muscle forces, when adopting funda-
mentally different control strategies for physically constrained and unconstrained
motions [116, 158]. However, when replicating such control strategies with robotic
manipulators, the traditional dynamic modelling and control approaches, covered by

65

66 4. Learning Generalizable Constrained Policies by Demonstration

the previous chapters, might fail to fully capture some nuanced complexities of the
motions that humans employ.

A growing number of researchers in the field of robotics seem to believe that the
answer for mimicking such complex behaviours lies in adopting some form of learn-
ing techniques, i.e capturing those motions from data rather than implementing
purposely designed controllers. Indeed, robot learning research has become quite
popular, with countless works published in all main robotics’ venues and more re-
cently even with dedicated conferences to the topic. A term that encapsulates this
idea of mimicking complex behaviors through observation is Robot Programming by
Demonstration (PbD), a topic of robot learning that aims at researching and imple-
menting user-friendly training interfaces for teaching robots to perform specific tasks
by non-specialized humans, automating the manual programming of robots [18, 146].
Other terms widely used in the literature are Robot Learning from Demonstration
(LfD) [17, 147] and Imitation Learning [18, 146].

The engineering-oriented or computational research approaches to Imitation Learn-
ing typically focus on the development of appropriate representations — what are
appropriate control policy functions? (i.e. what to imitate?) — and respective learn-
ing algorithms — how to learn the parameters of a chosen control policy? (i.e. how
to imitate?) [18, 146]. Questions such as when to imitate? and whom to imitate?
remain largely unexplored [18]. Given observations of the states and actions of a
demonstrator and given a control policy function, the aim of PbD is to directly learn
the policy parameters, which encode the demonstrated behaviour or trajectory, us-
ing some supervised learning method [19, 146]. However, the problem with a naive
Direct Policy Learning (DPL) method is that slightly different conditions from the
ones used during demonstration, e.g. different environment and/or positioning of the
robot, can result in a faulty repetition/replaying of the learnt policy.

Many works attempt to address this issue of lack of robustness and generalization
by exploring various policy encodings — essentially addressing the what to imi-
tate? question [18]. One prominent example are the Dynamic Movement Primitives
(DMPs) [70, 71, 149], which is a line of research that proposes policies combining a
nonlinear component, learnt from demonstration, with a point or a limit cycle at-
tractor. The nonlinear component is responsible for reproducing the demonstrator
behaviour whereas the attractor component ensures the stability and generalization
of the policy. The DMP ability of generalizing to different trajectory goals, scales
and speeds, is particularly useful for reproducing learnt trajectories whilst avoid-
ing obstacles [70, 71]. Other examples of methods for learning generalizable and/or
robust policies from demonstration are, for instance, Probabilistic Movement Primi-
tives (ProMPs) [120, 121] and Learning Dynamical Systems with Gaussian Mixture
Models (GMMs) [76].

Despite addressing some of the challenges regarding the lack of generalization, DPL
methods fundamentally lack any explicit awareness of the notion of constrained mo-

4.1. Introduction 67

(a) (b) (c)

Figure 4.1: Manual cleaning/wiping of an electric train, illustrating in a concrete
real application scenario the ability of humans to: perform constrained manipulation
motions in contact; adapt the same underlying wiping motion to different parts of a
complex shaped surface. Willesden depot, London (2016).

tions. Generally speaking, DPL methods either learn a free/unconstrained motion
trajectory or implicitly integrate the constraints in the learnt trajectory, i.e. the
constraint is invariant across the demonstrations and tests [63]. For example, by
changing the point of attraction or scaling of a DMP, one might be able to avoid
an obstacle, such as a table surface, absent in the demonstrations. However, what if
that trajectory is meant to be in contact with the table surface, and the table geom-
etry or positioning changes during the replay of the learnt motion. In that case, the
table constraints the whole motion and, therefore, the control policy needs somehow
to encode the interference of the table in order to adapt the full motion to variations
of the table positioning. An example of a concrete real application scenario is the
manual cleaning/wiping of the front panel of a train. Figure 4.1 shows an operator
successfully adapting a given wiping motion — what we call the underlying motion
— to various parts of the train surface with different geometries.

More than being able to adapt a learnt motion to varying constraints, we should
be able to handle learning those motions under varying constraints. Let’s consider
the case where the demonstrations themselves contain motions subject to different
environment constraints. Figure 4.2 exemplifies the process of teaching a robot to
execute circular wiping motions on a table, for different table positions and orien-
tations. In this case, the challenge is broader than how to adapt or generalize the
learnt control policy? and goes back to how to imitate? when there is variability
of the data, resulting from several demonstrations subject to different constraints.
Howard [63] devoted his thesis to the problem of learning control policies from con-
strained motions, focusing on developing learning methods that are able to capture
an underlying control policy — by assumption invariant across demonstrations —
subject to a specific class of constraints on the motion — by assumption variant
across demonstrations [67].

The goal of this chapter is to address the challenge of exploiting the constrained

68 4. Learning Generalizable Constrained Policies by Demonstration

(a) (b) (c) (d)

Figure 4.2: Example of using Programming by Demonstration for teaching a robot
to execute circular wiping motions on a table, for a variety of different table positions
and inclinations.

nature of certain tasks for learning generalizable control policies, by reviewing and
expanding on the work of Howard [63]. The task-based constraint constitutes a
useful abstraction for achieving generalization of underlying motions across different
tasks and constraints, by splitting the space of control actions into task-space and
null-space components.

4.2 Background

The goal of this section is to review the main research literature on learning con-
trol policies from constrained motion. This section introduces the nomenclature and
the key concepts for the exploration of learning constraint-aware policies by demon-
stration, covering from Direct Policy Learning to learning constraint-consistent and
null-space policies.

4.2.1 Direct Policy Learning

Schaal et al. [146] formalize the problem of motor control as finding a task-specific
control policy function π(·), generically written as

u(t) , π(s(t), t; β), (4.1)

which selects appropriate motor commands or actions u(·) for all the actuators of a
moving system as a function of its internal and the environment state, encapsulated
by s(·), and for a given time t. Equation (4.1) represents a non-autonomous policy,
i.e. explicitly dependent on t. From now on, let us only consider the subset of
autonomous policies

u(t) , π(s(t); β), (4.2)

4.2. Background 69

i.e. policies explicitly independent from t. Finally, β represents the control policy’s
set of open parameters. In the context of this chapter, the terms policy and control
policy are interchangeable.

There are two key elements to the problem of motor control: choosing an appropriate
control policy function π(·) — policy selection [32]; and finding suitable values for
the set of parameters β — parameter estimation. Generally speaking, Programming
by Demonstration refers to the problem of parameter estimation, i.e. finding β̂ given
a policy function π(·). Therefore, unless stated otherwise, writing the learnt policy
as π̂(·) essentially means π(·; β̂).

Crucial to Imitation Learning is the existence of an evaluation criterion, which quan-
tifies how similar are the demonstrated and learnt trajectories/behaviours. Defining ε
such that it captures the task goal is, in general, a nontrivial problem. Even in bio-
logically inspired works, discovering what are the metrics learners use when imitating
remains a challenge [146]. In computational approaches to Imitation Learning, this
evaluation criterion will typically be an error metric ε(·), function of the policy pa-
rameters β, defined for a given policy function π(·), state and action trajectories s(t)
and u(t), respectively, with t ∈ [0, T] ⊂ R. When obvious from the context, ε(w)
will replace the more extended version ε(w; π, s, u).

Imitation by Direct Policy Learning then simply consists in learning an appropriate
control policy directly by supervised learning, i.e. assuming observable and identifi-
able u and s, the problem consists in finding β ∈ B that minimizes a given cost ε,
or more formally

β̂ ∈ arg min
β∈B

ε(β), (4.3)

As evaluation criteria, it is quite common to use a squared error of the learnt actions
— i.e the square of the Euclidean distance in the actions space — over the time
horizon of the observations [146]. Let’s then define the normalized Direct Policy
Error (nDPE) of an estimated policy π̂ as

εnDPE(π̂; s, u) ,
1

T

∫ T

0

‖u(t)− π̂(s(t))‖2 dt, (4.4)

using the given π̂ notation to compactly represent given π(.) and β̂.

In general, we lack access to the state and action trajectories, s(·) and u(·), and can
only observe data samples. Let’s represent a sequence of K states as the set {sk}Kk=1 =

{s1, s2, . . . , sK} and a sequence ofK controls or actions as the set {uk}Kk=1 = {u1, u2, . . . , uK},
or in a short notation as {sk} and {uk}, respectively. The sequence {sk} corresponds
to the application sk = s(tk) for all time instances tk with k ∈ [1,K] ⊂ Z, such
that 0 ≤ t1 < · · · < tk < · · · < tK ≤ T , and likewise for the sequence of con-
trols {uk}. A dataset for training policies contains all pairs of observed states and
actions

X = {(sk, uk)}Kk=1 = {(s1, u1), (s2, u2), . . . , (sK, uK)}. (4.5)

70 4. Learning Generalizable Constrained Policies by Demonstration

We then redefine the normalized Direct Policy Error for the sampled data case as

εnDPE(π̂;X) ,
1

K
K∑
k=1

‖uk − π̂(sk)‖2, (4.6)

by approximating (4.4) through a Riemann sum with a constant sampling interval ∆t,
such that T = K∆t. Now, depending on the choice of π, we can devise different
methods for minimizing (4.6).

4.2.2 Receptive Field Weighted Regression

A possible model for a global policy π is to use a weighted combination of M local
models, such that

π(s) =

∑M
m=1 ωm(s)πm(s)∑M

m=1 ωm(s)
=

M∑
m=1

ωm(s)πm(s), (4.7)

where

ωm(s) =
ωm(s)

ω(s)
(4.8)

are the importance weightings of each model, with ω(s) =
∑M

m=1 ωm(s) and ωm(s) =

e−
1
2

(s−cm)>Σm(s−cm) being a receptive field, with center cm, and a positive definite
variance matrix Σm, defining the location and shape of the receptive field [10, 148].
Applying or learning such a model will usually include some either manual or auto-
matic process for choosing/finding the centers and variances of the receptive fields
which, as we shall see, is typically a separate process from learning the local mod-
els πm themselves.

Local Least Squares

One of the properties of the weighted combination of local models is the partition of
a large set of model parameters β into M subsets of local model parameters βm, such
that β = [β1; . . . ; βM]. This partition allows finding an upper bound to the error
metric of the global model (4.6) based on the following summation of error metrics
of each individual local model

εnDPE(β) ≤
M∑
m=1

εnDPEm(βm), (4.9)

with

εnDPEm(βm) =
1

K
K∑
k=1

ω2
m(sk)‖uk − πm(sk; βm)‖2. (4.10)

4.2. Background 71

The proof of the result (4.9) is in Appendix B.1. We can use this property to
simplify the learning of the global policy by minimizing the upper bound (4.9) instead
of (4.6), which translates into performing M simpler minimizations rather than a
single complex one.

By choosing local models πm that are linear on a set of given feature functions ψπ as

πm(s) = ψπ(s)βm, (4.11)

the local error metrics become

εnDPEm(βm) =
1

K
K∑
k=1

ω2
m(sk)‖uk − ψπ(sk)βm‖2, (4.12)

which we can minimize via Weighted Least Squares (WLS), as

β̂m = arg min
βm

εnDPEm(βm) =
(
Ψ>

π
WmΨπ

)−1
(WmΨπ)>U‖, (4.13)

with

U‖ =

u1
...
uK

 , Ψπ =

ψπ(s1)
...

ψπ(sK)

 and Wm = diag
(
ω2
m(s1)⊗ Inu , . . . , ω2

m(sK)⊗ Inu
)
,

where ⊗ denotes the Kronecker product operator, Inu an nu × nu identity matrix,
and nu the dimensionality of the space of controls uk ∈ Rnu [10]. To avoid storing
large matrices such as Wm, note that

WmΨπ =

 ω
2
m(s1)ψπ(s1)

...
ω2
m(sK)ψπ(sK)

 . (4.14)

We will refer to the estimation of the parameters βm via (4.13) as local Least Squares
(LS), because it performs a Least Squares operation for each local model.

Global Least Squares

The choice of local linear models (4.11) also allows for a closed-form solution of the
optimal parameters

β̂ = arg min
β

εnDPE(β) = Ψ†Wπ
U‖, (4.15)

with

ΨWπ =

W
>(s1)⊗ ψπ(s1)

...
W>(sK)⊗ ψπ(sK)

 , (4.16)

72 4. Learning Generalizable Constrained Policies by Demonstration

U‖ =

u1
...
uK

 and W(s) =

 ω1(s)
...

ωM(s)

 ,
where † denotes the pseudo-inverse of a matrix, that directly minimizes the error
metric (4.6), rather than its upper bound (4.12). The proof of the result (4.15) is
in Appendix B.2. We will refer to the estimation of the total set of parameters β
via (4.15) as global Least Squares (LS), because it performs a single Least Squares
operation for all local models. Note that we can efficiently implement the series of
Kronecker products in (4.16), by using a single KhatriRao product [80, 93], which is
part of the MatLab® tensor toolbox library.

4.2.3 Modelling Constraints

The central assumption of Howard’s [63] and this chapter’s line of work for learning
constrained motions is that the controls u are subject to an equality constraint
written in the form

A(·)u = b(·), (4.17)

where A(·) ∈ Rnts×nu is a constraint matrix and b(·) ∈ Rnts is a task control/policy
vector, and they might be constant or functions of time t and/or state s.

The solution to (4.17) that enables the decomposition of the controls u into two
orthogonal components, while simultaneously minimizing ‖Au− b‖2, is

u = π(·) , A†b︸︷︷︸
tsu

+P u
π(·)︸ ︷︷ ︸

nsu

, (4.18)

where P = Inu−A†A is an orthogonal projection matrix and A† is the Moore-Penrose
generalized inverse of A. The solution (4.18) conveniently decomposes the control u
into a task-space component tsu, which is responsible for a given task motion, and a
null-space component nsu, which is by definition neutral to the task space. Consider,
for instance, a velocity controlled redundant robotic manipulator, where u = q̇ would
be the commanded joint velocities, b = ẋ the desired end-effector velocity and A the
Jacobian of the manipulator. For this kinematic control example, the task space
component could be tracking a desired trajectory with the end-effector, while the
null space component could be driving the manipulator’s joint angles towards a
comfortable configuration [159].

A simple way of embedding the constraint assumption from (4.17) is to assume
that all our policies of interest are constrained policies, that follow the structure
of (4.18). Howard et al. [65, 69] introduce this structure for learning constrained
motions for the case where b = 0 and, later on, Towell et al. [159] consider the case

4.2. Background 73

for which b 6= 0. They also unravel the notion of unconstrained policy uπ, which
outputs unconstrained control actions

uu(t) = u
π(s(t); βu), (4.19)

that when multiplied by the projection matrix P originate the null-space component
of the control actions

nsu = P uu. (4.20)

This unconstrained policy terminology naturally raises the question of what does to
be unconstrained exactly mean? In fact, its definition (4.19) is identical to the one
we used for a generic autonomous control policy (4.2). In this work, a constrained
policy will specifically refer to policies explicitly modelling constraints according
to (4.18), whereas an unconstrained policy will refer, in general, to any other policy
with no explicit encoding for constraints. From that perspective, any policy learned
through DPL is an unconstrained policy, because even if the learning data includes
control actions generated under a given constraint, the policy will be unaware of that,
essentially acting as an unconstrained policy. From that reasoning, one approach for
achieving generalizable policies is, rather than learning the constrained policies di-
rectly, learning an unconstrained policy instead and plugging it in (4.18), allowing its’
application across different task-based constraints [10]. In this context, it is common
to refer to this unconstrained policy/motion as the underlying policy/motion, given
that that’s the underlying motion intended for generalization. Towell et al. [159] and
Armesto et al. [12] also often use the term null-space policy referring to uπ, given
that both its application and learning intimately tie with the concept of null-space.
Note, however, that the output of uπ(t) ∈ Rnu itself lies in a space larger than the
null-space N (A) ∈ Rnu , indicating that it might be a misleading term. In this de-
scription we make the distinction between underlying or unconstrained policies uπ
and null-space policies nsπ.

4.2.4 Learning from Constrained Policies

Having introduced the concept of constrained motions/policies, the question we can
pose now is how to learn from them? The most direct approach would be to attempt
to learn them through a Direct Policy Learning method. However, this direct imita-
tion usually generates policies unable to adapt to slightly different goals, and simply
repeats the observed action patterns without any knowledge on how to adapt them
to new/unseen contexts [146]. If the goal is to achieve some generalization capabili-
ties, there needs to be an essential component that remains unchanged across various
demonstrations [18]. Therefore, it is imperative to establish what that essential com-
ponent is, which lead us to one of the main assumptions about learning constrained
policies. A key assumption of Howard’s [63] and this chapter’s line of work is that

74 4. Learning Generalizable Constrained Policies by Demonstration

A1

A2

uπ

nsu1
nsu2

û

(a)

A

uπ1

uπ2

nsu

(b)

Figure 4.3: Illustration of the effects of constraints on the generation of control
actions under an underlying policy uπ and the problems resulting from learning such
policies through DPL methods, being: (a) averaging, the problem that the result of
averaging actions generated under multiple different constraints A1 and A2 differs
from the ground truth underlying policy; and (b) indetermination, the problem that
multiple different policies can explain the same constrained control action.

all the training control actions result from executing the same underlying policy uπ

under various different constraints and tasks, A and b.

Consider a given dataset containing samples as pairs of states and actions X =
{(sk, uk)}Kk=1. Howard et al. [67, 68, 69] generate those samples from the same un-
derlying policy uπ subject to randomly varying constraints A — these works as-
sume b = 0. This assumes that the varying constraints fully justify the variability of
the data, rather than the noise associated with the underlying policy, as it is typically
the case for DPL. Towell et al. [159] and Armesto et al. [10, 12], on the other hand,
consider the case that a given dataset X contains a set of J sub-datasets {Xj}Jj=1.
Each sub-dataset contains a different task/constraint with samples of pairs of obser-
vations Xj = {(sij, uij)}Iji=1. The total number of samples is, therefore, K =

∑J
j=1 Ij.

If all the sub-datasets contain the same number of samples, then the total number
of samples is simply K = IJ . This chapter follows the case of having separate sub-
datasets for different tasks and constraints. However, the assumption that the same
underlying policy uπ generates all samples from the dataset remains valid.

The main motivation for learning from constrained policies is to avoid the need for
multiple policy models by learning an underlying policy that generalizes over con-
straints [65]. However, there are other motivations, such as addressing the problems
of averaging and indetermination, illustrated in Figure 4.3.

Averaging and Indetermination problems with DPL

The typical assumption when learning policies through regression is that observations
are noisy. For example, for the particular case of Gaussian noise, minimizing (4.6)

4.2. Background 75

even corresponds to maximising the expected value of the observations [19]. But
what if there is some unmodelled event, such as varying constraints as we assume
in this work, that justifies the variability in the control actions better than simply
added random noise. In that case, applying a DPL method, usually consisting of
some regression, will result in estimates of the control actions that essentially average
out the observed actions rather than finding the ground truth unconstrained policy.
Consider the example illustrated in Figure 4.3a where two different constraints A1

and A2 lead to the observed actions nsu1 and nsu2, respectively, for some state s.
Assuming noise as the reason for variability in the observed actions leads to an
estimated action û which averages the observations and, therefore, differs from the
ground truth actions nsu = (Inu − A†A) uπ(s), for the case where b = 0.

Figure 4.3b illustrates another issue with disregarding the notion of constraints when
assuming that those influence the generation of the observations. This is the problem
of indetermination, where two different policies uπ1 and uπ2, and indeed an infinite
number of different policies, can justify the observed control action nsu. Howard [63]
refers to this problem as the degeneracy problem. This issue motivates the reasoning
that for capturing underlying unconstrained policies, the dataset must contain a rich
set of demonstrations generated under a variety of different constraints. Take the
extreme case scenario where the dataset contains demonstrations only exposing a
single constraint. In that case, it is impossible to fully recover an underlying policy,
meaning that the learnt policy implicitly encodes the constraints present during the
demonstrations being, therefore, unable to generalize to other contexts, as it is our
goal.

4.2.5 Metrics for Evaluating Performance

A crucial concept in imitation learning is the determination of appropriate eval-
uation metrics [18]. With that in mind, Howard et al. [67] define the Uncon-
strained Policy Error (UPE) of the estimated underlying policy uπ̂ for a given
dataset Xu = {(sk, uuk)} as

εUPE(u
π̂;Xu) ,

K∑
k=1

‖ uuk − u
π̂(sk)‖2, (4.21)

and the Constrained Policy Error (CPE) of the estimated underlying policy uπ̂ for
a given orthogonal projection P and a given dataset Xns = {(sk, nsuk)} as

εCPE(u
π̂;P,Xns) ,

K∑
k=1

‖ nsuk − P (sk)
u
π̂(sk)‖2. (4.22)

76 4. Learning Generalizable Constrained Policies by Demonstration

Howard et al. [66] use normalized versions of (4.21) and (4.22), by defining εn... =
ε.../Kσ2

π
. The following definitions of normalized Unconstrained Policy Error (nUPE)

εnUPE(u
π̂;Xu) ,

1

K
K∑
k=1

‖ uuk − u
π̂(sk)‖2, (4.23)

and normalized Constrained Policy Error (nCPE)

εnCPE(u
π̂;P,Xns) ,

1

K
K∑
k=1

‖ nsuk − P u
π̂(sk)‖2, (4.24)

drop the normalization factor σ2
π
, because it is constant when both learning and com-

paring learned policies across different methods, assuming a given ground truth pol-
icy. Note that the definition of normalized Unconstrained Policy Error (nUPE) (4.23)
is essentially identical to the definition of normalized Direct Policy Error (nDPE) (4.6).
Only the input policy function and input dataset differ.

4.2.6 Learning Constraint-consistent Policies

Howard et al.’s [64] original approach for learning from constrained demonstrations
assumes a potential-based unconstrained policy

u
π(s) = −∇sψu(s), (4.25)

where ψu is some scalar potential function and ∇ is the gradient operator. Rather
than learning uπ, Howard et al. [64] learn ψu instead. By assuming that the control
actions only contain a null-space component, i.e. tsu = 0, and assuming kinematic
policies, i.e. u = ṡ, it results that

u(t) = nsu(t) = ṡ(t) = −P∇sψu(s(t)). (4.26)

Assuming a set of J sub-datasets {Xj}Jj=1, each sub-dataset Xj = {(sij)}Iji=1 rep-
resenting a different trajectory subject to a different constraint Aj, Howard et al.
[65, 66] learn ψu through a three step process, consisting in: first, obtaining esti-
mates of ψu using Euler integration on (4.26), obtaining a dataset formed of the
tuples (sij, ψ̂uij); second, aligning all the trajectories so that for similar states s,
across different trajectories, the values of ψu are similar, obtaining a dataset formed
of the tuples (sij, ψ̂uij + ∆j), with ∆j being the alignment shift for each trajectory;
and finally, learning a model ψu through Locally Weighted Projection Regression
(LWPR) [166], using the newly formed dataset.

Learning potential-based unconstrained policies poses quite strong assumptions which,
ideally, we would like to relax. Relaxing one of those assumptions — the form of
the policy itself (potential-based) — leads to the problem of how to learn generic

4.2. Background 77

unconstrained policies. The difficulty is that assuming unobservable unconstrained
actions uu and unknown constraints P renders both metrics presented in the previous
section, respectively the UPE and the CPE, unusable for learning purposes. Essen-
tially, those metrics will only be suitable for evaluation purposes in artificial/made-up
examples with either known ground truth unconstrained policy, for UPE, or known
constraints, for CPE. Given that the unknown constraint P , by assumption, disables
the use of CPE (4.22) for estimating uπ, Howard et al. [69] propose to approxi-
mate P ≈ ũũ>, with ũ = u/‖u‖, and define an new metric, the Constraint Consistent
Policy Error (CCPE) as

εCCPE(u
π̂;Xns) ,

K∑
k=1

‖ nsuk − nsũk
nsũ>k

u
π̂(sk)‖2, (4.27)

which is possible to minimize.

Howard et al. [67] propose the Constraint Consistent Learning (CCL) method, which
consists in minimizing (4.27), hence, assuming that the projection for any given
observation is explicitly unknown, in which case we can lump all the observations in
a single full dataset X , without any need for splitting them according to different
trajectories. Furthermore, Howard et al. [67] establish that

εCCPE ≤ εCPE ≤ εUPE (4.28)

and recognize that, ideally, we would like to minimize an upper bound rather than
a lower bound. However, it is for the moment unclear how to derive such an up-
per bound given the assumptions of learning from constrained data. Nevertheless,
the CCL approach is able to reconstruct an underlying unconstrained policy, by con-
solidating observations from different constraints. By modelling the unconstrained
policy uπ as a weighted combination of M locally linear models

u
π(s) =

M∑
m=1

ωm(s)ψπu(s)βum ,

obtaining the set of parameters βu = [βu1 ; . . . ; βuM] that minimize (4.27) or its de-
coupled upper bound (based on the inequality (4.9)), is simply a matter of rewriting
the feature functions in (4.15) and (4.13) solutions, respectively, as

ψπ(s, u) =
uu>

u>u
ψπu(s). (4.29)

Later on, Howard et al. [69] argued that only minimizing the Constraint Consistent
Policy Error (4.27) results in a uπ that explains any variations in the observations
exclusively as variations in the underlying constraints, instead of variations in the
policy itself, resulting in poor performance for the cases where the motions are truly

78 4. Learning Generalizable Constrained Policies by Demonstration

unconstrained or there are similar constraints between observations. By hypothesiz-
ing that this might be a manifestation of learning a policy based on a lower bound
error metric, Howard et al. [69] propose a Robust Constraint Consistent Learning
(Robust CCL) approach for learning uπ based on a two-stage optimisation of

εDPE(u
π̂;Xns) + αεCCPE(u

π̂;Xns), (4.30)

which combines two risk functionals: the DPE metric typically associated with learn-
ing unconstrained policies from unconstrained observations; and the CCPE associ-
ated with learning constraint consistent policies, where α is a weighting factor that
reflects the prior belief on whether the data contains different constraints.

4.2.7 Handling Task-Space Component

A strong assumption when applying CCL is that the null-space controls nsu are
observable, which is true only if either the task space controls tsu are null, i.e b = 0,
or if we have a process for disambiguating the task component and the null-space
component from the observed controls u. Towell et al. [159] are the first to address
this question of handling control actions containing a task space component, i.e.
the full problem of learning unconstrained policies with controls subject to Au = b.
Towell et al. [159] propose a two-step approach, with a first step consisting in learning
a null-space policy for each sub-dataset Xj, assuming each sub-dataset contains a
single task/constraint, and a second step consisting in learning the unconstrained
policy, which by assumption is the same across all sub-datasets, using estimates of
the null-space controls obtained through the previously learnt null-space policies.

By using the property that A†P = 0, we obtain the null-space component of the
observed controls as nsu = Pu. We could then define a Null Space Policy Error
(NSPE) metric as

εNSPE(ns
πj;Pj,Xj) ,

Ij∑
i=1

‖Pjui − ns
πj(si)‖2, (4.31)

that evaluates the null-space policy nsπj for a given sub-dataset Xj = {(sij, uij)}Iji=1.
However, we are unable to use directly (4.31) for learning null-space policies be-
cause, by assumption, the projection matrix Pj of each sub-dataset is unknown.
Similar to [67]’s approach, Towell et al. [159] propose to approximate Pj ≈ P̃j =
nsπ̃>j

nsπ̃j, with nsπ̃j = nsπj/‖ nsπj‖, and for each sub-dataset find nsπ̂j that mini-

mizes εNSPE(nsπj; P̃j,Xj). Because εNSPE becomes nonlinear on the parameters to
estimate, even when using a linear policy, Towell et al. [159] use a numerical opti-
mization solver, based on the Levenberg-Marquardt algorithm [104], to estimate the
null-space policy.

4.2. Background 79

After learning a null-space policy for each sub-dataset, it is possible to generate sub-
datasets with the null-space component of the controls Xjns = {(sij, nsuij)}Iji=1 out of
the original sub-datasets Xj. Then lumping all sub-datasets together Xns = {Xjns}
allows using CCL for learning the unconstrained policy uπ.

4.2.8 Learning Null-Space Projections

As discussed previously, the unknown constraint assumption renders the CPE unfit as
a learning metric, being only useful for evaluation purposes. Howard et al. [67] derive
a lower bound of CPE, useful for learning unconstrained policies, by approximating
the projection matrix P with a 1 dimensional (1-D) projection for each observed
control action. A different approach would be to estimate P , instead, and then
use its estimate for minimizing CPE when learning the unconstrained policy. This
approach will typically assume that, given J sub-datasets, each sub-dataset Xj only
contains observations from a single constraint.

Lin et al. [89] consider the problem of learning the null-space projection for con-
strained motions and define

εPOE(Â, {nsuk}) ,
K∑
k=1

‖ nsuk − P̂ nsuk‖2 (4.32)

=
K∑
k=1

‖Â†Â nsuk‖2 =
K∑
k=1

nsu>k Â
†Â nsuk, (4.33)

as the Projected Observation Error (POE) metric. When referring to learning or
estimating the null-space projection matrix P̂ , actually means learning the constraint
matrix Â and then computing the respective orthogonal projection matrix. In that
case, one approach for learning the null-space projection simply consists in finding Â
that minimizes the POE.

Lin et al. [89] start by representing the constraint matrix as

A ,

 A1
...

Ants

 , (4.34)

where Ai = [Ai[1], . . . , Ai[nu]] ∈ Rnu is a row vector corresponding to the ith constraint
in the observations, such that Ai ⊥ Aj for all i 6= j in order to guarantee that
any new added constraint Ai leaves the previous i − 1 constraints unaffected. Note
that A ∈ Rnts×nu , where nts is the number of constraints and nu is the dimensionality
of the control space. Furthermore, Lin et al. [89] model each individual constraint Ai
as unit vectors represented according to the dimension nu as:

80 4. Learning Generalizable Constrained Policies by Demonstration

• Ai = [cos θi[1], sin θi[1]] ∈ R2;
• Ai = [cos θi[1], sin θi[1] cos θi[2], sin θi[1] sin θi[2]] ∈ R3;
• Ai = [cos θi[1], sin θi[1] cos θi[2], sin θi[1] sin θi[2] cos θi[3], sin θi[1] sin θi[2] sin θi[3]] ∈ R4;

and so forward for nu > 4. Therefore, the problem of estimating Ai shifts to the
problem of estimating θi = {θi[1], . . . , θi[nu−1]}, which consists in finding the set of pa-
rameters {θi}nts

i=1 that minimize (4.32). Assuming a single constraint, i.e. nts = 1, Lin
et al. [89] simply propose to sample θ1[i] ∈ [0, π] and to pick the corresponding Ai
resulting in minimum POE. For multiple constraints, i.e. nts > 1, Lin et al. [89]
propose an iterative approach consisting in: finding the first constraint Â1 through
sampling, as described before; finding the second and successive constraints through
sampling as well, but subject to Âj ⊥ Âi ∀i < j, when choosing the minimizer. As a
stopping criteria, we either know a priori the total number of constraints to estimate
or stop when adding a new estimated constraint results in higher POE.

Later on, Lin et al. [90] consider the estimation of the constraint matrix A for the
full case of Au = b, i.e. controls containing task-space component. Their approach
consists in using the first step optimization proposed by Towell et al. [159] to split
control actions u into their task-space component tsu and null-space component nsu,
by learning null-space policies. Then, Lin et al. [90] minimize a redefined POE

K∑
k=1

(
‖ nsûk − P nsûk‖2 + ‖P tsûk‖2

)
, (4.35)

with a nonlinear optimization solver, using the Levenberg-Marquardt algorithm [104],
while keeping the same θ parameterization for the constraint matrix from [89], pre-
viously described.

Manavalan and Howard [97] point out the scalability issues of the sampling-based
estimation in [89] and rewrite the POE as

εPOE(Â, {nsuk}) =
K∑
k=1

nsu>k Â
†Â nsuk = Tr

(
U>Â†ÂU

)
, (4.36)

with U = [u1, . . . , uK] and Tr(·) representing the trace of a matrix. Manavalan and
Howard [97] then derive the gradient of (4.36), obtaining

∇θεPOE = AUU>∂A
∂θ

, (4.37)

allowing for the use of gradient descent optimization methods for estimating the θ
parameters.

As the constraint parameterization from [89] assumes that the constraints are linear
in the control space, Lin et al. [90] also consider the case where constraints are
nonlinear in the control space, given the linearization mapping

A(s) , βAψA(s), (4.38)

4.2. Background 81

and propose the appropriate modifications to its estimation. However, by a change
of variables we could keep the exact same estimation process for the case where the
constraints are linear in the control space. Let

yA(s, u) = ψA(s)u, (4.39)

then finding A such that Au = 0 turns into finding βA such that βAyA = 0, which
corresponds to minimizing εPOE(βA, {nsyAk}), with nsyAk = ψA(sk)

nsuk (where for
now we ignore the task component b). In the very same year, Armesto et al. [9]
proposed an identical description of the constraint matrix A as in (4.38), representing
the matrix of parameters

βA ,

 βA1
...

βAnts

 , (4.40)

where βAi with i ∈ [1, nA] are orthonormal row vectors, i.e. βA is a semi-orthogonal
matrix, and nA is the number of feature functions ψA(s) ∈ RnA×nu . Note that the
representation of βA in (4.40) is identical to the representation of A in (4.34), which
indicates that estimating A assuming a constraint linear in the control space is just
a degenerate case for when ψA is the identity.

Armesto et al. [9] define the Constraint Space Error (CSE) as

εCSE(A, {nsuk}) ,
K∑
k=1

‖A nsuk‖2 =
K∑
k=1

nsu>k A
>A nsuk, (4.41)

and use it to estimate the constraint matrix A. Essentially, Armesto et al. [9] proposes
to estimate the constraint matrix A by minimizing (4.41), which is an error metric
defined in the task/constraint space, rather than minimizing (4.32), which is an error
metric defined in the null-space. By assuming (4.38) and using (4.39), we get

εCSE(A, {nsuk}) = εCSE(βA, {nsyAk}) =
K∑
k=1

nsy>Akβ
>
AβA

nsyAk (4.42)

= β>‖A

K∑
k=1

(
(Ints ⊗ y>Ak)

>
(Ints ⊗ y>Ak)

)
︸ ︷︷ ︸

,Dy

β‖A, (4.43)

with β‖A = vec(β>A). It turns out that through simple algebraic manipulation we
can write Dy = Ints ⊗

(
YAY>A

)
, with YA = [yA1, . . . , yAK]. Armesto et al. [9] then

reformulate the estimation of the parameters of the constraint matrix as a standard
quadratic optimization problem

β̂‖A = arg min
β‖A

β‖ADyβ>‖A

s.t. βAβ
>
A − Ints = 0,

(4.44)

82 4. Learning Generalizable Constrained Policies by Demonstration

with β>A = vec−1
nA×nts

(β‖A) being the inverse operation of vec(·) for a given matrix
dimension nA × nts. Here, we greatly simplified the representation of the cost and
equality condition in (4.44) relative to the original formulation [9] by using the Kro-
necker ⊗ and the vec(·) operators. The equality condition in (4.44) guarantees that
the resulting βA remains semi-orthogonal.

Ortenzi et al. [119] identified that the problem of finding A such that Au = 0 corre-
sponds to the problem of finding the solution of an homogeneous system, which has
an existing known solution based on Singular Value Decomposition (SVD). Apply-
ing SVD to the matrix of observed actions U , results in

U = UUSUV
>
U , (4.45)

where the columns of UU and VU are the left-singular vectors and right-singular
vectors of U , respectively, and SU is a rectangular diagonal matrix, whose elements
of the diagonal contain the singular values of U in decreasing order. Both UU and VU
are orthonormal matrices. For a given number of constraints nts, then the rows of A
simply correspond to the last columns of UU , and for unknown number of constraints
then A correspond to the last columns of UU corresponding to the singular values
smaller than a given threshold value. The next section will expand on using SVD
for estimating constraints when looking at the method proposed in [10].

4.2.9 Summary

This section reviewed the main relevant literature on works addressing the problem of
learning unconstrained policies from constrained observations. Table 4.1 categorizes
the aforementioned works according to the type of linear constraints they handle, i.e.
with or without task-space b, and the specific functions they learn. It is interesting to
observe the historical evolution of the methods for learning constrained policies, from
originally only being able to estimate the unconstrained policy uπ such that Au = 0,
to the more recent methods also concerned with learning the constraints themselves.
The last row of the Table 4.1 introduces two additional works that are the topic of
the following section.

4.3 Learning Constraint-aware Policies

This section will carry on with the exploration of methods for learning unconstrained
policies, that by assumption are invariant across a given set of J demonstrations.
Like in previous works, for instance as in [159], we assume that each demonstration
contains observations of motions performed under different contexts, i.e different
constraints A and task policies b. We also focus here on learning those constraints,
as in [89, 90], with the addition that we will learn the task policy as well. However,

4.3. Learning Constraint-aware Policies 83

Table 4.1: Categorization of publications addressing the problem of learning un-
constrained policies uπ from constrained observations u. This table categorizes the
different works according to the type of constraints they handle, with or without
task-space b, and the particular functions they learn, namely a potential function ψu

for which uπ(s) = −∇sψu(s), the constraint matrix A and the task-space controller b.

Handling Task-space Learning
Au = 0 Au = b ψu(·) uπ(·) A(·) b(·)

Howard et al. [64, 65, 66] X X
(2006-2008)

Howard et al. [67, 68, 69] X X
(2009)

Towell et al. [159] (2010) X X X

Lin et al. [89] (2015) X X X

Ortenzi et al. [119] (2016) X X
Manavalan and Howard [97] (2017)

Lin et al. [90] (2017) X X X

Armesto et al. [9] (2017) X X X

Armesto et al. [10, 12] X X X X X
(2017-2018)

in contrast with the previous literature as [89, 90], we aim to learn the constraints so
that we can decouple the task-space from the null-space components of the observed
actions u, and ultimately improve the learning of the unconstrained policy itself.
Other strands of work aim at learning constraints with the goal of employing them
directly in trajectory optimization methods [127]. This section will focus on two
major contributions to the literature on learning constrained motions: a closed-form
solution for the estimation of the constraint and control task; and the introduction of
the Constraint-aware Policy Learning (CaPL) method that decomposes the learning
from constrained motions into a two step process comprising first the estimation of
the constraints and task controls, and second the estimation of the unconstrained
policy.

4.3.1 Closed-form Constraint Estimation

We start by expressing A and b as a linear combination of some feature functions as

A(s) , βAψA(s) (4.46)

b(s) , βbψb(s), (4.47)

84 4. Learning Generalizable Constrained Policies by Demonstration

where βA ∈ Rnts×nA and βb ∈ Rnts×nb are constant matrices containing the parameters
of the constraint and task, and ψA(s) ∈ RnA×nu and ψb(s) ∈ Rnb are, by assumption,
some known feature functions. What (4.46) and (4.47) implicitly assume is that we
know in which space the constraints live, i.e. the space where they are linear. Even
though, this is indeed quite a strong assumption, we could easily argue that the
problem of estimating a non-linear constraint surface that explains a finite dataset
is fundamentally ill-posed, given that there exists an infinite number of non-linear
mappings that could explain the observed data. Therefore, in this type of problem we
require some form of prior knowledge, in this case the feature functions, in addition
to the data-set [20, 21].

By replacing (4.46) and (4.47) in (4.17), we get

A(s)u = b(s)⇔ βAψA(s)u = βbψb(s)⇔
[
βA βb

]︸ ︷︷ ︸
,βAb

[
ψA(s)u
−ψb(s)

]
︸ ︷︷ ︸
,yAb(s,u)

= 0, (4.48)

resulting in a simple expression

βAbyAb(s, u) = 0, (4.49)

similar to the one used for estimating the constraint for the case where Au = 0,
discussed in the previous section. One of the known and simpler solutions for esti-
mating βAb is the application of the SVD method.

The Singular Value Decomposition (SVD) Solution

A closed-form solution for the estimate of the parameters βAb in (4.49), proposed
by Armesto et al. [10], is

β̂>Ab =
[
β̂A β̂b

]>
= UYAbS0I , (4.50)

where S>0I =
[
0 Ints

]
is a selection matrix which extracts the last nts columns of UYAb ,

and where UYAb is the matrix of the left-singular vectors resulting from the Singular
Value Decomposition (SVD)

UYAbSYAbV
>
YAb = YAb, (4.51)

with
YAb =

[
yAb(s1, u1), . . . , yAb(sK, uK)

]
(4.52)

being the matrix containing the evaluation of yAb for a given dataset X = {(sk, uk)}Kk=1.

It is important, however, to relate the solution in (4.50) with the underlying opti-
mization problem it is solving. For that, we shall redefine the Constraint Space Error

4.3. Learning Constraint-aware Policies 85

(CSE), defined in (4.41), to include task controller b as

εCSE(A, b; {uk}). ,
K∑
k=1

‖Auk − b‖2 (4.53)

Using (4.48), we can rewrite (4.53) as

εCSE(A, b; {uk}) = εCSE(βAb, {yAbk}) =
K∑
k=1

‖βAbyAbk‖2. (4.54)

In the Appendix B.4 we show that the solution (4.50) is the result of the optimization

β̂Ab = arg min
βAb

εCSE(βAb, {yAbk})

s.t. βAbβ
>
Ab = Ints .

(4.55)

It is interesting to note that the SVD solution (4.50) results in βAb with orthonormal
rows whereas the optimization (4.44) from the previous work [9], which handles
constraints of the type Au = 0, results in βA with orthonormal rows. We will further
explore this detail and its implications in the following subsection.

Note that, by definition, SYAb
’s diagonal contains the single values of YAb in de-

scending order and, hence, the last nts columns of UYAb
, in (4.50), are the left single

vectors of YAb corresponding to its lowest single values. If YAb has exactly nts null
single values, then the closed form solution (4.50) simply becomes

β̂>Ab = N (Y>Ab), (4.56)

where N (Y>Ab) returns a null space base for the matrix Y>Ab, i.e. the set of vectors in

the domain of the linear mapping Y>Ab that map to zero — Y>Abβ̂
>
Ab = 0. However,

because in practice data contains noise and, therefore, there is an imperfect match
between modelled constraint and the observations, the lowest single values of the data
matrix YAb will often be marginally greater than zero, rendering (4.56) unusable
in practice. The insight, however, that the solution to our constraint estimation
corresponds to finding the null space of the data matrix, provide us a useful method
for finding the number of constraints nts automatically rather than pre specifying it.
We can set the number of constraints nts to the number of single values of YAb that
are zero or approximately zero, given some threshold.

In Appendix B.3 we also prove that a solution to (4.55) corresponds to the trans-
pose of the matrix of the right eigenvectors of YAbY>Ab, corresponding to its lowest

eigenvalues. Therefore, another way of obtaining β̂Ab is through an Eigenvalue De-
composition (EVD) of YAbY>Ab. However, we will prefer to use SVD given it that it
is a numerically better conditioned operation than EVD [103].

86 4. Learning Generalizable Constrained Policies by Demonstration

4.3.2 Constrained Policy Estimation Decomposition

After presenting a method for estimating constraints given datasets of constrained
control observations, in [10], we proposed a method for learning the unconstrained
policy uπ composed of a two stage process: given J sub-datasets {Xj}, each contain-
ing observations coming from different constraints and control tasks, we 1. estimate
the constraint and control task for each sub-dataset, by minimizing the CSE; and
then 2. agglomerate all the observations in a single large dataset, and learn the uncon-
strained policy uπ by minimizing the CPE using the estimated projection P̂ for each
sub-dataset. By modelling the unconstrained policy uπ as a weighted combination
of M locally linear models

u
π(s) =

M∑
m=1

ωm(s)ψπu(s)βum ,

obtaining the set of parameters βu = [βu1 ; . . . ; βuM] that minimize (4.27) or its de-
coupled upper bound (based on the inequality (4.9)), is simply a matter of rewriting
the feature functions in (4.15) and (4.13) solutions, respectively, as

ψπj(s) = P̂j(s)ψπu(s). (4.57)

We originally proposed splitting the estimation of the unconstrained policy into a
two stage optimization because, intuitively, the estimation of the constraint would
aid the estimation of the unconstrained policy. Later on, in [12], we formalized this
learning decomposition as a special case of directly learning a policy defined as (4.18),
in the following result:
Lemma 4.3.1. For a policy π(t) , A(t)†b(t) + P (t) uπ(t), if the rows of A are
orthogonal, i.e. A is semi-orthogonal, then we can express the Direct Policy Error
(DPE) of π

εDPE(u; π) ,
∫ T

0

‖u(t)− π(t)‖2dt.

as the sum
εDPE(u;A, b, u

π) = εCSE(u;A, b) + εCPE(u;P, u
π), (4.58)

where

εCSE(u;A, b) ,
∫ T

0

‖A(t)u(t)− b(t)‖2dt,

and

εCPE(u;P, u
π) ,

∫ T

0

‖P (t)(u(t)− u
π(t))‖2dt.

Appendix A.5 contains the proof of the Lemma 4.3.1. It immediately follows that
this result is also valid for the error metrics defined for observed samples rather than
continuous trajectories. Therefore, we also have

εDPE(X ;A, b, u
π) = εCSE(X ;A, b) + εCPE(X ;P, u

π), (4.59)

4.3. Learning Constraint-aware Policies 87

where

εDPE(X ;A, b, u
π) ,

1

K
K∑
k=1

‖uk − A†(sk)b(sk)− P (sk)
u
π(sk)‖2, (4.60)

and we defined the CSE and the CPE in (4.53) and (4.22), respectively.

This result supports the sequential optimization originally proposed in [10], in the
sense that the two step optimization minimizes separately the first and second terms
of the error in (4.59). However, because both εCSE and εCSE depend on the constraint
matrix A, such sequential optimization still fails to fully decouple the estimation of
the parameters from the constraint and from the unconstrained policy. In [10], we
first estimate the constraint parameters for each sub-dataset by minimizing εCSE

and then estimate the unconstrained policy parameters by minimizing εCSE, where
we set the constraint A to the respective estimate Â. Therefore, minimizing the
sum of εCSE and εCSE is different from minimizing them sequentially. However, when
estimating the unconstrained policy using the second term in (4.59), we use the data
coming from several trajectories/demonstrations rather than a single one, hopefully
addressing the challenge of indetermination when estimating unconstrained policies,
discussed in the Subsection 4.2.4. Furthermore, if we wish that the result in (4.59)
remains valid, then we need to introduce the semi-orthogonal condition for A when
estimating it. For the case where Au = 0 and A is a constant matrix, then the SVD
estimation method, corresponding to the optimization in (4.55) where we simply
have that A = βAb and u = yAb, already assures such condition. For all other cases,
i.e. b 6= 0 and/or A(s) = βAψA(s), then the previously proposed SVD constraint
estimation approach no longer assures the orthogonality condition for A.

The Generalized Eigenvalue Decomposition (GEVD) Solution

For a constraint matrix modelled as a linear combination of a set of given/pre-
specified non-linear feature functions A(s) = βAψA(s), it will be virtually impossi-
ble to guarantee the orthogonality condition for every state s of a given trajecto-
ry/demonstration. In [12] we proposed, instead, to try to meet this orthogonality
criteria on average, i.e

1

T

∫ T

0

A(t)A(t)>dt = Ints ,

for the case of a continuous trajectory or

1

K
K∑
k=1

A(sk)A(sk)
> = Ints , (4.61)

88 4. Learning Generalizable Constrained Policies by Demonstration

for a set of K samples along a trajectory. We can then rewrite (4.61) as

1

K
K∑
k=1

A(sk)A(sk)
> =

1

K
K∑
k=1

βAψA(sk)ψA(sk)
>β>A

= βA

(
1

K
K∑
k=1

ψA(sk)ψA(sk)
>

)
β>A

=
[
βA βb

]︸ ︷︷ ︸
,βAb

 1

K
K∑
k=1

[
ψA(sk)

0

]
︸ ︷︷ ︸
,zAb(sk)

[
ψA(sk)

> 0
]

[
β>A
β>b

]

= βAb

(
1

K
K∑
k=1

zAb(sk)zAb(sk)
>

)
β>Ab

= βAb

[
1
K
∑K

k=1 ψA(sk)ψA(sk)
> 0

0 0

]
︸ ︷︷ ︸

ZAbZ>
Ab

β>Ab (4.62)

with

ZAb =
1√
K
[
zAb(s1), . . . , zAb(sK)

]
(4.63)

being the matrix containing the evaluation of zAb for a given dataset X = {(sk, uk)}Kk=1.

We can then rewrite the optimization (4.55) with the update of the orthogonality on
average condition (4.61), resulting in

β̂Ab = arg min
βAb

K∑
k=1

‖βAbyAb(sk, uk)‖2

s.t. βAb

(
1

K
K∑
k=1

zAb(sk)zAb(sk)
>

)
β>Ab = Ints .

(4.64)

Armesto et al. [12] propose that the generalized eigenvector corresponding to the
smallest generalized eigenvalue of the matrix pair (YAbY>Ab,ZAbZ>Ab), obtained through
a Generalized Eigenvalue Decomposition (GEVD), is a solution to (4.64).

The proof of the lemma presented in [12] proposing the GEVD as a solution to (4.64),
assumes that nts = 1, i.e. Ints = 1, which corresponds to a single constraint. Further-
more, even though that proof rightfully concludes that, for such case, the minimizer

4.3. Learning Constraint-aware Policies 89

of (4.64) must be a generalized eigenvector, it fails to clearly establish that such
a vector corresponds indeed to the smallest generalized eigenvalue. Appendix A.6
extends the result of [12] to the case that nts ≥ 1, proving that the transpose of the
matrix of right generalized eigenvectors of the pair (YAbY>Ab,ZAbZ>Ab) corresponding
to its smallest generalized eigenvalues, with ZAbZ>Ab positive definite, is a solution to
the optimization problem (4.64). Furthermore, Appendix A.6 shows that the corre-
sponding minimum of (4.64) is the sum of the nts lowest generalized eigenvalues of
the pair (YAbY>Ab,ZAbZ>Ab).
The result from Appendix A.6 deserves some more attention and discussion, because
it introduces a crucial condition missed in our original work [12], which is that ZAbZ>Ab
be positive definite. By rewriting (4.64) as (Appendix A.6)

β̂Ab = arg min
βAb

Tr(βYAbY>Abβ>)

s.t. βAbZAbZ>Abβ>Ab = Ints ,

(4.65)

then Sameh and Wisniewski [145] also proved that the minimum for this problem
corresponds to the sum of the smallest nts generalized eigenvalues, for ZAbZ>Ab pos-
itive definite. Later on, Liang et al. [87] proved the same result, but for ZAbZ>Ab
positive semi-definite, deeming the non-singular assumption for ZAbZ>Ab unnecessary
for finding the minimum of (4.65). However, Appendix A.6 additionally provides a
minimizer to (4.65) given ZAbZ>Ab positive definite, and is unclear if such a result
is a valid minimizer under the more relaxed positive semi-definite assumption, even
though the minimum result is valid.

The reason why the positive definitiveness condition is so crucial becomes immedi-
ately apparent when we verify, by analying (4.62), that in fact ZAbZ>Ab is a positive
semi-definite matrix. Therefore, we lack any proof or theoretical result to claim that
the generalized eigenvector corresponding to the smallest generalized eigenvalue of
the matrix pair (YAbY>Ab,ZAbZ>Ab), obtained trough a GEVD, is a solution to (4.64).
We could claim, that it is a solution to the following problem

β̂A = arg min
βA

K∑
k=1

‖βAyA(sk, uk)‖2

s.t. βA

(
1

K
K∑
k=1

ψA(sk)ψA(sk)
>

)
β>A = Ints .

(4.66)

where yA(s, u) = ψA(s)u and which we can rewrite as

β̂A = arg min
βA

Tr(βYAY>Aβ>)

s.t. βAZAZ>Aβ>A = Ints ,

(4.67)

90 4. Learning Generalizable Constrained Policies by Demonstration

where
YA =

[
yA(s1), . . . , yA(sK)

]
and

ZA =
1√
K
[
ψA(s1), . . . , ψA(sK)

]
are matrices containing the evaluation of yA and ψA, respectively, for a given dataset.
In this case, we can choose ψA such that ZAZ>A is positive definite and, therefore, we
can use GEVD to obtain a minimizer of (4.66). However, this brings us back to the
assumption that Au = 0. In fact, we verified in numerous experiments posterior to
the work in [12], that using the GEVD to estimate βA would lead to solutions that
would indeed satisfy the condition of orthogonality on average, whereas when using
it to estimate βAb often would not.

The Generalized Singular Value Decomposition (GSVD) Solution

To address the limitation of the need for positive definite ZAbZ>Ab, let’s consider
the Generalized Singular Value Decomposition (GSVD) of the pair (Y>Ab,Z>Ab) [58,
175], as

Y>Ab = UYAbΣYAbX(YAb,ZAb) (4.68)

Z>Ab = VZAbΣZAbX(YAb,ZAb), (4.69)

where UYAb ∈ RK×K and VYAb ∈ RK×K are orthogonal matrices, ΣYAb ∈ RK×nAb
and ΣZAb ∈ RK×nAb are rectangular diagonal matrices whose diagonal elements range
from 0 to 1 ordered in ascending and descending order, respectively, for which

Σ>YAbΣYAb + Σ>ZAbΣZAb = InAb ,

and X(YAb,ZAb) ∈ RnAb×nAb is an invertible matrix. Appendix (A.7) shows that

β̂>Ab = X−1
(YAb,ZAb)SI0, (4.70)

where S>I0 =
[
Ints 0nts×(nAb−nts)

]
∈ Rnts×nAb is a selection matrix which extracts the

first nts columns of X−1
(YAb,ZAb), is a solution to the optimization problem in (4.64),

given that the first nts elements of the diagonal of ΣZAb are unitary.

At first, it might seem that the condition that the first nts elements of the diagonal
of ΣZAb be unitary is quite restrictive. Perhaps, even more restrictive than the con-
dition that ZAbZ>Ab be positive definite. In practice, though, we failed to encounter
any situation where the number of unitary elements of the diagonal of ΣZAb would
be smaller than the pre-specified number of constraints nts. Whereas, considering
the existence of the task controller b always leads to ZAbZ>Ab non positive definite, as
shown in (4.62), making the application of GEVD unsuitable. Furthermore, if there

4.4. Case Studies 91

are cases for which the number of unitary elements of the diagonal of ΣZAb are larger
than the pre-specified number of constraints nts, then we can potentially use that
information to adjust the nts. Listing 4.1 contains a snippet of MatLab code exem-
plifying how to use SVD, GEVD, and GSVD to estimate the set of parameters βAb
given the matrices YAb and ZAb defined in (4.52) and (4.63), respectively.

Listing 4.1: MatLab code for estimating βAb using SVD, GEVD, and GSVD.
1 %% INPUT: data matrices Y_Ab and Z_Ab; number of constraints n_ts

2 % Singular Value Decomposition for estimating beta_Ab

3 [Usvd ,Ssvd ,Vsvd]=svd(Y_Ab ');
4 beta_hat_svd = Vsvd(:,(end -n_ts):end);

5 % Generalized Eigenvalue Decomposition for estimating beta_Ab

6 [Vgev ,Dgev] = eig(Y_Ab*Y_Ab ',Z_Ab*Z_Ab ');
7 beta_hat_gev = Vgev (:,1: n_ts);

8 % Generalized Singular Value Decomposition for estimating beta_Ab

9 [Ugsvd ,Vgsvd ,Xgsvd ,Cgsvd ,Sgsvd] = gsvd(Y_Ab ',Z_Ab ');
10 if abs(Sgsvd(n_ts ,n_ts) - 1.0) < eps_tol

11 Xgsvd_inv = inv(Xgsvd ');
12 beta_hat_gsvd = Xgsvd_inv (:,1: n_ts);

13 else; error('GSVD invalid ');
14 end

4.4 Case Studies

This section will present a number of different case studies contemplating the appli-
cation of some of the approaches discussed thus far. Starting with a two dimensional
(2D) example for a more careful analysis moving to higher dimensional examples,
such as learning a wiping motion policy with a 7 Degrees of Freedom (DoF) robotic
manipulator, and its execution using a KUKA LWR 3 arm.

4.4.1 Learning a 2D Policy

This subsection will focus on a simple two dimensional example, identical to the one
used in [67]. Let’s then consider the limit cycle attractor system represented in polar
coordinates as

ṙ = r(ρ− r2), θ̇ = ω

where ρ = −0.5 m2 and ω = 1.0 rad s−1, for which the Cartesian state space coordi-
nates becomes

s =

[
r cos θ
r sin θ

]
.

We assume the control actions as being the time derivative of the state u = ṡ, subject
to the equality constraint Au = 0, where

A =
[
cosα sinα

]
. (4.71)

92 4. Learning Generalizable Constrained Policies by Demonstration

−1 0 1

−1

0

1

s[1] [m]

s [
2
]
[m

]

samples ground truth

Figure 4.4: Vector field of the ground truth control actions in a 6 × 6 grid, in red,
overlaid with 40 state trajectories generated under the constraint Au = 0, in blue,
belonging to one of the datasets used for training.

We generated 40 datasets, each dataset containing 50 sub-datasets, where each sub-
dataset consists of a single trajectory. Out of the 50 sub-datasets, we use the first
40 for training (J = 40), reserving the last 10 for evaluation. Each trajectory
contains 100 samples (I = 100), corresponding to a 2 s simulation with a sampling
rate of 50 Hz, of pairs of states and controls (sji, uji). Every single trajectory has a
different initial condition uniformly sampled from the domains θj1 ∈ [0, 2π] rad and
rj1 ∈ [0, 1] m, and a different underlying constraint, written as (4.71), sampled from
the domain αj ∈ [0, 2π] rad. Figure 4.4 shows the plot of the sequence of states of
one of the datasets containing 40 trajectories used for training, along with the quiver
plot of the ground truth unconstrained control actions in a 6× 6 grid.

For the unconstrained policy we used a weighted combination of 16 local models,
using receptive fields as importance weighting as defined in Expression (4.7), with
centres uniformly distributed, according to Figure 4.5a, and using a diagonal vari-
ance matrix with diagonal elements of 0.01. For estimating the parameters of the
unconstrained policy, we used both the local and global Least Squares (LS) methods
described in the Subsection 4.2.2.

In this example we compare three of the previously discussed methods for learning
the unconstrained policy. The Direct Policy Learning (DPL), discussed in Sub-
section 4.2.1, the Constraint Consistent Learning (CCL), introduced in the Subsec-
tion 4.2.6, and finally the Constraint-aware Policy Learning (CaPL) from Section 4.3,
based on SVD. The goal being that by refining the level of constraint awareness in
the learning method, the overall results will improve. For instance, by looking at
Figure 4.4, which shows a quiver plot of the ground truth unconstrained controls
and the unconstrained policy outputs for the same grid for both the DPL and CCL
trained with 20 constrained trajectories, we can immediately see that the CCL ap-

4.4. Case Studies 93

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

s[1] [m]

s [
2
]
[m

]

receptive fields’ centers

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

s[1] [m]

s [
2
]
[m

]

ground truth DPL CCL

(b)

Figure 4.5: State space of the 2D example with (a) the unconstrained policy receptive
fields’ centers location; and (b) a 6 × 6 grid quiver plot of the ground truth control
actions and the output of the unconstrained policies learned through DPL and CCL,
trained only using 20 trajectories out of the total 40 trajectories in the dataset. Note
that, for illustration purposes, for the arrows in (b) we use a scale for the DPL policy
output which is 9× the scale used for the ground truth and the CCL policy output.

proximates the ground truth unconstrained actions better than the naive DPL, which
lacks any notion of constrained observations in its synthesis. Note, that when using
the SVD method from the Subsection 4.3.1, we have that ψA = I2 and βb = 0 and,
therefore, A = βA.

The first experiment looks at how those methods perform for different levels of train-
ing data. In this experiment, we estimate the parameters using a subset from 5 to the
full 40 training trajectories, and compute the Unconstrained Policy Error (UPE) and
the Constrained Policy Error (CPE) for the 10 testing trajectories. Note that even
though we have both the constrained and unconstrained ground truth controls for
both the training and testing sub-datasets, for training purposes we only make use
of the constrained control actions. Note also that we add a very small level of 50dB
signal-to-noise ratio of noise to the training constrained observations. We perform
this experiment for all the 40 datasets, recording the errors for each of them. Fig-
ure 4.6 shows the median together with the 10th and the 90th percentiles of the UPE
and CPE for the experiment of comparing the three learning methods when training
with a partial dataset, and using both the local and global LS estimators, discussed
in Subsection 4.2.2.

We verify that for the local LS, the DPL method results in high error regardless of
the number of trajectories used for training, which essentially means it completely

94 4. Learning Generalizable Constrained Policies by Demonstration

10 20 30 40

10−1

Number of trajectories

U
P
E
[m

2
s2
]

DPL CCL CaPL

(a)

10 20 30 40
10−7

10−4

10−1

102

Number of trajectories

DPL CCL CaPL

(b)

10 20 30 40

10−2

10−1

Number of trajectories

C
P
E
[m

2
s2
]

DPL CCL CaPL

(c)

10 20 30 40

10−7

10−4

10−1

102

Number of trajectories

DPL CCL CaPL

(d)

Figure 4.6: Unconstrained and constrained policy error evolution when increasing
the number of trajectories used for training the unconstrained policy, with: (a) UPE
for local LS; (b) UPE for global LS; (c) CPE for local LS; (d) CPE for global LS. The
shaded area corresponds to the errors between the 10th and the 90th percentiles, i.e
80% of the 40 computed error curves fall within this area, and the line indicates the
median value of the errors across the 40 datasets tested.

4.4. Case Studies 95

fails at learning anything. Interestingly enough, the CCL and the CaPL methods
perform equally well reducing the error to the minimum level with about 15 training
trajectories. For the global LS, all the methods improve the results with the increase
of the number of training trajectories. However, the DPL stagnates much quicker at
an higher error, and in this case the CaPL outperforms the CCL.

One intriguing result from the previous experiment is that for the local LS estimator,
the CCL and CaPL perform equally well. This happens because at its core, CCL
approximates the constraint projection matrix by a one dimensional projection using
each observation. Therefore, for this experiment, in the absence of any noise, this
approximation will exactly match the ground truth. A second experiment tests
the robustness of the learning methods with regards to added levels of noise. In this
second experiment, we train the policies using the full 40 trajectories but with varying
levels of added noise, ranging from 50 to 10 dB of signal-to-noise ratio (with lower
levels of signal-to-noise ratio corresponding to higher levels of noise) [136]. Similarly
to the previous experiment, we compute the UPE and the CPE based on 10 testing
trajectories, unseen during the training phase. Figure 4.7 shows the median together
with the 10th and the 90th percentiles of the UPE and CPE for the experiment of
comparing the three learning methods when adding increasing levels of noise to the
observations, and using both the local and global LS estimators.

We can then verify that for the local LS, the CCL and the CaPL perform equally
well only for very low levels of noise. For increasing levels of noise the CCL errors
increase to close to the errors obtained by DPL. This shows that, in the presence
of noise, there is a benefit of explicitly estimating the constraint when learning the
unconstrained policy, at least for the case where the constraint matrix is constant, i.e.
the constraint lives in the same space as the control actions. Interestingly enough,
for the global LS case, the CaPL outperforms the CCL even for very low levels
of noise and also, contrary to what happens with the local LS, its performance
degrades with the increased levels of noise. This result is an indication that there
are two contributions for the estimation error of the unconstrained policy based on
the constrained observations: one, is the method for estimating the constraint; and
the other is the method for estimating the unconstrained policy itself. That can
explain the difference in errors between local and global LS when using the same
method for the constraint estimation. Finally, it’s worth noting that varying levels
of noise hardily impact the high errors resulting from DPL, which shows that this
method fails to capture the underlying unconstrained policy from constrained data.

Obviously, adding more complexity to a learning method comes with its own costs.
One of those costs is the increased computation time. Figure 4.8 shows the median
together with the 10th and 90th percentiles of the computation time for training
the unconstrained policy for the three learning methods in comparison and for the
first experiment, i.e the evolution of the computation time with the number of tra-
jectories used for learning. Note that in the case of the CaPL, this includes both
estimating the constraints and training the unconstrained policy. Note as well that

96 4. Learning Generalizable Constrained Policies by Demonstration

1020304050

10−1

Signal-to-noise ratio [dB]

U
P
E
[m

2
s2
]

DPL CCL CaPL

(a)

1020304050

10−6

10−4

10−2

100

Signal-to-noise ratio [dB]

DPL CCL CaPL

(b)

1020304050

10−2

10−1.5

Signal-to-noise ratio [dB]

C
P
E
[m

2
s2
]

DPL CCL CaPL

(c)

1020304050

10−7

10−5

10−3

10−1

Signal-to-noise ratio [dB]

DPL CCL CaPL

(d)

Figure 4.7: Unconstrained and constrained policy error evolution when increasing
the level of noise of the control actions used for training the unconstrained policy,
with: (a) UPE for local LS; (b) UPE for global LS; (c) CPE for local LS; (d) CPE
for global LS. Note that lower signal-to-noise ratio in dB corresponds to higher levels
of noise, where in the limit 0 decibel corresponds to a ratio of 1:1 which indicates the
same level of background noise as the actual signal. The shaded area corresponds
to the errors between the 10th and the 90th percentiles, i.e 80% of the 40 computed
error curves fall within this area, and the line indicates the median value of the errors
across the 40 datasets tested.

4.4. Case Studies 97

10 20 30 40

2

4

·10−2

Number of trajectories

T
im

e
[s
]

DPL CCL CaPL

(a)

10 20 30 40

2

4

6

8
·10−2

Number of trajectories

T
im

e
[s
]

DPL CCL CaPL

(b)

Figure 4.8: Computation time evolution when increasing the number of trajectories
used for training the unconstrained policy, with: (a) local LS; (b) global LS; The
shaded area corresponds to the errors between the 10th and the 90th percentiles, i.e
80% of the 40 computed error curves fall within this area, and the line indicates the
median value of the errors across the 40 datasets tested.

the time computation comes from the standard MatLab® functions tic and toc,
without extra care for repeatability and interference from other processes in the op-
erating system, besides shutting down all unnecessary applications and the internet
connection. Nevertheless, Figure 4.8 clearly shows an overall tendency of increased
computation time with the number of trajectories used for learning and that CaPL
takes longer to compute than CCL, which in turn takes longer than the simple DPL.

4.4.2 Learning a 2D Policy with Task Component

This subsection considers the same limit cycle attractor system presented in the
previous subsection, with the difference that we now subject the control actions u = ṡ
to the task-based constraint Au = b, i.e. b is nonzero, and with A given by (4.71) (the
same constraint matrix expression used previously). The generation of the dataset
is also identical to the one in the previous subsection, with the exception of the
existence of an additional parameter for the task component, being sampled from
the domain bj ∈ [−0.3, 0.3] m s−1. Figure 4.9 shows the plot of the sequence of
states of one of the datasets containing 40 trajectories used for training, along with
the quiver plot of the ground truth unconstrained control actions in a 6 × 6 grid.
Note that the state trajectories now exhibit some curvature as a result of the task
component b being nonzero, which contrasts with the rectilinear state trajectories
from the previous experiment, shown in Figure 4.4.

98 4. Learning Generalizable Constrained Policies by Demonstration

−1 0 1

−1

0

1

s[1] [m]

s [
2
]
[m

]

samples ground truth

Figure 4.9: Vector field of the ground truth control actions in a 6 × 6 grid, in red,
overlaid with 40 state trajectories generated under the constraint Au = b, in blue,
belonging to one of the datasets used for training.

In this example we compare the Constraint Consistent Learning (CCL) method,
presented in Subsection 4.2.6, with the Constraint-aware Policy Learning (CaPL)
method, of Section 4.3. The goal is to show that CaPL is able to uncover/learn
the unconstrained policy when we subject its output control actions to task-based
constraints. Note that when using the closed-form solutions based either on the SVD
decomposition, described in Subsection 4.3.1, or the GSVD decomposition, discussed
in Subsection 4.3.2, for this particular example we have ψA = I2 and ψb = 1 and,
therefore, A = βA and b = βb, where βAb =

[
βA βb

]
is the set of task-based con-

straint parameters.

This experiment uses the same parameterization for the unconstrained policy de-
scribed in the previous subsection. However, this time we only apply the global Least
Squares (LS) method, presented in Subsection 4.2.2, for estimating its parameters.

We carry out the same two experiments as in the previous subsection. The first
experiment looks at how the methods perform when estimating the policy parameters
using a different number of training sub datasets, more specifically we train the policy
using a subset of the available 40 training trajectories, varying the size of the subset
from 5 to 40. The second experiment looks at the response of the learning methods
with regards to the added levels of noise, i.e. we train the policies using the full 40
trajectories but with varying levels of added noise, ranging from 50 to 10 dB of signal-
to-noise ratio (with lower levels of signal-to-noise ratio corresponding to higher levels
of noise) [136]. In both experiments we compute the Unconstrained Policy Error
(UPE) for the remaining 10 testing trajectories. Note that even though we have
both the constrained and unconstrained ground truth controls for both the training
and testing sub-datasets, for training purposes we only make use of the constrained
control actions. Figure 4.10 shows the evolution of the median together with the

4.4. Case Studies 99

10th and the 90th percentiles of the UPE for both the experiments of learning with
partial dataset and increasing levels of noise on the observations. Figure 4.11 shows
the computation times for the experiment of learning with the partial dataset. Note
that in this subsection we test the CaPL method using both the previously described
algebraic decompositions SVD and GSVD.

As expected, the CCL method is unable to learn the unconstrained policy in the
presence of task-based constraints, displaying large UPE regardless of the number
of training trajectories and the added level of noise, as shown in Figure 4.10. On
the other hand, the CaPL method successfully recovers the unconstrained policy in
the presence of task-based constraints and displays a typical behaviour of improved
performance for higher number of training trajectories and lower level of added
noise. Note that regarding the estimation of the unconstrained policy the CaPL SVD
and GSVD variants lead to the same results, hence Figure 4.10 shows a single curve
for CaPL.

Given that one of the contributions of the CaPL method is the ability to estimate
the component b, we also evaluated the evolution of the Mean Square Error (MSE)
of |b̂| for the two experiments described above, i.e. increased number of training
trajectories and levels of noise, as shown in Figure 4.12. Figure 4.12b shows that for
low levels of noise the GSVD solution outperforms the SVD solution. The reason we
use |b| instead of b in the MSE computation is that when estimating A and b such
that Au = b, if both Â and b̂ return with opposite signs to the ground truth, they
still satisfy the constraint equation.

4.4.3 Learning Cartesian Circular Trajectories

This Subsection will focus on a simple three dimensional example, with the goal
of contrasting the Direct Policy Learning (DPL) and the Constraint-aware Policy
Learning (CaPL) regarding their generalization capabilities for a strikingly small
dataset with only two training trajectories. Consider a particle moving in a three
dimensional Cartesian space at constant speed - norm of the velocity vector - and at
constant distance of one meter from the origin. When restricting the motion of this
particle to a plane intersecting the origin, the resulting trajectory is a circumference
centred at the origin. Our aim is to learn this circular motion for any other plane
intersecting the origin, provided a set of trajectories of the particle constrained to
different planes. We captured two particular trajectories of this particle when con-
strained to move in two planes with an inclination of 60◦ with the state/position
coordinate s[2] axis, as shown in Figure 4.13.

For this problem we define the state s ∈ R3 as the Cartesian position of the particle
and the actions u ∈ R3 as the particle velocity. Each sub-dataset has 500 data points
that correspond to a full revolution with duration of 5 seconds — Figure 4.13 plot
uses one fifth of the total number of training samples. We generate the sub-datasets

100 4. Learning Generalizable Constrained Policies by Demonstration

10 20 30 40
10−6

10−3

100

103

Number of trajectories

U
P
E
[m

2
s2
]

CCL CaPL

(a)

1020304050
10−6

10−4

10−2

100

Signal-to-noise ratio [dB]

CCL CaPL

(b)

Figure 4.10: Unconstrained policy error evolution when (a) increasing the number of
trajectories and (b) increasing the level of noise, for global LS. Note that lower signal-
to-noise ratio in dB corresponds to higher levels of noise, where in the limit 0 decibel
corresponds to a ratio of 1:1 which indicates the same level of background noise as
the actual signal. The shaded area corresponds to the errors between the 10th and
the 90th percentiles, i.e 80% of the 40 computed error curves fall within this area,
and the line indicates the median value of the errors across the 40 datasets tested.

10 20 30 40

2

4

6

8

·10−2

Number of trajectories

T
im

e
[s
]

CCL CaPL (SVD) CaPL (GSVD)

Figure 4.11: Computation time evolution when increasing the number of trajectories
used for training the unconstrained policy, with global LS. The shaded area corre-
sponds to the errors between the 10th and the 90th percentiles, i.e 80% of the 40
computed error curves fall within this area, and the line indicates the median value
of the errors across the 40 datasets tested.

4.4. Case Studies 101

10 20 30 40

10−8

10−7

10−6

10−5

Number of trajectories

M
S
E
(|b

|,|
b̂|)

[m
2
s2
]

SVD GSVD

(a)

1020304050

10−7

10−6

10−5

10−4

10−3

Signal-to-noise ratio [dB]

SVD GSVD

(b)

Figure 4.12: Mean Square Error (MSE) evolution of the estimated task component |b̂|
when (a) increasing the number of trajectories and (b) increasing the level of noise,
for global LS. Note that lower signal-to-noise ratio in dB corresponds to higher levels
of noise, where in the limit 0 decibel corresponds to a ratio of 1:1 which indicates the
same level of background noise as the actual signal. The shaded area corresponds
to the errors between the 10th and the 90th percentiles, i.e 80% of the 40 computed
error curves fall within this area, and the line indicates the median value of the errors
across the 40 datasets tested.

102 4. Learning Generalizable Constrained Policies by Demonstration

−1
−0.5

0
0.5

1

−0.4
0

0.4

−0.5

0

0.5

s[1] [m]

s[2] [m]

s [
3
]
[m

]

s1 data DPL traj. CaPL traj.

Figure 4.13: Two circular trajectories of a particle moving constrained to two dif-
ferent two dimensional planes in a three dimensional Cartesian space. Plot of the
training data and the result of replaying two policies learned through Direct Policy
Learning (DPL) and Constraint-aware Policy Learning (CaPL), starting at the same
initial position s1 and subject to the same planar constraints. The constraint planes
and the training circles’ centers both intersect the origin, making a 60◦ inclination
with the coordinate s[2] axis.

4.4. Case Studies 103

by first generating the circle trajectory and then obtaining the sample control actions
as the difference of the positions divided by the constant time step.

As described in Section 4.3, CaPL consists in a two stage process: first, learning
the constraint for each of the sub-datasets; and second, extracting the null space
component of each of the data point actions using the estimated null space pro-
jection matrix, and learn the unconstrained policy using only the estimated null
space component of the actions. Given that the constraint is linear in the state
space, we define the feature functions for the constraint matrix A as a constant ma-
trix ψA = I3. Moreover, as the particle never leaves the constraint plane, the first
task is unnecessary and therefore b = 0, corresponding to the case where there is
only a null space component of the actions and no task component. Given the noise-
less training data, the estimated constraint parameters β̂A1 =

[
0.0 −0.866 0.5

]
and β̂A2 =

[
0.0 0.866 0.5

]
exactly match the normals of the planes used in the

generation of the training data. Having estimated the constraint matrix A, we can
compute the estimated null space projection matrix and then compute the null space
component of the training actions using (4.20). In the process of estimating the con-
straint matrix using SVD we can also obtain the singular values corresponding to
each constraint, which are {14.0493, 14.0493, 4.2494× 10−14} for the first constraint
and {14.0493, 14.0493, 3.9491× 10−14} for the second. Indeed, this shows that we
can recover the dimensionality of the constraint from the number of singular values
close to zero.

For the unconstrained policy we used a weighted combination of M = 20 local
models as defined in (4.7), with local πm’s as in (4.11), using the following local
feature function

ψπ(s) , s> ⊗ I3, (4.72)

where ⊗ denotes the Kronecker product operator. We obtained the receptive field
centers by running the K-means algorithm, using the function kmeans from Mat-
Lab, on the states of the training data, and obtained the diagonal elements of the
variance matrix Σm by computing standard deviation of the training data states
and multiplying it by a scale of 0.2. The policy parameters β̂πCaPL

result from min-
imizing the Constrained Policy Error εCPE in (4.22) using the estimated projection
matrix P̂j = I3− β̂>Aj β̂Aj , which corresponds to a standard Least Squares (LS) prob-
lem.

For the DPL we used the same policy function used as the unconstrained policy in
the CaPL. Therefore, estimating the parameters βπDPL

also corresponds to a stan-
dard LS problem using directly the control observations from the datasets, without
any null-space projection transformation. When replaying the learned policies, we
guarantee that the generated motion remains on the constraint plane by multipling
the policy output with the corresponding null space projection matrix, as

u = P u
π(s, βπ). (4.73)

104 4. Learning Generalizable Constrained Policies by Demonstration

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

s[1] [m]

s [
2
]
[m

]

x0 DPL CaPL DPL traj. CaPL traj.

Figure 4.14: Vector field of two policies learned through Direct Policy Learning
(DPL) and Constraint-aware Policy Learning (CaPL), constrained to the s[1] − s[2]

plane, and two trajectories obtained when replaying these two policies for a given
initial position s1.

For the case of the DPL we have βπ = βπDPL
and for the case of the CaPL then βπ =

βπCaPL
.

Figure 4.13 shows the trajectories obtained by replaying the two policies start-
ing at the same initial positions as the training data and subject to the same
constraints, showing that the CaPL approximates the training trajectories better
than DPL. Note, that we tuned the number of local models and their variance so
that uπ(s, βπDPL

) could approximate reasonably well the two training trajectories.
For the case of the CaPL, actually one local model would suffice to give a similar
result to the one given by the 20 local models, showing the capability of the CaPL
method to capture this simple constrained motion.

However, we are interested in the ability to generalize to unseen constraints rather
than just learning a set of given trajectories. Therefore, we replayed both learned
policies for a different constraint from the ones used for training. Figure 4.14 shows
the vector field of the two policies constrained to the horizontal s[1] − s[2] plane,
and one example of a trajectory resulting from playing the learned policies when
starting at a given initial position. As shown in Figure 4.14, when playing the direct
learned policy in an unseen constraint, it fails to capture the circular motion present
in the demonstrations, resulting in a motion that resembles more of an average of the
training trajectories than the intended circle. This results from mixing all training
data when learning the policy without accounting for the different constraints that
each demonstration was subject to.

4.4. Case Studies 105

4.4.4 Learning Planar-Constrained Policies

Defining the appropriate set of feature functions can be a difficult task without prior
knowledge about the application. In this section, we propose to exploit the prior
knowledge of the application by using Jacobian matrices of the end-effector as the
main feature functions for learning both the constraint and the unconstrained policy.
This will allow us to define exact models for tasks demonstrated on planar surfaces.
After training the unconstrained policy, the robot can execute it on non-planar sur-
faces as long as there is some task control that guarantees the alignment of the
end-effector with the surface (e.g. by using force-feedback). This parameterisation is
useful for applications where non-planar surfaces constrain the motion of the robot
such as in wiping, dusting, sweeping, scratching, writing, etc. In all these examples,
we can define a task-based constraint as the minimization of the distance to the
surface and the misalignment between the surface normal and the orientation of the
robot’s tool (see Figure 4.18). The null-space of this task would be any motion of the
robot’s tool on the surface, i.e., with speed of movements tangential to the surface.

Learning the constraint and the tasks controller

Let us consider a robot with some tool at its end, where x represents its three
dimensional position/coordinates and the unitary vectors ẽ1, ẽ2 and ẽ3 represent its
local reference frame. We consider training scenarios where the reference surface
is flat and static, as shown in Figure 4.15. Given a normal to the surface ñ that
remains constant throughout the demonstration, we can define a task error using the
distance of the tool to the surface and the tool’s misalignment, as

εb(s(t)) ,

ñ>(x(s(t))− p)
ñ>ẽ1(s(t))
ñ>ẽ2(s(t))

 , (4.74)

where p is any arbitrarily chosen point on the surface.

By differentiating (4.74), we get

ε̇b(s(t))︸ ︷︷ ︸
,b(t)

=
∂εb(s)

∂s︸ ︷︷ ︸
,A(s(t))

ṡ(t)︸︷︷︸
,u(t)

, (4.75)

where A(·) in this case is the analytical Jacobian of the task. In this particular
problem b(·) becomes the dynamics of the implicit alignment controller ensuring
that the error converges to zero. We assume that the demonstrator crafts u(t) such
that it pursues some surface approximation and alignment task, with a certain target
“closed-loop dynamics” when there is an initial error.

106 4. Learning Generalizable Constrained Policies by Demonstration

ẽ3
ẽ1

ñ

x

ρ

flat surface

ẽ1

ẽ2

ẽ3

ρ

ρ[1]

ρ[2]

Figure 4.15: A two dimensional illustration of the robot motion on a flat surface,
where ñ represents the normal of the surface, ẽ1, ẽ2, ẽ3 are unitary axis of the tool
local reference frame with origin in the contact position x, and ρ is a reference point
on the surface.

From (4.75) and (4.74) we can select the following feature functions

ψA(s) ,

∂x(s)/∂s
∂ẽ1/∂s
∂ẽ2/∂s

 , (4.76)

ψb(s) ,


x(s)
ẽ1(s)
ẽ2(s)

1

 , (4.77)

where the above task controller would attempt to achieve a linear time-invariant
stable closed loop, so the position and alignment error converge to zero. Indeed,
note that

A(s) =

ñ> 0 0
0 ñ> 0
0 0 ñ>


︸ ︷︷ ︸

βA

ψA(s) (4.78)

and thus, the choice of ψA(s) corresponds to the ground-truth A expressed as the
linear-in-parameter expression (4.78).

In differential kinematics [155], we can define the state of a robot by the joint posi-
tions, s = q, for which case the feature functions ψA(q), corresponding to a Jacobian
of the robot, are sufficient to fully describe the task of minimizing the misalignment
error to the surface. However, the feature functions ψb(q) might be insufficient to
correctly characterize the alignment task, as the human operator might be acting
under some non-linear controller for alignment. Note also that measurement noise
and small varying distances to the surface during the demonstration will, in general,
make it impossible for the CSE and the CPE in (4.53) and (4.22) to become exactly
zero. As earlier commented, from the analysis of the singular values, if the number

4.4. Case Studies 107

of singular values that are significantly smaller in comparison to the rest is less than
the dimension of εb, then we can clearly identify a situation where we need extra
parametrization.

Regarding the feature functions ψb(q), in this wiping type of applications it might be
unnecessary to learn task controllers, since we can ensure contact and alignment with
the surface via sensory feedback. This means that the recommendation for practical
applications would be to provide demonstrations with an initial configuration already
on the surface (or trimming the prior samples of the actual demonstration data) and
assume b = 0. This assumption has computational benefits, allowing the use of
the CaPL based on the SVD rather than the generalised version discussed earlier.

Learning the Unconstrained Policy

We will now propose a specialized structure for the unconstrained policy uπ(·) based
on the Jacobian specific to the planar-constrained task under consideration. Incor-
porating problem-dependent information when building the feature functions instead
of generic universal black-box feature functions will allow to us to improve accuracy
and decrease the number of parameters. Indeed, some literature strongly advocates
that learning control policies in the operational space is beneficial [128], hence the
inclusion of the Jacobian. Recall that the task controller attempts to align the tool
orientation with the surface (constraining two DoF) and maintain the contact (con-
straining one more DoF). This implies a task which constrains a total of three DoF
of the robot. We can reasonably assume that any motion along the surface will be
part of the null-space of the task controller, with the remaining DoF available.

Since the task controller constrains the tool’s orientation, only the position trajec-
tory x(t) is relevant for the unconstrained policy. We choose an arbitrary reference
frame (l̃1(ñ), l̃2(ñ)) on the surface orthogonal to the normal ñ, and we define the
unconstrained feature functions as

ψπ(q; ñ) ,

([
l̃1(ñ) 0 0

l̃2(ñ) 0 0

]
ψA(q)

)†
ψ2D(q), (4.79)

which computes the tool’s speed relative to this reference frame, and where ψ2D are
feature functions with a two dimensional output, used to represent the two dimen-
sional trajectory demonstrated on the surface. The estimated parameters β̂A will,
in general, differ from the block-diagonal expression arising from (4.78), nonetheless,
if the orientation error during the demonstration is reasonably small, the surface
normal will be close to the tool’s orientation ẽ3(q) vector. So, we will neglect this
error and propose the parametrization based on a modified tool’s Jacobian J2D, as

ψπ(q) ,

([
l̃1(ẽ3(q)) 0 0

l̃2(ẽ3(q)) 0 0

]
ψA(q)

)†
︸ ︷︷ ︸

,J†
2D

ψ2D(q), (4.80)

108 4. Learning Generalizable Constrained Policies by Demonstration

which, basically, coincides with (4.79) for small misalignment deviations during the
demonstration.

For encoding the motion of the full configuration of the robot, for instance the
existence of a preferred configuration, we can extend the unconstrained policy feature
functions as

ψπ(q) ,
[
J†2Dψ2D(q) (Inq − J†2DJ2D)ψq(q),

]
(4.81)

where in the absence of any prior domain knowledge we can pick a generic set of
feature functions for the preferred configuration

ψq(q) =
[
q> 1

]
⊗ Inq . (4.82)

Note that in the absence of the domain knowledge about the type of demonstra-
tions, which in this case consists of a sliding motion along a planar surface, the
unconstrained policy feature functions would have to be some set of generic func-
tions like in (4.82), encoding no prior information about the task at hand. This
would lead to the need of a higher number of local models, parameters, which in
turn would require much more demonstrations for such encodings to represent the
demonstrated motions.

Likewise, the choice of feature functions encoding the planar trajectory can also
reflect our prior knowledge about that motion. For example, for a circular wiping
motion, we can define the following feature functions

ψ2D(q) ,
[
ρ⊥(q) ρ(q)

(
1− r

‖ρ(q)‖

)
,
]

(4.83)

where ρ ∈ R2 are the coordinates of the circle center (relative to the end-effector
frame), ρ⊥ is perpendicular to ρ and r is the radius. When training a model from
real experimental data, we can easily extract these parameters prior to obtaining the
policy parameters βπ.

We recorded a dataset of wiping trajectories demonstrated by a human, as shown
in Figure 4.16. The dataset contains 12 trajectories, each on a surface of a different
orientation (four of them shown in Figure 4.17). Each demonstration involved several
circles with the tool of the robot, containing approximately 2000 data points1 (using
a sampling rate of 100Hz). We minimally cropped the demonstrated data to ensure
the data contained only poses where the tool was in contact with the surface and
moving along the demonstrated trajectory.

We first learned the constraint for each trajectory, by parametrising them as a linear
combination of feature functions, functions of the configuration, and by applying
the estimation method described in Section 4.3.1. The feature functions for each
constraint matrix are the ones from (4.76). For the policy uπ we used 25 Locally

1The data included the joint positions q and the joint commands u = q̇, obtained by simple
first-order Euler differentiation of the joint positions.

4.4. Case Studies 109

Figure 4.16: Demonstration of a circular wiping trajectory on a flat surface. The
demonstration was repeated on surfaces of multiple orientations.

0.5

0.6

−0.1
0

0.1

0.4

0.5

s[1] [m]
s[2] [m]

s [
3
]
[m

]

traj. CaPL

Figure 4.17: Learning by demonstration: four of the twelve wiping trajectories from
human demonstration (green), and closed-loop policy validation using the respective
flat surface orientation and initial position (blue).

110 4. Learning Generalizable Constrained Policies by Demonstration

Table 4.2: Values of the costs εDPE, εCSE, and εCPE for the four experimental demon-
strations shown in Figure 4.17.

Dem. εDPE εCSE εCPE

1 0.0206 0.81 · 10−6 0.0199
2 0.0445 2.36 · 10−6 0.0431
4 0.0319 2.39 · 10−6 0.0302
7 0.0199 4.43 · 10−6 0.0175

Weighted Models with the same feature functions from (4.81). We then stored the
resulting policy and used it, in closed-loop, together with the force-based surface
alignment task that will be described in the following section.

Figure 4.17 shows the robot’s end-effector trajectory corresponding to the execution
of the estimated unconstrained policy for the same constraint (surface inclination)
of the demonstrations, as well as the respective end-effector position correspond-
ing to the data. The figure shows that the learnt locally-weighted model exhibits
a “common” circular wiping motion across the different surface inclinations. Ta-
ble 4.2 shows the result of computing the costs εDPE, εCSE, and εCPE, according to
equations (4.60), (4.53), and (4.22), respectively.

4.4.5 Task Generalization using a Force Sensor

This Subsection shows the utility of learning surface-constrained policies through
generalization to a novel task. In many scenarios such as in the train cleaning
application (Figure 4.1), it might be hard to obtain a precise model of the surface
due to outdoors lighting conditions, different surface materials, and its dimensions.
Thus, in practical applications, the constraint surface may be unknown. Therefore,
we aim to redefine the surface alignment task using, for instance, a force/torque
sensor.

To guarantee the alignment between the robot end-effector and the curved surface,
the robot must exert some contact force on the surface and adjust the end-effector
orientation to be perpendicular to that surface. As shown in Figure 4.15, this align-
ment corresponds to having the end-effector local ẽ3 axis collinear with the surface
normal and the end-effector local ẽ1 and ẽ2 axes tangential to the surface. This
alignment corresponds to having the minimal torque around the local ẽ1 and ẽ2 axes
at the contact point, and having the contact force applied along the local ẽ3 axis.
Therefore, we can define an alignment task error as

εf ,

fc − f3

−m1

−m2

 , (4.84)

4.4. Case Studies 111

fn

ff

mc

dS

non-flat
surface

motion

force sensor
sponge

Figure 4.18: Two dimensional illustration of a robot performing a constrained task
on a curved surface. The robot uses a force sensor and a soft material (sponge)
mounted at the end-effector as a tool. The interaction of the wiping tool and the
surface causes a friction force ff, a normal force fn, and a contact torque mc. The task
is to align the tool with the surface normal, by minimizing the contact torque mc,
and maintain contact by controlling the normal force fn.

where f3 is the measured force along the ẽ3 axis and fc is the desired contact force;
and m1, and m2 are the measured torques along the axes ẽ1 and ẽ2, respectively. By
attaching a force/torque sensor at the tip of the end-effector, we can measure the
contact wrench (force and torque), and by minimizing εf , the robot end-effector will
align with the contact surface.

In this scenario, we can redefine a new constraint matrix as

A(q) ,

ẽ>3 0
0 ẽ>1
0 ẽ>2

 J(q) (4.85)

where J ∈ R6×7 represents a standard geometric robot Jacobian. We intention-
ally used a different constraint matrix (4.85) for the real-time operation (based on
sensor information). This constraint replaces the purely geometric choice (4.78)
during learning in order to show the generalisation capabilities to a new primary
constraint/control law. Additionally, we define our task controller as b = −Kpεf ,
where Kp ∈ R3×3 is a diagonal matrix with its entries being tunable control gains.

In our experiments, we used the 7 DoF KUKA LWR3 robot with an ATI indus-
trial automation Gamma F/T sensor attached at the end-effector, as shown in Fig-
ure 4.19. The force sensor retrieves a 6 dimensional wrench vector expressed in the
sensor frame. Therefore, we compute the torque at the contact point by transforming
the wrench by distance dS towards the contact point. We estimated this distance
empirically by pressing the tool against surfaces at different angles. We use admit-
tance control to achieve the minimization of the force-based task error (4.84), i.e the
robot compensates the end-effector position and orientation according to the wrench

112 4. Learning Generalizable Constrained Policies by Demonstration

Figure 4.19: KUKA LWR 3 robotic arm equipped with a force/torque sensor wiping
a curved surface.

feedback. In order to accommodate this motion when in contact with a rigid surface,
we introduced a compliant material at the end-effector tip (such as a sponge).

Furthermore, we have also validated the learnt policy on a non-flat surface, as shown
in Figure 4.19, demonstrating that the policy, trained from human demonstrations
on flat surfaces, generalizes to both flat and curved surfaces. The resulting wiping
motion is depicted in Figure 4.20. Note that we have demonstrated the wiping
motion exclusively on flat surfaces, therefore, showing two aspects of generalization:
(i) from a surface alignment task to a force alignment task, and (ii) from flat surfaces
to a curved surface. See [11] for the video recordings of the policy generalization to a
curved surface. In many practical cases, training with flat surfaces will be easier for
the demonstrator (for instance to properly align the tool with the surface), resulting
in a dataset with demonstrations in which Au ≈ 0, and consequently reducing the
amount of error in the task policy.

4.5 Constraint Similarity Analysis

In all experiments so far, we assumed that the demonstrator provides a set of sub-
datasets {X1,X2, . . . ,XJ }, each of which containing samples of pairs of raw obser-
vations, that encapsulate a sufficiently diverse set of tasks/constraints, allowing us
to uncover the underlying policy common to all demonstrations that is, therefore,
generalizable to different task-based constraints. The aim now is to analyse how
similar/distinct are these sub-datasets from one another, regarding the estimated
underlying constraint, by using the same cost metric proposed for the constraint es-
timation, the Constraint Space Error (CSE). Moreover, we consider this analysis for
the case of a single full dataset containing data originated by different constraints,
in order to help us identify the transition regions. The experiment in this section

4.5. Constraint Similarity Analysis 113

0.4
0.5

0.6
0.7

−0.1
0

0.1

0

0.1

s[1] [m]s[2] [m]
s [
3
]
[m

]

Figure 4.20: Resulting three dimensional trajectory of the robot end-effector (in
red), overlaid with a model of the surface, when replaying the wiping policy trained
from human demonstrations on flat surfaces (without using the force sensor). The
policy generalizes to non-flat surfaces using a force-sensor based task to align the
tool dynamically.

provides an additional analysis of the training data, highlighting the importance of
constraint estimation when having data collected under different constraints.

Let’s consider a set of sub-datasets {X1, . . . ,Xl, . . . ,Xh, . . . ,XJ }. One way of analysing
the constraint similarity between two arbitrary sub-datasets, such as Xl and Xh, is
to estimate the task-constraint parameters β̂Abl for the sub-dataset Xl, by minimiz-
ing εCSE(βAbl ;Xl), and then evaluate these estimated parameters using the other
sub-dataset Xh, as in

εCSE(β̂Abl ;Xh) =

Ih∑
i=1

‖A(sih; β̂Al)uih − b(sih; β̂bl‖2, (4.86)

where Ih is the number of data pairs of observations of the hth sub-dataset. For short,
we will refer to the error in (4.86) as εCSE,l,h, meaning the CSE of the constraint-task
parameters estimated on the lth sub-dataset and evaluated on the hth sub-dataset.
The value of εCSE,l,h will be low for l = h and high otherwise, according to the
assumption that each sub-dataset was subjected to different constraints. When dif-
ferent constraints intersect in some region of the space, i.e., the underlying constraints
are similar to one another this cost should be low reflecting this constraint similarity.

For the experimental data used in the Subsection 4.4.4, we manually selected the J
sub-datasets, separating the full dataset into the individual sub-datasets. Figure 4.21
shows the Cartesian positions of the KUKA’s end-effector for the full dataset (blue)
and, overlapping, the corresponding sub-datasets, manually separated (red). We se-
lected the initial and final indices of the data points for each sub-dataset, by visually
inspecting the data. However, for larger full datasets this figure might become clut-
tered, making it difficult to verify even that some demonstrations correspond to very

114 4. Learning Generalizable Constrained Policies by Demonstration

0.4
0.6−0.2 0

0

0.2

0.4

0.6

s[1] [m]s[2] [m]

s [
3
]
[m

]

full dataset sub-datasets

Figure 4.21: KUKA lightweight robotic arm end-effector Cartesian positions for a
full unseparated dataset (blue), subject to different constraints in the form of flat
surface inclinations. Overlapped is the manually separated sub-datasets, showing
that a full unprocessed dataset contains transition regions with data-points that are
discarded before the learning process.

similar constraints. This suggests that we could use the CSE to aid the sub-datasets’
separation process.

Given an unprocessed full dataset, i.e containing demonstrations and transitions
between the demonstrations, we must perform a similarity analysis for groups of
data points, regardless of whether they correspond to the same constraint or not.
One approach is to select a set of consecutive data points which represent a window
within the full dataset. We then compute the parameters for that window l. We
shift the window l across the dataset by some increment smaller than the size of
the window, creating a window l+ 1 (where size refers to the number of consecutive
data points). If the evaluation of the previously estimated parameters on this new
window produces a low CSE, then this suggests that the data covered by these two
consecutive windows is subject to the same underlying constraint.

By repeating this process for the full dataset, we then obtain a matrix such as the one
in Figure 4.22. This matrix corresponds to the data shown in Figure 4.21. We have
empirically chosen a window size of 400 samples (corresponding to 8 seconds for a
sampling frequency of 50 Hz) and increments of 50 samples (1 second). In Figure 4.22
we also overlap boxes showing the manual separation. Note that using Figure 4.22
alone would lead to confusing at least two groups of windows (around indices 120 and
150) with demonstrations, given that they produce squares of low CSE in the matrix.
Figure 4.22 indicates that the data belonging to those two groups is consistent with
some constraint, which is sufficiently well modelled by the chosen combination of

4.6. Discussion 115

50 100 150 200 250

50

100

150

200

250

Window # used to evaluate εCSE(β̂Ab)

W
in
d
ow

#
u
se
d
to

es
ti
m
a
te
β̂
A
b

0

0.2

0.4

0.6

0.8

1

Figure 4.22: Normalized εCSE,l,h cost for the window h using the estimated parameters
from the window l. Each window contains 400 consecutive data points from the full
unseparated dataset, differing from the preceding window by 50 data points.

feature functions. For instance, if those samples correspond to a moment in time
where the robot was static while changing the flat table orientation between demon-
strations, then it makes sense to say that those data points are consistent with the
same constraint, e.g. the same configuration of the robot. Therefore, we conclude
that we must combine this metric with other application specific metrics. We might
remove data points where the robot is static using pre-processing if necessary and,
alternatively, we can use a tactile sensor to detect when the end tool is in contact
with the surface, as in [156].

4.6 Discussion

This chapter presented a new method for learning, from demonstration, policies that
lie in the null-space of a primary task, i.e. subject to some constraint. We intro-
duce the term “Constraint-aware Policy Learning” as the reformulation of the direct
policy learning method, where the policy appropriately parametrizes the constraint
and the primary control task. Additionally, we discuss the conditions for which
this “Constraint-aware Policy Learning” splits into two optimization problems —
constraint estimation followed by unconstrained policy estimation — and propose
different methods for estimating the constraint depending on those conditions.

The main advantage of this approach, compared to classic direct policy learning, is
its ability to learn a policy consistent with the constraint. To demonstrate this point,
we used different tasks and constraints in our experimental demonstration with the

116 4. Learning Generalizable Constrained Policies by Demonstration

real KUKA lightweight arm. In this case, while recording the training data, the
human performs and demonstrates the task whereas, in the validation stage, we use
a force-based task to adapt and align the tool to an unknown surface.

While we can use Locally Weighted Models to parameterize unconstrained policies,
as discussed in this chapter, or any other more generic functions, in the example of
learning a wiping motion, we choose to take advantage of our domain knowledge of
this specific task, by incorporating more specialised feature functions. This decreased
the number of parameters the algorithm has to learn, decreasing the required number
of demonstrations. Certainly, a clever choice of feature functions can — as in our
case — greatly improve the results, or even turn the learning exercise into a trivial
problem. However, what this framework provides is a way of encapsulating all the
specifics and domain knowledge in the chosen feature functions, rather than in the
learning algorithm itself.

In order to learn a generalisable unconstrained policy, we must somehow guaran-
tee that the training datasets provide enough variety of constraints. We provide a
means of comparing the datasets regarding their underlying constraint by using the
same metric used in the constraint estimation. This consists in building a similarity
matrix by computing the estimation residual of a sub-dataset, using the estimated
parameters from the other sub-datasets. Furthermore, besides allowing us to identify
similar constraints between different sub-datasets, this similarity matrix allows us to
identify different constraints within the same dataset, by running the same metric
but over windows of data. This can be a valuable tool for helping identifying the
beginning and end of a demonstration.

The approaches presented for learning both the tasks/constraints and the uncon-
strained policy easily extend to higher dimensions, as the methods presented are
numerically efficient. Additionally, the methods easily extend to different applica-
tions, whether by providing generic feature functions, or feature functions specific to
the intended application. The hierarchical split of tasks, where higher priority tasks
are unaffected by the lower priority tasks by means of the constraint and null-space
projection, is a powerful concept which has been successfully applied in the resolu-
tion of many problems, with works even learning the priority of those tasks from
data [60]. Being able to learn the tasks themselves from demonstrations, in a simple
and concise framework, is something that can be potentially very useful in many of
those problems.

One key ingredient to the CaPL approach is the efficient way, based on either SVD
or GSVD, for learning the rigid or task-based constraints. One common limitation
of all methods on constraint learning, including ours and other methods on learn-
ing task manifolds for constrained manipulation [86], is the requirement to provide
feature functions for the constraint matrix or constraint manifold. This implies that
we know the space where the constraint lives as prior knowledge. It would be inter-
esting to consider cases where this prior knowledge is nonexistent and how, in these

4.6. Discussion 117

situations, learning the constraint would compare with the CCL approach, regarding
the improvement of the estimation of the unconstrained policy.

The work presented here builds on more than a decade of research on learning general-
izable policies from constrained observations. The most well known learning method
being the Constraint Consistent Learning (CCL) from Howard et al. [67], but much
work has followed both on the learning of unconstrained policies and the constraints
themselves. This chapter reviews the main relevant methods in this literature and
compares the DPL, CCL and our CaPL on two examples, for ease of understanding
and discussion. For the two dimensional example, we also compared the use of local
versus global LS methods for learning Locally Weighted Models, showing that for this
type of low dimensional example the global LS significantly outperforms the local LS,
without compromising much on the computational cost. However, previous publica-
tions, including our own, tend to often use the local LS instead, perhaps influenced
by the incremental learning literature which, due to the lack of prior knowledge of
the policy model complexity — i.e. the number of local models and variance of the
receptive fields — favors using local LS methods that greatly reduce the negative
interference of each local model on the other ones while learning [166]. Finally, this
chapter complements the current state of the art literature with a theoretical unpub-
lished analysis on methods for estimating constraints and task controllers, through
various numerical matrix decompositions, such as EVD, SVD, GEVD and GSVD.

118 4. Learning Generalizable Constrained Policies by Demonstration

Chapter 5

Conclusions

“A bend in the road is not the end of the road. . .Unless you
fail to make the turn.”

Helen Keller

This chapter summarizes the main contributions of the thesis and discusses the limitations

of some of the results, highlighting the open questions and future research avenues.

5.1 Summary and Contributions

Realizing motions while in contact with the environment remains an intriguing chal-
lenge in many of the robotic applications. In face of such challenge, many works —
especially in the manipulation domain — focus on avoiding those contact interactions
altogether, by developing various obstacle avoidance approaches [96, 112, 123]. How-
ever, the very nature of some other domains — such as legged locomotion — makes
tackling this challenge unavoidable, which perhaps is a key factor why it remains
such a challenging domain in robotics. Walking robots, typically, need to account
for the making, maintaining and breaking of fixed position contacts, having to deal
with the decision of particular location and time of contact [122, 138]. However, that
still excludes the challenges regarding more dynamic contacts, such as establishing
and maintaining contacts with moving objects and sliding contacts. Sliding contacts,
in particular, constitutes an interesting robotics problem, because it immediately re-
veals its dual nature, connecting motion interaction (constrained motion) and force
interaction (contact maintenance). Albeit addressed by some studies from both a
force control point of view [72] and a constrained motion point of view [118], ques-
tions about how to exploit the nature of this type of contact interaction in modelling,
control and learning definitely deserve more exploration.

This thesis delves specifically in the exploration of this type of constrained motions.

119

120 5. Conclusions

In particular, it studies the class of Task-based Constraints (TbCs) that can model
both task motion constraints and rigid contact constraints. A TbC is an equality
constraint which we can express as

A(·)u = b(·), (5.1)

where the control actions and task-space component become, respectively, u = q̇
and b = ẋ(t) for a kinematic problem and u = q̈ and b = ẍ(t) − Ȧ(q)q̇ for a
dynamic problem. Chapter 2 uses the TbC abstraction to prove the equivalence
between the forward dynamics’ models derived from the Gauss Principle of Least
Constraint, the Operational Space Formulation (OSF) and the Projected Dynam-
ics (PD) approach. We obtain such results by also reformulating the PD approach,
originally proposed by Aghili [1], and generalizing the dynamically consistent inverse
Jacobian concept, defined by Khatib [77], to a rank deficient constraint Jacobian ma-
trix A. Chapter 3 uses the multi TbC abstraction to show the equivalence between
the operational space controllers with rigid constraints, separately proposed by De
Sapio and Khatib [34] and Mistry and Righetti [101], highlighting the relation be-
tween these controllers with the selection matrix approach for hybrid position/force
control [77, 99]. We also validated the selection matrix approach for simultaneous
position and force control in the task of wiping curved surfaces of unknown geom-
etry — sliding constraints — using velocity controlled robots (kinematic problem),
motivated by the industrial application of cleaning the front panels of the train cabs.
Finally, Chapter 4 presents a Constraint-aware Policy Learning (CaPL) method for
learning control actions u subject to TbCs (5.1), which is based on a two step opti-
mization process of estimating the constraint matrix A and task controller b for each
sub-dataset, via closed-form solutions based on SVD or GSVD methods, and esti-
mating the unconstrained policy uπ that is consistent with a set of different TbC’s
of the form (5.1). We evaluated our learning framework both on low dimensional ex-
amples, for the clarity of the analysis, and an experiment with a seven DoF robotic
arm. While the low dimensional examples show the benefit of explicitly estimat-
ing the constraints when learning unconstrained policies, in comparison to a DPL
method or even to CCL [67], the robot experiment shows that our closed-form so-
lutions for estimating constraints scale well to higher dimensional systems, unlike
previous sampling-based methods for estimating constraints [89].

The organization of this thesis reflects the study of a simple hypothesis in three
crucial domains of robotics. The simple hypothesis is if a Task-based Constraint
abstraction represents a useful mechanism of decoupling the robotic motion control
policies into simpler motions, bringing us better understanding, ease of implementa-
tion and, finally, generalization capabilities across different environments. The three
main domains in which we explored this question was in the modelling of the dy-
namics of robotic systems — Chapter 2 — in the simultaneous position and force
control of robots — Chapter 3 — and, finally, in the learning of generalizable policies
— Chapter 4. These three domains: dynamics, control and learning, are important
pillars of the robotics research. Another of such pillars is trajectory optimization.

5.2. Discussion and Future Directions 121

Recent work has started to address the incorporation of the dynamics of constrained
multi-body system in trajectory optimization algorithms [122, 134] — in the context
of legged locomotion. The question remains, will the explicit incorporation of Task-
based Constraint (TbC) help advance trajectory optimization methods, by making
them more stable, simpler, faster and more transferable to real robots. In this thesis
I advocate for the incorporation of constraints in the modelling, control and learning
of robotics’ motions. One can now wonder in different ways of extending these ideas
to other domains of robotics, such as planning/trajectory optimization.

5.2 Discussion and Future Directions

This research gave us new insights on current control methods and led to new learn-
ing methods for robotic motions subject to constraints. However, there are many
questions left to answer. For instance, we found out the equivalence between thought
to be distinct modeling and control approaches for constrained robotic motions, but
we still lack thorough experimental comparison results accross them, in particular
regarding to their numerical properties. Also from an experimental point of view,
the task of wiping the curved surface required exhaustive parameter tuning, that
we would like to mitigate by estimation of certain contact interaction properties,
such as frictional contact [50] and contact impedance [44]. From a control per-
spective, many methods are shifting towards Quadratic Programming (QP) based
approaches [75, 91, 138], which allows the incorporation of more expressive inequal-
ity constraints. The result that we can obtain many of the complicated controllers
purposely derived for simultaneous position and force control from a stack of Jaco-
bian matrices, give us an indication on why these recent optimization approaches
work well. Indeed, the solution obtained through stacking different Jacobian matri-
ces, corresponding to different tasks (whether they are force or motion tasks), simply
corresponds to the solution of a convex optimization problem only using equality con-
straints and, hence, we can think of the QP approaches as a general way of encoding
any other specific task-space controllers [82]. The TbC abstraction also allows for
some hierarchical decomposition, by introducing a null-space component that always
gives precedence to the task-space component. Recent works [37, 92, 95] developed
quite sophisticated methods for hierarchically controlling more than two tasks. Such
hierarchical structures even include inequality constraints [48, 49]. However, when
systems become more complex, they also become more difficult to understand and
less explainable. For example, Dietrich et al. [43] recently presented a stability anal-
ysis for a hierarchical OSF (where task motions essentially correspond to equality
constraints). For more complex systems with inequality constraints, it is unclear
how to obtain such stability analysis. Another use of the hierarchical decomposition
of TbC, is in learning generalizable control policies, when learning from constrained
observations. However, it is unclear if there are other latent space encodings and
approaches, as in [22], for learning such latent spaces that might achieve the same or

122 5. Conclusions

better generalization capabilities. All these questions arise from our search for better
performing but also more explainable control and learning methods for manipulation
motions in contact.

Appendix A

Contributed Proofs/Results

This appendix provides the proofs/results that constitute novel contributions of this
thesis.

A.1 Constrained Inertia Matrix with Minimum

Condition Number

The goal here is to find a matrix R(∗) such that the condition number κ of Mc =
PM+R(In−P) is minimal. By definition the condition number of a square matrix C
is

κ(C) , ‖C−1‖ · ‖C‖, (A.1)

for any consistent norm [59].

Proof. From definition (A.1), we can verify that the minimum possible condition
number is 1, which only happens if C is a scalar multiple of a linear isometry, i.e. a
distance preserving transformation. In the Euclidean space, such transformation is
given by an orthogonal matrix Q. Therefore, if we can find R such that Mc = µQ,
where µ ∈ R6=0, then that is the minimum possible condition number we can hope
for. By equating Mc and µQ, we obtain

Mc = µQ⇔ R(In − P) = µQ− PM. (A.2)

Given that (In−P) is non invertible, it means the equality in (A.2) is false. However,
if we post-multiply (In − P) by both sides of (A.2), we get

R(In − P) = (µQ− PM)(In − P), (A.3)

which is true for R = (µQ− PM), and leads to the closest result of the approxima-
tion Mc ≈ µQ. The resulting constraint inertia matrix is Mc = µQ(I − P) + PMP .

123

124 A. Contributed Proofs/Results

To keep generality, we can still consider Q to be any square full rank matrix, thus
all we have achieved so far is a rewritten Mc in terms of Q and µ instead of R. We
shall now find a Q and µ that minimize κ(Mc). Given that (In−P) is an orthogonal
projection matrix, we can always find a partial isometry Z1 such that (In − P) =
Z1Z

>
1 , and analogously P = Z2Z

>
2 , where Qp =

[
Z1 Z2

]
is an orthogonal matrix.

We can then rewrite Mc as

Mc = µQ(I − P) + PMP = µQZ1Z
>
1 + Z2Z

>
2 MZ2Z

>
2

=
[
QZ1 Z2

]︸ ︷︷ ︸
B

[
µIn−m 0

0 Z>2 MZ2

]
︸ ︷︷ ︸

X

[
Z>1
Z>2

]
︸ ︷︷ ︸
Q>
p

. (A.4)

We have that for any suitable norm

‖Mc‖ = ‖BXQ>p ‖ = ‖BX‖,

‖M−1
c ‖ = ‖QpX

−1B−1‖ = ‖X−1B−1‖,

and replacing the previous results in (A.1), we obtain

κ(Mc) = ‖M−1
c ‖ · ‖Mc‖ = ‖X−1B−1‖ · ‖BX‖

≤ ‖X−1‖ · ‖X‖ · ‖B−1‖ · ‖B‖ (A.5)

= κ(X)κ(B).

AsB only depends onQ andX only depends on µ, we can independently findQ and µ
that minimize the respective κ(B) and κ(X). By inspection of (A.4) we see that B
is orthogonal if Q = In, in which case the inequality in (A.5) becomes an equality.
Therefore, we obtain that the result that minimizes κ(Mc) is R(∗) = (µIn−PM), for
which

M (∗)
c = µ(In − P) + PMP. (A.6)

Aghili [3, 4, 5] more recently proposes an Mc in the form of Equation (A.6) and
proves using a 2-norm that its condition number is minimum for {ςmin(PMP) 6=
0} ≤ µ ≤ ςmax(PMP), where ς represents the singular values of a given matrix.
We have that {ςmin(PMP) 6= 0} = ςmin(Z>2 MZ2) and ςmax(PMP) = ςmax(Z>2 MZ2).
If we use a 2-norm in (A.1), then the condition number of a matrix is given by
the ratio of its singular values. Therefore, by inspection of (A.4), we see that the

minimum κ(M
(∗)
c) is κ(Z>2 MZ2). �

A.2. Projected Forward Dynamics Equivalence 125

A.2 Projected Forward Dynamics Equivalence

The goal is to prove that A = M−1
c RA† and PMM

−1 = M−1
c P for any R ∈ Rn×n

such that Mc = PM +R(In − P) is full rank, with M ∈ S+
n .

Proof. Using the MP-conditions that apply to A†: (i) AA†A = A (ii) A†AA† = A†

(iii) AA† =
(
AA†

)>
(iv) A†A =

(
A†A

)>
, and the inertia-weighted generalized

inverse conditions that apply to A: (a) AAA = A (b) AAA = A (c) AA =
(
AA
)>

(d) MAA =
(
MAA

)>
, we start by showing the intermediary results

PMA = (In − A†A)MA = MA− A†AMA

(b)
= MA− A†AM(AAA)

(iv)
= MA− (A†A)

>
(MAA)

>
A

(d)
= MA− (A†A)(MAA)

>
A = MA−

(
A
>
MA(AA†A)

)>
(i)
= MA−

(
A
>

(MAA)
)>

(d)
= MA−

(
A
>

(MAA)
>
)>

= MA−M(AAA)

(b)
= MA−MA = 0,

and

(In − P)A = A†AA

(ii)
= (A†AA†)AA

(c)
= A†(AA†)(AA)

>

(iii)
= A†(AA†)

>
(AA)

>
= A†A†

>
(AAA)

>

(a)
= A†A†

>
A> = A†(AA†)

>

(iii)
= A†AA†

(ii)
= A†.

126 A. Contributed Proofs/Results

For Mc invertible A = M−1
c RA† ⇔McA = RA†, and then we can show that

McA = (PM +R(In − P))A

= PMA︸ ︷︷ ︸
=0

+R (In − P)A︸ ︷︷ ︸
=A†

= RA†.

Analogously, for PMM
−1 = M−1

c P ⇔McPMM
−1 = P , for which we can show that

McPMM
−1 = (PM +R(In − P))

(
In − AA

)
M−1

=

PM − PMA︸ ︷︷ ︸
=0

A+R (In − P)︸ ︷︷ ︸
=A†A

−R (In − P)A︸ ︷︷ ︸
=A†

A

M−1

=
(
PM +RA†A−RA†A

)
M−1

= P MM−1︸ ︷︷ ︸
=In

= P.

�

A.3 Singular Dynamically Consistent Jacobian

The goal is to prove that the inertia-weighted generalized inverse A of the rank
deficient matrix A satisfies the condition (2.19), i.e.

AM−1
(
Inq − A>A

>
)
τε = 0, (A.7)

and, therefore, it is a dynamically consistent inverse.

Proof. Let A be the inertia-weighted generalized inverse of the rank deficient ma-

trix A, satisfying the conditions: (a) AAA = A (b) AAA = A (c) AA =
(
AA
)>

(d) MAA =
(
MAA

)>
, where (d) is equivalent to (e) AAM−1 = (AAM−1)

>
,

given M symmetric positive definite [15] (Appendix B.5 shows the same equivalence

A.4. Partitioned Task-space Inertia Matrix 127

result in (B.34)). We can then show that

AM−1(In − A>A>)τε = (AM−1 − A(AAM−1)
>

)τε

(e)
= (AM−1 − (AAA)M−1)τε

(a)
= (AM−1 − AM−1)τε

= 0,

for any τε ∈ Rn, proving that A is a dynamically consistent inverse of the Jacobian
matrix A. �

A.4 Partitioned Task-space Inertia Matrix

The goal is to show that for a partitioned constraint Jacobian

Rm×n 3 A =

[
A1

A2

]
, (A.8)

if rank(A) = rank(A1) + rank(A2), then we can write the task-inertia matrix

Mx , (AM−1A>)
†
, (A.9)

as

Mx =

[
M1 −A>1 A>2 M2

−A>2 A>1 M1 M2

]
(A.10)

=

[
M1 −M1A1A2

−M2A2A1 M2

]
, (A.11)

where

M1 ,
(
A1PM2M

−1A>1
)†

M2 ,
(
A2PM1M

−1A>2
)†
,

with A1 and A2 being, respectively, the inertia-weighted generalized inverse of A1

and A2, and PM1 and PM2 being the respective projection matrices.

128 A. Contributed Proofs/Results

Proof. Let’s start by defining the positive semi-definite matrix

Sn+ 3 H , AM−1A> =

[
H11 H12

H>12 H22

]
=

[
A1M

−1A>1 A1M
−1A>2

A2M
−1A>1 A2M

−1A>2

]
. (A.12)

Our goal is then to obtain H† = Mx. We have that the for rank(H) = rank(H11) +
rank(H22), the Moore-Penrose inverse of H is

H† =

[
H†11 +H†11H12Σ†22H

>
12H

†
11 −H†11H12Σ†22

−Σ†22H
>
12H

†
11 Σ†22

]
(A.13)

=

[
Σ†11 −Σ†11H12H

†
22

−H†22H
>
12Σ†11 H†22 +H†22H

>
12Σ†11H12H22

]
, (A.14)

where Σ11 = H11 −H12H
†
22H

>
12 and Σ22 = H22 −H>12H

†
11H12 [141, 160, 173].

Given that M ∈ Sn++, by inspection of (A.12) we immediately see that rank(H) =
rank(A), rank(H11) = rank(A1) and rank(H22) = rank(A2) and, hence,

rank(H) = rank(H11) + rank(H22)⇔ rank(A) = rank(A1) + rank(A2). (A.15)

All it’s left is to compute the block elements of (A.13) and (A.14), using the equalities
in (A.12) as follows

Σ†11 =
(
H11 −H12H

†
22H

>
12

)†
=
(
A1M

−1A>1 − A1M
−1A>2 (A2M

−1A>2)
†︸ ︷︷ ︸

,A2

A2M
−1A>1

)†

=

(
A1

(
In − A2A2

)︸ ︷︷ ︸
,PM2

M−1A>1

)†
=
(
A1PM2M

−1A>1
)†
,M1,

Σ†22 =
(
H22 −H>12H

†
11H12

)†
=
(
A2M

−1A>2 − A2M
−1A>1 (A1M

−1A>1)
†︸ ︷︷ ︸

,A1

A1M
−1A>2

)†

=

(
A2

(
In − A1A1

)︸ ︷︷ ︸
,PM1

M−1A>2

)†
=
(
A2PM1M

−1A>2
)†
,M2,

A.5. Direct Policy Error Decomposition 129

−Σ†11H12H
†
22 = −M1A1M

−1A>2 (A2M
−1A>2)

†︸ ︷︷ ︸
=A2

= −M1A1A2,

−Σ†22H
>
12H

†
11 = −M2A2M

−1A>1 (A1M
−1A>1)

†︸ ︷︷ ︸
=A1

= −M2A2A1.

�

A.5 Direct Policy Error Decomposition

Let the Constraint Space Error (CSE) be

εCSE(u;A, b) ,
∫ T

0

‖A(t)u(t)− b(t)‖2dt, (A.16)

where A ∈ Rm×n, and the Constrained Policy Error (CPE) be

εCPE(u;P, u
π) ,

∫ T

0

‖P (t)(u(t)− u
π(t))‖2dt, (A.17)

where P = (In − A†A) ∈ Rn×n is an orthogonal matrix, and the Direct Policy
Learning (DPL) be

εDPL(u; π) ,
∫ T

0

‖u(t)− π(t)‖2dt. (A.18)

We aim to prove that for a policy π defined as

π(t) , A(t)†b(t) + P (t) u
π(t), (A.19)

then we can decompose the rewriten DPE

εDPL(u;A, b, u
π) ,

∫ T

0

‖u(t)− (A(t)†b(t) + P (t) u
π(t))‖2dt, (A.20)

as
εDPL(u;A, b, u

π) = εCSE(u;A, b) + εCPE(u;P, u
π) (A.21)

for A semi-orthogonal.

Proof. Let’s start by summing (A.16) and (A.17), obtaining

εCSE(u;A, b) + εCPE(u;P, u
π) (A.22)

=

∫ T

0

‖A(t)u(t)− b(t)‖2dt+

∫ T

0

‖P (t)(u(t)− u
π(t))‖2dt (A.23)

=

∫ T

0

‖A(t)u(t)− b(t)‖2 + ‖P (t)(u(t)− u
π(t))‖2dt, (A.24)

130 A. Contributed Proofs/Results

which is equal to (A.20) if

‖u(t)−(A(t)†b(t)+P (t) u
π(t))‖2 = ‖A(t)u(t)−b(t)‖2+‖P (t)(u(t)− u

π(t))‖2, (A.25)

∀t ∈ [0, T].

Let

Q =

[
A

N (A)>

]
(A.26)

be a square matrix, where N (A)> is the transpose of an orthogonal basis of the right
null space of A, satisfying the condition AN (A) = 0, i.e., the rows of N (A)> have
unitary Euclidean norm and are orthogonal to the rows of A, where here we drop
the time t dependence for readability purposes.

If A is a semi-orthogonal matrix then T is an orthogonal matrix, resulting in

‖α‖2 = ‖Qα‖2 (A.27)

=

∥∥∥∥[Aα

N (A)>α

]∥∥∥∥2

(A.28)

=

[
Aα

N (A)>α

]> [
Aα

N (A)>α

]
(A.29)

= α>A>Aα + α>N (A)N (A)>α (A.30)

= ‖Aα‖2 + ‖N (A)>α‖2. (A.31)

Let
α = u− A†b− P u

π (A.32)

where A† = A>, for A semi-orthogonal, and P = N (A)N (A)>, for any choice of null
space base N (A), then the first term of (A.31) becomes

‖Aα‖2 = ‖Au− AA†b− AP u
π‖2 (A.33)

= ‖Au− b‖2, (A.34)

where we used AA† = I and AP = 0. The second term of (A.31) becomes

‖N (A)>α‖2 = ‖N (A)>u−N (A)>A†b−N (A)>P u
π‖2 (A.35)

= ‖N (A)>(u− u
π)‖2, N (A)>A> = 0 (A.36)

= ‖N (A)N (A)>(u− u
π)‖2 (A.37)

= ‖N(u− u
π)‖2. (A.38)

A.6. Estimating parameters with GEVD 131

By replacing (A.34) and (A.38) in (A.31), we prove that

‖α(t)‖2 = ‖u(t)− A(t)†b(t)− P (t) u
π(t)‖2

= ‖A(t)u(t)− b(t)‖2 + ‖P (t) (u(t)− u
π(t))‖2

for A(t) semi-orthogonal matrix and ∀t.
�

A.6 Estimating parameters with GEVD

We aim to show that the transpose of the matrix of right generalized eigenvec-
tors of the pencil (YY>,ZZ>) corresponding to its smallest generalized eigenvalues,
with ZZ> positive definite, is a solution to the optimization problem

Rm×n 3 β̂ = arg min
β

K∑
k=1

‖βyk‖2.

s.t. β

(
1

K
K∑
k=1

zkzk
>

)
β> = Im,

(A.39)

where
Rn×K 3 Y =

[
y1, . . . , yK

]
. (A.40)

and

Rn×K 3 Z =
1√
K
[
z1, . . . , zK

]
. (A.41)

Proof. Let’s start by rewriting the cost in (A.39) as

K∑
k=1

‖βyk‖2 =
K∑
k=1

y>k β
>βy>k

(a)
= Tr(Y>β>βY)

(b)
= Tr(βYY>β>) (A.42)

(c)
= ‖βY‖2

F ,

where we get (a) by inspection; (b) using the commutativity property of the trace
operator [175]; and in (c) ‖A‖F represents the Frobenius norm of A [175]. By

132 A. Contributed Proofs/Results

rewriting the equality constraint in (A.39) as βZZ>β = Im, we can then rewrite the
full optimization (A.39) as

β̂ = arg min
β

Tr(βYY>β>)

s.t. βZZ>β> = Im.

(A.43)

The Lagrangian (Boyd and Vandenberghe [27]) for (A.39) is

L = Tr(βYY>β>)− Tr(Λ>(βZZ>β> − In)), (A.44)

where Λ ∈ Rm×m is a diagonal matrix whose entries are the Lagrange multipliers.
Equating the partial derivatives of L [130] to zero give us

∂L
∂β

=2βYY> − 2Λ>βZZ> set
= 0

=⇒ βYY> = Λ>βZZ>

=⇒ YY>β> = ZZ>β>Λ, (A.45)

which corresponds to the generalized eigenvalue problem for the n × n matrix pair
or pencil (WY ,WY) [175], where WY = YY> and WZ = ZZ> are both square
symmetric matrices, and

∂L
∂Λ

=βZZ>β> − In set
= 0

⇔βZZ>β> = In. (A.46)

Consider the Generalized Eigenvalue Decomposition (GEVD) of the real symmetric
matrix pencil (WY ,WZ):

WYU(WY ,WZ) =WZU(WY ,WZ)D(WY ,WZ), (A.47)

where D(WY ,WZ) ∈ Rn×n is a diagonal matrix, containing the generalized eigenvalues
of the pencil (WY ,WY), and where U(WY ,WZ) ∈ Rn×n is a full matrix whose columns
contain the corresponding generalized eigenvectors [175]. Let’s split the left hand
side of (A.47) as

WYU(WY ,WZ) =WY
[
U(WY ,WZ)1 U(WY ,WZ)2

]
=
[
WYU(WY ,WZ)1 WYU(WY ,WZ)2

]
, (A.48)

A.7. Estimating parameters with GSVD 133

and the right and side as

WZU(WY ,WZ)D(WY ,WZ) =WZ
[
U(WY ,WZ)1 U(WY ,WZ)2

] [D(WY ,WZ)1 0
0 D(WY ,WZ)2

]
=
[
WZU(WY ,WZ)1D(WY ,WZ)1 WZU(WY ,WZ)2D(WY ,WZ)2

]
,

(A.49)

with D(WY ,WZ)1 ∈ R(n−m)×(n−m) and D(WY ,WZ)2 ∈ Rm×m, being also diagonal matri-
ces.

Then, by inspection of the second terms of (A.48) and (A.49) where

WYU(WY ,WZ)2 =WZU(WY ,WZ)2D(WY ,WZ)2,

we can immediately see that the solution

β = U>(WY ,WZ)2 ∈ Rn×m, (A.50)

i.e the transpose of the matrix composed by m generalized eigenvectors of the pen-
cil (WY ,WZ), satisfies the condition (A.45). Furthermore, given

U>(WY ,WZ)2WZU(WY ,WZ)2 = Im

for WZ positive definite [58], then (A.50) also satisfies (A.46) and leads to

U>(WY ,WZ)2WYU(WY ,WZ)2 = D(WY ,WZ)2.

The remaining question is which selection of generalized eigenvectors minimize the
cost (A.42). We, therefore, substitute β = U>(WY ,WZ)2 ∈ Rn×m in (A.42), obtaining

Tr(βYY>β>) = Tr(U>(WY ,WZ)2WYU(WY ,WZ)2)

= Tr(D(WY ,WZ)2),

(A.51)

which is minimal for WY2 containing the smallest generalized eigenvectors of the
pencil (WY ,WZ), showing that the transpose of the matrix of right generalized eigen-
vectors of the pencil (WY ,WZ) corresponding to its smallest generalized eigenvalues,
with WZ positive definite, is a solution to the optimization problem (A.43).

�

A.7 Estimating parameters with GSVD

We aim to show that
β̂> = X−1

(Y,Z)SI0 (A.52)

134 A. Contributed Proofs/Results

is a solution o the optimization problem

Rm×n 3 β̂ = arg min
β

K∑
k=1

‖βyk‖2.

s.t. β

(
1

K
K∑
k=1

zkzk
>

)
β> = Im,

(A.53)

given that the first m elements of the diagonal of ΣZ are unitary, where X(Y,Z)

and ΣZ are the result of the Generalized Singular Value Decomposition (GSVD) of
the pencil (Y>,Z>) [58, 175], as

Y> = UYΣYX(Y,Z) (A.54)

Z> = VZΣZX(Y,Z), (A.55)

with

Rn×K 3 Y =
[
y1, . . . , yK

]
. (A.56)

and

Rn×K 3 Z =
1√
K
[
z1, . . . , zK

]
, (A.57)

and where S>I0 =
[
Im 0m×(n−m)

]
∈ Rm×n is a selection matrix, which extracts the

first m columns of X−1
(Y,Z).

Proof. Let’s start by rewriting the cost in (A.53) as

K∑
k=1

‖βyk‖2 =
K∑
k=1

y>k β
>βy>k

(a)
= Tr(Y>β>βY)

(b)
= ‖Y>β>‖2

F ,

where we get (a) by inspection; and in (b) ‖·‖F represents the Frobenius norm [175].
By rewriting the equality constraint in (A.53) as βZZ>β = Im, we can then rewrite
the full optimization (A.53) as

β̂ = arg min
β

‖Y>β>‖2
F

s.t. βZZ>β> = Im.

(A.58)

A.7. Estimating parameters with GSVD 135

Let’s now consider the Generalized Singular Value Decomposition (GSVD) of the
matrix pencil (Y>,Z>)

Y> = UYΣYX(Y,Z) (A.59)

Z> = VZΣZX(Y,Z) (A.60)

where UY ∈ RK×K and VY ∈ RK×K are orthogonal matrices, ΣY ∈ RK×n and ΣZ ∈
RK×n are rectangular diagonal matrices whose diagonal elements range from 0 to 1
ordered in ascending and descending order, respectively, for which Σ>YΣY + Σ>ZΣZ =
In, and X(Y,Z) ∈ Rn×n is an invertible matrix. By replacing (A.59) in the cost
of (A.58), we get

‖Y>β>‖2
F = ‖UYΣYX(Y,Z)β

>‖2
F

(a)
= ‖ΣYX(Y,Z)β

>‖2
F

(b)
= ‖ΣYα>‖2

F

= Tr(αΣ>YΣYα
>), (A.61)

where in (a) the norm is invariant to the orthogonal matrix UY ; in (b) α , βX>(Y,Z),

and by replacing (A.60) in the equality condition of (A.58), we get

βZZ>β> = βX>(Y,Z)Σ
>
ZV
>
Z VZΣZX(Y,Z)β

>

= βX>(Y,Z)Σ
>
ZΣZX(Y,Z)β

>

= αΣ>ZΣZα
>. (A.62)

Replacing (A.61) and (A.62) in (A.58) leads to the following optimization problem

β̂ = arg min
β

Tr(αΣ>YΣYα
>)

s.t. αΣ>ZΣZα
> = Im.

(A.63)

The optimization problem (A.63) has a known minimum which is the sum of the
smallest m eigenvalues of Σ>YΣY [87], which in this case are simply the first Σ>YΣY
elements of its diagonal. Let’s propose the following minimizer:

α̂ = S>I0 ,
[
Im 0m×(n−m)

]
∈ Rm×n. (A.64)

We easily verify that as long as the first m elements of the diagonal of ΣZ are identical
to 1, then (A.64) satisfies the equality condition in (A.63) and yields to the minimum
cost in (A.63). Therefore, the result

β̂> = X−1
(Y,Z)α̂

> = X−1
(Y,Z)SI0

136 A. Contributed Proofs/Results

is a minimizer for the optimization problem (A.53), given that the first m diagonal
elements of ΣZ are unitary.

�

Appendix B

Supplementary Proofs/Results

This appendix provides some supplementary proofs/results developed in the context
of this thesis with the aim of improving the understanding of some of the material
exposed, but fall outside of the novel contributions of the thesis.

B.1 Receptive Field Weighted Regression error

cost decoupling

Let

εnDPE(β) ,
1

K

K∑
k=1

‖uk − π(sk; β)‖2 (B.1)

be an error metric for the policy π with parameters β. We aim to prove that, for a
policy

π(s; β) ,

∑M
m=1 ωm(s)πm(s; βm)∑M

m=1 ωm(s)
=

M∑
m=1

ωm(s)πm(s; βm), (B.2)

defined as a weighted combination of M local models πm, where

ωm(s) =
ωm(s)

ω(s)
(B.3)

are the importance weightings of each local model and

ω(s) =
M∑
m=1

ωm(s), (B.4)

we can write an upper bound to the error metric (B.1) for the global policy as a
summation of decoupled error metrics of each local model, as

εnDPE(β) ≤
M∑
m=1

εnDPEm(βm), (B.5)

137

138 B. Supplementary Proofs/Results

with

εnDPEm(βm) =
1

K

K∑
k=1

ω2
m(sk)‖uk − πm(sk, βm)‖2, (B.6)

where β = {β1, . . . , βM}.

Proof. Lets start by replacing (B.3) in (B.2), obtaining

ω(s)π(s; β) =
M∑
m=1

ωm(s)πm(s; βm). (B.7)

From (B.1) we obtain that

εnDPE(β) ,
1

K

K∑
k=1

‖uk − π(sk; β)‖2

=
1

K

K∑
k=1

ω2(sk)

ω2(sk)
‖uk − π(sk; β)‖2

(a)
=

1

K

K∑
k=1

1

ω2(sk)
‖ω(sk)uk − ω(sk)π(sk; β)‖2

(b)
=

1

K

K∑
k=1

1

ω2(sk)

∥∥∥∥∥
(

M∑
m=1

ωm(sk)

)
uk −

M∑
m=1

(ωm(sk)πm(sk; βm))

∥∥∥∥∥
2

(c)
=

1

K

K∑
k=1

1

ω2(sk)

∥∥∥∥∥
M∑
m=1

ωm(sk) (uk − πm(sk; βm))

∥∥∥∥∥
2

(d)

≤ 1

K

K∑
k=1

1

ω2(sk)

M∑
m=1

‖ωm(sk) (uk − πm(sk; βm)) ‖2

(e)
=

1

K

K∑
k=1

1

ω2(sk)

M∑
m=1

ω2
m(sk)‖uk − πm(sk; βm)‖2

(f)
=

1

K

K∑
k=1

M∑
m=1

ω2
m(sk)

ω2(sk)
‖uk − πm(sk; βm)‖2

(g)
=

1

K

K∑
k=1

M∑
m=1

ω2
m(sk)‖uk − πm(sk; βm)‖2

B.2. Regression of a weighted combination of locally linear models 139

(c)
=

M∑
m=1

1

K

K∑
k=1

ω2
m(sk)‖uk − πm(sk; βm)‖2

=
M∑
m=1

εnDPEm(βm),

(a) using the absolutely homogeneous property of any norm and for ω(·) ≥ 0;
(b) using (B.4) and (B.7);
(c) using the distributivity, commutativity and associativity properties of the sum-

mation;
(d) using the triangle inequality;
(e) using the absolutely homogeneous properties of any norm and for ωm (·) ≥ 0;
(f) using the distributivity property of the summation;
(g) using (B.3).

�

B.2 Regression of a weighted combination of lo-

cally linear models

Let

εnDPE(β) ,
1

K

K∑
k=1

‖uk − π(sk; β)‖2 (B.8)

be an error metric for the policy π with parameters β. We aim to prove that, for a
policy

π(s; β) ,
M∑
m=1

ωm(s)πm(s; βm), (B.9)

defined as a weighted combination of M local linear models πm(s) = φπ(s)βm,
where ωm are the importance weightings of each local model, the vector of parame-
ters β = [β1; . . . ; βM] that minimizes the error (B.8) is

β̂ = arg min
β

εnDPE(β) = Φ†WπU , (B.10)

with

ΦWπ =

W
>(s1)⊗ φπ(s1)

...
W>(sK)⊗ φπ(sK)

 and W(s) =

 ω1(s)
...

ωM(s)

 ,
where † denotes the pseudo-inverse of a matrix and ⊗ denotes the Kronecker product
operator.

140 B. Supplementary Proofs/Results

Proof. Let’s start by rewriting π as single linear model as,

π(s; β) =
M∑
m=1

ωm(s)φπ(s)βm = φπ(s)
M∑
m=1

βmωm(s) (B.11)

= φπ(s)
[
β1, · · · , βM

]︸ ︷︷ ︸
,B

 ω1(s)
...

ωM(s)


︸ ︷︷ ︸
,W(s)

(B.12)

= φπ(s)BW(s) (B.13)

(a)
= vec (φπ(s)BW(s)) (B.14)

(b)
=
(
W>(s)⊗ φπ(s)

)︸ ︷︷ ︸
,φWπ(s)

vec(B)︸ ︷︷ ︸
,β

= φWπ(s)β, (B.15)

where vec(B) denotes the vectorization of the matrix B, formed by stacking the
columns of B into a single column vector, and where

(a) the vectorization of a vector is the vector itself;
(b) using the connection between the Kronecker product and vectorization [114].

Replacing (B.15) in (B.8) results in

εnDPE(β) =
1

K

K∑
k=1

‖uk − φWπ(sk)β‖2, (B.16)

for which there is a known minimizer [19, Section 3.1.5]

β̂ = arg min
β

εnDPE(β) = Φ†WπU , (B.17)

with

ΦWπ =

φWπ(s1)
...

φWπ(sK)

 =

W
>(s1)⊗ φπ(s1)

...
W>(sK)⊗ φπ(sK)

 and U =

u1
...
uK

 .

�

B.3. Estimating parameters with EVD 141

B.3 Estimating parameters with EVD

We aim to show that the transpose of the left eigenvectors of YY> corresponding to
its smallest eigenvalues is a solution to the optimization problem

Rm×n 3 β̂ = arg min
β

K∑
k=1

‖βyk‖2.

s.t. ββ> = Im,

(B.18)

with

Rn×K 3 Y =
[
y1, . . . , yK

]
.

Proof. Let’s start by rewriting the cost in (B.18) as

K∑
k=1

‖βyk‖2 =
K∑
k=1

y>k β
>βy>k

(a)
= Tr(Y>β>βY)

(b)
= Tr(βYY>β>) (B.19)

(c)
= ‖βY‖2

F ,

where we get (a) by inspection; (b) using the commutativity property of the trace
operator [175]; and in (c) ‖A‖F represents the Frobenius norm of A [175]. The
Lagrangian (Boyd and Vandenberghe [27]) for (B.18) is

L = Tr(βYY>β>)− Tr(Λ>(ββ> − In)), (B.20)

where Λ ∈ Rm×m is a diagonal matrix whose entries are the Lagrange multipliers.
Equating the partial derivatives of L [130] to zero give us

∂L
∂β

=2βYY> − 2Λ>β
set
= 0

=⇒ βYY> = Λ>β

=⇒ YY>β> = β>Λ, (B.21)

142 B. Supplementary Proofs/Results

which corresponds to the eigenvalue problem for WY , where WY = YY> is a square
symmetric matrix [175], and

∂L
∂Λ

=ββ> − In set
= 0

⇔ββ> = In. (B.22)

Consider the Eigenvalue Decomposition (EVD) of WY :

WYUWY = UWYDWY , (B.23)

where DWY ∈ Rn×n is a diagonal matrix, whose elements contain the eigenvalues
of WY , and where UWY ∈ Rn×n is an orthogonal matrix whose columns are the
corresponding eigenvectors [58]. Let’s split (B.23) as

WYUWY = UWYDWY

⇔WY
[
UWY1 UWY2

]
=
[
UWY1 UWY2

] [DWY1 0
0 DWY2

]
⇔
[
WYUWY1 WYUWY2

]
=
[
UWY1DWY1 UWY2DWY2

]
, (B.24)

with DWY1 ∈ R(n−m)×(n−m) and DWY1 ∈ Rm×m. Then, by inspection of the second
term of (B.24) where WYUWY2 = UWY2DWY2, we can immediately see that the
solution

β = U>WY2 ∈ Rn×m, (B.25)

i.e. the transpose of the matrix composed by m eigenvectors of WY , satisfies the
condition (B.21). Furthermore, given that UWY2U

>
WY2 = Im, then (B.25) also satis-

fies (B.22) and leads to

WYUWY2 = UWY2DWY2 ⇔ U>WY2WYUWY2 = DWY2.

The remaining question is which selection of eigenvectors minimize the cost (B.19).
We, therefore, substitute β = U>WY2 ∈ Rn×m in (B.19), obtaining

Tr(βYY>β>) = Tr(U>WY2WYUWY2)

= Tr(DWY2),

which is minimal for WY2 containing the smallest eigenvectors of WY , showing that
the transpose of the matrix of right eigenvectors ofWY corresponding to the smallest
eigenvalues of WY is a solution to (B.18).

�

B.4. Estimating parameters with SVD 143

B.4 Estimating parameters with SVD

We aim to show that
β̂> = UYS0I (B.26)

is a solution to the optimization problem

Rm×n 3 β̂ = arg min
β

K∑
k=1

‖βyk‖2

s.t. ββ> = Im,

(B.27)

where UY is the matrix of the left-singular vectors resulting from the Singular Value
Decomposition (SVD) of Y , with

Rn×K 3 Y =
[
y1, . . . , yK

]
,

and where S>0I =
[
0m×(n−m) Im

]
∈ Rm×n is a selection matrix, which extracts the

last m columns of UY .

Proof. Let’s start by rewriting the cost in (B.18) as

K∑
k=1

‖βyk‖2 =
K∑
k=1

y>k β
>βy>k

(a)
= Tr(Y>β>βY)

(b)
= ‖Y>β>‖2

F , (B.28)

where we get (a) by inspection; and in (b) ‖·‖F represents the Frobenius norm [175].

Let’s now consider the Singular Value Decomposition (SVD)

Rn×K 3 Y = UYΣYV
>
Y , (B.29)

where ΣY ∈ Rn×K is a rectangular diagonal matrix whose diagonal entries contain
the singular values of Y , and UY ∈ Rn×n and VY ∈ RK×K are orthogonal matrices
composed, respectively, of the left-single vectors and right-single vectors of Y [175].
We can then replace (B.29) in (B.28), obtaining

‖Y>β>‖2
F = ‖VYΣ>YU

>
Y β
>‖2

F

(c)
= ‖Σ>YU>Y β>‖2

F

(d)
= ‖Σ>Yα>‖2

F

(e)
= Tr(αΣ2

Yα
>) (B.30)

144 B. Supplementary Proofs/Results

where in (c) the norm is invariant to the orthogonal matrix VY ; in (d) α , βUY ;
and in (e) Σ2

Y , ΣYΣ>Y ∈ Rn×n is a square diagonal matrix containing the square of
the singular values of Y , in descending order. We also have that

ββ> = βUYU
>
Y β
> = αα> = Im. (B.31)

By substituting the rewritten condition (B.31) and cost (B.30) in the optimiza-
tion (B.27), we can redefine it as

Rm×n 3 α̂ = arg min
α

Tr(αΣ2
Yα
>)

s.t. αα> = Im.

(B.32)

The optimization problem (B.32) has a known minimum which is the sum of the
smallest m eigenvalues of Σ2

Y [87, 145], which in this case are simply the last m
elements of its diagonal. Let’s then propose the following minimizer:

α̂ = S>0I ,
[
0m×(n−m) Im

]
∈ Rm×n. (B.33)

We can immediately see that (B.33) satisfies the equality condition in (B.32) and
yields to the minimum cost in (B.32). Therefore, the result

β̂> = UY α̂
> = UYS0I

is a minimizer for the optimization problem (B.27).

�

B.5 Inertia-Weighted Generalized Inverses and Pro-

jection Equalities

Let A be the inertia-weighted generalized inverse of the rank deficient matrix A,

satisfying the conditions: (a) AAA = A (b) AAA = A (c) AA =
(
AA
)>

(d) MAA =
(
MAA

)>
, given M ∈ Sn++, and let PM , (In − AA). This appendix

derives some useful equalities resulting from the above definition of weighted-inverse
matrix:

MAA =
(
MAA

)> ⇔ AAM−1 =
(
AAM−1

)>
, (B.34)

PMM
−1 = M−1 − AAM−1

B.34
= M−1 − (AAM−1)

>

= M−1 −M−1(AA)
>

= M−1P>M .

(B.35)

Bibliography

[1] Farhad Aghili. Inverse and direct dynamics of constrained multibody
systems based on orthogonal decomposition of generalized force. In
IEEE International Conference on Robotics and Automation, ICRA, 2003.
doi:10.1109/ROBOT.2003.1242217.

[2] Farhad Aghili. A unified approach for inverse and direct dynamics of con-
strained multibody systems based on linear projection operator: Applications
to control and simulation. IEEE Transactions on Robotics, 21(5):834–849,
2005. doi:10.1109/TRO.2005.851380.

[3] Farhad Aghili. Projection-based modeling and control of mechanical sys-
tems using non-minimum set of coordinates. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS. IEEE, 2015.
doi:10.1109/IROS.2015.7353815.

[4] Farhad Aghili. Non-minimal order model of mechanical systems with redun-
dant constraints for simulations and controls. IEEE Transactions on Automatic
Control, 61(5):1350 – 1355, 2016. doi:10.1109/TAC.2015.2463632.

[5] Farhad Aghili. Modeling and analysis of multiple impacts in multibody systems
under unilateral and bilateral constrains based on linear projection operators.
Multibody System Dynamics, 46:41–62, 2019. doi:10.1007/s11044-018-09658-w.

[6] Farhad Aghili and Jean Claude Piedbœuf. Simulation of motion of constrained
multibody systems based on projection operator. Multibody System Dynamics,
10(1):3–16, 2003. doi:10.1023/A:1024584323751.

[7] Farhad Aghili and Chun Yi Su. Control of constrained robots subject to unilat-
eral contacts and friction cone constraints. In Proceedings - IEEE International
Conference on Robotics and Automation, volume 2016-June, pages 2347–2352.
IEEE, 2016. doi:10.1109/ICRA.2016.7487385.

[8] Gianluca Antonelli. Stability analysis for prioritized closed-loop inverse kine-
matic algorithms for redundant robotic systems. IEEE Transactions on
Robotics, 25(5):985 – 994, 2009. doi:10.1109/TRO.2009.2017135.

145

http://dx.doi.org/10.1109/ROBOT.2003.1242217
http://dx.doi.org/10.1109/TRO.2005.851380
http://dx.doi.org/10.1109/IROS.2015.7353815
http://dx.doi.org/10.1109/TAC.2015.2463632
http://dx.doi.org/10.1007/s11044-018-09658-w
http://dx.doi.org/10.1023/A:1024584323751
http://dx.doi.org/10.1109/ICRA.2016.7487385
http://dx.doi.org/10.1109/TRO.2009.2017135

146 Bibliography

[9] Leopoldo Armesto, Jorren Bosga, Vladimir Ivan, and Sethu Vijayakumar. Ef-
ficient learning of constraints and generic null space policies. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1520–1526,
2017. doi:10.1109/ICRA.2017.7989181.

[10] Leopoldo Armesto, João Moura, Vladimir Ivan, Antonio Salas, and Sethu
Vijayakumar. Learning constrained generalizable policies by demonstration. In
Robotics: Science and Systems (RSS), 2017. doi:10.15607/RSS.2017.XIII.036.

[11] Leopoldo Armesto, João Moura, Vladimir Ivan, Antonio Salas, and Sethu
Vijayakumar. Learning constrained generalizable policies by demonstration,
2017. URL https://youtu.be/4Jo7q1_Frrc. Accessed on 29 June 2020.

[12] Leopoldo Armesto, João Moura, Vladimir Ivan, Mustafa Suphi Erden, Antonio
Sala, and Sethu Vijayakumar. Constraint-aware learning of policies by demon-
stration. The International Journal of Robotics Research, 37(13-14):1673–1689,
2018. doi:10.1177/0278364918784354.

[13] Junghwan Back, João Bimbo, Yohan Noh, Lakmal Seneviratne, Kaspar Al-
thoefer, and Hongbin Liu. Control a contact sensing finger for surface haptic
exploration. In IEEE International Conference on Robotics and Automation
(ICRA), 2014. doi:10.1109/ICRA.2014.6907251.

[14] P. Baerlochcr and R. Boulic. Task-priority formulations for the kine-
matic control of highly redundant articulated structures. In IEEE In-
ternational Conference on Intelligent Robots and Systems (IROS), 1998.
doi:10.1109/IROS.1998.724639.

[15] K. S. Banerjee, C. Radhakrishna Rao, and Sujit Kumar Mitra. Generalized in-
verse of matrices and its applications. In Berkeley Symposium on Mathematical
Statistics and Probability, 1973. doi:10.2307/1266840.

[16] Antonio Bicchi, J. Kenneth Salisbury, and David L. Brock. Contact sensing
from force measurements. The International Journal of Robotics Research, 12
(3):249–262, 1993. doi:10.1177/027836499301200304.

[17] Aude Billard and Roland Siegwart. Robot learning from demon-
stration. Robotics and Autonomous Systems, 47(2-3):65–67, 2004.
doi:10.1016/j.robot.2004.03.001.

[18] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal. Robot
programming by demonstration. In Springer Handbook of Robotics, pages 1371–
1394. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. doi:10.1007/978-3-
540-30301-5 60.

[19] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-
Verlag, Berlin, Heidelberg, 2006.

http://dx.doi.org/10.1109/ICRA.2017.7989181
http://dx.doi.org/10.15607/RSS.2017.XIII.036
https://youtu.be/4Jo7q1_Frrc
http://dx.doi.org/10.1177/0278364918784354
http://dx.doi.org/10.1109/ICRA.2014.6907251
http://dx.doi.org/10.1109/IROS.1998.724639
http://dx.doi.org/10.2307/1266840
http://dx.doi.org/10.1177/027836499301200304
http://dx.doi.org/10.1016/j.robot.2004.03.001
http://dx.doi.org/10.1007/978-3-540-30301-5_60
http://dx.doi.org/10.1007/978-3-540-30301-5_60

Bibliography 147

[20] Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams. De-
velopments of the generative topographic mapping. Neurocomputing, 21(1-3):
203–224, 1998. doi:10.1016/S0925-2312(98)00043-5.

[21] Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams. Gtm:
The generative topographic mapping. Neural Computation, 10(1):215–234,
1998. doi:10.1162/089976698300017953.

[22] Sebastian Bitzer and Sethu Vijayakumar. Latent spaces for dynamic move-
ment primitives. In IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2009. doi:10.1109/ICHR.2009.5379530.

[23] Wojciech Blajer. A geometric unification of constrained system dynamics.
Multibody System Dynamics, 1:3–21, 1997. doi:10.1023/A:1009759106323.

[24] M. Blauer and P. Belanger. State and parameter estimation for robotic manip-
ulators using force measurements. IEEE Transactions on Automatic Control,
32(12):1055–1066, 1987. doi:10.1109/TAC.1987.1104524.

[25] Ye Bosheng, Song Bao, Li Zhengyi, Xiong Shuo, and Tang Xiaoqi. A study
of force and position tracking control for robot contact with an arbitrarily
inclined plane. International Journal of Advanced Robotic Systems, 10(1), 2012.
doi:10.5772/55086.

[26] Karim Bouyarmane and Abderrahmane Kheddar. On weight-prioritized mul-
titask control of humanoid robots. IEEE Transactions on Automatic Control,
63(6):1632 – 1647, 2018. doi:10.1109/TAC.2017.2752085.

[27] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, USA, 2004.

[28] Gerald Brantner and Oussama Khatib. Controlling ocean one: Human–robot
collaboration for deep-sea manipulation. Journal of Field Robotics, 2020.
doi:10.1002/rob.21960.

[29] Herman Bruyninckx and Oussama Khatib. Gauss’ principle and the dynamics
of redundant and constrained manipulators. In IEEE International Conference
on Robotics and Automation (ICRA), 2000. doi:10.1109/ROBOT.2000.846414.

[30] Pasquale Chiacchio, Stefano Chiaverini, Lorenzo Sciavicco, and Bruno Si-
ciliano. Closed-loop inverse kinematics schemes for constrained redun-
dant manipulators with task space augmentation and task priority strat-
egy. The International Journal of Robotics Research, 10(4):410–425, 1991.
doi:10.1177/027836499101000409.

[31] Stefano Chiaverini. Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators. IEEE Transactions on
Robotics and Automation, 13(3):398 – 410, 1997. doi:10.1109/70.585902.

http://dx.doi.org/10.1016/S0925-2312(98)00043-5
http://dx.doi.org/10.1162/089976698300017953
http://dx.doi.org/10.1109/ICHR.2009.5379530
http://dx.doi.org/10.1023/A:1009759106323
http://dx.doi.org/10.1109/TAC.1987.1104524
http://dx.doi.org/10.5772/55086
http://dx.doi.org/10.1109/TAC.2017.2752085
http://dx.doi.org/10.1002/rob.21960
http://dx.doi.org/10.1109/ROBOT.2000.846414
http://dx.doi.org/10.1177/027836499101000409
http://dx.doi.org/10.1109/70.585902

148 Bibliography

[32] Jefferson A. Coelho, Elizeth G. Araujo, Manfred Huber, and Roderic A. Gru-
pen. Dynamical categories and control policy selection. In IEEE Interna-
tional Symposium on Intelligent Control (ISIC) held jointly with IEEE Interna-
tional Symposium on Computational Intelligence in Robotics and Automation
(CIRA), pages 459–464, 1998. doi:10.1109/isic.1998.713705.

[33] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms In MAT-
LAB, Second Edition. Springer Publishing Company, Incorporated, 2017.
doi:10.1007/978-3-319-54413-7.

[34] Vincent De Sapio and Oussama Khatib. Operational space control of multibody
systems with explicit holonomic constraints. In IEEE International Conference
on Robotics and Automation, ICRA, 2005. doi:10.1109/ROBOT.2005.1570562.

[35] Vincent De Sapio, Oussama Khatib, and Scott Delp. Task-level approaches for
the control of constrained multibody systems. Multibody System Dynamics, 16
(1):73–102, 2006. doi:10.1007/s11044-006-9017-3.

[36] Niels Dehio. Prioritized Multi-Objective Robot Control. PhD thesis, Technical
University Braunschweig, 2018.

[37] Niels Dehio and Jochen J Steil. Dynamically-consistent generalized hierarchical
control. In International Conference on Robotics and Automation, ICRA, 2019.
doi:10.1109/ICRA.2019.8793553.

[38] Niels Dehio, Joshua Smith, Dennis Leroy Wigand, Guiyang Xin, Hsiu-chin
Lin, Jochen J Steil, and Michael Mistry. Modeling and control of multi-
arm and multi-leg robots: Compensating for object dynamics during grasping.
In IEEE International Conference on Robotics and Automation, ICRA, 2018.
doi:10.1109/ICRA.2018.8462872.

[39] Andrea Del, Francesco Nori, Giorgio Metta, and Lorenzo Natale. Priori-
tized motion – force control of constrained fully-actuated robots : “task space
inverse dynamics ”. Robotics and Autonomous Systems, 63:150–157, 2015.
doi:10.1016/j.robot.2014.08.016.

[40] Alexander Dietrich, Alin Albu-Schäffer, and Gerd Hirzinger. On continuous
null space projections for torque-based, hierarchical, multi-objective manipu-
lation. In IEEE International Conference on Robotics and Automation (ICRA),
pages 2978–2985. IEEE, 2012. doi:10.1109/ICRA.2012.6224571.

[41] Alexander Dietrich, Christian Ott, and Alin Albu-Schäffer. An
overview of null space projections for redundant, torque-controlled robots.
The International Journal of Robotics Research, 34(11):1385–1400, 2015.
doi:10.1177/0278364914566516.

[42] Alexander Dietrich, Christian Ott, and Stefano Stramigioli. Passivation of

http://dx.doi.org/10.1109/isic.1998.713705
http://dx.doi.org/10.1007/978-3-319-54413-7
http://dx.doi.org/10.1109/ROBOT.2005.1570562
http://dx.doi.org/10.1007/s11044-006-9017-3
http://dx.doi.org/10.1109/ICRA.2019.8793553
http://dx.doi.org/10.1109/ICRA.2018.8462872
http://dx.doi.org/10.1016/j.robot.2014.08.016
http://dx.doi.org/10.1109/ICRA.2012.6224571
http://dx.doi.org/10.1177/0278364914566516

Bibliography 149

projection-based null space compliance control via energy tanks. IEEE Robotics
and Automation Letters, 1(1):184–191, 2016. doi:10.1109/LRA.2015.2512937.

[43] Alexander Dietrich, Christian Ott, and Jaeheung Park. The hierar-
chical operational space formulation: Stability analysis for the regu-
lation case. IEEE Robotics and Automation Letters, 3(2):1–1, 2018.
doi:10.1109/LRA.2018.2792154.

[44] N. Diolaiti, C. Melchiorri, and S. Stramigioli. Contact impedance estimation for
robotic systems. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2004. doi:10.1109/iros.2004.1389790.

[45] Keith L. Doty, Claudio Melchiorri, and Claudio Bonivento. A theory of gen-
eralized inverses applied to robotics. The International Journal of Robotics
Research, 12(1):1–19, 1993. doi:10.1177/027836499301200101.

[46] Joseph Duffy. The fallacy of modern hybrid control theory that is based on
“orthogonal complements” of twist and wrench spaces. Journal of Robotic
Systems, 7(2):139–144, 1990. doi:10.1002/rob.4620070202.

[47] James D. English and Anthony A. Maciejewski. On the implementation of
velocity control for kinematically redundant manipulators. IEEE Transactions
on Systems, Man, and Cybernetics Part A: Systems and Humans, 30(3):233–
237, 2000. doi:10.1109/3468.844350.

[48] Adrien Escande, Nicolas Mansard, and Pierre Brice Wieber. Fast reso-
lution of hierarchized inverse kinematics with inequality constraints. In
IEEE International Conference on Robotics and Automation (ICRA), 2010.
doi:10.1109/ROBOT.2010.5509953.

[49] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. Hierarchi-
cal quadratic programming: Fast online humanoid-robot motion genera-
tion. The International Journal of Robotics Research, 33(7):1006–1028, 2014.
doi:10.1177/0278364914521306.

[50] Nima Fazeli, Roman Kolbert, Russ Tedrake, and Alberto Rodriguez. Parame-
ter and contact force estimation of planar rigid-bodies undergoing frictional
contact. International Journal of Robotics Research, 36(13-14):1437–1454,
2017. doi:10.1177/0278364917698749.

[51] Roy Featherstone. An empirical study of the joint space inertia ma-
trix. The International Journal of Robotics Research, 23(9):859–871, 2004.
doi:10.1177/0278364904044869.

[52] Roy Featherstone. Rigid Body Dynamics Algorithms. Springer US, Berlin,
Heidelberg, 2008. doi:10.1007/978-1-4899-7560-7.

[53] Roy Featherstone. Exploiting sparsity in operational-space dynam-

http://dx.doi.org/10.1109/LRA.2015.2512937
http://dx.doi.org/10.1109/LRA.2018.2792154
http://dx.doi.org/10.1109/iros.2004.1389790
http://dx.doi.org/10.1177/027836499301200101
http://dx.doi.org/10.1002/rob.4620070202
http://dx.doi.org/10.1109/3468.844350
http://dx.doi.org/10.1109/ROBOT.2010.5509953
http://dx.doi.org/10.1177/0278364914521306
http://dx.doi.org/10.1177/0278364917698749
http://dx.doi.org/10.1177/0278364904044869
http://dx.doi.org/10.1007/978-1-4899-7560-7

150 Bibliography

ics. International Journal of Robotics Research, 29(10):1353–1368, 2010.
doi:10.1177/0278364909357644.

[54] Roy Featherstone and Oussama Khatib. Load independence of the dynamically
consistent inverse of the jacobian matrix. The International Journal of Robotics
Research, 16(2):168–170, 1997. doi:10.1177/027836499701600203.

[55] Cliff Fitzgerald. Developing baxter. In IEEE Conference on
Technologies for Practical Robot Applications (TePRA), 2013.
doi:10.1109/TePRA.2013.6556344.

[56] Paulo Flores and Hamid Lankarani. Contact Force Models for Multibody Dy-
namics. Springer, 01 2016.

[57] Gowrishankar Ganesh, Nathanael Jarrassé, Sami Haddadin, Alin Albu-
Schaeffer, and Etienne Burdet. A versatile biomimetic controller for contact
tooling and haptic exploration. In IEEE International Conference on Robotics
and Automation (ICRA), 2012. doi:10.1109/ICRA.2012.6225057.

[58] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, third edition, 1996.

[59] Gene H. (Gene Howard) Golub. Matrix computations. The Johns Hopkins
University Press, Baltimore, Md., fourth edition, 2013.

[60] Sovannara Hak, Nicolas Mansard, Olivier Stasse, and Jean Paul Laumond.
Reverse control for humanoid robot task recognition. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 42(6):1524–1537, 2012.
doi:10.1109/TSMCB.2012.2193614.

[61] Alexander Herzog, Nicholas Rotella, Sean Mason, Felix Grimminger, Stefan
Schaal, and Ludovic Righetti. Momentum control with hierarchical inverse
dynamics on a torque-controlled humanoid. Autonomous Robots, 40(3):473–
491, 2016. doi:10.1007/s10514-015-9476-6.

[62] Jurgen Hess, Gian Diego Tipaldi, and Wolfram Burgard. Null space opti-
mization for effective coverage of 3d surfaces using redundant manipulators.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1923–1928. IEEE, 2012. doi:10.1109/IROS.2012.6385960.

[63] Matthew Howard. Learning Control Policies from Constrained Motion. PhD
thesis, University of Edinburgh, 2009.

[64] Matthew Howard, Michael Gienger, Christian Goerick, and Sethu
Vijayakumar. Learning utility surfaces for movement selection. In IEEE
International Conference on Robotics and Biomimetics (ROBIO), 2006.
doi:10.1109/ROBIO.2006.340168.

[65] Matthew Howard, Stefan Klanke, Michael Gienger, Christian Goerick, and

http://dx.doi.org/10.1177/0278364909357644
http://dx.doi.org/10.1177/027836499701600203
http://dx.doi.org/10.1109/TePRA.2013.6556344
http://dx.doi.org/10.1109/ICRA.2012.6225057
http://dx.doi.org/10.1109/TSMCB.2012.2193614
http://dx.doi.org/10.1007/s10514-015-9476-6
http://dx.doi.org/10.1109/IROS.2012.6385960
http://dx.doi.org/10.1109/ROBIO.2006.340168

Bibliography 151

Sethu Vijayakumar. Learning potential-based policies from constrained mo-
tion. In IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids), 2008. doi:10.1109/ICHR.2008.4755977.

[66] Matthew Howard, Stefan Klanke, Michael Gienger, Christian Goerick, and
Sethu Vijayakumar. Behaviour generation in humanoids by learning potential-
based policies from constrained motion. Applied Bionics and Biomechanics, 5
(4):195–211, 2008. doi:10.1080/11762320902789830.

[67] Matthew Howard, Stefan Klanke, Michael Gienger, Christian Goerick, and
Sethu Vijayakumar. A novel method for learning policies from variable con-
straint data. Autonomous Robots, 27(2):105–121, 2009. doi:10.1007/s10514-
009-9129-8.

[68] Matthew Howard, Stefan Klanke, Michael Gienger, Christian Goerick, and
Sethu Vijayakumar. Robust constraint-consistent learning. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 4629–
4636, 2009. doi:10.1109/IROS.2009.5354663.

[69] Matthew Howard, Stefan Klanke, Michael Gienger, Christian Goerick, and
Sethu Vijayakumar. A novel method for learning policies from constrained mo-
tion. In IEEE International Conference on Robotics and Automation (ICRA),
2009. doi:10.1109/robot.2009.5152335.

[70] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor land-
scapes for learning motor primitives. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 1547–1554, 2002.

[71] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. Dynamical movement primitives: Learning attractor models for motor
behaviors, 2013.

[72] Rodrigo Jamisola, Marcelo H. Ang, Denny Oetomo, Oussama Khatib,
Tao Ming, and Ser Yong Lim. The operational space formulation imple-
mentation to aircraft canopy polishing using a mobile manipulator. In
IEEE International Conference on Robotics and Automation (ICRA), 2002.
doi:10.1109/ROBOT.2002.1013393.

[73] Rodrigo S. Jamisola, Denny N. Oetomo, Marcelo H. Ang, Oussama Khatib,
Tao Ming Lim, and Ser Yong Lim. Compliant motion using a mobile manipu-
lator: An operational space formulation approach to aircraft canopy polishing.
Advanced Robotics, 19(5):613–634, 2005. doi:10.1163/156855305323383820.

[74] Rodrigo S. Jamisola, Petar Kormushev, Antonio Bicchi, and Darwin G. Cald-
well. Haptic exploration of unknown surfaces with discontinuities. In IEEE In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 1255–
1260. IEEE, 2014. doi:10.1109/IROS.2014.6942718.

http://dx.doi.org/10.1109/ICHR.2008.4755977
http://dx.doi.org/10.1080/11762320902789830
http://dx.doi.org/10.1007/s10514-009-9129-8
http://dx.doi.org/10.1007/s10514-009-9129-8
http://dx.doi.org/10.1109/IROS.2009.5354663
http://dx.doi.org/10.1109/robot.2009.5152335
http://dx.doi.org/10.1109/ROBOT.2002.1013393
http://dx.doi.org/10.1163/156855305323383820
http://dx.doi.org/10.1109/IROS.2014.6942718

152 Bibliography

[75] Oussama Kanoun, Florent Lamiraux, and Pierre Brice Wieber. Kinematic
control of redundant manipulators: Generalizing the task-priority framework
to inequality task. IEEE Transactions on Robotics, 27(4):785 – 792, 2011.
doi:10.1109/TRO.2011.2142450.

[76] Mohammad Khansari-Zadeh and Aude Billard. Learning stable non-linear
dynamical systems with gaussian mixture models. Transactions on Robotics,
27(5):943–957, 2011. doi:10.1109/TRO.2011.2159412.

[77] Oussama Khatib. A unified approach for motion and force control of robot
manipulators: The operational space formulation. IEEE Journal on Robotics
and Automation, 3(1):43–53, 1987. doi:10.1109/JRA.1987.1087068.

[78] Oussama Khatib. Inertial properties in robotic manipulation: An object-level
framework. The International Journal of Robotics Research, 14(1):19–36, 1995.
doi:10.1177/027836499501400103.

[79] Oussama Khatib and Joel Burdick. Motion and force control of robot ma-
nipulators. In IEEE International Conference on Robotics and Automation
(ICRA), 1986.

[80] CG Khatri and C Rao. Solutions to some functional equations and their appli-
cations to characterization of probability distributions. Sankhyā: The Indian
Journal of Statistics, Series A, 30(2):167–180, 1968.

[81] Petar Kormushev, Dragomir N. Nenchev, Sylvain Calinon, and Darwin G.
Caldwell. Upper-body kinesthetic teaching of a free-standing humanoid robot.
In IEEE International Conference on Robotics and Automation (ICRA), 2011.
doi:10.1109/ICRA.2011.5979537.

[82] Martin De Lasa and Aaron Hertzmann. Prioritized optimization for task-
space control. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2009. doi:10.1109/IROS.2009.5354341.

[83] André Laulusa and Olivier A. Bauchau. Review of classical approaches for
constraint enforcement in multibody systems. Journal of Computational and
Nonlinear Dynamics, 3, 2008. doi:10.1115/1.2803257.

[84] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,
U.K., 2006.

[85] Daniel Leidner, Alexander Dietrich, Florian Schmidt, Christoph Borst, and
Alin Albu-Schäffer. Object-centered hybrid reasoning for whole-body mobile
manipulation. In Proceedings - IEEE International Conference on Robotics and
Automation, 2014. doi:10.1109/ICRA.2014.6907099.

[86] Miao Li, Kenji Tahara, and Aude Billard. Learning task manifolds for
constrained object manipulation. Autonomous Robots, 42(1):159–174, 2018.
doi:10.1007/s10514-017-9643-z.

http://dx.doi.org/10.1109/TRO.2011.2142450
http://dx.doi.org/10.1109/TRO.2011.2159412
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1177/027836499501400103
http://dx.doi.org/10.1109/ICRA.2011.5979537
http://dx.doi.org/10.1109/IROS.2009.5354341
http://dx.doi.org/10.1115/1.2803257
http://dx.doi.org/10.1109/ICRA.2014.6907099
http://dx.doi.org/10.1007/s10514-017-9643-z

Bibliography 153

[87] Xin Liang, Ren Cang Li, and Zhaojun Bai. Trace minimization principles
for positive semi-definite pencils. Linear Algebra and Its Applications, 2013.
doi:10.1016/j.laa.2012.12.003.

[88] Alain Liegeois. Automatic supervisory control of the configuration and be-
havior of multibody mecanisms. IEEE Transactions on Systems, Man and
Cybernetics, 7(12):868–871, 1977. doi:10.1109/tsmc.1977.4309644.

[89] Hsiu-Chin Lin, Matthew Howard, and Sethu Vijayakumar. Learning null
space projections. IEEE International Conference on Robotics and Automation
(ICRA), pages 2613–2619, 2015. doi:10.1109/ICRA.2015.7139551.

[90] Hsiu-Chin Lin, Prabhakar Ray, and Matthew Howard. Learning task con-
straints in operational space formulation. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 309–315. IEEE, 2017.
doi:10.1109/ICRA.2017.7989039.

[91] Hsiu-Chin Lin, Joshua Smith, Keyhan Kouhkiloui Babarahmati, Niels Dehio,
and Michael Mistry. A projected inverse dynamics approach for dual-arm
cartesian impedance control. In IEEE International Conference on Robotics
and Automation, ICRA, 2018. doi:10.1109/ICRA.2018.8461202.

[92] Mingxing Liu, Yang Tan, and Vincent Padois. Generalized hierarchical control.
Autonomous Robots, 40(1):17–31, 2016. doi:10.1007/s10514-015-9436-1.

[93] S Liu and G Trenkler. Hadamard, khatri-rao, kronecker and other matrix
products. International Journal of Information and systems sciences, 4(1):
160–177, 2008.

[94] Ewald Lutscher and Gordon Cheng. Constrained manipulation in unstruc-
tured environment utilizing hierarchical task specification for indirect force
controlled robots. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3471–3476. IEEE, 2014. doi:10.1109/ICRA.2014.6907359.

[95] Ewald Lutscher, Emmanuel C. Dean-Leon, and Gordon Cheng. Hier-
archical force and positioning task specification for indirect force con-
trolled robots. IEEE Transactions on Robotics, 34(1):280–286, 2018.
doi:10.1109/TRO.2017.2765674.

[96] Anthony A. Maciejewski and Charles A. Klein. Obstacle avoidance
for kinematically redundant manipulators in dynamically varying environ-
ments. The International Journal of Robotics Research, 4(3):109–117, 1985.
doi:10.1177/027836498500400308.

[97] Jeevan Manavalan and Matthew Howard. Learning null space projections fast.
In European Symposium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning, 2017.

http://dx.doi.org/10.1016/j.laa.2012.12.003
http://dx.doi.org/10.1109/tsmc.1977.4309644
http://dx.doi.org/10.1109/ICRA.2015.7139551
http://dx.doi.org/10.1109/ICRA.2017.7989039
http://dx.doi.org/10.1109/ICRA.2018.8461202
http://dx.doi.org/10.1007/s10514-015-9436-1
http://dx.doi.org/10.1109/ICRA.2014.6907359
http://dx.doi.org/10.1109/TRO.2017.2765674
http://dx.doi.org/10.1177/027836498500400308

154 Bibliography

[98] Giacomo Marani, Jinhyun Kim, Junku Yuh, and Wan K. Chung. Algorithmic
singularities avoidance in task-priority based controller for redundant manip-
ulators. In IEEE International Conference on Intelligent Robots and Systems
(IROS), 2003. doi:10.1109/IROS.2003.1249709.

[99] Matthew T. Mason. Compliance and force control for computer controlled
manipulators. IEEE Transactions on Systems, Man and Cybernetics, 11(6):
418–432, 1981. doi:10.1109/TSMC.1981.4308708.

[100] James K. Mills and Andrew A. Goldenberg. Force and position control of
manipulators during constrained motion tasks. IEEE Transactions on Robotics
and Automation, 5(1):30 – 46, 1989. doi:10.1109/70.88015.

[101] Michael Mistry and Ludovic Righetti. Operational space control of con-
strained and underactuated systems. Robotics: Science and Systems, RSS,
2011. doi:10.15607/RSS.2011.VII.031.

[102] Michael Mistry, Jun Nakanishi, and Stefan Schaal. Task space control with
prioritization for balance and locomotion. In IEEE International Conference on
Intelligent Robots and Systems (IROS), 2007. doi:10.1109/IROS.2007.4399595.

[103] Cleve B. Moler. Numerical Computing with Matlab. In Numerical Comput-
ing with MATLAB, Revised Reprint, chapter 0. SIAM, Philadelphia, 2008.
doi:10.1137/1.9780898717952.fm.

[104] Jorge J. Moré. The levenberg-marquardt algorithm: Implementation and the-
ory. In G. A. Watson, editor, Numerical Analysis, pages 105–116. Springer,
Berlin, Heidelberg, 1978. doi:10.1007/bfb0067700.

[105] João Moura and Mustafa Suphi Erden. Formulation of a control and path
planning approach for a cab front cleaning robot. In Procedia CIRP, volume 59,
pages 67–71, 2017. doi:10.1016/j.procir.2016.09.024.

[106] João Moura, William McColl, Gerard Taykaldiranian, Tetsuo Tomiyama, and
Mustafa Suphi Erden. Automation of train cab front cleaning with a robot
manipulator. IEEE Robotics and Automation Letters, 3(4):3058 – 3065, 2018.
doi:10.1109/LRA.2018.2849591.

[107] João Moura, Vladimir Ivan, Mustafa Suphi Erden, and Sethu Vijayakumar.
Equivalence of the projected forward dynamics and the dynamically con-
sistent inverse solution. In Robotics: Science and Systems (RSS), 2019.
doi:10.15607/rss.2019.xv.036.

[108] Richard M. Murray, S. Shankar Sastry, and Li Zexiang. A Mathematical In-
troduction to Robotic Manipulation. CRC Press, Inc., USA, 1st edition, 1994.

[109] Fusaomi Nagata, Tetsuo Hase, Zenku Haga, Masaaki Omoto, and Keigo
Watanabe. Cad/cam-based position/force controller for a mold polishing robot.
Mechatronics, 17(4-5):207–216, 2007. doi:10.1016/j.mechatronics.2007.01.003.

http://dx.doi.org/10.1109/IROS.2003.1249709
http://dx.doi.org/10.1109/TSMC.1981.4308708
http://dx.doi.org/10.1109/70.88015
http://dx.doi.org/10.15607/RSS.2011.VII.031
http://dx.doi.org/10.1109/IROS.2007.4399595
http://dx.doi.org/10.1137/1.9780898717952.fm
http://dx.doi.org/10.1007/bfb0067700
http://dx.doi.org/10.1016/j.procir.2016.09.024
http://dx.doi.org/10.1109/LRA.2018.2849591
http://dx.doi.org/10.15607/rss.2019.xv.036
http://dx.doi.org/10.1016/j.mechatronics.2007.01.003

Bibliography 155

[110] Jun Nakanishi, Rick Cory, Michael Mistry, Jan Peters, and Stefan
Schaal. Operational space control: A theoretical and empirical compari-
son. The International Journal of Robotics Research, 27(6):737–757, 2008.
doi:10.1177/0278364908091463.

[111] Mehrzad Namvar and Farhad Aghili. Adaptive force-motion control of coor-
dinated robots interacting with geometrically unknown environments. IEEE
Transactions on Robotics, 21(4):678–694, 2005. doi:10.1109/TRO.2004.842346.

[112] Bojan Nemec, Leon Zlajpah, and Damir Omrčen. Comparison of null-space
and minimal null-space control algorithms. Robotica, 25(5):511–520, 2007.
doi:10.1017/S0263574707003402.

[113] Dragomir N. Nenchev, Atsushi Konno, and Teppei Tsujita. Humanoid
robots: modeling and control. Butterworth-Heinemann, Oxford, OX, 2019.
doi:10.1016/C2015-0-01877-9.

[114] H. Neudecker. Some theorems on matrix differentiation with special reference
to kronecker matrix products. Journal of the American Statistical Association,
64(327):953–963, 1969. doi:10.2307/2283476.

[115] Denny Oetomo, Marcelo H. Ang, Rodrigo Jamisola, and Oussama Khatib.
Integration of torque controlled arm with velocity controlled base for mobile
manipulation. In Romansy 14. Springer, Vienna, 2002. doi:10.1007/978-3-
7091-2552-6 22.

[116] Ken Ohta, Mikhail M. Svinin, Zhiwei Luo, Shigeyuki Hosoe, and Rafael
Laboissière. Optimal trajectory formation of constrained human arm reaching
movements. Biological Cybernetics, 91:23–36, 2004. doi:10.1007/s00422-004-
0491-5.

[117] Valerio Ortenzi, Maxime Adjigble, Jeffrey A. Kuo, Rustam Stolkin, and
Michael Mistry. An experimental study of robot control during environ-
mental contacts based on projected operational space dynamics. In IEEE-
RAS International Conference on Humanoid Robots (Humanoids), 2015.
doi:10.1109/HUMANOIDS.2014.7041392.

[118] Valerio Ortenzi, Rustam Stolkin, Jeffrey A. Kuo, and Michael Mistry. Pro-
jected inverse dynamics control and optimal control for robots in contact with
the environment: A comparison. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2015. doi:10.1109/IROS.2015.7353942.

[119] Valerio Ortenzi, Hsiu-Chin Lin, Morteza Azad, Rustam Stolkin, Jeffrey A.
Kuo, and Michael Mistry. Kinematics-based estimation of contact con-
straints using only proprioception. In IEEE-RAS International Confer-
ence on Humanoid Robots (Humanoids), pages 1304–1311. IEEE, 2016.
doi:10.1109/HUMANOIDS.2016.7803438.

http://dx.doi.org/10.1177/0278364908091463
http://dx.doi.org/10.1109/TRO.2004.842346
http://dx.doi.org/10.1017/S0263574707003402
http://dx.doi.org/10.1016/C2015-0-01877-9
http://dx.doi.org/10.2307/2283476
http://dx.doi.org/10.1007/978-3-7091-2552-6_22
http://dx.doi.org/10.1007/978-3-7091-2552-6_22
http://dx.doi.org/10.1007/s00422-004-0491-5
http://dx.doi.org/10.1007/s00422-004-0491-5
http://dx.doi.org/10.1109/HUMANOIDS.2014.7041392
http://dx.doi.org/10.1109/IROS.2015.7353942
http://dx.doi.org/10.1109/HUMANOIDS.2016.7803438

156 Bibliography

[120] Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann.
Probabilistic movement primitives. Neural Information Processing Systems,
pages 1–9, 2013.

[121] Alexandros Paraschos, Elmar Rueckert, Jan Peters, and Gerhard Neumann.
Probabilistic movement primitives under unknown system dynamics. Advanced
Robotics, 32(6):297–310, 2018. doi:10.1080/01691864.2018.1437674.

[122] Diego Pardo, Michael Neunert, Alexander W Winkler, Ruben Grandia, and
Jonas Buchli. Hybrid direct collocation and control in the constraint-consistent
subspace for dynamic legged robot locomotion. In Robotics, Science and Sys-
tems (RSS), 2017. doi:10.15607/RSS.2017.XIII.042.

[123] Dae Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Movement
reproduction and obstacle avoidance with dynamic movement primitives and
potential fields. In IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2008. doi:10.1109/ICHR.2008.4755937.

[124] J. Park, Y. Choi, Wan Kyun Chung, and Y. Youm. Multiple tasks kinematics
using weighted pseudo-inverse for kinematically redundant manipulators. In
IEEE International Conference on Robotics and Automation (ICRA), 2001.
doi:10.1109/robot.2001.933249.

[125] Jaeheung Park and Oussama Khatib. Contact consistent control framework
for humanoid robots. In IEEE International Conference on Robotics and Au-
tomation (ICRA), 2006. doi:10.1109/ROBOT.2006.1641993.

[126] Jaeheung Park and Oussama Khatib. A haptic teleoperation approach based
on contact force control. In International Journal of Robotics Research, 2006.
doi:10.1177/0278364906065385.

[127] Claudia Perez-D’Arpino and Julie A. Shah. C-learn: Learning geometric con-
straints from demonstrations for multi-step manipulation in shared autonomy.
In IEEE International Conference on Robotics and Automation (ICRA), pages
4058–4065. IEEE, 2017. doi:10.1109/ICRA.2017.7989466.

[128] Jan Peters and Stefan Schaal. Learning to control in operational
space. The International Journal of Robotics Research, 27(2):197–212, 2008.
doi:10.1177/0278364907087548.

[129] Jan Peters, Michael Mistry, Firdaus Udwadia, Rick Cory, Jun Nakanishi, and
Stefan Schaal. A unifying methodology for the control of robotic systems.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2005. doi:10.1109/IROS.2005.1545516.

[130] K. B. Petersen and M. S. Pedersen. The matrix cookbook, October 2008. URL
http://www2.imm.dtu.dk/pubdb/p.php?3274.

http://dx.doi.org/10.1080/01691864.2018.1437674
http://dx.doi.org/10.15607/RSS.2017.XIII.042
http://dx.doi.org/10.1109/ICHR.2008.4755937
http://dx.doi.org/10.1109/robot.2001.933249
http://dx.doi.org/10.1109/ROBOT.2006.1641993
http://dx.doi.org/10.1177/0278364906065385
http://dx.doi.org/10.1109/ICRA.2017.7989466
http://dx.doi.org/10.1177/0278364907087548
http://dx.doi.org/10.1109/IROS.2005.1545516
http://www2.imm.dtu.dk/pubdb/p.php?3274

Bibliography 157

[131] Robert Platt, Muhammad Abdallah, and Charles Wampler. Multiple-priority
impedance control. In IEEE International Conference on Robotics and Au-
tomation (ICRA), 2011. doi:10.1109/ICRA.2011.5980228.

[132] Robert Platt, Muhammad Abdallah, and Charles Wampler. Multi-priority
cartesian impedance control. In Robotics: Science and Systems (RSS), 2011.

[133] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory
optimization of rigid bodies through contact. International Journal of Robotics
Research, 33(1):69–81, 2014. doi:10.1177/0278364913506757.

[134] Michael Posa, Scott Kuindersma, and Russ Tedrake. Optimization and sta-
bilization of trajectories for constrained dynamical systems. In IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE, 2016.
doi:10.1109/ICRA.2016.7487270.

[135] M. H. Raibert and J. J. Craig. Hybrid position/force control of manipulators.
Journal of Dynamic Systems, Measurement, and Control, 103(2):126, 1981.
doi:10.1115/1.3139652.

[136] Jitendra R. Raol. Multi-Sensor Data Fusion with MATLAB. CRC Press, Inc.,
USA, 1st edition, 2009. doi:10.1201/9781439800058.

[137] Ludovic Righetti, Jonas Buchli, Michael Mistry, and Stefan Schaal. Inverse
dynamics control of floating-base robots with external constraints: A unified
view. In IEEE International Conference on Robotics and Automation, ICRA,
2011. doi:10.1109/ICRA.2011.5980156.

[138] Ludovic Righetti, Jonas Buchli, Michael Mistry, Mrinal Kalakrishnan, and
Stefan Schaal. Optimal distribution of contact forces with inverse-dynamics
control. International Journal of Robotics Research, 32(3):280–298, 2013.
doi:10.1177/0278364912469821.

[139] Mark Rijnen, Eric De Mooij, Silvio Traversaro, Francesco Nori, Nathan Van
De Wouw, Alessandro Saccon, and Henk Nijmeijer. Control of humanoid robot
motions with impacts: Numerical experiments with reference spreading control.
In IEEE International Conference on Robotics and Automation (ICRA), 2017.
doi:10.1109/ICRA.2017.7989472.

[140] Mark Rijnen, Alessandro Saccon, and Henk Nijmeijer. Reference spread-
ing: Tracking performance for impact trajectories of a 1dof setup.
IEEE Transactions on Control Systems Technology, 28(3):1124–1131, 2020.
doi:10.1109/TCST.2019.2898953.

[141] Charles A. Rohde. Generalized inverses of partitioned matrices. Journal
of the Society for Industrial and Applied Mathematics, 13(4):146–153, 1964.
doi:10.13624/j.cnki.issn.1001-7445.2012.06.031.

http://dx.doi.org/10.1109/ICRA.2011.5980228
http://dx.doi.org/10.1177/0278364913506757
http://dx.doi.org/10.1109/ICRA.2016.7487270
http://dx.doi.org/10.1115/1.3139652
http://dx.doi.org/10.1201/9781439800058
http://dx.doi.org/10.1109/ICRA.2011.5980156
http://dx.doi.org/10.1177/0278364912469821
http://dx.doi.org/10.1109/ICRA.2017.7989472
http://dx.doi.org/10.1109/TCST.2019.2898953
http://dx.doi.org/10.13624/j.cnki.issn.1001-7445.2012.06.031

158 Bibliography

[142] L Saab, N Mansard, F Keith, J-y Fourquet, and P Soueres. Generation of
dynamic motion for anthropomorphic systems under prioritized equality and
inequality constraints. In IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2011. doi:10.1109/ICRA.2011.5980384.

[143] Hamid Sadeghian, Luigi Villani, Mehdi Keshmiri, and Bruno Siciliano. Dy-
namic multi-priority control in redundant robotic systems. Robotica, 31(7):
1155–1167, 2013. doi:10.1017/S0263574713000416.

[144] J. Kenneth Salisbury. Active stiffness control of a manipulator in cartesian
coordinates. In IEEE Conference on Decision and Control (CDC), 1980.

[145] Ahmed H. Sameh and John A. Wisniewski. A trace minimization algorithm
for the generalized eigenvalue problem. SIAM Journal on Numerical Analysis,
1982. doi:10.1137/0719089.

[146] S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to motor
learning by imitation. Philosophical Transactions of the Royal Society B: Bio-
logical Sciences, 358(1431):537–547, 2003. doi:10.1098/rstb.2002.1258.

[147] Stefan Schaal. Learning from demonstration. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 1997. doi:10.1007/978-1-4419-1428-6 4646.

[148] Stefan Schaal and Christopher G. Atkeson. Constructive incremental learn-
ing from only local information. Neural Computation, 10(8):2047–2084, 1998.
doi:10.1162/089976698300016963.

[149] Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. Learn-
ing movement primitives. Robotics Research, 15(2005):1–10, 2005.
doi:10.1007/11008941 60.

[150] Luis Sentis and Oussama Khatib. Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives. International Journal of Hu-
manoid Robotics, 2(4):505–518, 2005. doi:10.1142/S0219843605000594.

[151] Luis Sentis and Oussama Khatib. Control of free-floating humanoid robots
through task prioritization. In IEEE International Conference on Robotics
and Automation, ICRA, 2005. doi:10.1109/ROBOT.2005.1570361.

[152] Luis Sentis and Oussama Khatib. A whole-body control framework for hu-
manoids operating in human environments. In IEEE International Conference
on Robotics and Automation, ICRA, 2006. doi:10.1109/ROBOT.2006.1642100.

[153] Bruno Siciliano and Jean-Jacques E. Slotine. A general framework for man-
aging multiple tasks in highly redundant robotic systems. In International
Conference on Advanced Robotics (ICAR), 1991. doi:10.1109/icar.1991.240390.

[154] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.

http://dx.doi.org/10.1109/ICRA.2011.5980384
http://dx.doi.org/10.1017/S0263574713000416
http://dx.doi.org/10.1137/0719089
http://dx.doi.org/10.1098/rstb.2002.1258
http://dx.doi.org/10.1007/978-1-4419-1428-6_4646
http://dx.doi.org/10.1162/089976698300016963
http://dx.doi.org/10.1007/11008941_60
http://dx.doi.org/10.1142/S0219843605000594
http://dx.doi.org/10.1109/ROBOT.2005.1570361
http://dx.doi.org/10.1109/ROBOT.2006.1642100
http://dx.doi.org/10.1109/icar.1991.240390

Bibliography 159

Robotics: Modelling, Planning and Control. Springer Publishing Company,
Incorporated, 2008. doi:10.1007/978-1-84628-642-1.

[155] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.
Robotics: Modelling, Planning and Control. Springer Publishing Company,
Incorporated, 1st edition, 2008. doi:10.1007/978-1-84628-642-1.

[156] Guru Subramani, Michael Gleicher, and Michael Zinn. Recognizing ge-
ometric constraints in human demonstrations using force and position
signals. IEEE Robotics and Automation Letters, 3(2):1252–1259, 2018.
doi:10.1109/LRA.2018.2795648.

[157] Akio Sudou. Dynamic hybrid position/force control of robot manipulators—on-
line estimation of unknown constraint. IEEE Transactions on Robotics and
Automation, 9(2):220–226, 1993. doi:10.1109/70.238286.

[158] M. Svinin, T. Odashima, S. Ohno, Z. W. Luo, and S. Hosoe. An analy-
sis of reaching movements in manipulation of constrained dynamic objects.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2005. doi:10.1109/IROS.2005.1545252.

[159] Chris Towell, Matthew Howard, and Sethu Vijayakumar. Learning nullspace
policies. In IEEE International Conference on Intelligent Robots and Systems
(IROS), 2010. doi:10.1109/IROS.2010.5650663.

[160] Götz Trenkler, Bernhard Schipp, Heinz Neudecker, and Shuangzhe Liu. Gen-
eralized inverses of partitioned matrices. Econometric Theory, 9(3):530–533,
1993.

[161] Fan Chung Tseng, Zheng Dong Ma., and Gregory M. Hulbert. Efficient
numerical solution of constrained multibody dynamics systems. Computer
Methods in Applied Mechanics and Engineering, 192(3-4):439–472, 2003.
doi:10.1016/S0045-7825(02)00521-2.

[162] F. E. Udwadia and R. E. Kalaba. What is the general form of the explicit
equations of motion for constrained mechanical systems? Journal of Applied
Mechanics, Transactions ASME, 69(3):335–339, 2002. doi:10.1115/1.1459071.

[163] Firdaus Udwadia. A new perspective on the tracking control of nonlinear
structural and mechanical systems. Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences, 459(2035):1783–
1800, 2003. doi:10.1098/rspa.2002.1062.

[164] Firdaus E. Udwadia and Robert E. Kalaba. Analytical Dynamics: A New
Approach. Cambridge University Press, 1996. doi:10.1017/CBO9780511665479.

[165] Yoji Umetani and Kazuya Yoshida. Resolved motion rate control of space
manipulators with generalized jacobian matrix. IEEE Transactions on Robotics
and Automation, 5(3):303–314, 1989. doi:10.1109/70.34766.

http://dx.doi.org/10.1007/978-1-84628-642-1
http://dx.doi.org/10.1007/978-1-84628-642-1
http://dx.doi.org/10.1109/LRA.2018.2795648
http://dx.doi.org/10.1109/70.238286
http://dx.doi.org/10.1109/IROS.2005.1545252
http://dx.doi.org/10.1109/IROS.2010.5650663
http://dx.doi.org/10.1016/S0045-7825(02)00521-2
http://dx.doi.org/10.1115/1.1459071
http://dx.doi.org/10.1098/rspa.2002.1062
http://dx.doi.org/10.1017/CBO9780511665479
http://dx.doi.org/10.1109/70.34766

160 Bibliography

[166] Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. Incremental online
learning in high dimensions. Neural Computation, 17(12):2602–2634, 2005.
doi:10.1162/089976605774320557.

[167] Luigi Villani and Joris De Schutter. Force control. In Springer Hand-
book of Robotics, pages 195–220. Springer International Publishing, 2016.
doi:10.1007/978-3-319-32552-1 9.

[168] Miomir Vukobratovic, Dragoljub Surdilovic, Yury Ekalo, and Dusko Katic.
Dynamics and Robust Control of Robot-Environment Interaction. WORLD
SCIENTIFIC, 2009. doi:10.1142/7017.

[169] Patrick M. Wensing, Luther R. Palmer, and David E. Orin. Efficient recursive
dynamics algorithms for operational-space control with application to legged
locomotion. Autonomous Robots, 38(4):363–381, 2015. doi:10.1007/s10514-
015-9420-9.

[170] Daniel E. Whitney. Resolved motion rate control of manipulators and human
prostheses. IEEE Transactions on Man-Machine Systems, 10(2):47–53, 1969.
doi:10.1109/TMMS.1969.299896.

[171] Daniel E. Whitney. Force feedback control of manipulator fine motions. Journal
of Dynamic Systems, Measurement and Control, Transactions, 99(2):91–97,
1977. doi:10.1115/1.3427095.

[172] Tomasz Winiarski and Adam Woźniak. Indirect force control development
procedure. Robotica, 31(03):465–478, 2013. doi:10.1017/S0263574712000446.

[173] Haruo Yanai, Kei Takeuchi, and Yoshio Takane. Projection Matrices, General-
ized Inverse Matrices, and Singular Value Decomposition. Springer New York,
2011. doi:10.1007/978-1-4419-9887-3.

[174] Chenguang Yang, Zhijun Li, and Etienne Burdet. Human like learning algo-
rithm for simultaneous force control and haptic identification. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE,
2013. doi:10.1109/IROS.2013.6696429.

[175] Xian-Da Zhang. Matrix Analysis and Applications. Cambridge University
Press, 2017. doi:10.1017/9781108277587.

http://dx.doi.org/10.1162/089976605774320557
http://dx.doi.org/10.1007/978-3-319-32552-1_9
http://dx.doi.org/10.1142/7017
http://dx.doi.org/10.1007/s10514-015-9420-9
http://dx.doi.org/10.1007/s10514-015-9420-9
http://dx.doi.org/10.1109/TMMS.1969.299896
http://dx.doi.org/10.1115/1.3427095
http://dx.doi.org/10.1017/S0263574712000446
http://dx.doi.org/10.1007/978-1-4419-9887-3
http://dx.doi.org/10.1109/IROS.2013.6696429
http://dx.doi.org/10.1017/9781108277587

	List of Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Task-based Constrained Dynamics
	Introduction
	Background
	Holonomic Equality Constraints
	Gauss's Principle of Least Constraint
	Operational/Task Space Dynamics

	Task-based Constraints
	Task-based Constrained Dynamics
	Projected Dynamics
	Projected Dynamics Reformulation
	The Dynamically Consistent Inverse Solution

	Multiple Task-based Constraints
	The Fallacy of the Equivalent Projections
	Discussion

	Simultaneous Position/Force Control for Constrained Motions
	Introduction
	Background
	Hybrid Position/Force Control
	The Operational Space Formulation
	Manipulation Interaction Tasks

	Operational Space Control with Constraints
	Surface Tracing with a Kinematic Robotic Manipulator
	Case Studies
	Verifying the Equivalence of Task Controllers with Constraints
	Wiping a Non-flat Surface
	Automation of Train Cab Front Cleaning

	Discussion

	Learning Generalizable Constrained Policies by Demonstration
	Introduction
	Background
	Direct Policy Learning
	Receptive Field Weighted Regression
	Modelling Constraints
	Learning from Constrained Policies
	Metrics for Evaluating Performance
	Learning Constraint-consistent Policies
	Handling Task-Space Component
	Learning Null-Space Projections
	Summary

	Learning Constraint-aware Policies
	Closed-form Constraint Estimation
	Constrained Policy Estimation Decomposition

	Case Studies
	Learning a 2D Policy
	Learning a 2D Policy with Task Component
	Learning Cartesian Circular Trajectories
	Learning Planar-Constrained Policies
	Task Generalization using a Force Sensor

	Constraint Similarity Analysis
	Discussion

	Conclusions
	Summary and Contributions
	Discussion and Future Directions

	Appendix Contributed Proofs/Results
	Constrained Inertia Matrix with Minimum Condition Number
	Projected Forward Dynamics Equivalence
	Singular Dynamically Consistent Jacobian
	Partitioned Task-space Inertia Matrix
	Direct Policy Error Decomposition
	Estimating parameters with GEVD
	Estimating parameters with GSVD

	Appendix Supplementary Proofs/Results
	Receptive Field Weighted Regression error cost decoupling
	Regression of a weighted combination of locally linear models
	Estimating parameters with EVD
	Estimating parameters with SVD
	Inertia-Weighted Generalized Inverses and Projection Equalities

	Bibliography

