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Imagery and the Mental Manipulation of Knots 

Abstract 

The objective of this study is to establish the strategies which are used in spatial tasks and 

to determine whether and how the visualisation skills used in the performance of such 

tasks can be taught. 

The primary focus is on measuring the level of complexity when comparing different knot 

shapes and on analysing the subjects' verbal and visual strategies. To address these issues, 

quantitative and qualitative studies are carried out, firstly to identify the factors which 

affect complexity when comparing knots and, secondly, to identify the strategies that are 

most effective. 

The first phase of research measures two complexity indicators: the time taken to perform 

the task and the accuracy of response when comparing pairs of knots at varying orientations 

in order to determine whether the two knots are the same or different. The endogenous 

factors associated with the level of difficulty are knot shape, crossing number, rotation and 

pair type, and the exogenous factors considered in the statistical analysis are gender and 

educational background. Six different knot shapes are used and the results show that some 

knot shapes are processed more efficiently than others, a finding similar to that in 

psychology where images which have a characteristic 'foundation part' are more easily 

stored and accessed in the brain. The results also reveal that there are differences in time 

and accuracy for topologically different pair types and that knot rotation causes an increase 

in decision times and error rate. 

During the experiment, subjects show a significant improvement in their ability to perform 

the knot tasks, indicating that imagery and spatial skills are enhanced as a result. In the 

second phase of research, where subjects explain their changes of strategy whilst viewing a 

recording of the experiment, evidence is provided concerning the way in which the 

performance of the knot tasks improves spatial and visualisation skills. It is shown how 

the nature and deformability of knots allow strategies other than the self-evident one of 

mental rotation, and the research therefore establishes alternative methods that may be 

employed to develop imagery in mathematics. 

xv i 



Introduction 

Introduction 

The importance of visualisation and imagery in the teaching and 

learning of mathematics is now widely recognised, not only with regard 

to the spatial aspects of mathematics but also with regard to general 

problem solving. One of the difficulties encountered by teachers in 

encouraging learners to use imagery is that a knowledge of the 

complexities involved in processing images is necessary so that activities 

can be devised which develop visualisation skills sequentially. This 

research study focuses on this issue and tries to establish some of the 

strategies used by learners in carrying out spatial tasks and some of the 

obstacles which they experience with visualising. 

. The question 'whqt is research in mathematics education?' opens 

the discussion in Chapter 1 and some views on what the research 

domain should include, as well as how it can be used to inform teaching, 

are given. Other questions which are considered are: 'How do children 

learn?' and, more specifically, 'How do children learn mathematics?' To 

begin, a review of the background research in cognitive development 

focuses on mathematical development starting with the work of Piaget. 

There is shown to be a wide range of theories of learning, and the 

differing approaches are described. The seminal contribution of Piaget is 

outlined first, followed by that of his critics such as Donaldson, Vygotsky, 

Bruner and others. An outline of the 'constructivist' and 'information 

processing' schools of thought is included together w ith various notions 

of quantifying cognitive development by means of stage descriptors or 

mental effort statistics. The research on different mathematical abilities 

identified by Krutetskii and by Sternberg acts as a useful starting point to 

focus on spatial ability and imagery. 

Many research studies on imagery have taken place in the field of 

psychology, and there has been some published work involving imagery 

in mathematics (for example Krutetskii 1976, Battista et al. 1982, Battista 

1990). Chapter 2 provides a review of the literature concerned specifically 
xvii 



Introduction 

with imagery and mathematical ability. A definition of imagery and 

spatial ability is given and the problems faced by researchers in carrying 

out studies in visual imagery are described. 

The well documented dichotomy between verbal thinkers and 

visual thinkers has been given much consideration by many authors (for 

example Krutetskii 1976, Clements 1981) and an overview is given in 

Chapter 2. This existence of different types of thinkers helps to explain 

the difficulty some learners may have when a particular preferred 

cognitive style is not consistent with the method of instruction. 

Evidence is presented from previous research which suggests that 

imagery is a useful skill in problem-solving in mathematics. Research 

studies which consider some of the difficulties experienced by the learner 

in solving mathematical tasks which require imagery are described. The 

chapter closes with a look at some innovative school materials for 

improving imagery in mathematics. 

Chapter 3 begins with a description of some of the early work by 

psychologists on imagery, research which was mainly concerned with 

how imagery can aid short term memory. The focus then turns to 

research concerning the mental rotation of objects and the quest to 

discover how the brain deals with such operations. The imagery debate, 

concerning the nature of a mental image and whether it is essentially 

pictorial or verbal, is examined and research supporting the various 

opinions is reported. It is shown how the psychology literature can 

inform our ideas about the theory of mental imagery, how it is related to 

visual perception and how it may relate to mathematics learning. 

Knots provide a new and potentially interesting stimulus for 

research on mental manipulation and Chapter 4 deals with the history 

and mathematical theory of knots. Primitive humans had the ability to 

tie knots and devise intricate designs for knots . The earliest evidence for 

knot tying is presented and some typical ancient knots are shown. In 

spite of this ancient knowledge about knot tying and decoration, the 
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Introduction 

mathematics of knots is a recent field of mathematical knowledge and 

research. The sequence of discoveries and theories about knots which 

bring us to the present state of understanding of their properties is 

described. 

Chapter 5 sets out the motivation for the research reported in this 

thesis and the main issues to be investigated. Research in mathematics 

education usually has as one of its aims the improvement of 

mathematics teaching. One aim of this study is to look for ways of 

developing or enabling certain mental capacities. The fact that imagery is 

useful for doing mathematics discussed in Chapter 2 and the need for 

information on how it may be encouraged in pupils is analysed. The 

different skills employed by pupils need to be recognised and opportunity 

given in the classroom for their practice and development. Some 

questions regarding the ability and inclination of individuals to use 

imagery and how this may or may not be nurtured is investigated in this 

research. 

Chapter 6 describes the first of three experimental studies using 

knots as stimuli for mental manipulation. Twenty one subjects were 

tested and a detailed description of the experiment and an analysis of the 

results is given. Subjects performed a series of spatial tests involving the 

comparison of diagrams of interlaced ropes, in different shap~s and at 

varying orientations. Consideration of the results of this initial study led 

to two further studies, one quantitative and the other qualitative. These 

are described in Chapters 7 and 8. 

The second quantitative study was based upon the pilot study but 

with adaptations designed to refine the experiment and to introduce 

additional explanatory variables. In particular, given the results of the 

first study, it was considered desirable to modify the test instrument and 

to use a larger sample that would allow for the introduction of two more 

variables, gender and academic background. The results of this second 

study receive thorough analysis, both in terms of the individual 

variables under consideration, and the interactions between these 

xix 



Introduction 
variables. The results give some indication of the strategies which were 

used to solve certain items and also give an indication of the relative 

complexity of the tasks. 

The qualitative phase of the research is discussed in Chapter 8, 

where strategies for manipulating knot shapes are investigated. Details 

of extended interviews with subjects are discussed and the verbal 

confirmation by subjects of strategies and difficulties is seen to support 

the deduced results from the quantitative studies described in Chapters 6 

and 7. This chapter also analyses the modes of thinking used by the 

subjects and contains a detailed summary of each of the interviews 

where it can be seen that many ideas were expressed during performance 

of the tasks and afterwards during the discussion. These are reviewed 

and details are given of five principal domains, namely; strategies, use of 

a foundation part, changes of strategy, learning of skills and difficulties 

which subjects experienced. The complete transcripts for the interviews 

are provided as an appendix. 

The concluding chapter revisits the previous research and 

discusses how it relates to the results of the current study. The 

implications of the research findings for teaching are considered and 

some recommendations are given. 

xx 



Chapter 1 

Chapter 1 

An overview of Research in Mathematics Education and 

Cognitive Development 

1.1 What is Mathematics Education Research? 

The teaching of mathematics in schools came under intense scrutiny in 

the early 1980s when both curriculum content and teaching methods 

were under review. The result was the report of the Cockcroft 

Committee of Inquiry entitled 'Mathematics Counts' (CITMS, 1982). One 

of the main contributions to the writing of the report was the body of 

evidence gathered from research in the field of mathematics education. 

Two questions which needed to be asked then, and are still valid 

questions today, were 'What is research in mathematics education?' and 

furthermore 'How can findings from such research be used?'. 

These questions were considered important enough to justify an 

entire conference in Washington DC in 1994 dedicated to their 

resolution. In fact, preparation started in Quebec in 1992 at the seventh 

International Congress on Mathematical Education (ICME), where a 

discussion document was distributed with a call for papers for the 

forthcoming Study Conference which was sponsored by the International 

Commission on Mathematical Instruction (ICMI). At the Washington 

study conference, the mathematical philosopher Paul Ernest considered 

the nature of research in mathematics education, arguing for 'a 

multiplicity and variety of viewpoints, theories, frameworks, 

methodologies and interests' (Ernest, 1998, page 71). At the same time, as 

in other disciplines, research in mathematics education should involve 

systematic and critical enquiry, and, Ernest (Ernest, 1998, page 76) 

continues, 'should: 

• link with and build on existing knowledge zn the relevant 

educational research literature, thus adding to the body of 
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Chapter 1 

knowledge, fitting into the 'system of knowledge'; 

• use organised processes of enquiry, systematic methods of 

research, linked to existing methodology, providing a 

justification for knowledge claims;_ 

• result in a systematically organised text, document or other 

public communicative form, so that others can assess the 

results of the educational research; 

• possibly engage in theory-building resulting in the construction 

of some sys tematically organised system of reflective 

knowledge.' 

At the same conference, Bell (1994) stressed that education has the 

general aim of developing mental capacities, and that mathematics 

education has the aim of developing or enabling the practice of 

mathematics. Bell (1994) believes that research in mathematics education 

involves the recognition of misconceptions and the design and trialling 

of specific treatments, the underlying sciences being developmental 

psychology and learning theory. Making the case for action research, Bell 

(1994, page 50) states that: 

' The core of mathematical education research is the study of the 

interaction of teachers, learners and learning environments with a 

view to better understanding of learning processes and to the 

improvement of learning. Immediate pedagogical questions such 

as 'What do students find difficult about decimals and how can 

they be helped?' figure quite strongly in existing mathematical 

education research.' 

In other words, as well as building on existing knowledge of learning 

processes by investigation using existing methodologies, research in 

mathematics education should investigate the difficulties experienced by 

students and generate strategies to address the problems involved. 

In this context, another contributor to the Washington conference, 

Presmeg (1998, page 60), highlighted the important link between these 

two aims in mathematics education research as follows: 

'In addition to the scientific goal of theory-building which is an 
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Chapter 1 

important aspect of research zn any discipline, mathematics 

education research has had and will continue to have a pragmatic 

goal, namely, the improvement of teaching and learning 

mathematics at all levels. . . . Each aim is sterile without the other' 

In an earlier attempt to address the question 'What is research in 

mathematics education?', Bishop (1992, page 711) suggested that three 

essential components should be present, i.e.: 

• Enquiry, which concerns the reason for the research activity. It 

represents the systematic quest for knowledge, the search for 

understanding, and gives dynamism to the activity. Research 

must be intentional enquiry. 

• Evidence, which is necessary in order to relate the research to 

the reality of the mathematical education situation under 

study, be it classrooms, syllabuses, textbooks, or historical 

documents. Evidence samples the reality on which the 

theorising is focused. 

• Theory, which recognises the existence of value assumptions 

and generalised relationships. It is the way in which we 

represent knowledge and understanding that comes from any 

particular research study. Theory is the essential product of the 

research activity, and theorising is, therefore its essential goal. 

Relating this specifically to the aims of mathematics education 

research, Bishop (1992, page 712) continued: 

'If the object of research is the improvement of mathematics 

teaching then it clearly makes sense to examine the normal 

activities associated with mathematics teaching to see if they are 

creating the obstacles to improvement, that is to what extent are 

they part of the solution rather than just part of the problem?' 

Bishop's analysis underpinned Presmeg's (1998) argument for the 

integration of normative research, research which is concerned with 

theoretical deduction from first principles, and positive research 

which is research concerned with how teachers and students function 

in the classroom and which offers potential for insight into successful 
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teaching. Presmeg (1998) emphasised the complementary aims of 

constructing theory and of improving practice, action research which 

studies 'normal' teaching activities alone does not constitute 'research' 

without the presence of the three components outlined above. 

In addition to these philosophical considerations, another aspect of 

mathematics education _ research is the scope of the mathematics 

curriculum itself. Although research in mathematics education usually 

focuses upon what aspects are difficult to teach and to learn and what 

methods facilitate either or both, it is also concerned with what 

mathematics is taught in schools. This implies the continual review of 

curriculum content and whether that content is appropriate both in 

terms of contemporary knowledge of cognitive development of the child 

and technological developments in society. 

Research in cognitive development has a direct impact on 

mathematics education since, in order to teach mathematics, it is 

essential to know at what age or stage of development pupils are ready to 

learn a particular mathematical process or understand· an element of 

mathematical content. Some of the most important studies in cognitive 

development were those carried out by Piaget and the Geneva school, for 

example, Piaget, Inhelder and Szeminska (1960), Piaget & Inhelder (1971). 

Piaget and his colleagues made a major contribution to knowledge of 

child development. Piaget's theories stimulated other researchers such as 

Bruner (1963) and Donaldson (1979) who were to challenge some of 

Piaget's findings and his experiments and procedures. Thus, although 

some of Piaget's conclusions are no longer accepted, much of the work to 

extend the body of knowledge on cognitive development stems from 

these early studies by the Geneva school. One such advance relates to the 

development of spatial ability, the particular concern of this thesis. 

The evolution of Piaget's work and that of his successors is 

summarised later in this chapter. First, however, we look at the special 

case of mathematics education, the need for a greater understanding of 

the matching of teaching style and cognitive development, and the 
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implications for education policy. 

1.2 The difficulty of teaching mathematics 

It is accepted that teaching mathematics is difficult (Cockcroft CITMS, 

1982) and that many pupils under-achieve in mathematics. One of the 

recommendations made by the Cockcroft Report was that pupils should 

be taught how to apply mathematics to unfamiliar problems and to 

investigate mathematical situations. This gives rise to a number of 

questions:- What are the best ways to achieve this? How do pupils learn 

to think mathematically? What does research tell us about the skills 

which enable children to solve non-routine problems? 

The ability to solve non-routine problems has been explored by 

several researchers, for example Wheatley (1991), Reynolds & Wheatley 

(1997). This ability seems to depend upon the right hemisphere of the 

brain and correlates with good spatial abilityl . In this context, Sharma 

(1979, page 63) had already identified two types of mathematical learning 

personalities, one displaying more aptitude for creative problem solving: 

'(A) ... one who has left hemispheric orientation . .. is good in 

language and verbal expressions, is good in solving those 

problems bit by bit . . . is good in quantifying and in quantitative 

operations which build up sequentially, such as counting, addition 

and multiplication. This child when given a word problem looks 

for a familiar algorithm to solve the problem. 

(B) ... one who has right hemispheric orientation . . . looks at the 

problem holistically and explores global approaches to solutions . . 

. . is good in identifying patterns - both spatial and symbolic, is 

more creative and faster in solving 'real life' problems. This child 

when given a word problem seems to play with the problem in a 

non-directed metaphoric way before he (sic) begins to solve it.' 

It has also been argued by Dickson et al. (1984), on the basis of 

increasing physiological evidence, that the two different aspects of 

1 For a more detailed discussion of the activity of the two hemispheres of the brain see 

Chapter 3 section 3.4 
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learning mathematics, visual and verbal, may be linked to the level of 

activity in the different hemispheres of the brain. If the ability to solve 

non-routine tasks depends upon developing the right hemisphere 

activity, then how might this be achieved, and how can it be encouraged 

in natural left hemisphere learner types? In particular, what range of 

teaching styles will be required? 

The style and teaching methods employed by teachers have an 

effect upon the kind of knowledge which a child acquires about 

mathematics (Ernest, 1989a). Furthermore, different teaching styles seem 

to suit different preferred cognitive styles, (Presmeg, 1985). If right 

hemispheric thinkers are better problem solvers, what are the 

implications for teaching? The components of the curriculum which are 

described in the current statutory order for mathematics (DFE, 1995) 

include problem solving and investigating, in other words, solving 

unfamiliar problems using processes in mathematics as well as 

mathematical content and skills. According to the document, 

individuals need to learn how to apply mathematics to everyday 

situations and to think mathematically as well as to have core skills and 

content knowledge. With regard to the acquisition of these skills, Bell et 

al. (1983) stated, 

' Specifically, one must attempt to establish a structure of ideas 

which will facilitate the assimilation of further knowledge, and 

teach actual skills , strategies and attitudes needed for the 

acquisition of this knowledge.' 

A requirement for teaching non-routine problem solving is to pace 

the level of difficulty of the material. A child will not make progress in 

solving a problem if it is not accessible, -if she has no idea how to begin. 

The complexity of tasks must be known and pitched at a level so as to 

promote learning. Therefore detailed knowledge of what adds to 

complexity should be available in order to negotiate the successful 

sequencing of tasks. Much research has been carried out, for example by 

APU (1980), to discover this information. However, regarding the 

method of collection and the kind of data collected, Bell et al. stated (1983, 
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page 10) 

'This (research) should develop away from the simple collection of 

empirical results, as in the first APU surveys, towards the 

identification of general factors determining levels of difficulty' 

A further factor affecting the level of difficulty might be the 

matching or otherwise of the cognitive style implicit in a problem and 

the preferred cognitive style of the child. The cognitive style which a 

child constructs is formed during the cognitive development of the 

individual, but the factors which affect the preferred style that emerges 

are unknown. Whichever cognitive style a learner prefers, two types 

classified by Sharma (1979) as A and B were described earlier, 

understanding develops slowly and teaching needs to be planned so as to 

revisit ideas in a variety of contexts so as to promote both of these styles 

(Bell et al., 1983). It will be shown later, in Chapter 2, that verbal styles 

have received more emphasis and have been more valued yet visual 

imagery is a skill which has been found to be present early on in the 

child's cognitive development. In order to enhance learning of all 

cognitive types and especially visualisers, a variety of ways of using 

imagery in mathematics needs to be presented. 

In summary, the teaching of mathematics is a complex task and 

one which needs constant evaluation and reflective thought. Research 

can give guidance on the nature of mathematical abilities and on how to 

improve pupils' learning by making teaching methods more effective. 

1.3 The work of Piaget 

Piaget's important contribution to cognitive development research is 

acknowledged by all in the mathematics education community. Within 

the teaching community, the Piagetian stages of cognitive development 

have informed curriculum design for many years and followers of 

Piaget's theories agree that in the teaching of mathematics it is essential 

to dovetail the current Programmes of Study (DFE, 1995) for each Key 

Stage with the Piagetian stage of development of the child. Table 1.1 

indicates the Piagetian stages and the age at which it can be expected that 
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the child reaches each stage.2 

With regard to identifying the age at which children in different 

environments and with different experiences reach Piaget's stages, 

Sutherland (1992) found that the stage of operational thought is achieved 

at different ages in different cultures. For example, in Iranian villages it 

is 2 years later, and in Martinique 4 years later, as compared to French 

speaking Switzerland. In some cultures, where abstract thinking is not 

required, the last stage of formal operational thought does not exist, that 

Piagetian level is never achieved. The implication seems to be that the 

child should be given experiences, should be challenged, but most 

importantly the child should be provided with suitable learning 

experiences at the appropriate time in her development. 

TABLE 1.1 

Piagetian Stages and M values 

Piagetian Stage Age in years M value 
Early pre-operations 3-4 a+1 

Late pre-operations - 5-6 a+2 
early concrete 
Mid-concrete operations 7-8 a+3 

Late concrete operations 9 -1 0 a+4 

Early formal operations 1 1 - 1 2 a+5 

Mid-formal operations 1 3-1 4 a+6 

Late formal operations 1 5-1 6 a+? 

The other data given alongside Piaget's stages in Table 1.1 are 

examples of another statistic which has been proposed by a number of 

psychologists, for example Pascual-Leone (1976) . These neo-Piagetian 

2 The other data given in Table 1.1 are discussed later in this section 
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theories attempt to explain Piagetian stages in terms of the variation with 

age of the number of items which can be stored in the child's working 

memory. This M statistic, proposed by Pascual-Leone (1976), relates 

Piagetian stages to mental processing complexities and may be helpful in 

determining the appropriate time to provide the child with certain 

learning experiences. For any task it is possible to calculate a mental 

effort statistic regarding the processing involved, specifically, this can be 

regarded as the number of items of information which must be held and 

coordinated in working memory at the same time. In early concrete 

operational thought (age 7-8) this statistic is a+ 3 3, that is, the child of 7 

or 8 can only deal with 3 different schemes or concepts at once. The 

notion is also supported by similar research carried out by Case (1975, 

reported in Bell et al., 1983). 

Source: Bell et al. (1983) 

Figure 1.1 Maze puzzle 
----------3 The constant 'a' refers to the amount of mental effort involved in attending to the 

specific instructions in the task. 
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Case (see Bell et al., 1983) gave an example of a spatial task given to 

a 5 year old child. The maze shown in Figure 1.1 (Bell et al., 1983, page 31) 

was given to the child as a puzzle to find the shortest route from the 

point X at the base of the picture to the house. The child avoided the 

blind alley but found a longer possible route. However, when asked to 

choose the shortest routes of three offered by the interviewer, the child 

was able to choose the correct one. The child understood what it means 

to pick the shortest path and also how to avoid dead ends but could not 

hold both ideas in her mind at the same time while searching for the 

route. 

Bell et al. (1983) claimed that these theories imply that in order to 

teach a complex concept or skill, not only is it necessary to ensure that the 

child has acquired the prerequisite concepts or skills, but also that the 

number of these which must be integrated in the task does not exceed 

this mental effort statistic. 

Returning to Piaget's definitions, Dickson et al. (1984) reiterate 

Piaget's claim that children at the 'concrete operations' stage cannot deal 

with symbols which are not firmly related to physical actions. They state 

that since most children have not progressed beyond Piaget's 'concrete 

operations' stage by the age of 16 then they are likely to be dependent 

upon spatial concepts for their understanding in all areas of mathematics. 

These claims obviously have implications for the teaching of the subject 

and could explain why mathematics is notoriously problematic for some 

children. 

1.4 Vygotsky 

Bruner and Vygotsky were among the first to challenge Piaget's ideas. 

Vygotsky was a critic of Piaget' s work believing that it is the teacher, not 

just the child, who has the all important role (Sutherland, 1992). 

Vygotsky's work, in contrast to Piaget's, was theoretical. Whereas Piaget 

focused on detailed clinical observations of the child, Vygotsky focused 

on the teacher and the factors which lead to successful learning, on the 
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theoretical overall process of education rather than empirical studies on 

cognitive development. 

Vygotsky (1978) also saw activity as central to learning but believed 

the role of the teacher to be more important. Vygotsky placed great 

emphasis upon social and linguistic influences on learning. He believed 

that the teacher could 'scaffold' a pupil to competence in any skill. The 

central role of the teacher is characterised by Vygotsky's 'zone of proximal 

development' - the area within which the child can work with support 

from the teacher (or more capable peers). A child capable of operating 

alone at one level can be extended to the next level by teacher 

intervention. Vygotsky defined this zone as being the distance between 

the actual development level as determined by independent problem 

solving and the level of potential development through collaboration. 

He ~xpected that some children would have more restricted zones than 

others. 

Jaworski (1994, page 31) considered the metaphor of scaffolding to 

be a useful one but warned: 

'An important question seems to be what sort of scaffold would be 

appropriate in general problem solving terms? The act of 

scaffolding could result in creating dependency if the child became 

too reliant on the tutor's management. An extreme of the 

scaffolding principle is that the child never experiences the 

bewilderment of tackling a problem alone, and so is totally 

unprepared for any new task for which the tutor is not present.' 

Jaworski (1994) suggested that a better form of scaffolding might be the 

offering of strategies for thinking and learning. 

1.5 Bruner 

Bruner (1963, 1986) also stressed the need for teachers to intervene 

actively in the process of cognitive development. Bruner was an 

interventionist and he desired to optimise the child's full potential. He 

defined three stages: 

page 11 



Chapter 1 

enactive - learning by doing, 

iconic - learning by means of images and pictures, and 

symbolic - learning by means of words or numbers. 

Bruner did not believe it necessary to wait for the child to be ready 

intellectually but that the teacher should take the initiative to stimulate 

the child to readiness, and should take a forceful interventionist role. 

Clements and Battista (1992, page 426) support Bruner's view that it is not 

necessary to wait for the child to be ready intellectually and stated: 

'Progress from one . . . (van Hiele) . . level to the next is more 

dependent on instruction than on age or biological maturation.' 

1.6 Donaldson 

Donaldson (1978) also believed that the teacher has a direct role and in 

the 1970s Donaldson reshaped our understanding of what children can 

do. Language eme_rged as the major factor in helping or hindering 

children to understand. She found that children could do what Piaget 

said they could not. Donaldson's (1978) experiments highlighted some of 

the difficulties which arose from language rather than from conceptual 

difficulties, and showed that it was linguistic complexity and context 

which was determining whether a child could perform Piaget's tasks. 

Donaldson (1978) set up tasks equivalent in conceptual difficulty to 

Piaget's but with contexts which had more meaning for the child and 

with the result that the child was then able to carry them out. 

1.7 The Constructivists 

Another school of thought which exists is the constructivist school (see 

for example von Glasersfeld 1987, Jaworski 1994). Jaworski (1994) believes 

that modern constructivism derives directly from Piaget's work and 

reminds us that Piaget's stages of development of logical thinking formed 

the basis of the widely used Nuffield Mathematics Project for primary 

schools published in the 1960s. Constructivists generally reject Piaget's 

concept of stage theory but accept his theory of the acquisition of 

knowledge (Sutherland 1992). They would not agree that Piaget's stages 
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of thinking are so clear cut and precise, rather that the child's thinking is 

simply more effective when she is older and at a later stage of 

development. 

Constructivists see the teacher as playing an enabling role whereas 

Piaget preferred the child to discover everything herself through her 

own experience. Constructivists in science and mathematics also argue 

that the child learns primarily from practical experiences but see 

cognitive development as a gradual process of modifying existing 

concepts rather than one involving radical breakthroughs. 

A primary consideration in planning learning experiences must 

always be the one originally articulated by the educational psychologist 

Ausubel (1968), that the most important single factor influencing 

learning is what the learner already knows. Once this is ascertained, the 

way forward is clear. However, Ausubel (1968) also argued that we learn 

largely by means of language, a view not shared by everyone (Sutherland 

1992). The constructivist view is that children build up their concepts 

from experiences in the world, that learning takes place as a response to 

the environment and has little to do with genetic input. The 

constructivist believes that the child constructs her own version of reality 

from her own unique experiences. Therefore the teacher must know 

each child's initial knowledge and previous learning experiences 

including preferred learning strategies in order to plan a learning 

programme. The alternative is to go through the motions of teaching a 

prescribed syllabus regardless of whether or not pupils are learning 

anything. 

The constructivist message then is that teachers should be aware of 

the learning strategies which children already have and ways must be 

found of using all the mathematical abilities and prior knowledge which 

children bring with them to school. 
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1.8 Information Processing (IP) school 

The information processing school of thought differs from the Piagetian 

school in focussing on a single act of learning taking place at a time. The 

information processors look for quantitative rather than qualitative 

change. Whereas Piagetian research does not try to give an account of 

what happens at one moment of learning, IP's primary research method 

is one of experiment resulting in a quantitative account of a single 

learning experience. 

Short term memory is of great importance in the IP approach. If a 

child cannot solve a problem, IP theory argues that the demands of the 

task are greater than the child's processing capacity, whereas the Piagetian 

approach explains a child's inability to perform certain tasks in terms of 

the child not yet being at the appropriate stage. 

The child's capacity is determined by proficiency at certain skills. One of 

the main advocates of IP, Sternberg (1977), described six factors: 

1. Spatial ability. The ability to visualise a problem spatially in 

all its details . 

2. Perceptual speed. The ability to grasp a new visual field ( or 

view) quickly. 

3. Inductive reasoning 

4. Verbal comprehension ability 

5. Memory. The ability to store visual material in the brain 

6. Number ability 

The teacher who favours the IP approach would need to find ways of 

increasing the child's ability in each of the six areas described above. 

1.9 Krutetskii 

Krutetskii (1976) carried out a vast study of children's mathematical 

abilities and of how able children solved mathematical problems. One of 

the abilities which Krutetskii considered important is rapid and stable 

remembering of mathematical material and he noted that able pupils are 

able to remember schemas rather than remembering facts or specific lists. 
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of data. Skemp (1971) too points out that a schema reduces cognitive 

strain and that a suitable schema increases both retention of material and 

understanding. 

Krutetskii (1976) organised problems into different types and tried 

to identify specific abilities which came into play in solving the different 

types of problem. The five mathematical abilities which Krutetskii (1976, 

page 351) identified are as follows4 . 

l. The swiftness of mental processes and the ability to reflect 

deliberately and profoundly. 

2. Computational ability. 

3. Memory for symbols, numbers and formulae 

4. Spatial ability 

5. Visualisation of abstract mathematical relationships and 

dependencies 

Krutetskii (1976) stated that these abilities can be demonstrated in 

specific activities and can also be created and developed .by an activity. 

The latter point will be returned to later in this thesis. 

Krutetskii described two types5 of thinkers which represent two 

distinct outlooks on mathematics, a geometric type (visual/pictorial) and . 

an analytic type (verbal/logical)6. Krutetskii (1976) found that most gifted 

pupils could think in either way and could vary their approach according 

to the problem. Some of the differences between these two modes of 

thinking were highlighted by Skemp (1971) who wrote about two kinds of 

symbol which can be used in mathematics, visual and verbal. These are 

closely related to the characteristics of Krutetskii' s two types of thinkers 

and are summarised in Table 1.2 (Skemp 1971, page 111) 

4 Krutetskii emphasised that not all of these abilities are obligatory for mathematical 

success 

5 A third type, 'harmonic' is a combination of the other two 

6 Similar distinctions related to activity in right and left hemispheres in the brain were 

later described by Sharma (1979) and were mentioned earlier in this chapter 
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The ability to visualise is considered by Krutetskii to be a form of 

support which can be useful in solving problems. However, he found 

that pupils who were analytic type thinkers did not generally need this 

visual support. Analytic types tended t_o analyse concepts rather than 

situations. The geometric type on the other hand was characterised by a 

tendency to interpret visually any mathematical relationship or 

situation. Krutetskii (1976) noted a correlation between the analytic type 

and success in learning algebra and, correspondingly, between the 

geometric type and success in learning geometry. Krutetskii (1976) 

claimed that spatial ability is not a necessary ingredient of mathematical 

giftedness, but that it influences the mathematical cast of mind and 

characterises a particular type of mathematical giftedness. 

TABLE 1.2 

Skemp' s summary of properties of two kinds of symbolism 

j _ ____ v_is_u_a_l ---- -+-----v_e_r_ba_l_-a_lg_e_b_r_a_ic __ -----i 

I
. Abstracts spatial properties, 
such as shape, position. 

I 
j Harder to communicate. 

/ May represent more individual 
thinking. 

I 

Abstract properties which are 

I 

independent of spatial 
configuration, such as number. 

I Easier to communicate. 

May represent more socialised 
thinking. 

j Integrative, showing 

I 
structure. i Analytic, showing detail. 

: Simultaneous. 

I 
/ Intuitive. 

I Seq.uential. 

I Logical. 

Teaching methods which emerged following Krutetskii's work 

included; suggesting strategies to pupils such as the notions of reversing 

problems, asking pupils to invent 'similar' problems, choosing simple 

numbers instead of hard ones, moving from materials to symbolisations 

and drawing diagrams. The expectation was that these strategies would 
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be learned and eventually the pupils would be able to apply the strategies 

for themselves. 

1.10 The van Hiele levels 

The van Hieles (1986) put forward a theory of spatial development which 

claimed that learning is a discontinuous process and they described five 

stages or levels. A description of their work can be found in Clements 

and Battista (1992), Hoffer (1983) or Dickson et al. (1984). The levels are 

defined as follows: 

Level 1. Visual : Figures are distinguished in terms of their individual 

shapes as a whole and relationships are not seen between these shapes or 

their parts. They often use visual prototypes such as 'door shaped' for a 

rectangle. They do not attend to the geometric properties 

Level 2. Descriptive/Analytic: There begins a development of an 

awareness of parts of figures and the child can characterise them by their 

properties. These properties become realised through observations 

during such practical work as measuring, drawing model making etc. 

They do not see rela,tionships between classes of figures. 

Level 3. Abstract/Relational: Relationships and definitions are 

beginning to be clarified. The square is now seen as a special case of a 

rectangle which is a particular instance of a parallelogram. The student 

understands that one property can follow from another and distinguishes 

between necessary and sufficient conditions. 

Level 4. Formal Deduction: The student can see the role of axioms and 

how possibilities exist for developing a theory proceeding from various 

premises. The student can apply deductive reasoning and establish 

theorems within an axiomatic system. 

Level 5. Rigour: The student can reason formally by manipulating 

axioms or theorems without the presence of reference models or concrete 

interpretation. Theory construction can be completely abstract. 

The higher levels relate to the student's ability to understand the 

notion of proof, with level 3 seeing the initial stages developing and 

level 4 indicating mastery of proof. 
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The implication is that secondary teachers of mathematics need to 

find ways of helping children over the discontinuity from one van Hiele 

level into the next level. 

1.11 Curriculum Development and Educational Research 

During the 1960s there was much activity in curriculum development in 

schools, both here in Britain and in the US. The so-called 'new 

mathematics ' in the US or 'modern mathematics' in Britain was 

beginning and issues such as readiness for learning and learning by 

discovery were at the fore. There was a need for a solid research 

community to be established to assist in this development and to 

monitor change. The very existence of this ferment in the curriculum 

fostered an acceleration in research (Kilpatrick, 1992). 

In addition, the interest in the connection between psychology and 

mathematics teaching was growing. A conference organised by the 

Committee on Intellective Processes Research of the Social Sciences 

Research Council was held in 1962 which brought together psychologists 

and mathematics educators but there was some difficulty in the two 

groups communicating with one another (Kilpatrick, 1992). At the time 

this problem prevented much dialogue from taking place and many 

subsequent conferences focussed only upon the views of mathematics 

educators. It was not until 1977 that the first meeting of PME (Psychology 

of Mathematics Education) was organised in Utrecht. 

Prior to the formation of PME, in 1969, the first International 

Congress on Mathematical Education (ICME) took place in Lyons, France. 

In the closing address Begle stated (1969 page 110), 

' I see little hope for any furth er substantial improvement in 

mathematics education until we turn mathematics education into 

an experimental science, until we abandon our reliance on 

philosophical discussion based on dubious assumptions and 

instead follow a carefully correlated pattern of observation and 
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speculation, the pattern so successfully employed by the physical 

and natural scientist.' 

Fortunately, many researchers took up the challenge to make 

mathematics education research a scientific endeavour, incorporating 

methodologies from such disciplines as psychology. 

1.12 The psychology input 

The interest shown by some mathematics educators in psychology and 

the psychology literature did have the effect of stimulating more 

research. This broadening of perspective informed research method and 

opened up the different methodologies for which Begle (1969) was 

appealing in the quote above. 

Problem solving tasks and most learning tasks involve holding 

information in short term memory while scanning for helpful 

relationships. Knowledge about memory inevitably impinges upon 

mathematics teaching since in order for knowledge of ideas or concepts to 

pass into long term memory, there must be connectivity to other 

(mathematical) knowledge. Memory is about attaching meaning to 

information or adding it to a schema rather than simply about mental 

lists. Imagery has been shown to aid memory and much research has 

been carried out in the psychology literature on the nature of imagery. 

This literature on imagery and visualisation is given further attention in 

Chapter 3. 

1.13 Action Research 

This term is commonly used to refer to research done by practitioners. It 

was defined by Romberg (1992, page 57)) to be a 'research strategy used to 

investigate schooling situations where the researcher assumes 'wise 

practice' that needs to be documented and understood has evolved in 

schools or classrooms. ' Kent and Hedger (1980) carried out an important 

research study of this kind describing teaching situations and several case 

studies of individual pupils. Their stated aims as teachers were 'to 
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cultivate those mental powers characteristic in mathematicians and . . . to 

create situations which allow these powers to develop.' (1980, page 139). 

Kent and Hedger's (1980) work demonstrates Bishop's (1992) view that 

the power of action research lies in its richness rather than any succinct 

mathematical construct. Bishop (1992, page 718) commented: 

'The pedagogical wisdom of Polya or Freudenthal cannot be 

understood by terms such as 'discovery learning' or 'learner 

centred instruction'. The wisdom of the pedagogue is revealed in 

the well-theorised and articulated innovative practice, in the 

empathetic elaborations of the educational situation, and in the 

insightful analysis of experience.' 

Polya (1957) considered problem solving to be the focus of 

mathematical instruction. Polya believed that the student's experience of 

mathematics must be consistent with the way in which mathematicians 

work. This means, among other things, making conjectures and then 

trying to prove them (guessing and testing!). 

There is also. the view today that mathematics learning is a culture 

specific experience. The term ethno-mathematics has entered the 

vocabulary, meaning the mathematics which is embedded in the 

particular culture and whose purpose is other than for 'doing 

mathematics' (Nunes, 1992). On the importance of the school situations 

occurring .in a culture, Schoenfeld (1992, page 341) stated: 

'The lessons students learn about mathematics in our current 

classrooms are broadly cultural, extending far beyond the scope of 

the mathematical facts and procedures that they study.' 

Emphasising this importance, Resnick stated (1989, page 58): 

'Becoming a good mathematical problem solver - becoming a good 

thinker in any domain - may be as much a matter of acquiring the 

habits and dispositions of interpretation and sense making as of 

acquiring any particular set of skills, strategies or knowledge. If 

this is so, we may do well to conceive of mathematics education 

less as an instructional process ( in the sense of teaching specific, 

well defined skills or i-tems of knowledge), than as a socialisation 
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process.' 

1.14 Conclusion 

There are certain mathematical skills which need to be developed in 

children and these have been classified by various authors. Krutetskii 

(1976) defined five specific abilities and Sternberg (1977) defined six. 

There exist two extreme modes of mathematical thinking based 

upon either verbal or visual strategies and these are linked to the left and 

the right hemispheres of the brain respectively. Pupils may incline 

towards one or other cognitive style and if the teaching style which they 

experience is restricted to just one approach, it can have the effect of 

hindering the pupils' learning. 

Piaget described distinct developmental phases which the child 

must pass through and estimated the ages at which these phases are 

reached. Other researchers (Case 1974 and Pascual-Leone 1976) describe a 

mental effort statistic attached to Piaget's stages which could further 

define the level at which a child is working. 

Van Hiele studied spatial ability and listed five discontinuous 

hierarchical levels of spatial development. The challenge which this 

presents to teachers is how to advance pupils over the discontinuity from 

one level to the next. 

Many schools of thought favour the alternative view that 

cognitive development does not occur in discrete stages, but that it is a 

gradual and continuous process and intervention by the teacher can 

enhance this progression immensely. Vygotsky's 'zone of proximal 

development' puts the teacher centre stage in the intellectual progression 

of the child whereas the constructivists see the teacher with an important 

but less central, more enabling, role. 

The study of imagery and visualisation in the practice of 

mathematics is the main interest here. Skemp (1971), Krutetskii (1976) 

page 21 



Chapter 1 

and others have identified the different ways in which imagery can be 

used in doing mathematics. 

The areas of mathematics education research which are relevant 

are those concentrating on the ability to visualise, the effects of different 

kinds of imagery, what tasks enable/ effect learning and what abilities 

may be needed and/ or used in doing certain tasks in mathematics, and 

finally what strategies and/ or processes are used. 
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Chapter 2 

Spatial ability, visualisation and imagery in mathematical 

thinking 

2.0 Introduction 

This chapter describes the research on imagery and visualisation carried 

out by mathematics educators from 1960 to the present. Research by 

psychologists in the general area of imagery will be discussed in Chapter 

3. A characteristic of much of the work described in this chapter is that it 

has been carried out with the role of the teacher in mind and satisfies 

some, if not all, of the requirements set out by Ernest (1998), Bell (1994) 

and Bishop (1992) considered in Chapter 1. 

The motivation for research in the mathematics education 

discipline is necessarily disparate from that in the psychology discipline, 

since the mathematics teacher's prime concern is with the improvement 

of mathematical thinking and learning, whereas the psychology 

researcher is concerned with understanding the processes involved. The 

different objectives of mathematics educators, as distinct from 

psychologists, have tended to result in different methodologies (and 

research paradigms) being employed in the two disciplines. However, 

certain studies and research findings in the psychology literature are of 

interest to mathematics educators and, as a result, some mathematics 

educators have been attracted by the methodologies which are 

characteristic of research in that discipline. This broadening of 

perspective has informed recent research in mathematics education and 

possibly had the effect of encouraging more research. Therefore, in this 

chapter, although we shall look mainly at research aimed at improving 

mathematical ability, we shall also consider research on how children 

think about and learn mathematics. 
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The extensive work of Piaget (for example 1960, 1967, 1971) and his 

co-workers in the Geneva school set the standard for developmental 

research in mathematical thinking and this work has been outlined in 

Chapter 1. Since Piaget, much mathematical research has reported upon 

case studies and has given descriptions of episodes in classrooms, some 

of which has focused on the child's ability to visualise. The review of the 

literature in this chapter covers research which has sought to extend our 

knowledge of the visualisation process both by qualitative case studies as 

well as by the experimental quantitative studies activated by the broader 

range of interdisciplinary methodologies. 

2.1 The ability to visualise 

The view that individuals have the ability to visualise and to 

manipulate images in some form follows from the empirical work 

commencing in the late 1960s on mental imagery. Many mathematics 

educationists (for example, Gattegno 1965, 1971, Mason 1988) base much 

of their work upon the assumption that all individuals have the ability 

to visualise, to work on images, to hold an image, and to rotate or 

manipulate it in the mind. Gattegno (1965, page 24) wrote: 

'Because imagery is one of the attributes of the mind that everyone 

brings to school with himself ( sic) it becomes today possible to see 

mathematics education as part of a true education of the whole 

self for a fuller use of oneself in a more abundant life.' 

Mason (1991, page 84) described it thus: 'that amazing facility 

which we all share, the ability to form and manipulate mental images' 

but he admitted that the skill may need awakening. This might be 

achieved with the use of film, animations or a series of diagrams. Mason 

(1988, page 300) stated 'Animations are an excellent way to support 

dynamic imagery by providing experience to refer back to.' 

During public lectures and in his writings, John Mason (see for 

example Mason, 1988) frequently engages his audience with mental 

acrobatics, inviting them to visualise and to manipulate images. A 
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typical request is the following (Mason 1991, page 83): 

'Imagine a triangle. Imagine a circle tucked zn one corner, 

touching the two sides. It grows in size always touching the two 

sides of the triangle, getting bigger and bigger, until it touches the 

third side as well. Let it grow even bigger, until it is entirely 

outside the triangle, but touches all three sides (two will need to be 

extended). Then let it shrink back down until it is tucked back in 

the same (starting) corner. 

Now let it grow again, but this time let its centre leave a trace or 

track. Let the circle grow until it touches the third side of the 

triangle as well. Since it touches all three sides, we can allow it to 

'let go' of a different side, and then shrink until it is tucked in a 

different corner. Experiment with that for a while. 

Allow it to grow until it is outside the triangle but touching all 

three sides, then let go of a different side and shrink. Where can 

its centre go to in all this movement?' 

The visualisation exercise described in the quote above provides a 

vivid mental experience of constraints and illustrates that there can be 

some person.al discovery of a theorem. Mason continued (1991, page 83): 

'Any statement of what you are seeing is a geometrical theorem. 

The significance of your theorem will depend on whether others 

can recognise what you are seeing, and agree to its generality, to its 

applying to any triangle.' 

In speaking about his experience of working on imagery with large 

groups of people Mason (1992, page 13) commented, 

'For years I have noticed that it is possible to generate a collective 

state in a room which is quite different to the usual bustle of a 

classroom . . . . . It is as if they have been transported, as if they are 

not really present in the room but rather in a world entered 

through a fusion of physical and mental screen.' 

Mason's experiments extend the earlier work of Gattegno who 
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believed in allowing children to explore their own imagination. 

Gattegno's research (for example, 1965), reported a similar experience. 

Gattegno (1965, page 22) wrote, 

'In a number of experiments I have asked my classes to consider 

with their eyes shut some situation in their mind which I 

generated by instructing them to produce some images and act 

mentally upon them. . . .a number of distinctive features which 

when talked about sounded strangely like the geometrical 

statements we read in books as theorems. . . . . they actually 

believed they were making a statement which was universally 

valid, the more so because everyone in the group got the same 

insight into the situation.' 

Gattegno was interested in identifying mental structures and the 

activities needed for the production of mathematical structures. 

Gattegno (1965, page 22) believed imagery to be important and stated: 

'In geometry it is visual imagery that is used. But the dynamics of 

the mind when formalised produces all the conceivable algebras. 

Algebra differs from geometry in that the first describes mental 

dynamics while the other uses mental content, imagery.' 

Many other teachers and mathematics educationists believe that 

practicing this skill of imagery improves spatial ability and that it is 

beneficial to mathematical (and algebraic) thinking. However, it is not 

an easy task to develop the skill fully. This view has been confirmed by 

Dawe (1993, page 62) who, commenting upon pupils' visualising abilities 

pointed out: 

'Although students may readily summon up an image of a circle 

for example, it is another matter to control it for some 

mathematical purpose.' 

2.2 A definition of imagery 

Different kinds of imagery exist and psychologists do not agree on the 

nature of a mental image, whether it is visual or spatial or some 
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combination of the twol. It is relevant to define what is meant here by 

imagery and to give some of the definitions used by other researchers 

working in this area. 

Wheatley (1990) summarised the three elements of imagery which 

Kosslyn (1983) had identified in an earlier work, these are: 

(i) the construction of images from directly viewing the objects, the 

images that are constructed may be concrete and limiting, or dynamic 

and abstract; 

(ii) re-presentation of the image at some time after its original 

construction; and 

(iii) transformation of an image as, for example, in the rotation of one 

image to facilitate comparison with another. 

Wheatley (1991, page 34) further stated, 

'constructing an image from pictures, words, or thoughts; re

presenting the image as needed; and transforming that image . 

The need to make such comparisons (mental rotations) occurs 

frequently in mathematics and is fa cilitated by the use of visual 
• I imagery. 

Presmeg (1986), in her study of the efficacy of employing 

visualisation in high school mathematics, focused on visual imagery and 

described five kinds of visual imagery, including dynamic imagery. Her 

definition, (1986, page 42) 'a visual image is a mental scheme depicting 

visual or spatial information' is broad enough to include shape, pattern 

and form and not simply the 'picture in the mind' interpretation. 

The imagery of particular interest here is what Presmeg (1986) 

described as 'dynamic imagery' which involves moving and 

transforming images. However, whilst this type is reported to be 

'potentially effective' in the solution of the mathematical problems 

which Presmeg posed, Presmeg (1986) found that it was used very 

infrequently by subjects in her study, ( <4%). She also mentions (1986, 

page 42) that 'a pupil may be highly successful in the learning of school 

1 The 'propositional versus pictorial' debate is discussed in Chapter 3. 
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mathematics without needing to resort to visual thinking'. This finding 

is discussed further in section 2. 5 where Battista (1994) reflects upon 

Presmeg' s conclusion. 

In spite of the accepted importance of imagery in thinking and 

learning, it is difficult to proceed with research involving the concept of 

imagery without a clear working definition of what research on imagery 

in mathematics might be. Bishop (1989) believes that the psychometric 

approach is not helpful in getting at the processes involved in 

visualisation. However, whilst mathematics educators must be 

concerned with the processes involved in imagery (which are discussed 

in Chapter 3) and with the stages of development of these processes, they 

are more concerned with the interventions which the teacher might 

design to provide experiences to enhance learning. Mathematics 

educators may also be concerned with placing learning in chosen 

contexts. These concerns might suggest that one direction for imagery 

research should be to investigate those kinds of mental images which can 

play a role in the enhancement of mathematics learning and thus could 

provide information on the kinds of interventions which are needed. 

2.3 Linking visual images to concrete experiences 

Piaget and Inhelder's (1971) ideas on imagery suggest that a child cannot 

perform manipulations of images in the mind until she has experienced 

those events with real objects. Piaget and Inhelder (1971) distinguish 

between 'reproductive' images which correspond to the known objects 

and ' anticipatory' images in which an object not previously perceived is 

represented. Implicit in Piaget and Inhelder's work is the notion of an 

image as a picture in the mind although no formal theory of imagery is 

presented. Dickson et al. (1984) stated that the child's power to 

reconstruct spatial images starts at around two years old and is perfected 

at around seven years old. 

Sutherland (1992), in discussing Piaget's work and the 'vertical lag' 

between Piagetian stages, gave an example which is more specific about_ 
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the imagery issue. The example describes the situation of a toddler (pre-

operational) being able to find her way around the rooms of a house but 

who will only be able to imagine the experience in her brain when she 

reaches the operational period (age 5 according to Sutherland and age 7 

according to Piaget). The child will then be able to represent those 

sensorimotor experiences in the brain as an image or diagram. At the age 

of 5 to 7 years, when the child embarks upon the operational period, she 

becomes more able to imagine scenes but her ability to manipulate 

images will be dependent upon when appropriate experiences with real 

objects commence. According to the theories put forward by Case (1974) 

of a mental effort statistic and by Pascual-Leone (1976) of an M power, we 

must conclude that the imagery tasks which a child of 5 to 7 years can 

perform are limited. 

With regard to cognitive development, Battista (1994) stated that 

the learner acquires facts about a new situation which are concrete, then 

routes and relationships are established connecting these facts and these 

are assimilated into a schema. With time, new facts at increasingly 

higher levels of interrelationships are established and these become 

integrated into the schema. 

Campbell et al. (1995) distinguished between ' rich' images, which 

are particular concrete images of objects, and image schemata which are 

more general. An image schema of a triangle, for example, is not a 

completely abstract propositional structure, but neither is it a single 

specific triangle. It is not simply a concept of a triangle as a three sided 

plane closed figure but it can be different triangles. An image schema 

carries visual information but the imager distinguishes between an 

image schema of a triangle and the image of a particular triangle. Image 

schemata operate at a level of generality somewhere between abstract 

propositional structures and specific mental pictures. They form a bridge 

between abstract logical structures and particular concrete experiences. 

Imagery is often a precursor to drawing a diagram. Wheatley 

(1991) suggested that teachers should encourage pupils to draw pictures 
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and stated that imagery is particularly useful in solving non routine 

problems. However, care should be taken that too much emphasis is not 

placed upon the static diagram at the expense of a dynamic mental image. 

Mason (1988, page 297) pointed out: 

'The diagram can act as scaffolding or support for the mental 

screen, stabilising the image, but if the diagram becomes the sole 

object of attention then it can hinder rather than help thinking.' 

The ability to manipulate images and 'play' with different 

possibilities can be a very productive activity in mathematics, and of 

course in many other disciplines. For instance, Dawe (1993) cited the use 

by athletes of visualising the sequence of movements in their routines so 

as to enhance performance. With regard to mathematics learning, Dawe 

(1993, page 73) reinforced Piaget and Inhelder's (1971) view which 

suggested that a child cannot perform mental manipulations of images 

until they have experienced those events with real objects, and 

commented: 

'In the case of young children constructing ma"thematical ideas 

there is good evidence to suggest that teachers should consciously 

create mathematical learning environments which enable 

children to link visual images, verbal propositions and memories 

of activities involving the manipulation of physical objects.' 

(Dawe, 1993! page 73) 

Clements and Del Campo (1989) also stressed that children should 

be encouraged to link visual images with verbal knowledge thus linking 

images with concepts in mathematics learning. They gave fraction tasks 

both pictorially and symbolically and found that pupils sometimes had 

difficulty with 'expressive' tasks (pupils had to express the answer 

themselves perhaps with the aid of simple equipment) rather than 

'receptive' (pupils had to identify the correct response) tasks. Subjects 

could identify pictures of thirds and quarters but had more difficulty 

cutting the fractions from a circular card. Examples of the tasks are 

shown in Figure 2.1. 
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Source: Clements and Del Campo (1989) 
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Use scissors to cut one quarter of 

this circle 

Figure 2.1 Fractions tasks comparing pictorial and symbolic 

representations 

A pertinent example of linking visual images to concrete 

experiences in a method used for calculation can be can be observed in 

Japanese abacus (soroban) users who, after many years of practice, no 

longer need the instrument but simply see it in their mind and can 

perform mentally all kinds of complex calculations in a way which 

derives from the use of the equipment. 

2.4 What is spatial ability? 

There is evidence to suggest that 'the quintessential attribute of someone 

with high spatial ability is a good spatial memory' (Smith 1991, page 2). 

Lean & Clements' (1981) view is that spatial ability means the ability to 

formulate mental images and to manipulate these images in the mind. 

With regard to formulating mental images, according to Descartes (in 

Muldane and Ross 1968), we can easily imagine the difference between a 

pentagon and a hexagon, in a way whereby they are introspectively 

distinguishable. Something rather more difficult to perform would be to 

imagine a chiliagon (a 1000-sided figure) and to 'see' how it is different 
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from a 999 sided figure. Although the two are conceivable, we cannot see 

how one differs from the other. Similarly, imagining some unfamiliar 

animal such as a zebra feels different from merely thinking of a zebra 

without forming any image2 . 

Descartes concluded that imagining is not the same as thinking, 

imagining involves images, and the images are of the 'picture in the 

mind' type. Thinking, in the context described by Descartes, seems 

similar to von Glasersfeld's (1987) interpretation of a 'mental 

representation' which von Glasersfeld called a 'conception'. Von 

Glasersfeld (1987b, page 220) gave the example: 

'One's mental representation of, say, one hundred will be the 

either the numeral '100' or 'C', or a specific lot of unitary items 

whose count is presumed to yield the number word 'hundred', or 

an arrangement of specific lots according to a transform derived 

from the accepted symbol system, such as '10 x 10'.' 

Following on from these imaginings we might ask, 'What is the 

relationship between the ability to imagine a pentagon or a hexagon and 

spatial ability?'. Is spatial ability a skill which enables the possibility for 

shapes or objects to be manipulated in the imagination? Or is it the 

inverse, is imagery ability a skill which enhances spatial ability? 

Different forms of spatial ability have been described. Bishop 

(1983, page 182) summarised McGee's (1979) two types of spatial ability: 

1. Spatial visualisation (Vz), which involves the ability to mentally 

manipulate, rotate, twist or invert a pictorially presented stimulus 

object, and 

2. Spatial orientation (SR-Ot which involves the comprehension of 

the arrangement of elements within a visual stimulus pattern and 

the aptitude to remain unconfused by the changing orientations 

in which a spatial configuration may be presented. 

Bishop (1983, page 184) also proposed two different types of ability 

2 See also Chapter 3 section 3.3 for Kosslyn's ideas on retrieving an unfamiliar image 

page32 



Chapter 2 

constructs of his own: 

l. The ability for interpreting information (IFI). This ability involves 

understanding the visual representations and spatial vocabulary 

used in geometric work, graphs, charts, and diagrams of all types. 

2. The ability for visual processing (VP), This ability involves 

visualisation and the translation of abstract relationships and 

nonfigural information into visual terms, It also includes the 

manipulation and transformation of visual representations and 

visual imagery. 

With regard to spatial ability and its correlation with mathematical 

problem solving ability, Wheatley and Brown (1989) reported that 

students who achieved above average scores on standard mathematics 

tests but who had low spatial ability were poor at problem solving. In a 

later paper Wheatley (1991, page 35) stated: 

'students with high spatial ability whose performance was average 

or below on standardized mathematics tests and in school 

mathematics class had an excellent grasp of mathematical ideas 

and were able to solve non-routine problems, often creatively.' 

Wheatley (1991) interpreted the findings to indicate that 'spatial ability 

lies at the heart of meaningfulness' in mathematics. 

Brown and Presmeg (1993, page 137), in their study of types of 

imagery used by secondary school students, made a similar claim that, 

'students do use imagery in the construction of mathematical meaning.' 

It seems likely that if spatial ability and imagery can be nurtured and 

developed, then pupils' mathematical understanding and ability to solve 

non-standard mathematical problems may be enhanced. 

Different approaches to research into spatial ability 

In 1983, Alan Bishop reported that there was not an extensive or 

comprehensive corpus of research on which to draw ideas for teaching 

geometry and that very little work on geometry learning was being 

produced. In a survey of articles in the Journal for Research in 

page33 



Chapter2 

Mathematics Education for the year 1980, he found only 10 out of 161 

entries concerned with space and geometry in some way. Most research 

at the time seemed to focus on number. Bishop (1983, page 200) 

commented, 'We are still relatively ignorant of spatial and geometric 

ideas'. Much has been done since this statement was made but still no 

clear definitions and teaching techniques have emerged. 

Numerous studies (Smith 1964, Guay and McDaniel 1977, 

Fennema and Sherman 1977, Battista et al. 1982, Brown and Wheatley 

1997) have tried to show that spatial ability is positively correlated with 

mathematical ability. For instance, Guay and McDaniel (1977) studied the 

relationship between mathematical ability and spatial ability and in their 

study, high mathematics achievers did better on spatial tests. They noted 

that high spatial ability was characterised as requiring the visualisation of 

3-D configurations and the mental manipulation of these visual images. 

Fennema and Sherman (1977) studied gender differences in spatial 

ability and found, firstly, that spatial ability is positively related to 

mathematical ability and secondly, that there was no difference between 

males and females when controlled for background. 

Battista et al. (1982) were also interested in the relationship 

between spatial ability and achievement in mathematics. They studied 

the role that the study of geometry plays in spatial visualisation. As part 

of their study, they used the Purdue Spatial Visualisation Test on mental 

rotations which had been shown to be a valid measure of spatial ability 

(Guay, 1977). A typical task involving the mental rotation of a solid 

object is shown in Figure 2.2. 
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~ I 
is rotated to 

cs ~ is rotated to 
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Source: Battista et al. (1982) 

( 
Figure 2.2 Spatial test item involving mental rotation 

Battista (1994) claimed that the relationship between spatial ability 

and mathematical ability is based upon the fact that operations 

performed while interacting with mental models in mathematics are 

often the same as those used to operate in spatial environments. He also 

declared a verbal function as familiarity with the tasks increased 

commenting that as learners become proficient at manipulating mental 

models they begin to use words as 'pointers' to important operations and 

to think without re-presenting the operations (1994, page 93): 

'familiar problems might be solved by referring to verbally 

encoded propositions or procedures, by-passing the spatial like 

thinking required to use the underlying mental model.' 

but emphasised: 

'However, even though such thinking may appear strictly verbal, 

for it to be conceptually meaningful and powerful enough to 

encompass· novel situations, it must be based - at some level- on 

operations with mental models.' 
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There have been different emphases in research in the area of 

spatial ability. Some developmental research focused upon what kind of 

tasks can be performed and also upon what is easy and what is difficult. 

Other research has dealt with individual differences and why there are 

differences (due to gender, cultural background, prior experience etc.). 

Yet another approach has been to apply factor analysis in the hope of 

identifying what constituent abilities make up 'mathematical ability'. 

Spatial ability has emerged as one such factor3 . However, Bishop (1980) 

has commented that the factor analysis approach produces findings 

which are unclear and inconclusive. Bishop (1983) prefers the 

methodology of studying clinical cases and learning about strategies in 

that way, not least because he believes that the only way to test VP is by 

individual clinical procedures, this being due to the personal and 

idiosyncratic nature of VP. A further drawback of the factor analyst's 

approach, according to Bishop (1983), is that it makes no reference to 

individuals and rarely pursues how an individual approaches a solution 

to a problem. 

Krutetskii (1976, page 14), when discussing some research carried 

out with 130 mathematically able adolescents is rather dismayed at the 

lack of collection of qualitative data and argued: 

'Kennedy (1963) . . . computed, for 130 mathematically gifted 

adolescents, their scores on different kinds of tests and studied the 

correlation between them, . The process of solution did not 

interest the investigator. But what rich material could be 

provided by a study of the processes of mathematical thinking in 

130 mathematically able adolescents.' 

With regard to quantitative versus qualitative research, Bishop 

(1983) recommended paying attention to the individual subject's data 

rather than to overall means of the data in order to ascertain which 

processes are actually being used in tasks. Lean and Clements (1981) 

3 Krutetskii (1976), however, described spatial ability as a particular type of giftedness 

in mathematics rather than an essential skill or factor 
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agreed and urged researchers to pay less attention to testing and more 

attention to clinical investigations, which concentrate on the extent to 

which spatial ability is used by students attempting different kinds of 

mathematical problems, only thus can relationships between spatial 

ability and mathematical performance be established. 

A complication which arises with experimental testing is that 

different tests have been assumed to be testing the same cognitive ability. 

It has been assumed that a single test will measure the same thing for 

every individual. However, most tests measure acquired spatial skills 

rather than innate ability. It is also the case that many spatial tests can be 

solved using different strategies - different subjects often use different 

strategies for the same tasks, possibly confounding the results in some 

cases (Clements, 1983)4. 

A sensible approach would seem to be to use a combination of 

experimental testing with clinical interviews so that both quantitative an 

qualitative data can be collected. In this way curricular sequences to 

improve spatial ability through mental manipulation skills may then be 

developed. 

In summary, whether spatial ability is an innate ability or can be 

taught is an important question. It is innate ability which frequently 

interests psychologists, whereas the acquisition of spatial skills is possibly 

relatively of more interest to mathematics educators as it is more likely 

to be supported by schooling. 

2.5 Visualisation and mathematical ability 

The importance of visualisation and imagery m the learning of 

mathematics has been the subject of a number of research studies. 

However, it has been noted (Clements, 1981) that one of the problems in 

4 An interesting observation which was noted by Smith (1991) is that high scores on such 

spatial tests often go to subjects who flexibly switch strategies between verbal and spatial 

in response to different test items. 
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imagery investigations is finding an appropriate research methodology. 

Different researchers have advocated a range of different methodologies 

as mentioned above, from developmental psychology, to individual 

difference clinical case studies, to teaching programmes, testing and factor 

analysis. 

Brown and Wheatley (1997) adopted the case study approach and 

identified two components of imagery capability which seem particularly 

important in mathematical understanding, (i) decomposition/ 

recombination and (ii) transformation, and stated that there are 

individual differences in performance of the components. Brown and 

Wheatley (1997) went so far as to propose that the difficulty which one of 

their subjects had with mathematical reasoning resulted directly from 

poor imagery ability and, furthermore, stated (1997, page 69): 

'We believe that forming images of mathematical relationships is 

essential for effective problem solving.' 

This hypothesis, that imagery aids creative problem solving in 

unfamiliar problems, is supported in the psychology literature (reviewed 

in Chapter 3). Kaufmann (1985, page 58) stated: 

'It may now be argued that the location of verbal and visual 

symbolic representation on the two dimensions of 'level of 

processing' and 'type of processing' may be seen to point in the 

same direction in relation to the novelty parameter in problem 

solving. Linguistic representation is the more appropriate and 

economical the higher the degree of task familiarity . With 

increasing situational novelty, the functional significance of 

visual imagery will increase.' 

Kaufmann (1985) further stated that imagery has its most important 

function in the initial phase of the problem solving process. 

In their paper, Reynolds and Wheatley (1997) described the ability 

of a particular child to solve problems using imagery thus: 

'Elaine was able to do this problem because of the images that she 

formed , which were expressed in her drawings, particularly 
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rectangles; her metaphors of stretching, chopping and covering; 

and her hand movements. Elaine's imaging activity was the 

result of her intention to make sense of relationships.' 

Reynolds and Wheatley (1997, page 104) went further in describing 

their subject: 

'Her well developed spatial sense has given Elaine great 

mathematical power enabling her to construct, examine, and 

reconstruct some complex mathematical relationships.' 

Reynolds and Wheatley (1997, page 104) strongly believe that engaging 

pupils in spatial activities fosters mathematical reasoning and claimed 

that the case of Elaine 'highlights the need for classrooms to focus on 

activities that encourage students to develop their spatial sense in a 

variety of ways. ' 

In a study of the use of dynamic imagery by high ability children, 

Thomas and Mulligan (1995) found a higher percentage using dynamic 

imagery than for average / low ability children they had observed in 

earlier studies. Furthermore those children with dynamic visualisations 

were shown to have higher achievement on the numeration tasks than 

those with simply static visualisations. 

Some studies, for example Pesci (1995), have attempted to find out 

what interventions involving imagery are successful in mathematics. 

Rather than taking the factor analyst's approach or interviewing 

individuals as case studies, Pesci (1995) carried out experiments in entire 

teaching programmes. Pesci's study took place over a period of four years 

and involved 21 experimental classes and 7 control classes. A teaching 

programme was delivered, tests administered and solution strategies of 

pupils were analysed. Pesci (1995) concluded that diagrammatic models 

helped mental models and that providing students with visual means 

for synthesising data is helpful, particularly for the weaker pupils. 

Although it is difficult to study the way in which individuals 
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process ideas and whether or not imagery is used, Moses (1977) provided 

some novel proposals on how to ascertain subjects' modes of thinking in 

their solution of problems. Moses (1977) collected written responses to 

problems and noted any prevalence of diagrams. Suwarsono (1982) 

continued this theme and developed a series of tasks which subjects were 

first of all required to solve and then were asked to choose from a list of 

typical solutions the one which corresponded closely to their method of 

solution. Suwarsono's (1982) method was an improvement on Moses' 

(1977) since analysis of written solutions, even when these solutions do 

include diagrams, does not always give a proper indication of the extent 

to which visual solution processes have been used. 

Given that the area of ABCD is 4 square units and E and Fare mid-point, 

find the area of AECF 

Source: Presmeg (1986) 

Figure 2.3 Parallelogram task utilising dynamic imagery 

Presmeg (1986) used a modified version of Suwarsono's tasks and 

also interviewed her subjects thus providing still richer data. An 

example of one of Presmeg's tasks is shown in Figure 2.3. However, 

Presmeg (1986) did raise a warning regarding the use of imagery in such a 

problem. When discussing this example involving the area of a 

parallelogram, one of her subjects used imagery to slide the 
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parallelogram AECF into a rectangle. This happened to give the correct 

solution because the height was kept constant and the areas were 

therefore equal, but Presmeg (1986) was concerned about vague 

manipulation of an image which, if not coupled with rigorous analytical 

thought processes, may be unhelpful. 

The advent of dynamic geometry packages to support pupils' 

personal imagery may be useful in this respect by correcting 

misconceptions, but Mason (1988) remarks that it is essential that pupils 

enter into the situation by owning their images and that they do not keep 

the mathematics at arm's length inside the computer program. 

Alternatively, imagery could be developed by working with 

'common-sense' objects such as folding paper or untying knotss where 

the personal experience of the learner provides the knowledge of what is, 

and what is not, possible. Wheatley (1991) commented that our 

experience of seeing may depend very much on what we know about 

what we are looking at. Kosslyn (1983, page 189) made the same 

observation: 

'Much of what happens when we form and manipulate an image 

in the course of thinking may ~e in part a reflection of our 

underlying knowledge and beliefs about what would happen if we 

were dealing with real objects' 

This view was also expressed by Battista (1994) who was interested 

in how the properties and behaviour of symbolic objects in a model 

simulate the properties and behaviour of the objects they represent. 

Battista (1994, page 93) explained how this is of importance to 

mathematics teaching: 

'Thus research and theories on imagery may help inform theories 

dealing with construction of mental models in mathematics.' 

Bishop (1989, page 11) believes that to draw valid inferences 

5 See the tasks used by Clements & Wattanawaha (1978) later in this chapter or 

Shepard and Feng's paper folding experiments in Chapter 3 
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regarding the visualisation process, the data must be derived from a 

broad range of situations, he explained: 

'If we want to understand more about the visualisation process, 

we need to study it in a variety of task and stimulus contexts, and 

to move away from just 'problem-solving' .' 

Two extremes of cognitive style have already been mentioned (as 

described by Sharma, 1979 and Presmeg, 1985) and we turn now to the 

contrast between the two in relation to the implications for learning 

mathematics. 

Verbalisers versus visualisers 

The existence of two types of thinkers in relation to mathematical 

abilities (Krutetskii 1976), verbalisers (analytic thinkers), visualisers 

(geometric thinkers) and also a third type which is a combination of the 

two (harmonic thinkers) was described in Chapter l. More recently 

Clements (1981) has suggested that rather than just three categories there 

may be a verbaliser/ visualiser continuum. 

Krutetskii's (1976) research, and latterly Presmeg's (1986), referred 

to a 'need' by thinkers at the geometric end of the scale (visualisers) to 

interpret visually an expression of an abstract mathematical relationship. 

In this sense, Krutetskii (1976) suggested that figurativen~ss often 

replaced logic for geometric thinkers. Krutetskii wrote of analytic 

thinkers having 'no need for visual supports' implying that this is a 

superior level of thought. However, Krutetskii (1976) also compared the 

thought processes of a geometric thinker and an analytic thinker in 

trying to explain the shape which is obtained when a right angled 

triangle is rotated about one of the shorter sides. The geometric thinker 

may consider the problem 'childish' since the solution is so obviously a 

cone, whe.reas the analytic thinker may describe in elaborate 

mathematical terms whereby a circular base would be obtained and that 

this is connected to a single point and may finally deduce that the shape 

is indeed a cone. This example demonstrates how switching to a visual 

strategy can be beneficial. 
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Lean and Clements' (1981) study of engineering students in Papua 

New Guinea supported Presmeg's (1986) results regarding cognitive style 

and mathematical abilities, reporting that there was a tendency for 

students who preferred to process mathematical information by verbal

logical means to out-perform more visual students on their 

mathematical tests. 

Battista (1994) warned against drawing too many conclusions from 

these results. Battista (1994) applied Greeno's theory of conceptual 

domains to geometry and suggested that during the first 3 van Hiele 

levels, students reason in geometry by manipulating objects in mental 

models and observing the results, not by operating on propositions. 

Battista (1994, page 92) also asked: 

' . . . if visual-spatial processing is important in mathematical 

thinking, what of the research suggesting that students who 

process mathematical information by verbal-logical means 

outperform students who process it visually (Presmeg 1986) ?' 

and responded: 

'The answer may lie in how mathematics is viewed. I have 

suggested that the kinship between mathematical and spatial 

thinking · applies to the learning of conceptual domains. But 

much current learning of school mathematics requires a different 

kind of learning - near-rote memorisation of procedures for 

manipulating symbols. Because such learning is not conceptual m 

nature, we should not expect it to involve spatial thinking or 

mental models. ' 6 

With regard to Lean and Clements' (1981) sample of subjects, who 

were all engineering students, there are some questions which could be 

asked, including 'How were the subjects taught mathematics?', and 

'Were they taught algorithmically rather than conceptually?'. Skemp 

(1971) has described different levels of understanding in mathematics 

6 There is an interesting quote from Goethe's Mephistopheles, translated in von 

Glasersfeld (1987, page 215) 'Just where we have no concepts, words come in very handy' 
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and distinguished between what he terms ' instrumental' understanding 

which relies upon remembering techniques, and 'relational' 

understanding which relies upon understanding concepts. 

Regarding the remembering of techniques, Wheatley (1977, page 

37) stated: 

'Our curricula stress rule-oriented sequential activities so 

extensively that children expect to apply a rule immediately. 

Our society emphasises and rewards left hemisphere activities. 

This is particularly true of our schools. A premium is placed on 

being able to put ideas into words, to state them explicitly, and to 

operate with rules.' 

Smith (1991, page 2) also commented upon the problem of 

emphasising verbal learning: 

'It is not surprising that, in a system where academic ability is 

judged primarily in verbal terms, verbal methods tend to be 

emphasised even in spatial disciplines, so that 'able' children will 

find learning easier. . . . However, if spatial memory has an 

important role in many areas of the curriculum, then perhaps 

educators need to take a broader view of how children learn to 

think. . . it is possible that the intellectual potential of many 

children is being grossly underestimated and systematically 

underdeveloped .' 

The left and right hemisphere activity of the brain supports the 

notion of two extremes of thinking, sequential and holistic thinking. 

According to Smith (1991), it is sequential thinking (left hemisphere) 

which receives more emphasis in our schools. In Chapter 1 it was 

mentioned that right hemispheric thinkers are better problem solvers, a 

skill considered important by mathematics educators, by the Cockcroft 

Committee (CITMS, 1982) and by the DFE (DFE, 1995). There are serious 

implications here for teaching; if the assessment and value judgements 

of pupils' mathematical ability are centred on verbal techniques, what 

should be done to bring about a more visual approach which would be 
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more effective in developing competence in problem solving? It may be 

the case that the curriculum is assessment driven, implying that items 

which appear on national tests will receive more emphasis in the 

classroom, and at the present time NFER are developing new mental 

tests for Key Stage 3 which will include more visual tasks7 . 

Although most learners will have a natural preference for either a 

visual or a verbal style, it seems desirable that they be able to be versatile. 

Krutetskii (1976) found that most gifted pupils can think in either the 

analytical way or the geometric way and can vary their approach 

according to the problem. Wheatley and Wheatley (1979) suggested that 

individual learners have preferred cognitive styles and are not 

necessarily equally proficient in both types of activity. Wheatley and 

Wheatley (1979) also suggested that low attainers find a spatial approach 

more accessible. 

There seems to be a connection between spatial thinking and 

conceptual learning (conceptual learning being equivalent to Skemp's 

(1971) notion of relational understanding as distinct from instrumental). 

Bishop (1983) believes we must seek definitions of abilities and processes 

that help us to solve particular problems. McGee's (1979) two types of 

spatial ability already described include one (Spatial visualisation Vz) 

which involves mental manipulation such as rotation, twisting or 

inverting . 

Some researchers have hinted that imagery may have the 

limitation of forcing a single-case concreteness onto a mathematical (or 

other) situation thus preventing the opening up of a problem (Presmeg 

1986; Lean & Clements 1981). This may occur when the image is of a 

specific diagram and assumptions made about size, shape, geometry etc. 

It has already been noted that care should be taken that too much 

emphasis is not placed upon a static diagram at the expense of a dynamic 

mental image (Mason 1988). The distinction of different types of image 

described by Campbell et al. (1995) is useful here. They distinguished 

7 The most recent material, as yet unpublished, contains an item on knots 
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between concrete, or 'rich' images, and image schemata. Campbell et al 

(1995, page 179) suggested that there may be a continuum stretching 

between such concrete images and image schemata and commented: 

'the cut off point between one and the other is somewhat arbitrary 

but the distinction remains useful because abstraction is essential 

if visual imagery is to serve a useful function in mathematical 

thinking and the rigidity and inflexibility associated with the use 

of specific concrete visual images be transcended.' 

Mason (1992, page 5) is convinced that with regard to the use of 

imagery in mathematics 'to get much educational benefit, students need 

to be active in processing images; they need to work on the images not 

just look at them.' Mason (1992) makes the distinction between looking 

at and looking through images; looking at is watching, passive 

observation, whereas looking through involves active knowledge of the 

image. 

The results of Campbell et al. (1995) highlighted this distinction. 

Although the image is not a dynamic one, the sense of working on an 

image is conveyed in the painted cube task below which Campbell et al. 

(1995) asked subjects to work with: 

A cube that is 3 cm by 3 cm by 3 cm was dipped in a bucket of 

red paint so that all of the outside was covered with paint. 

After the paint dried, the cube was cut into 27 smaller cubes, 

each measuring 1 cm on each edge. Some of the smaller 

cubes had paint on 3 faces, some on 2 faces, some only on 1 

face and some had no paint on them at all. Find out how 

many of each kind of smaller cubes there were. 

When solving this task, one student reported that the image was 

clear in his mind and he didn' t need to draw a diagram. He could solve 

the problem completely by working on his mental image. In contrast, 

another student got extremely confused trying to look at her image and 

said (Campbell et al. 1995, page 185): 
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'The picture of the cube in my head is not clear and it's mucking 

me up because there are too many cubes · . .. 27 smaller cubes.' 

Thus, it is possible for some people to experience mathematics 

inwardly in the mind, although Mason (1988) reported that some 

individuals have 'fuzzier' images than others. Mason uses imagery to 

highlight and encourage ~he accurate use of language, as well as to create 

an environment which encourages formulation of conjectures and 

where participants can sharpen their images and modify them. Gates 

(1988) believes that imagery not only enhances understanding but also 

the reconstruction of ideas. 

Mason (1995)8 has found that for a given sequence of 'imagine' 

tasks different people fail at different stages, finding the image control 

difficult. However, after a period of work, they find that they can 

manipulate much more visual information and for a longer time. The 

implication is that the practice of imagery is therefore desirable. 

Visualisation is naturally employed in geometry but can also occur 

in arithmetic and algebra. Wheatley (1990) claimed that spatial sense can 

be useful in numerical as well as geometrical settings. Albert Einstein 

stated that he always thought about anything in terms of mental pictures. 

Indeed, some mathematicians have claimed that all mathematical tasks 

require spatial thinking (Fennema, 1979). The extent to which this is true 

may vary according to gender. Fennema (1977) had earlier reported no 

sex differences in spatial ability when background was controlled for. 

Battista (1990) found that spatial visualisation is an important factor in 

geometry learning but that it contributed differently to males' and 

females' performance. Battista (1990) found that males relied more upon 

visualisation strategies and females upon logical reasoning. Battista 

(1990, page 59) commented that this result had implications for teaching: 

'However, from an equity in learning perspective, the ultimate 

goal of studying gender differences is the design of effective 

intervention strategies. From this perspective, the results of the 

8 Personal communication September 1995 
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current study are important because they suggest factors that may 

relate to gender differences in geometry learning and indicate that 

certain instructional practices may create or exacerbate these 

differences.' 

Bishop (1980, page 261), in setting psychological development 

research in context for mathematics learning, stated: 

'The tasks still remain for the mathematics educator of planning 

curricular sequences and developing teaching approaches which 

will achieve the goals of mathematics education.' 

2.6 Can visualisation skills be taught? 

As early as 1973, Bishop found that the mere handling of 3-D shapes in a 

structured learning situation promoted growth in spatial ability. Lean 

(1981, in Bishop, 1983, page 186) suggested that the optimum time to 

develop spatial ability is age 7 - 12. Lean (1981) summarised the literature 

on spatial training and concluded that there was sufficient evidence in 

the literature to support the assertion that the interpretation of diagrams 

and spatial conventions could be taught, but that the situation for 

mental manipulation of images was far less clear. Bishop summed up 

the situation (1983, page 186), 

'What are needed now are more training studies using clinical 

testing procedures, and involving retention and transfer tasks. 

and (1983, page 199), 

'As was indicated earlier, the research is not conclusive and it zs 

likely that the difficulty lies with the assessment of VP (visual 

processing) as much as with its development . . ... What is . clear is 

that figural and non figural stimuli need to be used. ' 

Other research findings (Smith, 1991) make it seemingly 

unacceptable to view spatial ability as an innate ability but one which can 

and should be taught. Bishop (1980, page 259) is also of the opinion that 

it is unacceptable to speak of 'mathematical ability' as innate, he stated: 

'A n 'ability' has the flavour of an individual difference, possibly 
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inherited, but certainly given with each child. 'Abilities' on the 

other hand, are described in more teachable terms, possibly capable 

of development within each child, but certainly there as 

objectives.' 

Smith (1991) recommended that pupils who do experience spatial 

activities in the classroom should be encouraged to draw their 

observations rather than to write about what they see. What is so 

frequently the case is that pupils are asked to write about, not draw, what 

they see so as to somehow 'intellectualise' it. 

Lean and Clements (1981) suggested that spatial skills are trainable 

but at a young age and warned that many studies seemed to prove that 

there may be an increase in performance in a particular test but that this 

may be due to retention or transfer rather than an increase in ability. 

An alternative view is that there is an advantage in teaching 

spatial skills particularly since the skills are cross-curricular. A study 

which was carried out by Tuckey and Selvaratnam (1993) in relation to 

stereo-chemistry teaching concluded that spatial ability is not innate but 

has to be acquired and can be taught. They stated that a logical solution to 

a 3-D problem requires a stepwise approach (i) visualise making use of 

depth cues (ii) orientate (iii) understand the translation required and (iv) 

visualise how the positions (of atoms) change. They too found a 

correlation between spatial skills and achievement in chemistry. 

Bishop (1978) and Mitchelmore (1976) have also concluded that 

there is value in creating spatial training programmes but suggest that a 

wider agenda is needed. However, in a later paper Mitchelmore (1980) 

warned that passive viewing of 3-D representations is unlikely to be 

effective in training spatial ability. This suggests a resonance with 

Mason's (1992) view expressed earlier about working on images. 

Battista et al. (1982) were interested in whether instruction m 

geometry could improve spatial ability. They measured spatial ability 
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using the Purdue Spatial Visualisation Test9 and studied the 

effectiveness of a geometry course given to 82 pre-service teachers in 

improving their spatial ability score. They found that the activities used 

in the course, which included investigating the symmetry of polygons by 

manipulating concrete models, paper folding, tracing and using a MiralO, 

did improve spatial ability. Battista et al. (1982) also suggested that it is 

important to include imagery in early years of mathematics teaching 

(concrete operational stage of cognitive development) since pupils ' 

thought is greatly dependent upon concrete and pictorial representations. 

Clements and Battista (1992, page 426) supported the need for 

teaching programmes to improve spatial ability: 

'Space intuitions ... . . do not develop inevitably into increasing 

correspondence with pure logic or mathematics.' 

and: 

'Progress from one . . . (van Hiele) . . level to the next is more 

dependent on instruction than on age or biological maturation.' 

Earlier in this chapter it was noted that Mason (1991) 

acknowledged that the skill of visualisation may need awakening in 

pupils. Mason has various suggestions for enabling this, including 

animations, sequences of diagrams and the practice of imaging tasks. 

In this context, Ben-Chaim et al. (1989, page 50) reported that 

research findings support the notion that visualisation skills are 

teachable. They believe the skill to be an important one for mathematics 

and stated that: 

'Visualisa tion provides the learners with additional strategies 

potentially enriching their problem solving repertoire.' 

and (Ben-Chaim et al., 1989, page 58) 

'Spatial visualisation topics and activities should be explicitly 

taught throughout the mathematics curriculum. . . . . Teachers 

need to purposely explore the relationships between the geometric 

9 One example of an item on this test was shown earlier in Figure 2.2. 

1 O A 'Mira' is a two way mirror, it acts as a mirror but is also transparent. 
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topics and the different aspects of spatial analysis. ' 

School texts are now placing more emphasis upon developing 

spatial skills and providing tasks which involve imagery. One example, 

from Harper et al. (1988, page 38), is shown in Figure 2.4. 

a} Three of these shapes 
can be posted through 
this slot. 

Which are they1 

A 

b} Which of the remaining 
shapes can be posted 
through thisslot? ~ 

Source: Harper et al. (1988) 

E 

F 

Figure 2.4 Imagery task from a secondary school mathematics text book 

Commenting on the work of Kent & Hedger (1980), who 
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encouraged creativity through visualising and thinking in moving 

pictures, Bishop (1989, page 13) stated: 

'Certainly the teaching shown in Kent and .Hedger's study (1980) 

appeared to be very helpful, from the perspective of visualisation.' 

Kent & Hedger (1980) believe that pupils work better with pictures in the 

mind than with abstract symbols and view visualisation and 

transforming pictures in the mind as a dormant and valuable skill. 

2.7 Mathematical topics which make use of visual imagery 

Reflecting on his own mathematics education and describing his need for 

a comprehensible mental image for the objects in the course he studied 

on topology, Dawson (1988. page 31) stated: 

'Now number theory I could grasp, but topology was a different 

matter. There, again, I could not create images in my mind. Yes I 

could 'learn' the theorems, I could 'do' the tests, I even passed the 

topology course with an excellent mark, but I knew deep inside, 

that I did not have the foggiest notion as to what topology was all 

about, because I did not have the necessary images with which to 

work. ' 

There are topics in mathematics where the ability to visualise is 

essential and others where it is desirable. The most fundamental 

circumstance where visualisation skills are required is in the 

interpretation or drawing of 2-D representations of 3-D objects or 

situations. This can be extended to include predicting what an object 

might look like when viewed from a different direction. Questions at 

GCSE level now involve problems of this kind, such as imaging a cube 

and transformations of a cube with letters painted on each of the faces. 

The question which pupils may be asked to work out is what letters are 

on the hidden faces. Figure 2.5 shows a question from a recent GCSE 

paper (1998). 
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These diagrams show two views of a cube. 

Its faces have the letters A,B,C,D,E F on them 

(a) Which letter is on the face opposite A? 

(b) Which letter is on the face opposite B? 

Source: WJEC (1998) 

Figure-2-5 Imagery problem with a cube 

Fielker (1993, page 23) has written an entire book on t~e topic of 

mental geometry and offered a similar 'imagine a cube' task: 

'Start with a cube. Cut a little piece off each corner. What have you 

got now? How many faces has it? What shape are they? How 

many of each shape? How many corners?' 

In secondary school math ematics, some common topics requiring 

imagery include, drawing or imagining cross sections of solid, or solids of 

revolution in the calculus. Topics from areas not related to geometry 

which would employ visualisation are directed numbers and fractions. 

When teaching pupils about directed numbers a common context which 

teachers use is that of a lift travelling to floors above or below ground 

page 33 



Chapter 2 

level (zero). The image is helpful in developing the concept - just the 

kind of image that Dawson (1999) was looking for in the quote at the start 

of this section. 

In dealing with fractions, many pupils find it helpful to look at 

pictures of the situation. For example, Clements (1980) gave 12 year olds 

the· following questions in a test. The calculation required was 1 - 1 / 4 and 

it was given in two forms, symbolically as: 

'Write in the answer 1 - 1/4 = ' 

and verbally as: 

'A cake zs cut into four equal parts and Bill takes one of 

the parts. What fraction of the cake is left?' 

About 50% of the children got the first version correct whereas 

over 75% got the second version correct. Clements (1980) found on 

interviewing the children that some of them had found imagery helpful 

in the second version . Pupils do need to learn how to do the former, 

formalised version, however, when pupils are moving away from the 

need to see a diagram, towards working with abstractions, the ability to 

visualise can be helpful. 

Some less abstract thinkers could improve their ability to deal with 

problems by strengthening their powers of visualisation. A similar 

situation to the fractions of a cake task applies to basic operations with 

numbers where the use of imagery can be helpful. Wheatley (1991) 

suggested that rather than posing the abstract problem 36 - 29, it may be 

beneficial to some pupils to put the task in a meaningful setting. For 

example, '36 chairs are needed for a school party. 29 are already in the 

room. How many more are needed?' Furthermore, learning that 

combining 6 and 4 to make 10, leads on to the ability to deal with large 

numbers whose cardinalities have not been directly perceived, similarly, 

so can spatial abstractions become possible. Situations that merely point 

to the possibility of performing operations, can be manipulated mentally 
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without actually performing the operationsll. 

Another example where fractions occur is in intuitive proofs such 

as the sum of an infinite series. For example the series 

1/2 + 1/ 4 + 1/8 + 1/16 + . . . . . sums to 1, 

whereas the series 

1/ 4 + 1/16 + 1/64 + sums to 1/3 

To be able to form a picture of the series and see 12 that it converges can 

be useful both in understanding and recalling by imagining the pictures 

representing the series shown in Figure 2.6. 

Figure 2.6 The 'pictures' of two infinite series converging to 1 and to 1/3 

A well known puzzle involving jugs of water is also a suitable 

problem which can be helped by visualisation. The puzzle is to measure 

4 litres of water using only jugs of capacity 3 litres and 5 litres. The 

solution requires several steps. Firstly, the 5 litre jug is filled and some of 

the water used to fill the 3 litre jug, thus leaving 2 litres in the 5 litre jug. 

The 3 litre jug is emptied and the remaining 2 litres is poured into the 3 

litre jug. The 5 litre jug is refilled and one litre pour off into the 3 litre 

jug which is currently holding 2 litres. 4 litres now remain in the 5 litre 

jug! The possibility of seeing the jugs rather than just a string of number 

equations offers some help in understanding the problem. 

Visualisation can also be helpful in forming a conjecture by 

generalising from a visual pattern. Figure 2.7 shows an ancient visual 

11 For example, if two identical rectangles are placed one above and one of them rotated 

about the centre, the question 'what is the shape of the overlap' may be posed; it may not 

be necessary to perform the mental rotation in order to come to a decision. 

12 Mason (1988) has discussed the use of the verb 'to see' in relation to awareness and 

understanding 
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proof that the sum of the sequence of odd numbers is equal to the 

sequence of square numbers. This type of visual proof can sometimes be 

beneficial in explaining proof to students. 

ti e 8 8 t, 9 G ~ 
'9 '3 i& G '1) '9 {) " 
(,t,t,6)-C, (3 6) 

(SJ) G ~ G ~ ~ ~ Cf 
<f @ f> 9 ~ fi '3 G 
~w~ e G 8 19 & 

~:I: : : : : : 
1 + 3 + 5 + · · · + (2n - 1) = n2 

Source: Nelsen (1993) 

Figure 2.7 The geometrical representation of the sum of the odd 

numbers 

Logic problems known as 'linear syllogisms' can also be solved 

effectively using imagery. For example: 

Anne is taller than Jean 

Mary is shorter than Jean 

Who is tallest? 

Kaufmann (1985) reported that subjects in research studies may solve this 
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problem by combining the premises into a unitary representation, that is 

standing the characters in a row in the form of a mental image and 

'reading off' the answer. 

A 

D 

~

1

1 }- -, -
/ 

I 

E 

Source: Clements and Wattanawaha (1978) 

Su;:,pose t he c:.!l:e s:ic',YT. i :1 
Figu::-e 1 i s c :.:t i:: t.o t ·..;c 
s ec~io~s a l c::s ~~e C=~~=~ 
13..:ies shcw-r... 

Wh i c:l c : 'J!., E , C, D, E 
s:lows t.~ e t·..;o s e c--::.c::s whic:'
woul e Ce cbt~L~ec? 

I 

l 
I' 

I \ 

\ 

Figure 2.8 Dissection of a cube task 

Clements and Wattanawaha (1978) devised a series of spatial tasks 

w hich they used to test visualisation abilities. These materials may have 

been devised to test visualisation abilities but they may also be used to 

develop these abilities. Bishop (1980, page 258) has remarked about such 

test materials: 

'these are available to other workers . . . . which could be used . . . 

as tasks f or training spatial abilities. They can also stimulate the 
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development of teaching material for classroom use.' 

Some of the tasks require knowledge of the conventions in drawing 3-D 

objects, for example, in Figure 2.8 which shows a dissection of a cube task, 

the reader needs to understand the significance of the dotted lines. Other 

tasks, such as the paper folding task below in Figure 2.9 are more 

intuitive. 

.: l.~. l 

B 

D· 

I 
00 

Source: Clements and Wattanawaha (1978) 

s u;;~s~ yo~ t~e~ c~~ ~al£ a 
c~==le c~t c= t~e :~lde~ ;~;e= , 
as s:':c·.·ln i:: FiS""..:= : 2 . 

If yc·..1 t:le:: c:e!".e':. c1,,;t t=:e f:.::-:: 
c f fa;e=, wh!c~ c~ A, E, C, u, ~ 

telc~ wcult i~ lee~ li~e? 

C 

I 
E ' 

I 8 

CJ 

Q 

v 
Q 

Figure 2.9 Paper folding task 

Visualisation skills and the use of imagery have become 
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recognised as an issue in the teaching of m athematics in recent years. 

Fielker's (1993) book entitled 'Mental Geometry' also includes the paper 

folding task which is shown in Figure 2.10. 

Fold a sheet of paper in half 

Cut something out of the fold, so that when you unfold 
the paper you will have a square hole. 

Try again, but this time end up with a triangular hole. What 
about a circle? A shape with five sides? 

Fold a sheet of paper in half, and then in half again 

Cut off the corner, like this. 

What shape will the hole be when 
you unfold the paper? Think a bout 
it before you unfold. 

How can you cut to make 
a square? A rhombus? 

Fold a sheet of paper in half, in half again, 
and then like this, to make an angle of 45° 

Cut off the corner. 
What shape will you have when 
you unfold? 
What different shapes can you get, 
always with one stra ight cut? 

How con you fold a piece of paper so that you can make 
an 8-pointed star with one straight cut? 

Source: Fielker (1993) 

Figure 2.10 Paper folding task 

\ 

\ 
\ 

A Welsh Office funded project (McLeay 1988) resulted in four 

teaching packs, all related to geometry12 . One focused on knots and 

12 The four topics were Knots, Symmetry, Networks and Spherical Geometry. 
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incorporated mental imagery. Figure 2.11 shows an example of the tasks 

(McLeay 1991). 

This is the simplest drawing of the unknot. 

Use your unknoL c=: ) 
e,chofthedrawingsbelow. " = ~ Try to make it look like ' 

(ii) 

~f!; (iii)~~..! 

(iv) 

(vi) 

Source: McLeay (1991) 

Figure 2.11 Knots mental imagery tasks 

This focus on developing mental imagery has been confirmed by 

the fact that SMP, one of the major secondary school texts, has produced a 

book specifically on this topic (1994). This book not only includes tasks 
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on 2-D shapes and rigid object such as dice but also tasks on knots. Figure 

2.12 is taken from SMP (1994). 

11 

2 

3 

5 

6 

For each drawing, if you pulled the two ends of the strings would you make a knot? 

Source: SMP (1 994) 

Figure 2.12 Mental imagery tasks with ropes 
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2.8 Computers and visualisation 

Some researchers in the field of imagery are enthusiastic about the 

possibilities offered to learners by computers. They (for example Ernest 

1989b) l;>elieve that the computer can help in developing visualisation 

skills. Ernest (1989b, page 20) claimed that some computer programmes 

provide: 

' the opportunity to utilise the following processes and strategies: 

visualisation skills and visual thinking in solving the problem . . ' 

and (Ernest, 1989b, page 25) 

'the microcomputer has tremendous classroom potential because 

it is: . . . . visual - it offers exciting displays which aid spatial 

visualisation abilities;' 

Love and Tahta (1991) focussed on the possibility of exploring the 

structurally stable states of geometry utilising the 'underlying dynamic' of 

varying that which may change and noticing that which may not. They 

wrote (1991, page 259): 

'If imagery can provide an entry into this 'underlying dynamic', 

then it is certainly true that computers now offer a very powerful 

method of working directly with images. As Gattegno 

emphasised, they also offer entry into controlled transformations 

of images, a dynamic which he characterised as algebraic. ' 

With regard to our understanding of imagery, Love and Tahta (1991, 

page 259) continued: 

'Certa.inly it is likely that increased experience of working with 

computers, as well as increased digestion of the findings from the 

field of artificial intelligence, will change our understanding of 

imagery drastically in the next Jew years .' 

Bishop (1989) reported that the computer can be a powerful tool to 

develop visualisation although it does not help in getting at the process 

of visualisation. 

Whilst recognising that it is important for mathematics teachers to 

employ the latest technology to enrich their pupils' experiences, Mason 
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(1988) urged teachers to try to develop the skill of visualising in their 

pupils rather than allowing the technology to do it all. Mason (1988, page 

299) commented upon the importance of personal imagery as distinct 

from animations on a computer screen: 

'Computer animations can display such dynamics beautifully, but 

they yield a different experience from doing it yourself in your 

head.' 

Computer technology does offer teachers a great resource for 

developing imagery but it needs to be used wisely. Love (1995, page 125) 

urged: 

'If we are to be clearer about how the computer might be used as a 

stimulus for learners' developing control of their imaginations, 

we need to consider the purposes of the earlier stimuli and how 

their features are utilised.' 

Kaput (1992, page 515) discussed the impact which technology has 

had on the curriculum in mathematics as follows: 

'These changes affect the decisions on what mathematics should be 

included in the school mathematics curricula. But the same 

technological forces that shape the mathematics also deeply affect 

the teachability and learnability of mathematics, both new and 

old.' 

Love (1995, page 127) described how an activity which previously 

he had used with pencil and paper (the earlier stimuli) was adapted to 

the computer and where the opportunity for learning became much 

enhanced with the use of a dynamic geometry package such as CABRJ14 : 

'Mark three points A, B, C (at the vertices of a small acute angled 

triangle). 

Mark a fourth point P. Reflect P in A; reflect the image in B, and 

14 CABRI enables the drawing and transformation of constrained and unconstrained 

geometric shapes on a computer screen thus allowing the demonstration of theorems and 

other geometric properties. Equivalent software which is also available is Geometry 

Inventor and Geometer's Sketchpad 
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reflect this new point in C. Continue reflecting A, B, C in turn, 

joining each point to its reflection. What happens? Is it 

coincidence? Choose another point P and repeat the process. ' 

The last request to 'repeat the process' is carried out in CABRI by 

simply dragging P to various different positions. With pencil and paper 

perhaps two or three other points P may have been explored by the pupil. 

In CABRI it is possible to explore many more and the fixed nature of the 

geometry and 'underlying dynamic' is immediately seen 'dynamically' . 

The student can then make conjectures about what might happen in 

sp ecial cases for A, B and C. Some personal imagery can take place at this 

stage in order to visualise what happens for, say, an equilateral triangle 

ABC or a right-angled triangle and this may be quickly confirmed by the 

dynamic geometry on the screen. Figure 2.13 shows a general case from 

Love (1995). 

p 

Source: Love (1995) 

Figure 2.13 Reflection in three points, scalene ABC 

Love (1995) also warned that the computer must b e used m 

conjunction with other visualisation activities or : 

' It may be that the power of computers to present visualisations 

will cause working geometrically, in the imagination, to atrophy 
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just as surely as the advent of printing made the image-based 'art 

of memory' fall into decay.' 

The use of computer animations or simulations has been shown 

in another study to aid learning. Kaput (1992) carried out a comparison 

of a teaching programme using Dienes blocks with another using a 

computer simulation of Dienes blocks. The findings suggested that the 

use of the computer simulation led to increased understanding of the 

number system and the algorithms built on it. Kaput (1992) used the 

term 'constraint-support' (CS) structure to describe interactive systems 

such as computer programmes. The successful students internalised the 

CS action to build their own knowledge structures. The computer system 

also reduced the cognitive strain by handling some of the translation 

activities with the blocks which otherwise would have to be carried out 

by the student whilst performing the calculations. 

A study of the utility of computers in aiding visual thinking and 

geometry learning was carried out by Clements & Battista (1990). They 

worked with children using LOGO to investigate whether LOGO does 

facilitate children's transition from the visual to the analytic level of 

thinking. Subjects were given LOGO programming training and, 

through interviews, their level of conceptual development was 

compared to a control group. The conclusion was that LOGO 

programming enriches children's geometric conceptualisations and 

develops the sophistication of their geometric thinking. 

In a further study, Battista et al. (1991) described working with 

LOGO with young children (grade 2 and grade 5) to produce squares and 

tilted squares. Interviews confirmed that imagery and visual reasoning 

were practised. The grade 2 children were able to imagine that the square 

which they had drawn on screen 'in a tilt' could be turned to the standard 

orientation using spatial imagery. The grade 5 children were asked 

which of a range of quadrilaterals could be generated using a given 

rectangle procedure in LOGO. The reasoning practised by the grade 5 

children included generating an image, inspecting an image and 
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transforming an image. 

The use of imagery is also evident in the use of LOGO to construct 

turtle paths as described in Clements et al. (1996). A mental prediction 

first had to be made in order to decide upon the instruction which must 

be entered into the programme in order to create a path or to close a 

shape. Clements et al. (1996, page 332) explained that children in their 

study were less proficient in combining turn commands than forward 

and back commands. This could be due to the fact that forward and 

backward movements result in a line, whereas a turn does not. They 

explained; 'The turning motion itself usually does not leave a trace (and 

the line of sight must be constructed from memory)'. They added that 

the tasks were instructive and that the subjects, 'evinced a progressive 

building of imagery and concepts related to turns.' 

The introduction of software, such as LOGO and CABRI, has 

opened up new possibilities in the teaching of geometry and spatial 

visualisation. LOGO encourages the practice of generating, inspecting 

and transforming images whilst CABRI can, to some extent, replace the 

concrete inflexible diagram of a particular figure, perhaps a circle drawn 

in an exercise book or pictured in the mind, with the more dynamic 

imagery which is desirable for a child to be able to operate with 

generalities. Thus a moving and deformable image may be viewed on 

the computer screen and not just imagined. 

We not only need to offer these experiences at the computer to 

children, but also to consider personal image formation and also how 

these images can be controlled and developed. Knowledge of the genesis 

of imagery over time, its subsequent development in early life, and an 

acknowledgement of what is easy to visualise and what is not, are all 

important factors. The spatial skills which constitute the particular 

interests of this thesis are those which are needed to consider a viewed 

object, to speculate on how it might change and then to administer the 

changes mentally. 
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2.9 Concluding thoughts and questions 

A matter of some interest to mathematics teachers is what might foster 

or inhibit the use of imagery and visualisation. Computers may offer 

support for this, given the right activities. The usefulness of computers 

in this regard may support the picture in the mind notion of imagery. 

Are visual images pictures of diagrams or interpretations of diagrams, or 

may they be both? If they can be both, how are the two linked and what 

are the consequences of these variants for mental processing of images? 

Some of these process aspects of visualisation are considered next in 

Chapter 3. 

Researchers have put forward different reasons and benefits for 

how and why pupils use visualisation in problem solving. Can we 

identify more closely how imagery is used for reasoning in mathematics, 

which children are likely to use it and in which topics? Much research 

has been carried out to discover what are the ;abilities' which are needed 

in doing mathematics, is it possible to teach these abilities? 

All of these questions are worthy of consideration and will be 

discussed further in Chapter 4. 

Finally, included here are some instructions on how to tie a bow 

tie. It is possible that many people would find these sets of instructions 

shown in Figures 2.14 and 2.15 very difficult to comprehend. We have a 

duty as educators to improve the development of imagery and spatial 

awareness. 
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Source: Lanvin bow tie packaging 

Figure 2.14 How to tie a bow tie 

page 68 



~~ iarl w,111 erll» t,ss ,111;ger 
,n ,ell hand end over 
P.11e11d1r.c shor:ar and 
1.1 ·2 .. l!~lu·,.. 11ass op 

} ( Iha! in 11gh1 rhrough loco 
U hand 

~ Id !hrs front 
looµ with 
tl111n.h and 
lorPlinoer ol 
1el1 ha,id IJ1011 
lung end down 
over front. 

Source: Gombrich (1990) 

5 

'

Pl~c1'! 11ght 
lorel inger. . 
µ0111ti11g UIJ. 
on hnllom hall 
ol hnngin~ 
part Pnss 111> 
hP.h111rl fr uni 
loop and 

3 
f nrrrr 110111 
lm1µ ol how 
hy tloubl,ng u11 
5h1u1 e1 end 
lharru111g1 ~11d 
plac111g 3rros~ 
cellar oo ,nrs 

f1 11~ r, I I"'; 11 ll11t1) 

l111111 lhrr11111 h 
~11 111 l:1:h 11•d 
fr n11t 1111111 I~,.,, 
11111~, , ~1111 111 
f vcr, 1?1111< ~nrl 
t1qhtl!II 

Chapter 2 

Figure 2.15 How to tie a bow tie including verbal instructions 
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Chapter 3 

The psychological perspective on mental imagery 

3.0 Introduction 

This chapter considers the psychologist's approach when studying 

imagery which is necessarily different from the approach of the 

mathematics educator's discussed in the previous chapter. Psychologists 

are more concerned with the nature of a mental image and the process of 

how images are formed than with the effect that imagery has on 

learning. Psychologists observe individual differences and wonder why 

they exist whereas the educator worries about what can be done about 

them. 

This chapter examines the psychology research on imagery starting 

with the long-standing debate on the nature of a mental image and the 

early work of Roger Shepard (for example, 1971, 1973, 1990) and his 

colleagues (principally Cooper and Metzler). Following the major study 

of Shepard and Metzler (1971) on mental rotation, much interest was 

shown in fully understanding whether an image was visual or spatial or 

verbal (propositional). Many researchers have tried to resolve this 

' imagery debate' by using a variety of different tasks and methods. These 

research studies will be discussed together with some of the ingenious 

experiments which have been devised ranging from mentally folding 

squares to form a cube (Shepard and Feng, 1972) to imagining letters 

rotated and then placing them one above another (Finke, Pinker and 

Farah, 1989). 

3.1 Early work on imagery 

In some manner, information about the world is represented in the 

brain. Following the philosophical contributions of Aristotle, Descartes 

and others who took the view that images in the brain were pictorial, 
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behaviourists working in the 1920s, such as Watson (see Skinner, 1953), 

put forward the theory that imagery was entirely verbal. This theory was 

challenged once more in the 1960s when faith in behaviourism declined 

and much empirical work on mental representations and imagery 

commenced. This debate has continued to engage the interest of many 

psychology researchers. 

The early work on mental imagery was concerned mainly with the 

format of mental images, whether they are 'propositional' or 'pictorial'. 

Of particular note was the work of Paivio (1971), Pylyshyn (1973) and 

Kosslyn (1980). Paivio (1971) began by studying verbal learning and 

predicting how well a set of words could be memorised according to how 

easily one could visualise their referents. He found that the use of visual 

imagery led to better memory performance than verbal rehearsal. As a 

result, Paivio (1971) put forward a dual coding theory w hereby he 

suggested that images are richly pictorial and that the memory stores 

information both verbally and pictorially. Paivio (1971) claimed that the 

pictorial system is better for spatial processing whereas the verbal system 

is more useful for serial or sequential processing (remembering the order 

of objects). He summarised his results thus (1971, page 242): 

'The number of items correctly remembered in such tasks 

uniformly increases from abstract words, to concrete words to 

pictures. This does not occur in tasks such as immediate memory 

span and discrimination of recency, which principally involve 

memory for the order of items . These findings are generally 

consistent with the view that either images or words, or both can 

serve as effective memory codes for the retrieval of item 

information. Non verbal images may suffice in recognition 

memory, which does not require a verbal response, but the verbal 

code must be stored along with the image, or be retrievable from 

it, in the case of tasks such as free verbal recall, which require a 

verbal response.' 

Pylyshyn (1973) was an advocate of the structural descriptions 

(verbal) theory and was quick to attack the depictive mental images 
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theory asserting that all internal representations must be propositional. 

Pylyshyn's (1973) argument rested on the claim that information could 

not be stored in the form of mental photographs because there would be 

too many of them and the brain has no means of organising such a vast 

array. 

Kosslyn, who took the alternative pictorial view, has continued to 

develop his pictorial theory of imagery, his first version being described 

in 'Image and Mind' in 1980 and developed later in 'Image and Brain' in 

1994. Kosslyn's theory is described in more detail in section 3.3 of this 

chapter. 

The debate between the two factions and their preferred theories 

was summed up neatly by Clements (1981, page 5): 

'.Somewhat ironically, Kosslyn and Pomerantz (1977) criticised the 

propositional · representation theory for the same reason that 

Pylyshyn criticised picture in the mind theories. If Pylyshyn could 

ask how, according to Paivio 's dual coding theory, verbal 

information and mental images could be transformed into each 

other, then Pylyshyn himself could be asked a similar question 

with respect to the propositional representation theory; how can 

information be transformed from an abstract representation into 

verbal information or a mental image?' 

Much experimental evidence has now been produced but Shepard 

& Metzler (1971) and Cooper & Shepard (1973) were the first to show that 

the processes of imagery could be studied scientifically and that valid and 

reliable results could be obtained. 

3.2 Shepard and Metzler's experiments 

Early work by Shepard and Metzler (1971) concerned the mental rotation 

of visually observed polyhedral figures. These researchers presented 

pairs of 2-D polyhedral figures depicting 3-D structures comprised of 

cubes. Pairs consisted of identical or different structures presented at 
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different angular disparities. The question was asked 'Are these two 

objects the same?' with decision times to respond 'same' or 'different' 

recorded. A typical pair is shown in Figure 3.1 

Source: Shepard & Metzler (1971) 

Figure 3.1 Example of Shepard & Metzler polyhedra~ structures 

Decision time was found to increase with degree of rotation, in fact 

a linear function described the relation between decision time and 

orientation difference whether or not the rotation was in the picture 

plane or in depth. The graph relating decision time to orientation 

difference is shown in Figure 3.2. 

Shepard and Metzler (1971) described the process of decision 

making as one of mentally rotating one figure of the pair to attempt to 

match the other and hence more mental rotation was required for pairs 

with more angular disparity. Reflecting on these early studies, Cooper 

and Shepard (1990, page 125) observed that it was necessary to justify the 

proposition that the imagined rotation imitated the actual rotation and 

commented: 

'It is tempting to view the imagined rotation as the internal 

simulation of an external rotation. Such a description, however, 
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would be justified only if we could demonstrate that the internal 

process passes through intermediate states corresponding to the 

intermediate orientations of a physical object rotating zn the 

external world.' 

I -

2 

0 .10 i cO 

Source: Shepard & Metzler (1971 ) 

Figure 3.2 Graph showing the linear relationship between decision time 

and orientation difference 

Further research by Cooper and Shepard (1973) sought to justify 

their claim concerning the imagined rotations and details regarding this 

question are given in section 3.4 of this chapter. But whether or not the 

imagined rotations do emulate real objects, the results of the mental 

rotation experiments suggest that we do possess mental images, and that 
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they are somehow manipulable in mental space. 

3.3 The nature of a mental image - the 'imagery debate' 

Psychologists cannot agree on the nature of a mental image. Most 

theories fall into one of two groups - those that liken mental images to 

pictures and those that liken them to linguistic descriptions. The 

p ictorial protagonists, such as Kosslyn and Shwartz (1977) d o not insist 

that literally we have p ictu r es in our heads but that our image 

r epresentation is in a way something similar to the organisation of 

pictures and that pictures can be built up from information stored in the 

brain. 
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Source: Kosslyn and Schwartz (1977) 

Figure 3.3 Computer generated surface representation image of a car 

(Note that different letters indicate the recency of being 'refreshed' by the model.) 

Kosslyn and Shwartz (1977), were able to simulate the process of 

v isual imagery by computer which, they claimed, made the depictive 

theory plausible. They were able to model how people represent 

information in, and later retrieve information from, visual mental 

images. A distinction was made in their model between a 'surface' image 

w hich is quasi-pictorial, · retrieved quickly and which fades in clarity 
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towards the edges, and a 'deep representation' which might contain 

additional facts about an image and could enable construction of different 

situations for the image. An example of one of their images in a surface 

representation is shown in Figure 3.3. Kosslyn and Shwartz' (1977) 

model embodied earlier empirical findings, including those of the first 

part of their own 1977 study, and the resulting theory was supported by 

the 'sufficiency proof' that their computer model was adequate to account 

for some range of data. 

The focus of much research has been on how an image is produced 

and manipulated in the brain. Mental images are notoriously difficult to 

study since they cannot be put on public display but, as Kosslyn (1994) 

pointed out, neither can electrons, quarks and black holes. Psychologists 

have strived as enthusiastically as the physicists have done to work on 

the challenge to understand the seeming mysteries of imagery. 

Logie (1991) considered mental imagery to be a difficult area to 

explore and commented that if asked to describe a scene . from memory, 

many people would report experiencing a visual scene and a process of 

scanning their image. Regarding images in short term memory, Logie 

(1991, page 77) commented: 

'One overriding impression is that people can retain such 

information over periods of several seconds, much longer than it 

could_ be retained in a purely sensory store. And yet, the 

information can be retained only as long as we make a conscious 

effort to keep it there. Thus the notion of a cognitive mechanism 

for temporary retention of visual images of scenes has an 

intuitive appeal. ' 

Kosslyn (1980) described such a mechanism, the 'visual buffer', 

together with the subsystems which are necessary to support his theory 

on imagery. Kosslyn (1980) believed that images are generated rather 

than retrieved. In his more recent work, Kosslyn (1994) elaborated on the 

subsystem of a 'visual buffer' for holding an image in short term 

memory and likened the sensation of image to a display on a cathode ray 
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screen. Another subsystem which Kosslyn (1994) called 'associative 

memory' is important in spatial relations and patterns. Information is 

stored which carries object details and can be retrieved so as to activate an 

image. Kosslyn (1987, page 149) asked us to consider how we might 

answer these questions: 

'Which is darker green, a Christmas tree or a frozen pea?' 

and 

'Which is larger a tennis ball or an orange?' 

The information we must retrieve from our memory is not direct factual 

knowledge, and presumably has not been explicitly considered 

previously (unless we have been asked the question before!). Imagery 

must be used when the sought information is not stored as a piece of 

existing knowledge (as when comparing, say, a mouse and an elephant). 

However, we do not experience images all the time. Kosslyn (1987 page 

154) remarked: 

'When we need an image, it is generated on the basis of stored 

information. For example, if you are asked to describe the shape 

of Snoopy's ears, you probably form an image of the dog's head; 

but you probably did not have the image until you tried to answer 

the question. 

you need it. 

memory that 

The image comes to mind, is generated, only when 

The image is a transient representation in short term 

is generated on the basis of information stored in 

long term memory. ' 

The experience of imaging Snoopy in order to find out about his ears is a 

very different experience to merely thinking about Snoopy without 

forming any imagel . 

A diagrammatic summary of Kosslyn's theory and sub-systems has 

been designed by Tye (1991) who put forward his own composite theory 

of mental imagery, favouring Kosslyn's pictorial theory but adapting it to 

include some linguistic additions (see Figure 3.4). Tye's (1991) view is 

that images are interpreted symbol-filled arrays. 

1 Similar comparisons have been previously noted in Chapter 2 regarding a 'chiliagon' 

and a zebra 
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Figure 3.4 Basic components of Kosslyn' s theory 

Kosslyn (1994) described the notion of a 'foundation part' of an 

image and stored concomitant spatial relations with other parts of the 

global image. Kosslyn (1994) believed that certain transformations, 

which access stored information, are particularly difficult to achieve 

when the foundation part of the image is changed or distorted. 

Lowe (1987) described a property similar to Kosslyn's foundation 

part. Lowe worked on image matching in artificial intelligence and 

developed a model for a mental image with a computer vision system. 

He explained the use of 'trigger features' in his model for object 

recognition, which can be a part of the image focussed upon so as to 

reduce the amount of search that would otherwise be required m 

recognising the object. Lowe (1987, page 356) expressed it thus: 

'While it is true that the appearance of a three-dimensional object 
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can change completely as it is viewed from different viewpoints, it 

is also true that many aspects of an object's projection remain 

invariant over large ranges of viewpoints ( examples include 

instances of connectivity, collinearity, parallelism, texture 

properties and certain symmetries).' 

Perhaps Lowe's ideas offer some explanation for Shepard and Metzler's 

constant gradient graphs for picture plane and depth plane rotations. 

Logie (1995), writing in the area of 'working memory', considered 

that there was some overlap with his own notion of working memory 

and Kosslyn's memory subsystems. Logie (1995) described the 

functional role of imagery in certain tasks and the picture superiority 

effect. This effect occurs when subjects are asked to perform tasks 

involving mental comparative judgements. The tasks are performed 

more quickly when subjects are shown pictures of the objects rather than 

given their names. Logie (1995), reflecting on all the experimental work 

carried out on imagery, posed a tongue in cheek question: 'What is 

imagery used for outside of cleverly designed laboratory experiments?' to 

which Logie (1995, page 35) himself offered the following practical 

example: 

'Trying to find a building in a town can be a lot easier if we can 

generate in advance an image of the building from a verbal 

description of its size relative to neighbouring buildings. Likewise 

trying to find a four-centimetre nail among a pile of nails of 

varying sizes is much easier if we can create an image of the nail 

in its correct size before starting the search.' 

The sub-title of Kosslyn's (1994) book 'Image and Brain' is 'The 

resolution of the imagery debate', which suggests that the issue is now 

closed. Not everyone would agree with that testimony but Tye (1991, 

page xiii) commented about Kosslyn's work of the period up until 1991: 

'If Kosslyn is correct that the pictorial view provides the best 

explanation for a wide variety of experimental results, then it 

appears that the historical philosophers had the right 

conception of imagery after all (though for the wrong reasons)' 
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3.4 The evidence: Are images visual or spatial? 

Cooper and Shepard (1990) provided a review of the evidence for 

imagery in mental rotation from the various studies carried out by each 

of them with their co-workers. Cooper and Shepard (1973) carried out 

experiments with subjects on mental rotation of rotated letter forms (F, 

G, J, K and R) printed normally or as mirror images. They found that 

subjects needed to rotate the forms to the upright position before making 

judgements about the nature of the letters. This suggests that subjects are 

viewing some internal visual image in order to make a decision. Cooper 

and Shepard (1973) suggested that these results indicated that images do 

go through intermediate states in the process of being transformed, and 

hence are pictorial. 

STANDARD VERSIONS REFLECTED VERSIONS 

Source: Cooper (1975) 

Figure 3.5 The 2-D polygons used in Cooper's experiment 
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Cooper's (1975) experiments required subjects to 'memorise' a set 

of 2-D polygonal shapes in both standard and reflected versions (see 

Figure 3.5). Subjects were then shown a single image with some rotation 

from the memorised version and asked whether it was the standard or 

reflected form. The results showed a linear increase of decision time 

with degree of rotation from the memorised position. Commenting 

upon this and further work on random polygon figures, Cooper and 

Shepard (1990, page 131) claimed: 

'Taken together, our results amount to objective evidence of a 

mental process that models the rotation of objects in the physical 

world. ' 

Strong evidence that images are transformed in the visual buffer 

was found by Shwartz (1981, reported in Kosslyn 1994, page 355). Shwartz 

(1981) showed his subjects random angular polygon figures and asked 

them to mentally rotate the figure presented a specific number of degrees. 

When the subject had done this a second figure was presented. The 

subject had to make a decision as to whether or not the figures were 

identical. Shwartz (1981) found that subjects' decision times increased 

progressively with more rotation from the upright. 

Some opposing evidence was put forward by Finke and Schmidt 

(1978) who claimed that their subjects, when attempting to 'image', 

experienced perceptual after-effects of imagined line orientation but not 

imagined colour. The authors contended that this suggests that images 

are spatial but not visual. On the other hand, a study carried out by 

Intons-Peterson (unpublished paper reported in Farah et al. 1988) showed 

that subjects required less time to form an image when the colour of the 

image matches the colour of the perceptual surface on which the image is 

projected, which implies that the imagery is visual. 

Hinton (1979), adopted the structural description approach, that 

parts of an image together with their locations, lengths and orientations 

are stored, and argued that Shepard and Metzler's task must be done 

using spatial rather than purely visual imagery since picture plane and 
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depth rotations took the same time. Hinton (1979) considered that if 

visual imagery were used, the depth rotation tasks should take longer 

owing to the complex changes which would be needed to the diagram. 

Subjects would have to carry out additional foreshortening and hidden 

line removal operations in the depth rotations whereas these would not 

be required for the picture plane rotations. Extra time would therefore be 

needed if the imagery used were visual. 

The work of Farah et al. (1988) added to the debate as to whether 

mental images are visual or spatial. They deliberated as to whether the 

images are in analogue or in array format, whether they are 

propositional or descriptive. Farah et al. (1988) claimed there was 

widespread agreement that images represent some of the spatial 

properties of visual stimuli in an analogue format (although they 

acknowledged that there were dissenter& such as Pylyshyn). However, 

Farah et al. (1988) agreed with Hinton's (1979) argument, drawn from 

Shepard and Metzler's finding that subjects could mentally rotate objects 

in depth as quickly and accurately as in the picture plane, which 

suggested that the imagery used was spatial not visual. They stated (1988, 

page 442): 

'Visual representations have also been distinguished from spatial 

representations based on their perspective properties, such as 

foreshortening and occlusion. . . . . Thus the finding that subjects 

can mentally rotate objects in depth as quickly and accurately as in 

the picture plane, even though the appearance of an object 

undergoing a depth rotation changes in more complex ways than 

the appearance of an object undergoing a picture plane rotation, is 

taken as evidence for the spatial nature of imagery. ' 

As a result, Farah et al. (1988) proposed that images may entail a 

combination of formats. They suggested that the broad meaning of the 

term 'imagery', used as a single term to cover such a diverse range of 

interpretations, has impeded research to understand it. There is more 

than one kind of mental imagery, each kind having properties worthy of 

study. Farah et al. (1988, page 443) explained: 
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'different mental imagery tasks call upon different kinds of 

imagery representations, some of which are visual and some of 

which are spatial. . . . In effect, imagery researchers have been 

misled by the use of a common term, 'imagery', for what are in 

fact two distinct types of representation.' 

They also noted that early this century neurologists studying brain 

damaged patients discovered that the identification of visual stimuli 

occurred independently of, and in a different part of the brain to, spatial 

localisation. Visual impairments are associated with right temporal 

damage and spatial impairments with right parietal damage but each can 

continue to function without the other. 

Farah et al. (1988) conducted two clinical case studies of brain 

damaged patients. They set the patients both visual imagery tasks and 

spatial imagery tasks. The visual imagery tasks involved colour, size 

comparisons and shape recognition. Those tasks involving colour 

typically asked the subject to name the colour of an object not verbally 

associated with its colour such as a football. The size comparison tasks 

were like those used by Kosslyn (1987), objects being quite similar in size 

(Kosslyn mentioned an orange and a tennis ball) and therefore requiring 

imagery rather than tacit knowledge. The shape recognition tasks 

required subjects to remember and visualise shapes of maps of various 

US states and then to name pairs which were most similar out of a 

number of triads. The spatial imagery tasks were of three types; the 

rotated letters used by Shepard and Cooper (1973t the Shepard and 

Metzler (1971) polyhedral shapes and mental image scanning tasks of the 

type used by Kosslyn, Ball and Reiser (1978). Farah et al. (1988) reported 

that the results from these patients provide neurological evidence that 

distinct visual and spatial imagery systems exist in different sections of 

the brain. 

Logie (1995, page 96) conducted a study to distinguish the two 

memory stores, long term visual memory and the visual buffer, given in 

Tye's model shown in Figure 3.4. He described some of his findings with 

brain damaged patients thus: 
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'These patients could copy drawings and could reproduce patterns 

if they were asked to draw them immediately after they had been 

removed. However, they were unable to remember anything of 

visually presented patterns if there was a brief delay between 

removal of the pattern and the request to draw, or recognise the 

pattern. ' 

Logie (1995, page 96) remarked upon the experience of one of his 

memory impaired patients who seemed to use verbal codes to 

supplement poor temporary visual memory: 

' if shown a pen for a few seconds, after a three minute delay, he 

could correctly identify a pen from distractor objects such as a 

comb, a pencil, or some chalk. However, he was not retaining 

information about the visual appearance of the pen because a few 

moments later he was unable to select the presented pen from 

among several other pens serving as distractors. . . . . . Verbal short 

term memory and long-term visual memory were unimpaired in 

(this) patient. ' 

Similar evidence distinguishing between short and long term 

visual memory was supplied by Riddoch (1990) in a case study of a left 

temporo-parietal brain damaged patient. Riddoch (1990) found that her 

patient could not perform mental rotations but could retain visually 

presented information for at least 10 seconds. She concluded that the 

system for generating and manipulating visual images might be distinct 

from that involved in short term visual storage. 

There have been very few reports of brain damaged patients 

experiencing sudden imagery loss but the data that exist suggest that this 

loss of imagery is not contingent on damage to the right hemisphere 

(Richardson, 1991). It seems that posterior areas of the left hemisphere 

are more commonly involved, however, the clinical literature offers 

only sparse evidence. 

Kosslyn's study (1987) found that the standard view that imagery 
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occurs only in the right hemisphere, is not correct. Kosslyn (1987) carried 

out studies of split-brain patients and developed a theory for some of the 

high level processing subsystems involved in imagery. As well as 

reporting his findings revealing which parts of the brain are used in 

imagery, he also reported on the variability in the neuro-psychological 

literature on lateralisation. Kosslyn (1987) found that the left 

hemisphere is used for imagery and in some cases is superior at some 

aspects of mental imagery to the right hemisphere. The right is deficient 

in devising alternative strategies and cannot generate multipart images. 

Both sides of the brain are involved in imagery and both can perform 

many of the tasks, generally the left for image generation and the right 

for all other sub tasks. One way of testing this theory, Kosslyn stated, 

would be to construct a simulation model and discover how it lateralises 

depending upon the parameter values. 

CJ . 

·~ 
Source: Kossly11 et al. (1989) 

Figure 3.6 Task used to determine which side of the brain is used for 

visual judgements of spatial relations 

Kosslyn et al . (1986) conducted experiments to discover which 
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kinds of tasks were better suited to the two hemispheres. The stimuli 

which they used were randomly shaped blobs with a dot placed nearby. 

The dot was either on the blob outline, very close to the outline or some 

distance away from the outline. An example is shown in Figure 3.6. 

One group of subjects were asked to judge whether the blob was on or off 

the line and another group to judge whether or not the blob was within 2 

mm of the line. They found that the left hemisphere is better at saying if 

a dot is on or off the outline of a blob whereas the right is much better at 

judging how far off the line the blob lies. The results are shown in the 

graph in Figure 3.7 
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Figure 3.7 Graph showing response times for left and right hemispheres 

Kosslyn (1987) also explained that transformations are especially 

difficult in the right hemisphere. He differentiated between so called 

'b link transformations ' and 'shift transformations ' . Shift 
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transformations involve altering the existing image and tend to be 

quicker than blink transformations. A blink transformation is when the 

old image fades and the new one forms by accessing stored information. 

Kosslyn (1994) explained that blink transformations, which access stored 

information, are particularly difficult to achieve when the foundation 

part, or invariant part, of the image is changed or distorted. 

Yet another complex aspect of imagery is that required when a 

subject imagines new situations for a viewed object. Kosslyn (1994, page 

350) coined a term for this: 

'one can visualise an object that was previously viewed in a static 

situation and imagine its appearance as it rotates, is stretched, 

breaks into pieces, and so forth . In this case one is not simply 

'playing back' previously encoded memories. I call this a 'motion

added' transformation' 

The notion of motion-added transformations will receive more attention 

in Chapter 9. 

A final comment on the mental process which is generally 

described as the 'mental transformation of an image' comes from Freyd 

(1987). Freyd (1987) studied dynamic imagery using sequences of images 

with implicit dynamic information. Freyd (1987) found it helpful to look 

at the process in a different way and preferred to speak about the 

' imagining of transformations ' as opposed to the 'transforming of 
• I . 

images. 

3.5 Mental rotation as a strategy 

3.5.1 Effect of image size 

After Shepard and Metzler's studies, subsequent research concentrated 

upon similar stimuli depicting essentially rigid objects. Some studies 

were carried out using objects and images of various sizes. The findings 

of Shwartz (1981, reported in Kosslyn 1994, page 355) showed that larger 

objects took longer to process, and hence supported the argument for 
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mental rotation in the visual buffer. Shwartz (1981) found that subjects 

required more time to rotate the larger stimuli progressively farther from 

the standard upright than the smaller stimuli. 

Kosslyn (1994) examined Shwartz' (1981) findings and noted that 

they were not replicated in other studies (for example, Suzuki and 

Nakata 1988). Suzuki and Nakata (1988) investigated the effect of image 

size on Shepard and Metzler (1971) shapes2 and reported a seemingly 

conflicting finding to that of Shwartz (1981) who had used 2-D shapes. 

Suzuki and Nakata (1988) used small, medium and large images of the 3-

D shapes and found that for 'same' pairs the small images took longer 

than the large. Figures were presented at near, medium and far distances 

and it was found that it was the retinal size rather than actual size of the 

image which was the determining factor for decision time. 

It should be noted that the different results of Suzuki and Nakata's 

(1988) tasks were possibly due to difference between their 3-D shapes and 

the random 2-D polygons of Shwartz, the complexity of the tasks was 

different and subjects possibly interpreted and processed the images 

differently. Kosslyn (1994) offered the explanation that Shwartz' figures 

were essentially very different from those of Suzuki and Nakata (1988) in 

that all the information required to judge same/ different for Shwartz' 

figures was at the edges of these figures. Hence subjects would require 

longer times to scan larger perimeters. Kosslyn (1994) affirmed that this 

result supported the depictive image theory. 

In contrast, Suzuki and Nakata's (1988) images carried more spatial 

information. Suzuki and Nakata (1988) found a linear relationship 

between angle and decision time only for same pairs. For different pairs 

no linear relationship was found. Suzuki and Nakata (1988) also found 

that mental rotation cannot be asserted to be a strategy for tasks 

involving 'different' pairs; they found no evidence in their results to 

support rotation as a solution strategy. Increasing the angular rotation 

did not result in an increase in reaction time where pairs were different. 

2 See Figure 3.1 for an example 
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Kosslyn (1994, page 355) in trying to explain Suzuki and Nakata's 

(1988) result for pairs which were different stated: 

'This result suggests that the different stimuli were quite distinct, 

and could be discriminated purely on the basis of bottom-up 

matching in the pattern activation subsystem. If so, then the 

subjects presumably rotated the 'same' pairs because they feared that 

the members of at least some 'different ' pairs were subtly different 

and hence allowed the imagery feedback process to be completed . .. 

. In all of these circumstances, the subjects may scan local details 

to augment the global image during the rotation process.' 

3.5.2 Other factors which affect image rotation 

The presence in an image of a 'right way up' has been shown to affect 

how subjects process an image rotation. Reisberg and Chambers (1991) 

reported an interesting contrast between two ways of reorienting an 

image, either by the rotation of an image or by the reassigning of the top 

of an image. Their experiments required subjects to look at a line 

drawing and to form a mental image of it, after the line drawing was 

removed the subjects were asked either (i) to rotate the image through 

90° clockwise or anti clockwise or (ii) to reassign the top of the drawing to 

be the left or the right hand side of their image. Subjects were then asked 

to inspect their image mentally and to see if it resembled some familiar 

shape (which was a map of Texas in some experiments). Their results 

indicated that the method of reassigning the 'top' of an image for rotation 

tasks was more effective than actual rotation with regard to recalling and 

reinterpreting the image. 

Chambers and Reisberg' s earlier experiments (1985) described how 

subjects were able to recall mental images, but it was not until they drew 

these recalled images and inspected the drawing that an alternative 

interpretation was possible. In Reisberg and Chambers' (1991, page 341) 

later study, one of the experiments required subjects to draw their mental 

image. Only after the subjects had sketched their image did any of them 
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recognise the familiar shape, the state of Texas (see Figure 3.8). Reisberg 

and Chambers (1991) reported that despite coaching, hints and prior 

practice no subjects discovered the alternative construal of the image 

before sketching it, although after sketching of the imaged stimulus 8 out 

of 15 of them were able to reconstrue their drawing. 

-
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Source: Reisberg and Chambers (1991) 

Figure 3.8 The 8 drawings which could be reconstrued a~ a map of Texas 

Commenting upon their subjects' ability (or inability) to interpret 

their images Reisberg and Chambers (1991, page 338) explained: 

'Changing how a form is understood can · drastically · change 

phenomenal appearance' ' Images are saturated with our 

understanding of the form and are unambiguous with regard to 

what they represent.' 

and 

'learning from imagery will be determined by how the image zs 

understood as much as by the geometry of the imaged form ' 

In contrast to this result, however, Finke, Pinker and Farah (1989) 

reported that their subjects were able to use imagery to discover novel 

interpretations for combinations of patterns. Their subjects were asked to 

imagine a capital letter D, mentally rotate it 90° anti clockwise and then 
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put a capital letter J directly beneath it. The subjects were able to discover 

the umbrella thus depicted. Similarly, Brandimonte, Hitch and Bishop 

(1992) gave subjects 'subtraction' tasks involving drawings of familiar 

objects. Their subjects were able to mentally subtract parts of an image 

and discover a new interpretation. 

Tarr and Pinker (1989) gave subjects extensive practice at 

recognising several shapes in left and right handed versions and in one 

specific ('canonical') orientation. They fo llowed this with different 

orientations of the same shapes and found that, with practice, subjects 

recognised the shapes almost equally quickly at all the familiar (already 

seen) orientations. The standard versions of the shapes used by Tarr and 

Pinker (1989) are shown in Figure 3.93. 

5 6 7 

Source: Tarr and Pinker (1989) 

Figure 3.9 Standard versions of letter-like asymmetrical characters 

Tarr and Pinker (1989) claimed that these results indicated that 

subjects had stored representations of the different orientations of the 

shapes (not just the can onical form) which they could call upon to 

respond to recognition tasks, hence no mental rotation was required for 

3 Note that the 'bottom' of each image is marked by the short line segment which acts as 

a foot or base and which is also the only terminating line segment. This was intended to 

give this 'upright' version 'canonical' status. 
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these 'known' orientations. The set of shapes were stored in memory 

including the canonical representation. When novel rotations were 

introduced, mental rotation was required and extra time was needed to 

rotate the new unfamiliar image to one of the familiar stored 

orientations. 

Jolicoeur (1988) reported similar findings in experiments carried 

out on the naming of disoriented objects. Jolicoeur (1988) reported that 

the most likely explanation for his results was that representations of 

objects were stored in memory with codes relating to particular 

orientations and that the matching process became increasingly slower as 

the orientation of the displayed object deviated from the orientation 

stored in memory. He found that mental rotation was used to determine 

handedness but not to recognise shape. 

3.5.3 Verbal coding 

The role of verbal coding is an important one, but when used, does seem 

to restrict alternative visual construals of the image. A major 

consideration in the mental representation of any problem solving 

process refers to the roles of verbal (analytical) or spatial (analogue) 

thinking and the mixing of the two. Denis and Cocude (1989) showed 

that subjects could build up (visual) images using verbal descriptions of a 

map of a.n island and that the same mechanisms were involved in 

processing these images as apply to those which are constructed from 

perception. Analysis of response times for their mental scanning tasks 

showed that subjects produced the same time/ distance relationship as is 

typically observed when memorising a real map rather than a verbally 

described one, that is, the longer the distance between two points of an 

imaged configuration the longer the scanning time. 

Brandimonte, Hitch and Bishop (1992) reported on the efficiency of 

using verbal versus pictorial strategies on their tasks involving 

subtraction of parts of the image. They found that verbal strategies were 

often preferred and were commonly used even when these strategies 
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were ineffective. Brandimonte, Hitch and Bishop (1992) found that their 

subjects performed better if they were prevented from using verbal 

strategies. Kosslyn (1994, page 337) considered this to give additional 

evidence for visual imagery and explained the process as follows: 

'In my terms, the subjects would encode the input image of the 

first object, which is organised into perceptual units by processing 

in the visual buffer and in the preprocessing subsystem. Given 

the nature of the task, the subjects would attend to individual 

parts, and store them along with the global shape in the exemplar 

pattern activation subsystem. When the second stimulus is 

presented, it is also encoded and stored. . . . . The resulting image is 

then 'inspected' in the usual way.' 

3.6 Comparison of 2-D and 3-D tasks 

Much of the research already described in this chapter has used stimuli 

chosen without specific attention to whether they were 2-D or 3-D. The 

comparative complexity of 2-D and 3-D object rotations has been explored 

by Jolicoeur, Regehr, Smith & Smith (1985) who reported that rotation of 

3-D objects takes longer than rotation of the same outlines when 

portrayed as 2-D images. Jolicoeur et al. (1985) noted that rotation of 2-D 

shapes takes less time than 3-D where rotation differences are greater 

than 60 °. They inferred that for rotations of less than 60° subjects were 

performing a holistic rotation of the entire image regardless of 

dimensionality but for rotations greater than 60° this does not seem to be 

the case. They stated (1985, page 101): 

'This aspect of the results raises an intriguing question: Are 

different processes at work in the mental rotation of two

dimensional and three-dimensional rotations?' 

It is possible that, for larger rotations, subjects construct a verbal 

description of the structure of the shapes and that these descriptions are 

compared rather than the surface images themselves (of the 2-D shapes). 

Cooper (1991) suggested that 3-D imagery is 'obligatory' in 
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constructing representations of objects from two-dimensional 

information even when the task requires only 2-D information. 

Jolicoeur (1988) reported results for identification of some 

standardised objects, such as a desk or a snail, after 'disorientation' 

Although many of the images were of 3-D objects the disorientations 

were all in the picture plane. Jolicoeur (1988) did not explore whether 

there were any effects due to 2-D or 3-D objects. He reported that 

disoriented patterns were usually identified more slowly than upright 

patterns and that recognition was also usually increasingly error prone 

with increasing disorientation. 

3. 7 The effect of practice 

Wallace and Hofelich (1992) investigated whether improvement in one 

process due to practice of tasks involving that process is transferred to 

other tasks. They gave subjects the mental rotation tasks of 2-D random 

polygon shapes similar to those used by Cooper4 (1975) and found that 

both accuracy and speed improved with practice. Wallace and Hofelich 

(1992) also found that the practice of their tasks improved performance 

on geometric analogy tasks, where subjects had to perform two image 

transformations. This improvement also transferred in the other 

direction, i.e. from geometric analogy tasks to mental rotation tasks. 

Kosslyn et al. (1989) found further evidence for practice improving 

performance. They found that during the course of their tasks involving 

distance encoding, with practice the left hemisphere develops a new 

categorical spatial relation. 

With regard to the practice of imagery for motor processes, for 

example in the case of athletes or gymnasts, Kosslyn (1994, page 348) 

observed: 

'there is a literature that imaging practicing can actually improve 

performance in some situations, provided that imaged practice is 

4 These were shown in Figure 3.5 
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intermixed with actual practice' 

3.8 Deformable structures 

Although our everyday experience is usually with 3-D objects and often 

rigid objects, frequently it is not. Clothes, for example, may assume many 

different shapes, yet remain topologically the same (i.e. homeomorphic). 

The mental representation of deformable structures, and hence the 

ability to manipulate them, has received relatively little attention, the 

closest perhaps being the paper folding studies of Shepard and Feng 

(1972). 

The paper folding stimuli of Shepard and Feng (1972) consisted of 

single figures comprising six connected squares which when folded 

formed a cube i.e a net. Two arrows drawn on each figure pointed to the 

edges of two of the squares. An example is shown in Figure 3.10. 

t 

.._ 

Source: Shepard & Feng (1972) 

Figure 3.10 Net for a cube used in Shepard & Feng's experiment 

The task set by Shepard and Feng (1972) was to mentally fold each 
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figure in an attempt to bring the arrow tips into coincidence. In relating 

their study to the findings of the earlier one of Shepard and Metzler 

(1971), Shepard and Feng (1972, page 228), stated: 

'The question naturally arises as to whether evidence can be found 

for a similar sort of isomorphism between physical operations and 

their purely mental analogues when the relevant physical 

operations are of a more complex nature and require, for example, 

a sequence of distinct spatial manipulations. ' 

Shepard and Feng (1972) believed that this type of folding task was 

most likely to be a test of spatial ability since it was very unlikely to be 

performed by verbal processes. They stated (1972, page 229): 

'Our approach departs from earlier studies of spatial abilities using 

tasks of this kind, however, . . . . our concern is with the 

dependence of the time to solve individual problems upon 

identifiable parameters of those problems (or certain subtypes to 

which they belong), and with what this can tell us about the 

nature of the underlying mental process.' 

Some of the nets used by Shepard and Feng (1972) involved more 

foldings than others and some required several squares to be carried 

along with each fold. It was expected that decision time would increase 

as a function of the number of foldings required. The results indicated 

that both the number of folds and the number of squares carried had an 

effect on reaction time. The results were essentially the same as those for 

Shepard and Metzler (1971) in that decision time increased linearly with 

an increase in the number of squares carried in foldings required to close 

the cube and attempt the matching. Shepard and Feng (1972, page 242) 

noted: 

'Whether these Ss nevertheless did solve the problems by a 

process of mental folding . . . . or whether they they resorted to 

some more verbal process cannot be definitely settled.' 

A combination of methods is probably the answer to their question. 
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3.9 Summary 

Much has been done to examine and understand the processes of 

imagery. Kosslyn has developed his theory of mental imagery and how 

it is related to visual perception. Kosslyn's model provides a good 

explanation for many of the research findings. 

The scientific investigation of imagery has clarified many of the 

processes in the workings of the brain and provided guidance to 

educators on how these workings may be enhanced. Much information 

is now available regarding the mental processing of many kinds of 

images, both 2-D and 3-D, and many kinds of transformations. It has also 

been shown that certain imagery skills may be enhanced through 

practice. However, the objects which have been largely overlooked are 

non-.rigid objects where a change in their shape may come about in 

routine use. It is unclear as to why the investigation of non-rigid 

structures has not been continued following the Shepard and Feng (1972) 

experiment, perhaps due to the lack of stimuli having a legitimate 

systematic basis for variation. The area deserves more investigation, not 

least because the ability to deal with such objects may or may not denote 

another spatial skill. This question along with the other issues to be 

investigated will be considered in the next chapter. ~--
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Chapter 4 

Knots and Knot Mathematics 

"In a knot of eight crossings, which is about the average 
size knot, there are 256 different 'over and under' 
arrangements possible . . . Make only one change in this 
'over and under' sequence and either an entirely different 
knot is made or no knot at all may result. " 

(The Ashley Book of Knots, 1944, page 18) 

4.1 The history of knot tying 

4.1.1 Legends 

The story begins with Aphrodite. According to the Greek myth, she 

would rise from the sea each morning and teach the women how to 

make fishing nets . These nets were surrounded by mystery, due to the 

fact that they utilised knots, and it is implicit in the legend that 

knowledge of how to tie knots was a very specialised skill; because of the 

complex nature of knots, only the divine or select few could understand 

their intricacies. The belief that knots have a mystical significance is 

manifest in many cultures. In Europe, sailors believed that the wind 

could be summoned using 'magic knots', whilst other people believed 

that knots could cause or cure certain illnesses (MacFarlan, 1983). 

According to the ancient Greeks a 'Hercules' knotl tied in the girdle2 

was said to have beneficial effects in preventing illness. Saint Francis of 

Assisi wore a triple overhand knot in his girdle to signify the three oaths 

of poverty, chastity and obedience. At the other extreme, 'witches' were 

1 A Hercules knot has been shown to be a reef knot, see van de Griend (1996b) 

2 A belt made of rope or cord 
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executed for a variety of evil doings, one example being bewitching 

others by utilising 'magic' knots. 

The Greek legend of Gordius is :well known and receives much 

empathy from those of us who know how difficult it can be to untie a 

complex knot! Perhaps the legendary knot was a 'mathematical' knot. 

Mathematical knots are always depicted as ' endless knots' with the ends 

spliced together and hence cannot be undone. An example of a 

mathematical or endless knot is shown in Figure 4.1. Alexander the 

Great's solution using his sword was effective if not subtle, and was in 

fact the only possible way to undo a mathematical knot!3 The 

mathematics of knots is discussed later in this chapter. 

Figure 4.1 A trefoil knot 

4.1.2 The earliest knot 

Archaeologists would assert that knots existed long before this Greek 

legend and that they were used by archaic homo sapiens and 

3 However, the mathematician Felix Klein explained that a rope is knotted only in 3 

dimensions and that in 4 dimensional space it can be undone. This notion is similar to the 

idea that a 2-D figure, say a letter 'b', and its mirror image 'd' cannot be superimposed 

without access to the third dimension. The 'b' must be lifted up out of the plane and 

turned over to become 'd'. 
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Neanderthals somewhere between 500,000 and 250,000 years ago for the 

purpose of fitting points onto spears as well as for securing decorative 

artifacts such as beads and pendants (Warner and Bednarik, 1996). 

Various materials, usually vegetable, would have been used and thus 

there is no surviving evidence to support the theory since these 

materials decompose rapidly. However, the evidence from the artifacts, 

such as needles and beads suggest that knots must have been in existence. 

Tying things together was a necessary skill employed for a variety 

of tasks. It is known that Neanderthals were sea-going and boats, coracles 

and rafts required materials to be tied together. Unfortunately, due to 

decomposition of the evidence we do not know the precise knots which 

the Neanderthals used. The first concrete evidence of a precise knot 

dates from 9000 years ago where the knot used is the mesh knot, a knot 

which is commonly used to this day in making fishing nets. A diagram 

of this knot is shown in Figure 4.2. 

Figure 4.2 The mesh knot (also known as the weaver's knot and the 

sheet bend) 

4.1.3 Inventing the first knot 

The most likely way that our ancestors discovered the utility of knots is 

probably by first of all wrapping some fibrous material such as plant fibres 

around a spear or other object, and then making random tucks in the 
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strands (Warner, 1996). It is possible that by chance the overhand knot or 

a hitch of some kind was produced. Fig 4.3 shows the simplest knot of 

all, the overhand knot4. 

Figure 4.3 The overhand knot 

In order to make the wrapping more secure, more wraps and tucks 

would be made resulting in some random composite knot. This second 

tying, where the ends would need to be bent back on themselves 

inwards, would have occurred only when a strong and · flexible woven 

rope medium was available which could withstand such bends and 

twists. It seems likely that a date of 350,000 - 250,000 years ago for the first 

true knot can be estimated (Warner & Bednarik, 1996). 

4.1.4 Evidence of actual knots 

Antrea net 7000 BC 

A fragment of a Finnish fishing net, known as the Antrea net, was the 

first physical evidence of a knot to be discovered and this was dug out of 

a peat bog in 1913 (van de Kleij, 1996). The find consisted of the net itself 

together with floats and weights. Knots had been used so as to create a 

sizeable mesh out of fibres (the net measured about 30 metres by 1.5 

metres), Carbon dating has verified the floats to be of the period 7280 ± 
210 BC. Figure 4.4 shows a sketch of the Antrea net (from van de Kleij 

4 Another form of which is the mathematical trefoil knot shown in Figure 4.1 
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1996) made with two adjacent mesh knots5. 

Source: van der Kleij (1996) 

Figure 4.4 The Antrea net 

The customary knot used for netting is still the mesh knot. Figure 

4.5 shows a net in progress. The top section in the diagram shown is the 

part of the net already made, a netting shuttle is used to trace the path of 

the lower thread. 

Source: van de Griend (1996a) 

Figure 4.5 Making a net 

5 A mesh knot w as shown earlier in Figure 4.2. 
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Today, fishing nets are made by machine but the skill of knot tying 

is still needed to make the inevitable repairs which have to be made to 

the machine made nets. 

· Source: Wells (1991) 

Figure 4.6 The bowline 

Frequently, what is essentially the same knot has been used for a 

variety of different purposes and given several different names (Ashley, 

1944). The mesh knot is one such knot. In its other forms it is also 

known as the sheet bend and the weaver' s knot. When tied in a different 

way its structure is also in effect the same knot as the bowline shown in 

Figure 4.6, a knot used for many purposes including climbing and sailing. 

The only difference between the bowline and the mesh knot is that one 

continuous strand is used to tie a bowline whereas the mesh knot can be 

considered to be two distant sections being joined together. If the two 

loose ends of the mesh knot (or sheet bend) are connected, the result is 

the same as the bowline with the ends joined. These two possible 

variations are shown in the diagram in Figure 4.7. 
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Source: Wells (1991) 

Figure 4.7 The bowline and the sheet bend with ends joined 

"Ice man" 

The Ice Man dates from 3400 BC and was found in 1991 in the South 

Tyrol (van de Kleij, 1996). This find is still being investigated but many 

artifacts verify the use of knots in their manufacture, these artifacts 

include a sewn leather quiver and shoes with laces of leather. Among 

the knots identified are the reef knot (See Figure 4.8), the overhand knot 

(Figure 4.2) and the strap knot (see Figure 4.9). A strap knot is similar to 

the reeving used in making a daisy chain where a slit is made in a strap 

end (or stalk) and straps (or stalks) are reeved together. However, a strap 

knot is different from a daisy chain in that the straps are tightened so that 

the slits are adjacent. 

Swiss neolithic lake dwellings 

Swiss villages dating from 3000 BC have yielded important finds 

consisting of the remains of nets, carrying bags and straw hats which 

were found preserved in the mud of a lake (van de Kleij, 1996). 
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Figure 4.8 The reef knot 

Figure 4.9 The strap knot 

Danish sites 

Various knots have been found at Danish sites including a noose found 

around the neck of a skeleton dating from 3500 BC, a leister (pronged 

salmon spear) with lashings made from a row of half hitches and fish 

hooks attached to a line using the clove hitch dating from 5000 BC (van 

de Kleij, 1996). 

Egyptian knots 

The earliest evidence of Egyptian knots is 1350 BC (Wendrich, 1996) and 

these were very simple unsophisticated knots such as overhand knots 

and reef knots. (Presumably the ancient Egyptians were more interested 

in numbers than in knots!) A typical use would be for making carrying 
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nets for amphora, commonly made from overhand knots. 

Source: McLeay (1994) 

Figure 4.10 Half hitch and clove hitch 

All these finds suggest that human beings invented knots before 

numbers/ the earliest evidence for a system of written numerals dates 

back to 3000 BC, compared to knots which date back to at least 7000 BC. 

So we might tentat.ively suggest that the topological development of man 

predates numerical development. 

Ashley (1944) in his 'Book of Knots' claims to have been taught by 

an uncle how to tie a reef knot at the age of 3 years. He also says (1946 

page 8), 

'the simple act of tying a knot is an adventure in unlimited space. A 

bit of string affords a dimensional latitude that is unique among 

entities.' 

This statement offers ·a clear expression of the fascination which knots 

have generated over the centuries. As well as for their ubiquitous utility 

and fascination, knots have also been used as an early form of counting. 

4.1.5 Knots and numbers 

The word 'knots' has a maritime interpretation, it can also mean the unit 

of measure for the speed of a ship. The origin of the term derives from 
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the method used to estimate the speed of a ship whereby sailors counted 

knots on a mariner's logline. A logline consists of a log tied to a line 

with the line having knots tied in it at regular spacings. The log was cast 

out behind the ship and, as the line was dragged out over the side, sailors 

counted the number of knots disappearing over the stern in a fixed time. 

Thus the speed of the ship in 'knots' was obtained. 

Various American Indians used knots as devices for counting. 

The Zuni of New Mexico had an efficient method which avoided tying 

too many knots. They used different knots to signify the different 

numbers 1, 5 and 10. The number 1 was represented by an overhand 

knot, 5 by a reef knot and 10 by a complex nine-crossing knot, (of which 

it is now known there are 49 different types!). The Zuni operated a 

system similar to Roman numerals whereby the relative positions of 

these knot numerals was important. 

I~ @ 
I 

X 
IV VI IX 

Source: Christensen (1996) 

Figure 4.11 Zuni knots 

The Incas used a still more sophisticated device, the Quipu, mainly 

for keeping records of population and food reserves, they were the early 

book-keepers. Their knots system required structure recognition, a 

system which was effective due to the distinctness of the knots. They 
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used the family of multiple overhand knots - (the trefoil family), 

whereby the number of lappings signified the number (see van de Griend 

1996a). The knots were also tied and arranged such that cheats could not 

tamper with them without considerable difficulty and risk of being found 

out. Thus their bookkeeping was assured of consistency and security 

(van de Griend, 1996a). 

I 
'J 

2. :) 4 5 6 

Source: van de Griend (1996a) 
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Figure 4.12 Quipu knots 
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Source: Flegg (1975) 

Figure 4.13 Millers' knots 

Until the beginning of this century, German millers had a system 

of knot numerals for their transactions with bakers (Flegg, 1975). The 
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millers needed to record the amounts and the kinds of flour they 

delivered. They did this by using different knots tied in the drawstrings 

of the flour sacks. Different numbers were represented by special knots 

rather than by a series of the same knot. The forms of these special knots 

thus represent a form of knot numerals for 1, 2, 5, 10, 20 and 60 . These 

are shown in Figure 4.13 as the knots 1, 2, 4, 5, 6 and 7 respectively6 . The 

knots 8-10 were used to signify different types of flour. 

4.1.6 Knot trickery and knot mysticism 

To primitive man, the incomprehensible and erratic workings of knots 

were attributable to divine intervention. Hence mystical and 

supernatural powers were attached to knots. Many cultures have revered 

all things to do with knots, magicians and mystics have frequently played 

upon this situation and families have used notions from geometry as 

symbolism for cultu:i;-al identity. 

Figure 4.14 Borromean rings 

6 Knot 3 in the Figure is an alternative form for the numeral 2 
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The Borromeo family have a family crest known as the 

Borromean rings (see Cromwell et al. ,1998). This crest can be seen in the 

palace dating from 1630 on the island of Isola Bella in Lake Maggiore in 

Northern Italy. The Borromean crest consists of three 'rings' or circles 

linked in such a way that they are bound together, they cannot be 

separated (see Figure 4.14). However, no single pair of rings is linked and 

if just one of the rings is cut then the whole is no longer linked at all and 

the rings fall apart. There are other examples of these interlaced rings in 

other parts of Italy, sometimes with varied interlacing and with different 

properties of connectedness (Cromwell et al. , 1998). 

The Borromean crest demonstrates an interesting symbolism, 

perhaps of family unity, expressed in the form of loops embedded in 

space (a definition of a knot is a loop or loops embedded in space7 ). This 

suggests an understanding of the geometry. The Celts too understood 

something of the geometry of knots. Cromwell (1993) analysed many 

intricate Celtic knotted patterns. Celtic knots consist of alternating knots, 

the endless repetitive and cyclical nature of an alternating knot being 

used to signify the changing rhythms of life. The artist' s fascination with 

knots is still evident in art to this day. Figure 4.15 shows a sculpture of a 

trefoil knot made out of a Mobius band (Robinson, 1992). 

Magicians too make use of the mathematical (topological) 

properties of knots and links and many illusions can be produced. One 

such 'trick' or illusion involves a large number of rings which are linked 

together to make a long ' chain' . One ring can appear to slip down the 

whole length of the chain. The illusion is created by the effect of the top 

ring falling one place (not all the way down the chain but just one 

position) and releasing the ring below it which falls one position and so 

on. The observer 'sees' one ring fall the whole length of the connected 

rings. The method of linkage is shown in Figure 4.16. 

7 The mathematics of knots includes the study of links, links being knots made up of more 

than one strand. 
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Figure 4.15 'Immortality', John Robinson's sculpture of a trefoil knots 

8 This sculpture can be viewed in the foyer of the School of Mathematics, University of 

Wales Bangor and at: http :/ /www.bangor.ac.uk /SculMath/ image / immortal.htm 
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Figure 4.16 Linkages for the key ring trick 

Sailors were the early experts in knot tying and would use their 

specialised knowledge in a more mundane but cunning way. They 

would tie a special variant of the reef knot to secure their kit bag so as to 

detect whether the bag had been tampered with whilst their back was 

turned. A thief would assume that the knot was the simple reef knot 

and retie the bag in this way. However, the thief knot must be tied in a 

totally different way, the shape of the knot is the same, the only 

difference between the reef knot and the 'thief' knot is the position of the 

loose ends. Hence a knowledgeable seafarer with a trained and careful 

eye could tell whether his bag had been tampered with. 

Early seafarers showed a high level of skill and knowledge about 

the different forms of knots, famous families of the renaissance period 

understood something of their properties, Celtic and Islamic art showed 

an understanding of their topological features. In spite of this, the formal 

study and mathematical theory of knots did not commence until the end 

of the last century. 

page 112 



Chapter 4 

Reef Knot Thief Knot 

Source: van de Griend (1996a) 

Figure 4.17 A reef knot and a thief knot 

4. 2 Knot mathematics 

4.2.1 The beginnings 

Although knots and knot patterns have fascinated humans for centuries 

the mathematical study of knots is very recent. The most important 

aspects of intuitive knot theory are knot structure and the transformation 

properties of knots. 

A fundamental breakthrough occurred in 1898 with the table of 

knots showing their structures. This table was drawn up by the Scottish 

physicist Peter Guthrie Tait. Tait's table of knots listed the diagrams of all 

the possible prime knots9 with up to 9 crossings. From that moment, 

mathematicians set about trying to classify and describe knots. Many 

properties have now been defined but the topic is very complex and still 

relatively unexplored. Most of the theoretical work has been done this 

century beginning with Alexander in the 1920s and continuing to the 

present day with new knot invariants being described as recently as 1993 

by Birman and Lin. 

9 A prime knot is one which cannot be made up of two or more simpler knots 
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4.2.2 Chronology 

A summary of the main events is shown in Table 4.1, starting from 1680 

with Leibniz and the notion that geometrical figures could be considered 

as aggregates of smaller building blocks. . Leibniz tried to formulate basic 

properties of geometrical figures by using symbols to represent them and 

tried to combine these symbols to produce other properties. Leibniz did 

not actually apply this study to knots, but geometry of this kind was new 

and was the precursor to the work carried out by Alexandre Theophile 

Vandermonde 90 years later placing knots in the field of geometry. 

Alexandre Theophile Vandermonde (1735-1796) was the author of the 

first scientific paper in which a mathematican discussed the problem of 

constructing a mathematical theory of knots and it contained the 

folowing quote (Turner, 1996, page 261): 

I 

"Whatever the twists and turns of a system of threads in space, 

one can always obtain an expression for the calculation of its 

dimensions, but this expression will be of little use in practice. 

The craftsman who fashions a braid, a net, or some knots will 

be concerned, not with questions of measurement, but with 

those of position; what he sees there is the manner in which 

the threads are interlaced.' 

TABLE 4.1 

Summary of events in the development of knot theory 

Date Mathematician Si nificant Work 

1680 Leibniz Symbols used as basic geometrical units 

1771 Alexandre Vandermonde Knots considered within the field of geometry 
1

1800 Gauss Sketches of knots as closed curves 

1847 Listing First attempt at classification of knots 

1898 Peter Guthrie Tait List of all the knots up to 9 crossings 

1928 Alexander First knot polynomial 

1935 Reidemeiste r Allowed moves for transforming knots 

1969 Conway New polynomial 

1985 Jones, Homfly New polynomials 

1990 Kauffman Bracket ol nomial 

Some decades later, Gauss became interested in knots and in how 
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they could be described mathematically. In papers discovered after his 

death in 1855, Gauss had made sketches of thirteen different knots with 

English names written beside them (van de Griend, 1996a). Gauss' 

interest in electromagnetism and his work on the inductance in two 

linked circular wires and the concept of winding number, caused him to 

consider the knotting together of closed curves, a concept of fundamental 

importance in modern topology and knot theory. 

Listing was a student of Gauss and a main founder of knot theory. 

In 1847 Listing described the concept of an oriented crossing and left and 

right handedness. He assigned a symbol to each kind of crossing and was 

able to represent a knot by a series of these symbols. Figure 4.18 shows 

the two kinds of crossings which Listing defined. 

X ' ' 
Figure 4. 18 Right and left handed crossings 

Listing tried to classify knots of less than 7 crossings using knot 

diagrams or projections. He was the first person to persist in representing 

knots as knotted circles and obtained diagrams by projecting these onto 

the plane. He proposed the first invariant property for a knot, a form of 

polynomial which later proved not to be invariant, however, he set the 

scene for others to look for true invariants. 

The principal aim of knot theory is to find a collection of knot 

invariants which is adequate for a distinction to be made between any 

two non-equivalent knots (No single invariant which can do this as yet 
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exists). 

Otto Boeddicker was also a student of Gauss in Gottingen and had 

an interest in knots. One of his papers showed diagrams of a pentoil 

knot in its two forms with the crossings numbered (see Figure 4.18). 

Peter Guthrie Tait_ was the Scot who in 1898 listed all the knots up 

to 9 crossings (82 knots) and also worked on 10 and 11 crossings. 

Appendix A shows all the knots with crossing number up to 8 (thirty five 

knots). Tait also developed the concept of unknotting number or 

Gordian number, that is the minimal number of crossing changes (or 

cuts) required to reduce the knot to the unknot. After Tait had come up 

with his table, interest turned away from enumeration. 

Source: van de Griend (1996a) 

Figure 4.19 Two forms of the pentoil knot as shown in a paper by 

Boeddicker 

Another of the problems which interested Tait was how to tell 

when two knots are the same, or isotopic, that is when one of them can 

be deformed by continuous transformation into the other. This problem 

became known as the knot problem and would not be fully dealt with 

until the 1990s with the work on knot polynomials by Kauffman and 
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others. A related problem to isotopy is that of amphicheirality, or the 

property where a knot will transform into its own mirror image. As 

early as 1890 Tait made a conjecture that odd crossing number knots were 

not amphicheiral (would not transform into their mirror image) and 

hence were different knots. This conjecture has now been proved. 

Powerful knot invariants were needed to distinguish between 

knots, particularly mirror images. It became clear that to study the space 

around a knot9 or (link) would be more productive than the study of the 

knot itself since the space around the knot (or the knot complement) is 3-

dimensional and carries much spatial or topological information. The 

notion of a knot group was born. The knot group manages to capture 

much of the characteristics of a knot and it is quite rare that two different 

knots have the same group. However, it was soon discovered that the 

granny and the reef knot, two simple knots, do have the same knot 

group. Thus the knot group did not contain all information about a knot 

and thus did not precisely define the knot. Eventually, knot theorists 

returned to the idea of using the knot itself for the search for invariant 

properties. 

In 1914 Max Dehn showed that the left and right handed trefoil 

knots are indeed distinct. He was able to do this by thickening the knot's 

curve to a tube, removing the space inside the tu.be so formed and 

placing a co-ordinate system upon this exterior of the knot. 

The next great step forward was made in 1928 by Alexander who 

obtained a polynomial for a knot. Crucially, differently deformed 

versions of the same knot yielded the same polynomial. For example, 

the polynomial for the trefoil is: 

t2 - t + 1 

9 The knot complement, R3 -L, carries much m ore topological information than the knot 

itself L 
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This is the case no matter how the trefoil knot is deformed. Its drawbacks 

are that it cannot distinguish between mirror images and also that it fails 

for some knots of more than 9 crossings. 

In 1932 Kurt Reidemeister, who was working in Konigsberg, 

produced a notation for Tait's list. He ordered it and sorted it and gave a 

numbering system to all the knots. He also produced his most famous 

'Reidemeister' moves and theorem. Figure 4.20 illustrates these moves 

and Reidemeister's theorem of 1932 stated (van de Griend, 1996a, page 

233); 
'If two knots are topologically equivalent their diagrams can be 

transformed one to the other by some finite sequence of 

Riedemeister moves.' 

Another perplexing fact about knots is that they untie in the 4th 

dimension. Ashley (1944, page 8) expresses concern at this notion: 

'Here is a Mr Klein who claims to have proved that knots 

cannot exist in space of four dimensions. This in itself is bad 

enough, but if someone else should come forward to prove 

that heaven does not exist in three dimensions, what future is 

there left for the confirmed knot tier? ' 

Some investigations were carried out in Germany in 1877 

(reported -in van de Griend 1996a) to test whether psychic mediums, who 

were supposedly in touch with the 4th dimension, could untie knots 

without cutting. Needless to say this proved to be a fruitless quest. 

In 1969 John Conway expanded T~it's table of knots and completed 

it up to 11 crossing knots. The expanded table is shown in Table 4.2. 
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Figure 4.20 Reidemeister moves 

Note: The colouring of the strands illustrates the invariant property of 3-colouring 
described later in this chapter in section 4.2.3 
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Crossing nwnber 

How many knots? 

TABLE 4.2 

Table of knots and crossing numbers 

3 

1 

4 

1 

5 

2 

6 

3 

7 

7 

8 

2 1 

9 

49 

10 

165 

Chapter 4 

11 

552 

The table was further extended to 13 crossings by Thistlethwaite in 

1982. The number of knots with 12 crossings is 2176 and with 13 

crossings the number is 9988. It is now estimated (van de Griend 1996a) 

that there are more than 150,000 alternating knots with 15 crossings. 

Vaughan Jones developed a new knot polynomial in 1985 which 

sparked off an explosion of discoveries in the subsequent few years, 

notably the Kauffman polynomial and the Homflyll polynomial. We 

turn now to these discoveries and the notion of knot invariants. 

4.2.3 Knot Invariants 

An invariant is a number or mathematical expression which carries 

information about a system and whose value does not change when the 

system is transformed in some defined way. If we compute the value of 

an invariant for two systems and find that they are different then we 

know that the two systems are different. However, the converse is not 

necessarily true, if two systems have the same value for some invariant 

they may or may not be the same. In the case of knots, two knots may 

have the same crossing number but they may be different knots. 

Crossing number 

The crossing number of a knot is defined as the minimum number of 

crossings which remain after all unnecessary crossings have been 

removed (by applying the Reidemeister moves). Finding the crossing 

11 So called from the initials of the mathematicians who discovered it, Hoste, Ocneanu, 

Millet, Freyd, Lickerish and Yetter. 
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number of a knot can be a practical task with rope or an exercise in 

mental manipulation, by unravelling mentally all the twists and extra 

loops in a knot diagram. Some of the puzzles in McLeay (1994) require 

this kind of visualisation. .Figure 4.21 shows how the original knot 

diagram with 4 crossings has been reduced to 3. The crossing number of 

the knot is 3. 

Source: McLeay (1994) 

~;;~ 
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Figure 4.21 Knots puzzle 

* three colours } 
• one colour 

Figure 4.22 Rules for 3-colouring knots 
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3-colourability 

Some knots can have all the strands coloured in such a way that only 3 

colours need to be used and no two colours occur at any particular 

crossing. The rules for 3-colouring are illustrated by the diagram shown 

in Figure 4.22 

Some knots can be 3-coloured and others cannot. The property is 

invariant under the Riedemeister moves since if one diagram of a knot 

can be 3-coloured so can all other diagrams of any form of the knot. No 

matter what other arrangement we find of the knot then the diagram for 

that arrangement will be 3-colourable. Figure 4.23 shows that the reef 

knot is 3-colourable and the figure eight knot is not. 

Figure 4.23 The reef kno t and the figure eight knot with colouring 

Knot families and knot groups 

Knots can be classified into families according to some similar properties 

of shape or structure. Two examples of knot families are the figure eight 

family of knots and the torus knots. Figure 4.24 shows the figure eight 

family and Figure 4.25 shows some exciting p ictures of torus knots from 

the Knot Plot web site at: 

http://www.cs.ubc.ca/nest/imager/contributions/scharein/knot-theory/torus.html 
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Source: McLeay (1994) 

Figure 4.24 The 'figure eight' family 

Polynomials 

The first of these invariants to be discovered was Alexander's knot 

polynomial. For a n-crossing knot he derived a n x n matrix encoding 

the nature of the crossings such that every element of the matrix was one 

of the following 0, -1 , t or 1 - t. Alexander then calculated the 

determinant of this matrix and arrived at his knot polynomial. 

An interesting property of the Alexander polynomial is that when 

two prime knots are combined, the Alexander polynomial for their knot 

composition is given by the multiplication of the original Alexander 

polynomials. For example the polynomial for the trefoil is 

t2 - t + 1 

and for the granny knot it is 

The Alexander polynomial for the figure eight knot is 
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Torus Knots 

The..;c arc knots that ~an be dnm non the surface ol :l lnrus \\ 1thoul inlcr~cct1on~. 

Source: www .cs. ubc. ca/nest/imager /contributions/ scharein/krw t-theory/ torus .h tint 

Figure 4.25 Some knots from the family of torus knots 
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Another pleasing pattern which is evident is that alternating knots 

have alternating signs in their polynomial. However, it cannot 

distinguish between mirror images, the Alexander polynomial for each 

trefoil is the same and hence the Alexander polynomial for the reef knot 

and granny knot are also the same. 

Later, a neater method of recursion would be used to derive these 

polynomials. In 1969 Conway derived his polynomial recursively using 

a skein relation. Although related to Alexander's polynomial the 

method of derivation was totally different. Conway's polynomial was 

constructed without the use of determinants but was calculated directly 

from diagrams by a method of recursion. Unfortunately, Conway's 

polynomial too cannot distinguish between mirror images. 

Vaughan Jones described a new polynomial in 1986 which was 

good at distinguishing mirror images. The Jones polynomials for the two 

forms of trefoil are 

and 

Jones' work was developed in two different ways to result in the 

Homfly polynomial in 1985 and Kauffman's bracket polynomial in 1990 

both being polynomials in two variables. The Kauffman polynomials for 

the trefoils are: 

for the right handed trefoil 

and the left handed trefoil 
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and for the figure eight knot 

x-2 + x2 - y - r 1 + 1 

4.3 Summary 

This chapter has examined the history of knot tying, beginning with 

legends about knots and then tracing the developments in the use of 

knots from prehistory up to recent times. Examples have been cited 

where knowledge about the intricacies of knots can be used to symbolise, 

to mystify and to bewitch. The importance of knots to civilisation has 

been described and it has been pointed out that familiarity with knots 

predates number as a significant human skill. 

The mathematical study of knots has been included to give some 

background to the nature of the tasks used in the study and to give an 

insight into this unusual field of spatial mathematics. Knot theory is an 

area of mathematics which is still growing. What began as a simple tale 

about fishing nets has today developed into a field which informs 

scientists studying DNA as well as those studying weather patterns. But 

the simple task of tying a knot is one which can be viewed as an exercise 

in spatial thinking. 

Finally, the existence of a mathematical formalism supports the 

validity of their use as a variable in a controlled scientific experiment. 
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Chapter 5 

The Research issues 

5.0 Introduction 

It has been demonstrated in Chapter 2 that imagery and spatial ability are 

helpful in the learning of mathematics. The debate regarding the nature 

of a mental image, whether it is pictorial or in some other format such as 

a spatial array of information, was discussed in Chapter 3. A study of the 

debate is helpfut since an understanding of the different processes of 

imagery may be important for the development and practice of the skill 

in the classroom. 

It has been pointed out that imagery and spatial skills may be 

developed using the right activities but that not· enough of these 

activities are taking place in many classrooms. A possible explanation for 

this dearth of visualisation activities is the lack of appropriate materials 

and sound knowledge of how to activate the teaching of imagery. A 

further possibility could be the fact that an exercise in imagery may have 

no concrete visible outcome in a pupil's exercise book and ~his may 

contribute to the teacher's unwillingness to spend time on such 

activities. Some important questions therefore are; what activities may 

be effective in developing imagery skills; and what can be done to 

encourage more practice of these skills in the classroom? 

Activities which employ dynamic imagery have attracted some 

interest in research studies, and investigations of imagery have 

considered both 2-D and 3-D objects, but the perception of deformable 3-D 

structures and elucidation of strategies for their manipulation has 

received relatively little attention. These tasks are important since the 

issue of how imagery is used for reasoning in such manipulative tasks 

may be revealing and may enable pupils to develop their mathematical 
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skills by using spatial intuition. Much research has been carried out to 

discover what are the 'abilities' which are needed in doing mathematics. 

Is it possible that some intuitive abilities have been neglected? 

Imagery ability is not only useful in geometry learning, but has 

also been shown to be productive in problem solving generally. The 

operations performed during the problem solving process and whilst 

working on mental models of situations in mathematics (perhaps 

involving algebraic structure) are often the same as those used in spatial 

tasks. Researchers have put forward different reasons and benefits for 

how and why pupils use visualisation in problem solving, but the 

inclusion of one more tool in the problem solving repertoire would 

seem to be sufficient reason to encourage its use. If this skill can be 

improved merely by providing the right activities then it would seem to 

be an appropriate quest to find some activities suitable for classroom use. 

5.1 Pedagogy 

As a secondary school mathematics teacher I have been aware of the 

problems experienced by some secondary pupils in carrying out spatial 

tasks and the relative ease with which other pupils may perform the 

same tasks. There is a need to present children with experiences and 

tasks which develop their spatial skills. As a member of the National 

Mathematics Project (Harper et al. 1991) writing team, working on a 

series of secondary school text books, both myself and the other authors 

felt it important to include activities involving mental transformation 

tasks in geometryl, not only to reinforce geometrical knowledge but also 

to practise more general spatial skills and visualisation. 

In 1968, Pyshkalo (quoted in Hoffer 1983) noted that at that time 

geometry instruction was introduced in schools rather late in a child's 

development and the content was more concerned with measuring than 

with spatial operations. Pyshkalo proposed a less formal introduction to 

1 Mental arithmetic is a common phenomenon in mathematics classrooms but 'mental 

geometry' is rather neglected. 
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geometry (qualitative rather than quantitative) involving familiarity 

with shapes and their transformations. Hoffer (1983) also noted that 

many elementary school teachers skip work on geometry because they do 

not consider it to be a 'basic skill'. In 1978, Clements and Wattanawaha 

(1978) suggested that very little systematic work on 'Shape and Space' 

specifically aimed at developing pupils' spatial and imagery abilities was 

being done in school classrooms and their work sought to provide 

suitable innovative spatial tasks. 

To some extent, Hoffer' s (1983) concern that geometry was not 

introduced to the child early enough has been addressed in the UK with 

the introduction of the National Curriculum (DFE, 1995). The 

Programmes of Study for the primary years, Key Stages 1 and 2, include 

work on 'Shape and Space' and visualisation is mentioned at all Key 

Stages 1-4. For the early years at Key Stage 1 the document (DFE, 1995, 

page 5) states : 

'Pupils should be taught to: describe and discuss shapes and 

patterns that can be seen or visualised;' 

Specified in the National Curriculum (DFE, 1995, page 16) in the 

Programmes of Study are two categories of teacher activities. One 

category of activities follows the instruction 'Pupils should be given 

opportunities to' and the other 'Pupils should be taught to' . Included in 

the list which pupils should be taught to do, are the following statements 

(DFE, 1995, page 9): 

Key Stage 2 

'Pupils should be taught to visualise and describe shapes and 

movements ' 

and for Key Stages 3 and 4 (DFE, 1995, page 16): 

'Pupils should be taught to recognise and visualise the 

transformations of translation, reflect ion , rotation and 

enlargement, 

Unfortunately, the scope of the document does not extend to offering 

suggestions on how pupils should be taught these things. 
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One of the original aims of the NMP (Harper et al. 1991) writing 

team had been to address this problem by incorporating 'mental 

geometry' tasks into the classroom materials. The NMP school texts 

which were produced contained many activities which were concerned 

with static rigid 3-D objects2, but none concerned freely deformable non

rigid objects. Subsequently, in trying to find novel, interesting and 

challenging spatial problems which would engage pupils, I became 

interested in the mathematics of knots. 

5.2 Knots as a context for spatial tasks 

Knots provided a new context for exploring space and mathematics. 

Knot theory is a part of mathematics with its own theorems and 

mathematical structure and although knot theory can be a very abstract 

topic, many issues involved in knot theory can be demonstrated by 

referring to the actual knots and then mental imagery employed to 

replicate possible manoeuvres. Thus I have worked with Year 9 

children (age 14) in mathematics masterclasses3, and with teachers in 

workshops and at conferences. The activities include many problems on 

various mathematical properties of knots, with ropes and the actual 

knots available, as well as with puzzles and problems using diagrams of 

knots. Denis (1991, page 110) advocated this approach and commented, 

'. . . images can be manipulated in a way that realistically simulates 

transformations on physical objects, thus making the successive 

states resulting from these transformations cognitively available, 

manipulations of images have the advantage of being performed 

in a flexible and rapid manner enabling on-line inspection of 

current hypotheses. As a result the processing of a problem whose 

components can be readily implemented in a picture-like 

representation may be enhanced by a well-conducted imagery 

process that capitalises on the representational properties of these 

componen ts .' 

2 one example was shown earlier in Chapter 2, Figure 2.1 

3 Groups exist throughout the country and are sponsored by the Royal Institution. Bangor 

is just one of the 'out of London groups' and is funded by Anglesey Aluminium 
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There is always variation in the ability of pupils (and their 

teachers) to do the tasks mentally. All of the pupils attending 

masterclasses are present because they enjoy doing mathematics, but like 

Krutetskii' s pupils they think in different ways. Some seem to have a 

confidence and an automatic ease with the process of mental 

manipulation of the knots whilst others experience great difficulty. 

Nevertheless, it appears that with the presence of the knots themselves, 

and with the experience of working on the tasks, all pupils begin to 

model mentally the transformations which the actual knot can undergo 

and develop a conception of the way in which knots transform in space. 

The pupils begin to learn how to manipulate them in their mind - to 

imagine and to visualise how the knots can move and change shape in 

space. 

Generally, most individuals have had experience of the 

topological aspects of items such as clothes. Clothes can change shape but 

remain topologically the same whether they are folded or being worn. 

We all know how to put on a jumper and some of us know how to take 

one off without first removing the jacket! Similarly, tying things 

together is an activity which most people have tried. It may be sensible 

to foster and extend these everyday topological experiences so that pupils 

are able to imagine how to do other tasks with deformable objects and 

hence develop their mathematical and spatial awareness. 

Knots provide a useful medium for linking mental geometry to 

such ubiquitous human skills as weaving, knotting, ornamental knot 

work, tailoring etc, skills which have been well developed in many 

cultures since antiquity. It could be argued that the fact that these skills 

have been known to humans for so long supports the view, as Piaget, 

Inhelder and Szeminska (1960) claimed, that topological understanding is 

more fundamental and intuitive than the concepts of Euclidean 

geometry. However, Bell, Costello and Kuchemann (1983) believe there 

is a distinction between simple appreciation of a shape and its topology, 

and a deeper more analytical understanding of spatial relationships, they 
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remarked (Bell et al., 1983, page 152): 

'It seems clear that some topological notions are understood 

earlier than Euclidean ones, but the view that the child's first 

spatial concepts are exclusively topological is misleading and 

restrictive . It may be more appropriate to identify a progression 

from a reliance on simple qualitative cues to the recognition and 

application of increasingly complex spatial relationships. This 

progression involves a transition from global recognition of an 

entire shape to the analysis and appreciation of its component 

parts and properties. ' 

Global recognition of an entire shape has already been observed for 

2-D shapes (for example, Tarr and Pinker, 1989), but what of 3-D 

deformable structures? Can evidence from mental knot tasks be found to 

support the view of Bell et al. (1983) expressed above? The idea of 

'simple qualitative cues' leading to 'complex spatial relationships' is 

worthy of exploration in the context of knots. 

5.3 Setting up a framework for the research 

In setting up the research and formulating the research questions, it was 

considered useful to review Ernest's (1998) suggestions: 

1. link with and build on existing knowledge in the relevant 

educational research literature; 

2. use organised processes of enquiry, systematic methods of 

research, linked to existing methodology; 

3. result in a systematically organised text, document or other public 

communicative form, so that others can assess the results of the 

educational research; 

4. possibly engage in theory-building resulting in the construction of 

some systematically organised system of reflective knowledge. 

The issue of relevant research literature raised by item 1 has been 

given due consideration in Chapters 1-3 and forms the basis for the 

planning of this study. The organised processes of enquiry and 
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appropriate methodology raised in item 2 derive from the review of the 

literature. The planning will be mentioned briefly here but will be 

explained more fully in each of the Chapters 6, 7 and 8 covering each 

phase of the study. With regard to item 3 and the evaluation of the 

outcomes of the research, the results of the pilot study which is described 

in Chapter 6 have already been published in a mathematics education 

journal (McLeay and Figgins, 1996) and a psychology journal (McLeay and 

Figgins, 1998). Item 4 will be addressed in Chapter 9 where an evaluation 

of the research framework and results will be given. 

Much research has already been carried out to find out more about 

spatial ability and its development. This research seeks to extend this 

knowledge so as to assist creativity in problem solving and thus provide 

pupils with an additional skill in their 'mathematical tool box' An 

investigation will be carried out which offers subjects tasks requiring 

mental manipulation of deformable objects and which relates to 

previous research on rigid objects. The framework and methodology 

therefore will relate closely with previous research in the area. Further 

investigation will be carried out of a qualitative nature to enrich the 

interpretation of the quantitative study. 

Knowledge about the cognitive process of imagery itself is 

relevant. Similarly, other aspects of mental imagery, such as levels of 

difficulty of certain tasks may be useful. This facility level of certain tasks 

can be ascertained using the psychometric approach and measured by 

how long it takes subjects to solve certain mental tasks. Different 

information, including personal strategies, can be gathered using other 

methodologies similar to clinical case study investigations. 

Bishop (1992, page 712) made a plea for research to be made 

relevant to the classroom: 

'If the object of research is the improvement of mathematics 

teaching then it clearly makes sense to examine the normal 

activities associated with mathematics teaching to see if they are 

creating the obstacles to improvement, that is to what extent are 
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they part of the solution rather than just part of the problem?' 

Clearly it is desirable that research results in the provision of 

materials which fit in with the 'normal activities' of mathematics 

teaching so as to enhance pupils' imagery and spatial ability and improve 

pupils' learning. The development of visualisation skills requires 

practice so as to be able not only to construct an image but also to control 

it and manipulate it for some mathematical purpose. Previous research 

has shown that subjects can be reluctant to use imagery even when it 

would be useful to solve a problem. It is hoped that this research will 

help towards empowering pupils to be less reluctant imagers. 

5.4 Research questions 

With regard to the issues raised by previous research and which are of 

interest in this study, the questions for investigation fall into two groups. 

The two groups may be described as (i) pedagogic and (ii) cognitive. The 

questions are as follows: 

(i) Pedagogic: 

How can the skills of imagery and visualisation be developed? 

Can visualisation be taught using knot tasks? and if so 'Which tasks 

enable/ effect learning?' . 

Can the tasks be sequenced ranging from easy to difficult? 

Is it_ possible to devise a teaching programme (using knots) to 

improve spatial ability? 

Do subjects improve their performance of the knot tasks? Do they 

learn simply by doing? 

(ii) Cognitive: 

What enables us to know how an object will move? 

What factors influence the strategy employed by verbalisers and 

visualisers? 

Are verbalisers forced to visualise for these knots tasks? 

Do visualisers verbalise? Do visualisers form short cut methods 

similar to the verbally encoded propositions or procedures described 

by Battista (1994) 
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In order to address some of the questions in group (i), we wish to 

find out which are the spatial tasks that children are likely find easier or 

more intuitive. Tasks which are more topological in nature may be 

more intuitive and within the subject's everyday experiences rather than 

some of the very particular experimental spatial tasks explored in 

previous work. 

One of the issues, 'can visualisation be taught? ' was a concern 

explored by Lean (1981) and by Smith (1991), but there are still no clear 

guidelines on how this could be done or which experiences would be 

beneficial. Research in the psychology literature (see for example 

Wallace and Hofelich, 1992; Kosslyn et al., 1989) discussed in Chapter 3 

has shown that practising mental acrobatics improves performance on 

spatial tasks and also that the improved performance transfers to other 

tasks. The sequencing of such tasks, however, has not been addressed 

directly or made explicit. 

With regard to the related question 'what are the tasks which 

enable / effect learning?', Battista et al. (1982) found that teaching a 

geometry course to 82 pre-service teachers improved their spatial ability4. 

The activities they used in the course focused mainly on informal 

geometry with some logical deductive thinking but did not include 

topological questions. 

The previous research described in Chapters 2 and 3 considered 

some of the questions above, but the nature of the objects studied in all of 

the previous studies was different, the objects were rigid. The mental 

manipulation of deformable objects has received little attention and 

could be useful in identifying different processes in visualisation, 

processes such as the 'imagining of transformations' as opposed to the 

'transforming of images' defined by Freyd (1987). These different kinds of 

tasks may produce some additional strategies for spatial and visual 

thinking and enhance the development of mental skills. 

4 One of their tasks was shown in Chapter 2 Figure 2.2 
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Some of these questions can be explored using a similar 

methodology to that used by Shepard and Metzler (1971) in their 

experiments. The difference in this research will be that subjects will be 

shown diagrams of pairs of deformable objects with angular disparities 

rather than rigid objects. 

During the tests to be administered, subjects may intuitively 

develop strategies or skills to deal with the tasks in much the same way 

as we learn by our experiences in everyday life. The subjects' reactions to 

the tasks will be sought and their ability to perform the tasks measured 

both quantitatively and by verbal feedback from subjects. Inevitably 

some tasks will be more difficult than others and this information will be 

of use if such tasks are to be used in planning a teaching programme for 

improving spatial ability and visualisation. 

In order to answer some of the other questions classed above as 

(ii) cognitive, a more qualitative study will be required. These questions 

can be explored by in depth interviewing of subjects. This will be done by 

video case studyS and will involve subjects carrying out the mental tasks 

and asking them to explain their thoughts and strategies. This data 

should give information not only on possible strategies but also any 

changes in strategy and learning of strategies as the tasks become more 

familiar. 

In summary, the framework for this research will be to use a 

combination of two methodologies: psychometric testing to collect 

quantitative data using measurement of decision times as an indicator, 

together with case study interviews and the collection of qualitative data. 

These data may then be used to design curricular sequences to improve 

spatial ability and allow mental manipulation skills to be developed. 

5 Further details of the methodology will be given in Chapter 8 
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5.5 Developing a teaching programme 

How might the answers to the research questions be used to improve 

teaching? Hoffer (1983, page 225) was concerned with students' 

perception and acquisition of concepts and asked: 

'Once we know how students perceive and reason with objects and 

relations, what learning experiences can we provide to help the 

students gain insight into the subject?' 

The relationship between everyday experiences and mathematical 

thought was commented upon by Cooper & Shepard (1990, page 121): 

'The ability to represent objects or arrangements of objects and 

their transformations in space clearly is valuable in managing the 

concrete realities of everyday life, making it possible to plan 

actions and to anticipate outcomes. It may also play an important 

role in abstract thought.' 

If we wish to develop pupils' ability in. mathematics it is vital that 

we do not ignore the development of visualisation skills. It has been 

claimed (Lean, 1981) that visualisation is not an innate skill and can be 

developed in pupils (Clements and Battista, 1992; Tuckey and 

Selvaratnam, 1993) but that the results are more effective when the 

experience takes place early in a child's schooling (Bishop, 1983). 

With regard to the question of what tasks enable the acquisition of 

visualisation skills, a range of possible activities have already been 

developed. Clements and Wattanawaha (1978) attempted to classify 

some spatial problems and they included some non-rigid objects in their 

space visualisation test. Figure 5.1 shows a topological ropes task and 

Figure 5.2 shows another paper folding task6. 

Tasks which are more likely to succeed are those which build upon 

the young child's experiences. A question which arises is: How do we 

know when a rope is knotted? This knowledge draws upon our 

experiences of everyday items such as shoes, parcels and tangled string. 

6 One of Clements and Wattanawaha's (1978) paper folding tasks has already been 

shown earlier in Figure 2.9. 
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The topology of string may be a familiar concept to the child and may be 

used as a basis for teaching visualisation. 

QUESTION 13 

A 

D 

Five pieces of rope a.re shown in Figures A, B, C, D, E 
below. If the two ends of each rope a=e pulled, which of 
A, B, C, D, E will become Jc:notted? 

B 
C 

Source: Clements and Wattanawaha (1978) 

Figure 5.1 Ropes knotting task 

Most of the spatial tasks in Clements and Wattanawaha (1978) do 

not involve topology and a tentative criticism might be that neither do 

they all necessitate visualisation in order to be solved, some can be 

solved logically. For example, the task shown in Figure 5.2 which 

involves paper folding may not be a purely spatial task, it is possible to 

apply rules of geometry to solve it and the solution arrived at logically. 

The cut hole is decreasing in size from left to right. After unfolding, this 

situation is reversed (the cut is reflected in the fold line) and the correct 

picture must show the size of the hole decreasing from right to left (as it 

approaches the edge of the paper). Hence the answer must be be B or D. 

But it cannot be D since the the diamond shaped hole shown in D does 

not have vertical line symmetry and so the answer is B. Krutetskii' s 

(1976) analytic thinkers would probably have solved it in this way. 
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Fig. 1 Fig. 2 Fie,. 3 

The rectanc;ul ar piece of paper in Fic;ur~ 1 is folcec alcng t~e cotte c l i ne 
shown s o that Figure 2 is obtained . Tte fol~ is tien cut, as i ~ Fi~~~~ 3, 
a.~c t.~e paper is oper.ed out agai.~. 

Which of A, B, C, D, E below shows w~at the r e~a~r.ing paper wculc locx l~\e? 

A 

D 

Source: Clements and Wattanawaha (1978) 

Figure 5.2 Paper folding visualisation question 

In the case of the ropes task, it is not easy to see how~ this can be 

solved without some visualisation taking place. We must mentally 

model a real situation of untangling or pulling the rope. Equally it is 

clear that, apart from the ropes A and B, this is a more complex task than 

unfolding a piece of paper. The reason why this is so is possibly due to 

the fact that there is more information to hold in the mind at any time. 

Or could it be that only visual imagery will suffice to solve the puzzle 
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and this is a high level skill? 

A selection of different activities is always desirable in the 

classroom for any teaching programme so that all pupils have an 

opportunity to find something which interests them, something which 

they can understand and can do. A range of possible tasks have been 

developed and this study attempts to add more activities to this list so 

that all pupils may find an activity to suit them. 

Some criticisms of the claim have been that the skills which can be 

taught are very task specific and not transferable. This research will 

attempt to explore subjects' thinking in how they are solving the tasks 

and determining whether or not they are developing general spatial 

strategies. 

The mam concern 1s with developing spatial abilities in an 

informed and precise manner and with investigating the skills which 

visualisers employ and thereby devise experiences to develop these 

skills. These skills can then be employed in the learning of, and attaching 

meaning to, mathematics as well as enabling the visualisers to improve 

and to make full use of their abilities. 

5.6 Visualisation strategies 

What can research tell us about the strategies used to solve mental tasks? 

Much of the previous research on mental manipulation has focussed on 

reorienting planar 2-D or rigid 3-D objects. Although some studies report 

that mental rotation was not always found to be a strategy (Suzuki and 

Nakata, 1988) many suggest that it is the main strategy (Shepard and 

Metzler, 1971; Shwartz, 1981). 

What can this study tell us about the strategies used to solve 

mental tasks? This research will explore the effect of orientation 

differences but will also try to find out which tasks are performed by 

mental rotation and which are solved by other means, such as 
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reassigning the top of an image as identified by Reisberg and Chambers 

(1991). An attempt will be made to discover whether some of the 

reported alternative methods which have been employed for 2-D objects, 

such as reassigning the top of an image discussed in Chapter 3, are 

feasible for 3-D objects, and also to discover which other methods are 

used and how these other methods may vary according to the stimulus. 

Where manipulation of an image is involved, the question as to 

whether the nature of a mental image is visual or propositional, becomes 

even more complex. If the subject is required to manipulate a currently 

viewed object and to transform it mentally, will a visual method or a 

verbal method be preferred? The viewed image is pictorial and exists in 

the visual perception processing buffer but if it needs to be altered in 

some way how will this alteration be achieved? Does the presence of the 

object influence the strategy employed? Are verbalisers forced to 

visualise for these knots tasks? Do visualisers verbalise? Do the subjects 

in this research learn to by-pass the visual process as Battista (1994) has 

suggested as familiarity with the tasks increases, do visualisers form 

short cut methods which may be verbal? These questions will be 

explored during the case study phase of the research. 

Krutetskii (1976) described two kinds of thinkers (analytic and 

geometric) with a third intermediate category (harmonic). . Lean & 

Clements (1981) suggested that there is in fact not just an intermediate 

third category but a continuum along which all individuals may be 

situated. The latter notion seems an appealing one, allowing for flexible 

switching of strategies to suit the task involved. Whether subjects switch 

strategies in these tasks and what factors influence any switching of 

strategies is another interesting question to be considered. 

In trying to improve children's acquisition of spatial skills we 

must know what the skills are. Individuals may solve the same problem 

in different ways (Clements, 1983) and indeed two responses to a problem 

may appear identical but may be produced using completely different 

solution paths (Lesh & Landau, 1983). So we need to know about all the 
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possible strategies in order to offer a range of sequenced tasks which will 

appeal to the different modes of thinking of each individual. In this 

study, some attempt will be made to do this by studying a selection of 

subjects some of whom have a background in mathematics and others 

who are qualified in language. It is expected that the former will be good 

spatial thinkers, whereas it is presumed that the latter should show a 

different (propositional) approach to the tasks. 

The 'need' by some pupils to use visual images to solve problems 

has been described by Presmeg (1986). The process of bypassing this phase 

as the problems become more familiar was considered by Battista (1994) 

to be enabling to pupils, but the visual strategies are still useful for new 

problem situations. 

5.7 Summary 

The exact method or strategy per se used by a subject on a particular item 

is not the main concern, but knowledge about strategies used by different 

individuals generally may be of help in devising activities for teaching 

programmes. How the imagery process copes with manipulation of 

deformable objects as distinct from rigid objects is not in itself the issue, 

but the different skills employed need to be recognised and opportunity 

given in the classroom for their practice and development. The extent to 

which visualisation methods are employed may reflect a subject's prior 

experiences but the extent to which the visualisation process increases or 

recedes during practice may be a function of the tasks themselves. 

In the experiments described in this thesis, subjects will view the 

presented image before and during any mental rotation or unravelling, 

but must hold any intermediate mental images. By varying strategies, 

the subjects may learn to solve the tasks and this may entail interpreting 

an intermediate 'imaged' form of the knot diagram. 

With regard to the question of how the tasks are solved, verbally 

or visually, there is a range of possibilities and perhaps there is room for. 
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a combination of methods here. Although a knot is a 3 dimensional 

object, the knot images in these experiments could be considered to be 2-

D in nature with a verbal addendum to describe crossings and/ or 

deformability. 

One of the questions which this research attempts to answer is, 

'Which knot tasks are more difficult?'. The further question 'Why are 

some knots more difficult?' will be considered in the discussion of the 

results in Chapter 9. One aim of this research study is to investigate 

some mental capacities and to look for ways of developing or enabling 

these mental capacities. However, the main purpose of this research is 

thus to: 

• Extend the ideas on imagery and visualisation which have been 

developed in the mental rotation of rigid structures to structures 

which can be deformed. 

• Investigate the perception of deformable 3-D structures and 

elucidate strategies for their manipulation. 

• Identify whether these activities can develop dynamic imagery and 

whether mental manipulation abilities can be improved with 

practice. 

Bishop (1983, page 197) stated that he is: 

'someone who sees empirical research as a way of shedding light 

on curricula and pedagogical issues by collecting data 

systematically, by interpreting those data, and by reflecting on 

their implications in relation to practice and to other research. 

and for ideas that will enable us to derive better tests, task 

materials, teaching materials and procedures, and educational 

practices to enable more children to feel successful and confident 

in mathematics.' 

It is in the same spirit that this research has been carried out. 
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Chapter 6 

The Pilot study 

6.0 Introduction 

This experiment was devised as a result of the author having studied the 

undergraduate psychology courses on 'Perception' and 'Research 

Methods in Psychology' offered at the University of Wales, Bangor. A 

collaboration ensued with a visiting research fellow to that department 

which brought together a knowledge of mathematics and an expertise in 

experimental psychology. It had already been observed by the author that 

the knot puzzles previously referred to (McLeay, 1994) cause considerable 

difficulty to some people and none whatsoever to others. It had also 

been observed that some puzzles were harder to do than others and that 

a range of strategies could be employed in solving them. The question 

was, having recognised these facts how could they be investigated? 

The research described in Chapter 2 highlighted the importance of 

imagery to mathematical thinking. Chapter 3 highlighted the scarcity of 

research data on mental manipulation of deformable objects. such as 

knots. Chapter 4 explained the mathematics of knots including some of 

the mental geometry which can be involved. This chapter will explain 

the choice of stimuli and the setting up of an acceptable means of testing 

subjects with the various items. It was noted earlier that one of the most 

researched areas in mental manipulation was that of mental rotation and 

this seemed a suitable place to start the investigation. 

A justification for the choice of stimuli and the procedure for 

carrying out the experiment follows and then the results of the 

experiment will be reported together with a discussion of what the 

results show. 
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6.1 Methodology 
Some of the issues raised in Chapter 5 may be investigated using a 

similar methodology to that of the Shepard and Metzler (1971) 

experiments but using newer technologies. The tachistoscope which 

Shepard and Metzler (1971) used for presenting stimuli and the stop 

watch for recording response times are now outdated. The research 

questions raised can be investigated more effectively using a 

microcomputer both to present the stimuli and to record automatically 

accurate response times. This procedure is used frequently in 

experimental psychology and reduces the li_kelihood of recording errors 

which could be a function of experimenter expectancies or some type of 

observer bias. The microcomputer can be programmed to present as 

many different independent variables and to record as many different 

types of responses as creativity will allow. It was therefore an effective 

and appropriate method to explore the issues described. 

Rearrange these knots and decide which are unknots. 

A B C 

D E 

G 
F II 

Source: McLeay (1994) 

Figure 6.1 Knots puzzle requiring mental manipulation 

page 145 



Chapter 6 

In this pilot study the mental manipulation of deformable 

structures was investigated. The approach taken was the experimental 

approach whereby the effect of systematically changing the variables was 

examined so as to identify causal relationships. Control of the variables 

was a prime concern. Although the knot puzzles in McLeay (1994) were 

appropriate tasks in terms of mental manipulation and the visualisation 

skills required (an example is shown in Figure 6.1), the experimental 

tasks needed to be rather more constrained so as to be able to investigate 

the effect of each of the variables. 

6.1.1 The independent variables 

The four independent variables under experimental control were: 

(i) number of crossings, (ii) degree of rotation, (iii) topological status 

(knot or unknotl ), and (iv) shape. The fourth variable, shape, is 

investigated but in a limited way. What cannot be considered here is the 

infinite variety of deformations of shape possible for any single knot. 

Any knot can be rearranged to give all manner of shapes and sizes of the 

loops but topologically it is still the same knot. We are not so much 

interested here in these mathematical intricacies, but whether the 

crossings in one rope diagram are the same as in another similarly drawn 

diagram. The research design selected offers a means of controlling the 

four variables listed and a way of seeking answers to the research 

questions. The method also links to previous research on mental 

manipulation with rigid objects. 

As well as response times, the number of errors made by each 

subject was recorded. The particular knots and rotations which caused 

the errors were also noted. It was predicted that there would be more 

errors for pairs with rotation since this adds a further tier of complexity 

to the task. 

Strategies were investigated by the use of a short interview at the 

end of each subject's performance of the experiment. The influence of 

1 This term will be explained in section 6.3.2 and see also Figure 6.2 
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the utilisation of particular strategies and also instances of switching 

strategies were noted during the post experimental interviews in this 

pilot study. The post experimental interview is important in this type of 

research for various reasons. Christensen (1988, page 385) described the 

ethical function, of allowing subjects to comment freely on the 

experiment, and also made the following comment: 

'the interview can provide information regarding the subjects ' 

thinking or strategies used during the experiment . . . . . They (the 

subjects) relayed a specific strategy for having accomplished this 

task, which led to another study investigating strategies for 

learning.' 

Verbal reports therefore can show where research is flawed or 

which direction it should take in the future. Such reports can also throw 

light on strategies and effects which the researcher had not expected. 

In previous research studies, (for example, Cooper and Shepard, 

1973; Suzuki and Nakata, 1988) specific strategies were required for the 

rigid objects used compared to a range of possible strategies for these 

objects with easy deformability. Fewer factors were needed in decision 

making for polyhedral figures than for knots and therefore significant 

differences in decision time between knot types was expected. 

6.1.2 Individual subject variation 

It has been noted by some researchers (for example, Logie, 1995) that 

when performing experimental tests , individual subjects do not 

necessarily respond in the same way to different variables in the tests. 

Individual subjects may perform differently on different parts of the test. 

With this in mind, as well as performing a general analysis of means of 

overall decision times for the groupings of pair types, the results were 

analysed by considering the variation in decision times for each 

individual subject across all knot and unknot pair types. For each item 

processed by a subject, the difference between the decision time and the 

subject's overall mean time was calculated and considered in relation to 
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the results as a whole. This aspect of the research was considered useful 

owing to the varied nature of the subject sample and the relatively novel 

nature of the stimuli. 

6.2 Subjects 

Twenty one subjects, 14 males and 7 females, two thirds of them students 

of the University of Wales Bangor, were chosen for their availability to 

take part in the experiment. This initial pilot study was carried out with 

a rather special 'purpose sample' and consequently there are limitations 

on the generalisability of the results. Their age range was 11-59 years 

most being late teens to early twenties. There was some variability in 

subjects' prior knowledge of knots. Viewing was binocular and all 

subjects admitted to normal visual acuity and wore correcting lenses for 

distance of viewing if this was usual. Eleven (8 male, 3 female) were 

undergraduates or postgraduates in mathematics, five (3 male, 2 female) 

were undergraduates or postgraduates in psychology, two (male) were 

school children age 11 and 12 years who were in the top set in 

mathematics and three others (1 male, 2 female) were postgraduates from 

the background of social sciences. 

6.3 Stimuli 

6.3.1 Motivation for choosing knots as the objects in the tasks 

The stimuli used were knots, chosen for the fact that most people are 

familiar with their properties and for the existence of a developed 

mathematical formalism used to describe them2. The study adopted the 

spirit and methodology of Shepard a:n.d Metzler (1971) and related 

research experiments differing primarily in the employment of knots, 

deformable rather than rigid structures. Shepard and Metzler's3 (1971) 3-

D structures were always the same topologically although not necessarily 

2 An introduction to the mathematical theory of knots and a description of some of their 

invariant properties is given in Chapter 5 

3 See Chapter 3 Figure 3.1 for an·example 
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the same in shape. When Shepard and Metzler's shapes were not 

identical they were mirror images of each other. In this study the knot 

pairs chosen were not necessarily the same topologically but were always 

the same in outline shape and number of crossings. 

6.3.2 The nature of the tasks 

Stimuli were presented either as (i) a pair of knots; (ii) a pair of unknots; 

or (iii) a knot and an unknot. 

A knot is defined as a closed loop configured such that no matter 

what transformations are applied to it, some interlacing remains; it is 

embedded in 3-D space. One of the characteristics by which knots can be 

described is by the minimum number of crossings which the knot can 

have. This is called the crossing number of a knot. 

An unknot is defined as a closed loop configured such that it can 

be reduced to a simple closed loop with no crossings. In other words, 

crossings can be removed by sliding or twisting the rope. For practical 

purposes, knots or unknots in this study were restricted to 3, 4 or 5 

crossings and stimulus pairs always shared the same number of 

crossings. Knots were depicted as made of rope with the ends joined to 

form a closed loop. In the experiment the number of crossings (i.e. the 

number of times the rope passes over itself) either (i) cannot be reduced 

at all, that is the knot shows its true crossing number; or (ii) reduces to 

zero, if the figure is an unknot. 

The two diagrams in Figure 6.2 look very similar but depict two 

different objects. The one on the left is a true knot with crossing number 

4 whilst the one on the right can be reduced to a simple loop and is an 

unknot with crossing number zero. 

In order for the pair to be different, that is not the same 

topologically, one of them has to be the unknot w ith all crossings 

removable whilst the other is the true knot. In order for the pair to be 

the same, either both of them must be unknots with all crossings 
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removable or both of them must be true knots. 

Figure 6.2 A knot and an unknot 

The knot diagrams were viewed on a computer monitor some 50 

ems from the subjects and subtended an angle between 6° and 6.5° at the 

eye. A knot might be placed alongside an identical knot or a similar 

shaped unknot. To explore the effect of reorienting the stimuli some 

orientation difference was introduced, thus providing a useful 

connection to previous research. A typical pair is shown in Figure 6.3. 

The knot shapes used in the study were restricted to 3, 4 or 5 crossings. 

The 3 and 4 crossing shapes are actually different representations (shapes) 

of the same knot, the trefoil knot in two forms and the figure-eight knot 

in two forms. The two 5 crossing knot shapes are actually different two 

different knots4 . Figure 6.4 shows all the knot types used in this study. 

4 The fact that only one 3-crossing knot and only one 4 crossing knot exists whereas 2 knots 

with crossing number 5 exist was explained in Chapter 5 
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Are these two knots the same? 

Yes I 

Figure 6.3. Example of a stimulus pair with rotation 

Orientation differences within each pair were 0°, 90°, 180 ° or 270°. 

Overall the same 126 pairs were presented in a different randomised 

order for each subject. The 126 items consisted of 21 items for each of the 

6 knot shapes used. For each knot shape the 21 items were made up as 

follows: 

knot / knot, four items with relative rotations 0°, 90°, 180° or 270°; 

unknot/ unknot, four items with relative rotations 0°, 90°, 180° or 270°; 

knot/ unknot thirteen out of the possible sixteen combinations of 

orientations for different pairs of knot with an unknot. 

Three out of the four possibilities with 0° relative rotation were 

removed so as to reduce the number of less complex items which 

required little or no mental manipulation. These orientation 

possibilities are explained below. Table 6.1 lists the pair combinations. 
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Crossing number 3 (same knots but in different shapes) 

Shape 1: Trefoil Shape 2 

Crossing number 4 (same knots but in different shapes) 

Shape 3: Figure-eight 

Crossing number 5 (different knots) 

Shape 5: Pentoil 

Shape4 

Shape 6 

Figure 6.4 The six knot shapes used in the study 
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TABLE 6.1 

Pair combinations of knots 

LEFT KNOT 0 RIGHT KNOT 0 

LEFT KNOT 0 RIGHT KNOT 90 

LEFT KNOT 0 RIGHT KNOT 180 

LEFT KNOT 0 RIGHT KNOT 270 

LEFTunKNOT 0 RIGHT unKNOT 0 

LEFTunKNOT 0 RIGHT unKNOT 90 

LEFTunKNOT 0 RIGHT unKNOT 180 

LEFTunKNOT 0 RIGHT unKNOT 270 

LEFT KNOT 0 RIGHT unKNOT 0 

LEFT KNOT 0 RIGHT unKNOT 90 

LEFT KNOT 0 RIGHT unKNOT 180 

LEFT KNOT 0 RIGHT unKNOT 270 

LEFT KNOT 90 RIGHT unKNOT 0 

LEFT KNOT 90 RIGHT unKNOT 180 

LEFT KNOT 90 RIGHT unKNOT 270 

LEFT KNOT 180 RIGHT unKNOT 0 

LEFT KNOT 180 RIGHT unKNOT 90 

LEFT KNOT 180 RIGHT unKNOT 270 

LEFT KNOT 270 RIGHT unKNOT 0 

LEFT KNOT 270 RIGHT unKNOT 90 

LEFT KNOT 270 RIGHT unKNOT 180 

This list of rotated and non rotated items was carefully planned so 

as to take account of all possible pair combinations. The combinations of 

'same' objects, that is a knot with a knot or an unknot with an unknot, 

gave rise to fewer possibilities since for each rotation used, say a 90° 

rotation, either the knot on the left or the knot on the right could be 

rotated but only one of these options would produce a distinct pair. For a 

knot with an unknot, either could be rotated through 90° and paired with 

all other possibilities. This gives rise to sixteen possible oriented pairs 

four of which are pairs with 0° relative rotation. It was decided that the 

inclusion of all of these pairs which had no relative orientation 

difference and were in essence posing the same task would be 

unnecessary and non-productive, as mentioned above. The number of 

these 'knot / unknot' pairs was reduced and three out of the four which 

had no relative rotation were excluded leaving just one 'different' pair _ 
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with 0° rotation difference. 

6.4 Hypothesis 

The obvious tentative hypothesis which was posited was that the more 

complex the task the longer would be the time taken to solve it. 

Complexity was defined by (i) the number of crossings present - the 

higher the number of crossings the more complex the knot, and (ii) the 

amount of rotation - the more rotation the more complex the task. 

Consequently, it was predicted (i) that the larger the number of crossings 

of the rope in a knot diagram the longer would be the decision time 

regarding its relationship to other knot diagrams; 

and (ii) with regard to rotation, the hypothesis aligned with previous 

research findings in proposing that the more relative rotation within the 

pair then the longer would be the decision time. 

The influence of strategies was investigated, however, the 

prediction was made that mental rotation would not be a prevalent 

strategy. 

6.5 Procedure 

Each subject was read a protocol (see Appendix II) explaining the 

experimental task and was shown a demonstration illustrating the 

manipulation of an actual closed loop knot (see Appendix (II). During 

the experiment, subjects were required to indicate if the stimulus pair 

were the same or different, the time taken to do this being recorded and 

termed 'decision time'. Each subject completed a practice session of 8 

stimulus pairs which were checked for accuracy of response. When 

subjects indicated complete understanding of the tasks and of the 

experimental procedure then the data collection commenced. 

Stimuli were presented on a monitor using a 'HyperCard' stack 

with automatic recording of decision times. Cards of stimulus pairs were 

presented alternately with a ' resting' card. The stimulus card contained 
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• pairs of knots, unknots or one of each, 

• the question 'Are these knots the same?' and 

• boxes labelled 'YES' and 'NO'. 

The labelling of the boxes was randomise~ to avoid a laterality bias. An 

example of a stimulus card was shown earlier in Figure 6.3. 

The resting card contained an empty box and the request 'Click 

here when you are ready to go on'. An arrow, the position of which was 

adjustable with movement of the mouse, was continuously present on 

every card. Succeeding stimulus pairs could only be initiated when the 

arrow was returned to the empty box in the middle of the resting card 

and the mouse button depressed. The resting card is shown in Figure 6.5. 

Stimulus presentation was thus ad libitum. The subject's decision time 

was measured by the time taken to move the arrow to the YES or NO 

box. The initial position of the arrow on the stimulus card was 

equidistant from each box. 

Click on the little button below when you are ready 

to proceed 

0 

Figure 6.5 Resting card 

Upon completion of all 126 stimulus pairs, subjects were given a 
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short debriefing interview during which their thinking was probed and 

they were encouraged to report the strategy or strategies which they 

considered they employed in making decisions. 

6.6 Results 

6.6.1 Strategies 

Subjects reported 5 basic strategies for differentiating between the knots 

in a pair: rotation, unravelling, shape recognition, matching crossings 

and identifying sequences of crossings, the most frequently used strategy 

being unravelling. These strategies are defined as follows: 

Rotation 
The .mental rotation of the whole of the image of one of the pair to 

match the other. This is equivalent to the method used in the m ental 

rotation of rigid objects. 

Unra velling 
Unravelling the (un)knot systematically to remove crossings. For 

unknots, subjects notice 'superfluous' crossings and manipulate the 

image so as to remove crossings and eventually arrive at the simple loop. 

Shape recognition 

Recognition of a knot or unknot by its global shape. Subjects become 

familiar with the knot shape and learn to recognise the knot and identify 

it generically. 

Matching crossings 
Directly matching crossings according to their relative positions in each 

of the stimulus pair. Subjects may encode a verbal description or a 

perceptual organisation of information such as "The crossing at the 'base' 

has the rope on top as it goes down from right to left". 
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Identifying sequences of crossings 

Identifying sequences of crossings from the relative ordering of 'under' 

and 'over' elements in a configuration. Subjects may notice that the 

crossings in one figure have a sequence over, under, over, under, . 

whereas the other of the pair has a different sequence. 

. . ' 

All subjects reported reviewing their strategies during the course 

of the experiment and many considered that they changed strategies, the 

most common switch of strategy being to adopt the unravelling strategy. 

Although some subjects employed rotation initially if necessary, 

unravelling was reported as being more frequently employed as the 

experiment progressed. Three subjects reported searching for a 'foolproof 

strategy', thus rejecting the rotation strategy as they considered it to be 

more error prone. It should be noted that the order of the tasks was 

randomised at the start of each experiment, thus no particular stimulus 

pairs were affected by the changes of strategy discussed here. 

6.6.2 Data analysis 

The distribution of decision times was positively skewed with a median 

of 7.7 seconds and a mean of 10.0 secondsS. Figure 6.6 shows the 

frequency distribution of the raw data and Figure 6.7 shows a box plot of 

these data. 

For the purposes of the data analysis, a natural log transformation 

of decision time was used so as to achieve a good approximation to a 

normal distribution. A log transformation is effective in symmetrising a 

skewed distribution since it spreads out small values and compresses 

large ones. In order to carry out analysis of variance and employ an F 

test, several assumptions are made about the distribution of the data and 

the validity of these assumptions must be checked. When the necessary 

assumptions are upheld, the F test is is the most effective test in rejecting 

the null hypothesis when it is false. On testing these data for normality, 

5 Since the data is skewed, standard deviation is not helpful here. Standard deviations 

for the natural logarithm of the answer times (log t) are reported over leaf. 
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and for homogeneity of variance (homoscedasticity) across the groups, in 

both cases p values of 0.001 were obtained for the null hypothesis. The 

other requirements: that the observations are independent, that they are 

measured on a number scale and that the effects of the variables are 

additive, are also met for the data analysed here. The mean for the 

normalised data is 2.11 with a median of 2.04 and standard deviation of 

0.59. Figure 6.8 shows the frequency distribution of the transformed data 

superimposed onto the normal curve. The boxplot is shown beneath it. 
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Figure 6.6 Frequency distribution of decision times 
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The responses were categorised by 

(i) number of crossings (3, 4 or 5), 

(ii) degree of relative rotation (0°, 90°, 180° or 270°), 

(iii) topological status of the ·pair combination (knot or unknot), 

and 

(iv) shape (knot types shown in Figure 6.4). 

The two dependent variables were decision time and error rate. 

An analysis of variance was carried out (using log decision time, so as to 

make the data appropriate for this procedure) and revealed several 

significant effects which are discussed below. The first part of the data 

analysis involved a one way analysis of variance to see which, if any, of 

the independent variables affected the decision time or error rate. !he 

main aim of this first experiment was exploratory to see what effects may 

be occurring and what aspects are adding complexity to the tasks. A more 

in depth data analysis using two way analysis of variance to investigate 

interactions between variables will be carried out and r~ported on the 

larger data set in the second study. 

Knot or Unknot pairs? 

Decision times were longer for knot pairs than for unknot pairs. In fact, 

unknot pairs had the shortest decision times of the three categories, 

shorter than the combination of a knot with an unknot. The difference 

in decision times between the three categories (unknot / unknot; 

unknot / knot and knot/ knot) was significant [F(2,2643) = 39.67, p <0.001)]. 

The mean times are shown in Table 6.2. 

The mean of log t for all data was 2.11 with a standard deviation of 

0.59 but particular values for standard deviations for groups of the data 

varied greatly and ranged from 0.45 to 0.9. The tightest group was for 

unknot/ unknot pairs with zero rotation. This group had a mean for log 

t = 1.89 and standard deviation of 0.45. The broadest ranging group was 

the group of incorrect responses for the unknot / unknot pairs where log t 

= 2.13 with a standard deviation of 0.9. 
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Mean decision times 

Mean decision times (all values in seconds) 

All data Correct Incorrect oo go o 

Chapter 6 

180° 270° I 
n=2646 n=2446 n=180 n=378 n=756 n=756 n=756 · 

10.3 8 .9 9 .8 9.8 10.o l I Knot/unknot 9.7 9.6 

J Unknot/unknot 8.6 8.3 12.8 7 .4 9.7 9 .8 8 .0 : 

12 .2 11 . 7 21.2 9 .3 11 .6 16.0 12 .1 I Knot/ knot 

10verall 10 .0 9.8 12.5 8.6 10.0 10. 7 10.0 , 

Note: n = total number of trials in each category 

Orientation differences 

Greater orientation differences produced longer decision times. There 

was no significant difference between 90° and 270° rotations and these 

were combined into one group. Significant differences in mean decision 

times between the three resulting categories were found [F(2,2643) = 6.93, 

p <0.001]. Decision times were fastest for 0° rotation and slowest for 180° 

and the overall means were 8.6 secs (0°), 10.0 secs (90° and 270°) and 10.7 

secs (180°). See Table 6.3. 

TABLE 6.3 

Mean decision times by knot type and rotation 

Mean decision times (all values in seconds) 

Shape 6 1 Rotation All types Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 

Jo0 

n=2646 n=441 n=441 n=441 n=441 n=441 n=441 J 

8.6 9.6 8.1 6 .6 9 .4 8 .9 8 .8 , 

190° & 270° 10.0 10.3 10.2 6 .6 12.2 9 .0 11. 6 j 

' 180° 10. 7 11 . 1 13.2 7.1 10.9 10 .0 11 .8 i 
IAII rot's 10.0 10.4 10.8 6.8 11. 5 9.3 11 .2 

Errors 

There were 180 errors out of 2646 responses. The overall error rate6 was 

thus 6.8%. The mean decision time for all errors was 12.5 seconds (see 

6 In all tables the error rate is given as the percentage of incorrect responses out of the 

total number of responses (126) 
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Table 6.4) in comparison with 9.8 secs for correct responses (see Table 6.2). 

Incorrect responses were associated with longer decision times for pairs 

which were the same, increasing with rotation [F(17, 2628) = 9.18, p < 

0.0001]. 

TABLE 6.4 

Decision times for errors (6.8% of all data) 

I Mean decision times (all values in seconds) 

I Rotation 

I 
All errors oo 90 °/270° 180° 

n=180 n=11 n=97 n=72 1 

I Knot/unknot 10.3 8.0 11 .3 8.7 1 
I 

I Unknot/unknot 12.8 6.3 13.4 13 .9 1 

Knot/knot 21 .2 4 .7 10 .5 24.6 1 

I Overall 12.5 6 .8 11 . 7 14.5 1 

There was a higher error rate for 180° rotation with 9.5% of items 

involving 180° rotation being answered incorrectly compared to 6.8% 

overall (see Table 6.5). The variation in the occurrence of errors through 

all knot types is shown in Table 6.5. 

TABLE 6.5 

Percentage of errors by knot type and rotation 

Error rate - incorrect responses as a % of the total responses 

J Rotation Sj,ape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 Al l types 

n=36 n=46 n=11 n=35 n=21 n=31 n=180 1 

100 3.2 4.8 1 .6 1.6 3.2 3.2 2.9 1 

90° & 270° 7.5 9 .5 0.8 8.3 3.6 8 .7 6.4 

1180° 11 .9 15.0 6 .3 10.3 7.9 5 .6 9 .5 
I 

Ove rall 8.1 10.4 2.5 7.9 4 .8 7.0 6.8 J 

Crossing number and knot type 

Knots with higher numbers of crossings were not found to have longer 

decision times. No significant difference was found between three 

crossings and five crossings [F(l ,1763) = 1.66, p = 0.198] . The mean 

decision times were 10.6 seconds (3 crossings), 9.1 seconds (4 crossings) 

and 10.3 seconds (5 crossings). 
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There was a significant difference in decision time between knot 

types [F(5,2640) = 38.59, p < 0.0001] with one knot shape in particular 

requiring shorter decision times than others. This was the figure-eight 

knot (knot shape 3), identified by subjects as particularly easy to recognise, 

with a mean decision time of 6.8 seconds in comparison with the overall 

mean decision time of 10.0 seconds. This knot also produced the fewest 

errors, see Table 6.5. The longest mean decision time occurred for Shape 

4, which took 11.5 seconds, see Table 6.3. 

Individual subject variation 

The robustness of the results is demonstrated by considering the 

variation in decision times of individual subjects across knot and unknot 

pair types. Logie (1995) has made the point that most research reports 

upon the patterns of data over all subjects and he suggests that, when 

treated individually, the subjects' personal results may not necessarily 

demonstrate the found effects for the data overall. This is not the case 

here. For each item processed by a subject, the difference between the 

decision time and the subject's overall mean time was calculated. Mean

adjusted decision times were then sorted by knot and unknot pair type 

and the mean deviation for each pairing plotted in rank order from 

fastest to slowest subject. The ranked deviations from mean decision 

times for different subjects for unknot pairs, knot pairs and knot/ unknot 

pairs are illustrated in Figure 6.9. 

It was found that the time taken to make a decision on a 

knot / unknot pair is close to the subject's overall mean decision time. 

Moreover, whilst the figure confirms that knot/ knot pairs take longer 

than unknot / unknot pairs, it shows that the difference in log-times 

remains almost constant from the slowest subject to the fastest. 
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______,_,,.__ Knot/ Knot 

......... ......... Knot/Unknot 

-----· ,____ Unknot/U nknot 

Fig 6.9 Graph showing ranked individual times for different pair types 

Another of the effects, that Shape 3 is easier to process and results 

m shorter decision times than any other knot type, is also clearly 

demonstrated across subjects. For every subject the shortest m ean 

decision time was for Shape 3. 

The rotation effect is not so widespread across all individuals as 

only 13 out of the 21 subjects took longer for 180° rotations than 0° or 90° 

and 270°. 

The data for errors, when taken subject by subject, was not 

sufficient for analysis7 and no inference could be made. 

7 These ranged from a minimum of 1 error (3 subjects)to a maximum of 31 errors (1 subject) 

out of the total of 126 items with a mean of 9 errors per subject. 
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Learning curve 

The time taken for subjects to make a decision shortened on average as 

the experiment progressed. In other words the mere act of doing the 

tasks enabled them to learn how to solve them more easily. A main 

effect plot is shown in Figure 6. 10 which plots the mean times for each 

item in order from 1 to 126. Th e order was a different random order each 

time and so all knot types, pair types and rotations are randomly 

distributed throughout the item numbers. This has the effect of making 

a large spread but the overall trend is obvious. A linear regression was 

applied to the means and showed a negative time gradient of 0. 00423 

with a predicted shortening of decision time on average of 1.7 seconds. 

Effect of Order on Log decision time 
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Figure 6.10 Graph showing how decision times shorten as the 

experiment progresses 
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6.7 Summary of findings of the pilot study 

The hypothesis that stimulus pairs of knots with higher numbers of 

crossings up to five would yield longer decision times was not supported. 

A linear relationship was not found between decision times and rotation. 

The increase in decision time brought about by a 90° rotation was much 

greater than the increase in decision time brought about by increasing the 

rotation from 90° to 180°, in some cases the latter increase in rotation 

had a zero effect. We may look to a number of factors to explain the 

findings reported here - the presence of unknots, the symmetry 

considerations, the shape of the knot, or the extent to which the tasks are 

performed as 3-D rotations. Indeed, perhaps no single factor is 

responsible. A consideration of these factors follows. 

6.7.1 Knot or unknot pairs 

Unknot pairs show the fastest decision times with knot pairs the slowest. 

Subjects reported attempting to unravel mentally a knot or unknot 

much of the time when making decisions. With unknots, the 

progressive mental removal of crossings would occur until only a simple 

loop remained. With knot pairs the processing would be expected to take 

longer since, after an unproductive attempt to unravel a knot mentally, 

an alternative strategy would have to be employed. This could possibly 

be mental rotation of the whole shape or alternatively a matching of 

crossings one by one would occur requiring subjects to process and 

remember a series of crossing comparisons sometimes involving 

changes in orientation. This would appear to be a more formidable task 

than the simpler outcome following the processing of an unknot. 

6.7.2 Orientation differences 

Lowest decision times and error rates were recorded for all stimulus pairs 

at 0° of rotation. Decision times were essentially the same for 90° and 

270° rotations. Knot pairs with rotation to 180° took significantly longer 

for Shape 2 than those to the intermediate 90° and 270° positions 

suggesting perhaps that this was the most similar result to those obtained 
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by Shepard and Metzler (1971) and Shepard and Feng (1972). 

Although mental rotation was one reported strategy used by 

subjects in decision making, no linear relationship between decision 

time and degree of rotation was found in this pilot study. The data show 

that for unknot/unknot pairs and for unknot / knot pairs there is no 

evidence to suggest mental rotation as a strategy. Other researchers, 

Suzuki and Nakata (1988), when investigating the effect of image size, 

have also found that mental rotation cannot be asserted to be a strategy 

for some tasks; they found no evidence in their results to support 

rotation as a solution strategy for 'different' pairs of figures like Shepard 

and Metzler's. 

Rotation of knot figures does require additional processing time 

and _perhaps the use of a range of strategies. Five strategies were reported 

as being used, oniy one of which involved mental rotation of the image. 

This is in contrast to Shepard and Metzler's (1971) results where mental 

rotation was claimed to be the only strategy used by their subjects. 

6.7.3 Deformable compared to non-deformable 

There are other possibilities which may be responsible for the lack of a 

uniform rotation gradient here. Firstly, the stimuli represented in the 

current study are deformable with the nature and relative position of 

crossings comprising the only constraints in confirming the knottedness, 

or otherwise, of the figure. The polyhedral figures, however, are 

completely rigid and non-deformable whilst the folding paper figures can 

only be deformed along adjoining sides of the squares; such figures are 

then only partially deformable or semi-rigid in nature. Specific strategies 

are required for rigid objects compared to a range of possible strategies for 

objects with easy deformability, mental rotation being only partially 

effective in the latter case. Fewer factors were needed in decision making 

for polyhedral figures and paper folding than for knots. In the first case 

only rotation within the plane or in 3-D was required for essentially the 

same type of figure . In the second case, only successive folding along 
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adjoining edges of the squares was required. In the case of knots and 

unknots a number of factors were present for consideration, differences 

in the number, nature and relative position of crossings, the overall 

shape of the stimulus and its figural symmetry. Hence it seems clearly a 

much more complex task. 

6.7.4 Knot types 

Shape 3 evoked faster decision times than other knots and was most 

easily recognised. This is shown both by anecdotal report and by shortest 

decision times, some subjects report that it had a pronounced ' right way 

up'. 

In trying to explain the short decision times for this knot we may 

look to Kosslyn's (1994) theory of a 'foundation part' of an image and the 

stored concomitant spatial relations with other parts of the global image. 

This conception may be helpful to subjects in orienting the final image 

after mental rotation. Some knot types have obvious foundation parts 

and the presence of such a characteristic, as in Shape 3 with its 'top loop', 

may be a useful device in matching images. 

Alternatively, Reisberg and Chambers (1991) report a strategy of 

(verbally) reassigning the 'top' of an image for rotation tasks and that this 

method is more effective than rotation for recalling and reinterpreting 

the image. It is also possible that the strong bilateral symmetry in the 

outline shape of Shape 3, a symmetry prevalent in our natural and man

made environment, may be a factor in the ease with which subjects can 

memorise and manipulate such shapes. 

The stated hypothesis would have predicted Knots 3 and 4 to show 

similar decision times since they shared the same crossing numbers, 

however, this was not the case. In fact Shape 3 showed the shortest 

decision times of all the six types (6.8 seconds) and Shape 4 the longest 

(11.5 seconds). 
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6.7.5 Strategies and subjects 

Overall, subjects in this study reported five major strategies which were 

employed to reach decisions. Personal means were found to vary 

considerably, the shortest being 4.8 seconds with standard deviation of 1.7 

and the longest being 17.2 seconds with standard deviation 14.3. Logie's 

(1995) point that most research reports upon the patterns of data over all 

subjects and that, when treated individually, the subjects' personal 

results may not necessarily demonstrate the found effects for the data 

overall was investigated and found not to be the case here. As already 

noted our data show that the significant effects are present within 

subjects. Some subjects are slower than others, and some are more error 

prone, but they are all affected by the factors reported here. 

6.7.6 Verbal or spatial? 

A major consideration in the mental representation of any problem 

solving process refers to the roles of verbal (analytical) or spatial 

(analogue) thinking and the mixing of the two. Clearly the strategies 

reported above would support both verbal and spatial roles. It is 

reasonable to assume that the strategies of shape recognition and rotation 

would be primarily spatial in nature. Unravelling, could be viewed as an 

admixture of the two, whereas in viewing such local aspects of the 

figures as positions and sequences of crossings it _ seems likely that 

counting and labelling would more likely be verbal in nature. 

The comparative complexity of 2-D and 3-D object rotations has 

been explored by Jolicoeur, Regehr, Smith & Smith (1985) who report 

that rotation of 3-D objects takes longer than rotation of the same 

outlines when portrayed as 2-D images. Knot images could be considered 

to be 2-D in nature with a verbal addendum to describe crossings and/ or 

deformability. Alternatively, the images can be said to have a surface 

representation (2-D image) and a deep representation (encoded structural 

information) as described by Kosslyn & Shwartz (1977). 

The relative efficacy of verbal versus pictorial strategies has been 
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studied by Brandimonte, Hitch and Bishop (1992). For their tasks, 

involving drawings of familiar objects, they found that verbal strategies 

were often preferred and were commonly used even when these 

strategies were ineffective. Jolicoeur et al. (1985, page 101) ask the 

question 'Are different processes at work in the mental rotation of two

dimensional and three-dimensional representations?' They note that 

the complex transformations taking place when a 3-D shape is rotated 

only occur when the rotation is out of the image plane. When 2-D 

stimuli are involved rotations are usually in the image plane. For the 

knot tasks the rotations are certainly in the image plane but the images 

have both a surface representation and a deep (structural) representation. 

It is not confirmed that the Kosslyn and Shwartz (1977) model is used in 

any of the strategies described by the subjects in performing these tasks 

and neither is it established here which are the most efficient strategies. 

6.8 Concluding remarks 

What the research seems to show is that mental rotation is not the most 

efficient strategy for these tasks and that perhaps the non-rigid nature of 

the objects provides a route to a more efficient mental manipulation 

strategy. This alternative mental strategy might take the form of 

mentally untwisting, bending or sliding the rope. The fact that 

unravelling was reported to be used more frequently as the experiment 

progressed and also that unknot pairs had shortest decision times 

support this. 

A number of major factors seem to be involved in these tasks: 

pattern recognition at a global and local level, prior knowledge of knots 

and the types of strategies employed, and the influence of verbal and 

spatial thinking. The next phase of the study was planned so as to find 

out more about these strategies. 

An exploration of subjects' learning of strategies and changes of 

strategy as they carried out the tasks was needed as well as an inquiry into 

how the subjects learned to do the tasks. Also of interest was whether. 
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subjects with expertise in language used different strategies from the 

mathematicians. This qualitative part of the research is described in 

Chapter 8. 

In addition, one must ask the questions 'Can the results be 

replicated?' and 'Are the results reliable? ' . These further questions are 

~ddressed in the second study by means of a modified set of tasks. The 

test items were combined and reduced and a larger sample size for the 

experiment was sought. This second experiment is described in Chapter 

7. 
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Chapter 7 

The second study 

7.1 Methodology 

The first experiment showed that valuable results could be collected and 

seemingly . no major methodological problems had been found. All 

subjects had completed all the tasks and error rates were relatively low 

(7.8%). The study uncovered some interesting results and one of the 

hypotheses, that relative rotation within a pair caused an increase in 

decision time, was confirmed. Furthermore the results showed that 

there was no significant difference between relative rotations of 90° and 

270°. 

This similarity in answer times for 90° and 270°1 rotations was not 

a surprising result given that subjects could be expected to treat these as 

different directions of the same rotation, that is 90° anti-clockwise or 

clockwise, rather than as increased rotation in a clockwise direction. It 

was likely that, where mental rotation was the employed . strategy, 

subjects could process both directions of rotation equally and that a 270° 

rotation was treated as a 90° rotation in the opposite direction. Previous 

research such as Cooper and Shepard (1973), Tarr and Pinker (1989) 

assumed that transformations took the shortest way around to the 

upright. 

Taking into consideration the results of the pilot study, a second 

experiment was devised which took into account the result for 90° and 

1 The lack of a significant difference between 90° and 270° suggested either that a 270° 

rotation was the same in terms of complexity as a 90° rotation or that different directions 

were used mentally and that the direction of rotation was immaterial. It is likely that 

the latter is true. 
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270° rotations by condensing these into one category 90° . As a result, a 

more balanced set of knot/unknot and same/different items was devised. 

It was also useful to be able to reduce the demand made upon 

subjects carrying out the experiment. It was essential to maintain the full 

concentration of subjects throughout the performance of the tasks. By 

reducing the number of items and thus shortening the period of time 

required for subjects to complete the tasks it was also possible to secure 

the help of a larger number of postgraduate volunteers. It has been noted 

(Christensen (1988, page 133) that the degree of commitment of subjects 

has a great effect on the reliability of results. It was essential to recruit 

subjects who would take the experiment seriously and maintain their 

concentration and commitment throughout the experiment. In the pilot 

study the time taken for subjects to complete the experiment, not 

including the time taken for the follow up interview, ranged between 25 

minutes and 45 minutes, a considerable commitment of time and 

concentration from subjects. Indeed all had shown total commitment to 

the importance of accurate data collection for the experiment. It was 

anticipated that the. second study should take subjects no longer than half 

an hour. 

Details of the items used in the second experiment are given in 

section 7.3. The four independent variables under experimental control 

were as before: the number of crossings, degree of rotation, topological 

status (knot or unknot), and knot shape. The design of this second 

experiment was essentially the same as for the pilot study in that stimuli 

were presented either as a pair of knots, a pair of unknots, or a knot and 

an unknot, the main difference being that a different selection of pairs 

was used. As explained above, orientation differences within each pair 

were now limited to 0°, 90°, 180°and the number of items was reduced to 

72 instead of the original 126. 

The main aim of performing a second experiment was to replicate 

the results with a larger and different group and thus confirm the 

page 173 



Chapter 7 

reliability of this type of test in identifying complexity factors of spatial 

tasks. A further aim was to investigate different groups of subjects from 

different educational backgrounds and different aptitudes. As the effects 

of different kinds of thinking and/ or past experience of spatial tasks was 

of interest, a further research question was 'Would the mathematicians 

necessarily be better spatial thinkers? 'Better' is measured here by speed 

and also by accuracy. 

Individual subject variation had been noted in the pilot study and, 

whereas every subject can be expected to have their own individual 

abilities and weaknesses, the technical and educational background of 

subjects was expected to have an effect. Much research has been carried 

out to identify the differences in spatial skills between men and women 

and it was decided also to explore this aspect for these more unusual 

spatial tasks. 

The strategies which had been identified in the pilot study seemed, 

in most cases, to be refined and improved during the course of the tasks 

to the extent that subjects developed a spatial dexterity. The graph in 

Chapter 6 which illustrated this learning effect was Figure 6.8. Another 

objective was to confirm this effect for a different and larger set of 

subjects. The question to be addressed was 'Could this learning be 

repeated with a different set of subjects and a shorter test with a reduced 

set of test items?' 

7.2 Subjects 

Forty-eight subjects (33 male and 15 female) who were in the age range 21 

to 45 were tested and all had a background of higher education. Subjects 

were drawn from different sections of the University of Wales Bangor, 

most (40) were postgraduates studying to become secondary school 

teachers of mathematics or science. The modal age was 22 although five 

were mature students. Two smaller groups were tested, four students 

from the final year of the B. Ed. course with a literature emphasis and 

four computer scientists who were working on a multimedia research 
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project and who were trained in either programming or design. The 

latter group were predicted to have above average spatial skills. The 

sample thus covered a variety of aptitudes although it was not 

representative of the general population as it was restricted to 

individuals who were in, or had been through, higher education. 

7.3 Stimuli 

Overall, the same 72 pairs of knots or unknots were presented in a 

different randomised order for each subject. The 72 items consisted of 12 

items for each of the 6 knot types used. These were made up as follows: 

knot / knot, three items with relative rotations 0°, 90°, or 180° ; 

unknot/unknot, three items with rotations 0°, 90°, or 180° (the latter 

groups making up six 'same' pairs); and 

knot/ unknot orientations, six combinations of 'different' pairs. 

These combinations gave a balanced number of items for each 

group and also provided a representative set of rotations. Table 7.1 lists 

all the pair combinations2. 

In both groups of six pairs there are two pairs with zero relative 

rotation, two pairs with 90° relative rotation and two with 180° relative 

rotation, making 12 pairs in all for each knot shape. This is more 

balanced than in the pilot study which had 21 items in all for each knot 

shape, 3 items for each with 0° rotation and 6 items each with 90°, 180° 

and 270° 

2 Note: The items on the left hand side of the table did not always appear on the left 

hand side of the cards. Some randomising was introduced with regard to position of 

unknots and orientation. 
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TABLE 7.1 

Pair combinations used in second experiment 

LEFT RIGHT NUMBER of 

I 
RELATIVE 
ROTATION observation 

LEFT KNOT 0 

LEFT KNOT 0 

LEFT KNOT 0 

LEFT unKNOT 0 

LEFT unKNOT 0 

LEFT unKNOT 0 

RIGHT KNOT 0 

RIGHT KNOT 9 0 

RIGHT KNOT 1 8 0 

RIGHT unKNOT 0 

RIGHT unKNOT 9 0 

RIGHT unKNOT 1 8 0 

LEFTKNOT 

LEFT KNOT 

LEFT KNOT 

0 RIGHT unKNOT 0 

LEFT KNOT 

LEFT KNOT 

LEFT KNOT 

7.4 Hypotheses 

0 RIGHT unKNOT 9 0 

0 RIGHT unKNOT 1 8 0 

9 0 RIGHT unKNOT 1 8 0 

1 8 0 RIGHT unKNOT O 
1
1 

2 7 0 RIGHT unKNOT 2 7 0 

90 

180 

ol 
90i 

180 

90 

18il 

276 
276 
276 

276 
276 
276 

276 
276 

276 

276 
276 
276 

Given the results from the pilot study, it was not expected that higher 

crossing numbers would result in longer decision times, but that the four 

crossing knot, shape 3, would continue to show the shortest decision 

times. Knot/knot pairs were expected to require longer decision times as 

were pairs with some relative rotation. 

A further hypothesis was that there would be different interactions 

between knot shapes and pair type or knot shapes and rotation in that 

some combinations would result in longer decision times than others, 

these differing rates thereby implying different levels of complexity or 

_differing methods of solution. For example, if some knot pairs are more 

affected by rotation to varying degrees than others, this might suggest 

mental rotation being used as a strategy for those pairs. Deeper analysis 

of the interaction between pair type and knot shape and between rotation 

and knot shape was expected to show statistically significant differences 

and that these differences would show that mental rotation was not a 
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preferred strategy. 

Finally, the different groups of subjects were expected to produce 

different decision times and it was predicted that the language specialists 

would require longer times. The overall effect of this would predict a 

longer mean decision time for the new sample than for the sample used 

in the pilot study. 

7.5 Procedure 

Each subject was read the protocol (see Appendix II) explaining the 

experimental task and was shown a demonstration illustrating the 

manipulation of an actual closed loop knot. Subjects were informed that 

they must make a decision about each of the stimulus pairs and that the 

time taken to do this would be recorded. Before the start of the 

experiment each subject completed a practice session of eight stimulus 

pairs which were checked for accuracy of response. As before, when 

subjects indicated complete understanding of the tasks and the 

experimental procedure, then the test commenced and data collection 

was recorded automatically. 

7.6 Results3 

As with the pilot study the distribution of decision times was positively 

skewed with a median of 8.6 seconds and a mean of 11.4 seconds 

(compared to median of 7.7 seconds and a mean of 10.0 seconds in the 

pilot study). 

3 For much of the analysis reported here, in order to preserve consistency in the cross 

tabulations, data from only 46 out of the 48 subjects (3312 observations) are used. The 

reason for this is that a computer system crash occurred during the course of the 

experiment for two of the subjects and resulted in 12 missing values on restart. However, 

one of these two subjects belonged to the smaller group of language specialists and in order 

to carry out the inter-group analysis, 3444 observations out of the total possible 3456 were 

used· Missing values are noted in Minitab with an asterisk and the package is able to 

function and to carry out the usual statistical techniques whenever values are missing. 
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The subjects in this study had a different profile to the group in the 

pilot study. In the pilot study group 11 out of the 21 were final year 

undergraduates in mathematics or were studying for a PhD in 

mathematics, whereas less than half of the group in the second study had 

a background in mathematics (22 out of 48). This was one reason for 

predicting that the second experimental group would produce a longer 

mean decision time. In addition, the experiment consisted of fewer 

items and hence the opportunity to learn and improve was also reduced. 

A frequency distribution for the data is shown in Figure 7.1. After 

applying a log transformation to the data, the distribution was tested for 

normality and was validated with a p value of less than 0.01 for the null 

hypothesis (see Figure 7.2). The mean log decision time is 2.21 with a 

median of 2.14 and standard deviation 0.63. 
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Figure 7.1 Frequency distribution of the raw data for decision times in 

seconds 

page 178 



Chapter 7 

I 
5 

Figure 7.2 Frequency distribution and boxplot of the transformed data, 

log time 

As before, for the purposes of the data analysis, a natural log 

transformation of decision time was used and the responses were 

categorised by the original four variables, number of crossings (3, 4 or 5), 

degree of relative rotation (0°, 90°or 180°), topological status (knot or 

unknot) of the pair combination, and shape. 

An overview of all the data is illustrated in this introductory 

section. The first comparative graph, Figure 7.3, shows a box plot of log 

decision times for the three possibilities for crossing number. The stated 

hypothesis was that higher crossing numbers would not result in higher 

decision times, but that the four crossing knot, shape 3, would continue 

to show the shortest decision times. It can be seen immediately from 

Figure 7.3 that increase in crossing number is not a factor causing a linear 

increase in decision time, in fact the decision time overall for the 4 
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crossing knots is less than the decision times for either of the other two 

crossing numbers tested. This is mainly due to the effect of Shape 3 the 

figure eight knot, which it will be shown, continues to bring down the 

mean time for the 4 crossing knots as a grouping. 

4 

Q.) 

E 
~ 3 

.3 
2 

3 4 

crossing number 

5 

Figure 7.3 Box plot showing the variation of decision time with crossing 

number 
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Figure 7.4 Histograms showing the distribution of log decision times 

with knot shape 

It can be seen easily from the histograms in Figure 7.44 that knot 

shape 3 has a smaller median decision time than Shape 6. Indeed with 

closer inspection it seems that Shape 3 has the smallest median of all the 

knot shapes 1 to 6. These results indicate that the crossing number of the 

knot should not be considered as a characteristic grouping affecting 

decision times but that the knot shape can be used. What is not 

established as yet is the hierarchy of level of complexity for each of the 

knot shapes. What the results do suggest is that complexity does not 

depend upon the number of crossings in the knot shape. 

From studying the illustration of the data in Figure 7.4 it seems 

that knot shape is an important factor in predicting decision time. The 

4 In all the comparison histograms used in this chapter the frequencies are expressed as a 

percentage so as to aid comparison between groups 

page 181 



Chapter 7 

next variables to consider are rotation and pair type. Figure 7.5 shows the 

histograms for variation in log decision times according to rotation and 

pair type. It appears also that both of these variables are important factors 

in predicting decision time. The stated hypotheses that knot/ knot pairs 

and that pairs with some relative rotation would require longer decision 

times seem to be upheld. 

Answer times by relative rotation and pairtype 
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Figure 7.5. Histograms showing the variation of log decision times with 

rotation and pair type 

There were also two new variables to be investigated in this 

second study, gender and educational background. Figure 7.6 shows the 

histogram for gender and Figure 7.7 shows the histogram for educational 

grouping. No obvious inferences can be drawn from Figure 7.6 but 

Figure 7.7 suggests that computer scientists are the fastest and linguists 

are the slowest at performing the tasks. 
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Figure 7.6 Histogram showing the variation of log decision time 

according to gender 
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Figure 7.7 Histogram showing the variation of log decision time 

according to educational group 
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The two dependent variables were decision time and error rate. 

Graphs illustrating the broad view for the first of these, decision time, 

have been shown in Figures 7.1 to 7.7 and the next few graphs show 

broadly how error rate is affected by the same independent variables, 

rotation, pair type and knot shape. Figure 7.8 shows how the errors are 

distributed over the different relative rotations, for example it can be 

seen that almost 50% of the errors made were made on items involving 

180° rotation. It is interesting to note that although no linear 

relationship was found for increase in decision times with rotation, there 

seems to be a trend for error rate to increase with increased rotation. This 

again confirms the finding in the pilot study. 

Errors by rotation 

50 

40 
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Figure 7.8 Distribution of errors over rotations 

Figure 7.9 shows the distribution of errors according to knot shape .. 
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Shape 3 and 5 seem to show dramatically lower numbers of errors than 

the other knots, with Shape 1 having the highest number of errors. 
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Figure 7.9 Distribution of errors over knot shapes 

There seems also to be a difference in number of errorsS made for 

different . pair types with knot/ unknot pairs causing more errors than the 

other pair types. This is illustrated in Figure 7.10. 

5 Note that there were balanced numbers of 'same' and 'different' pairs in the 

experiment, consequently there were twice as many unknot/ knot pairs as knot/knot or 

unknot / unknot pairs. The data are shown as error rates overall, not as a percentage of the 

errors. 
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I Error rate by pairtype I 
10.00% 

5.00% 

unknot/unknot unknot/knot knot/knot 

Figure 7.10 Error rates for different pair types 

Error rates6 for the different groups are illustrated in Figure 7.11 

and error rates for males and females in Figure 7.12. . 
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Figure 7.11 Error rates for the different groups 

6 In the same way as for pair types, owing to the different numbers of subjects in each of 

the groups, errors are shown as error rates overall, not as a percentage of the number of 

errors made by the group 
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I Error rate by gender I 
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Figure 7.12 Error rates for males and females 

Having looked at the characteristics of the data as a whole, an 

analysis of varianc~ was carried out on the data and, as for the previous 

set of results, the assumptions required for such analysis outlined in 

section 6.6.2 of Chapter 6 were tested for validity. Once again, p values of 

0.001 were found regarding normality and homoscedasticity. Not only 

were several of the significant effects which had been revealed in the 

pilot study confirmed, but in addition some new influences and 

interactions emerged. 

This time, as well as looking for main effects using a one-way 

analysis of variance, a two way analysis of variance was carried out to 

identify any interaction effects. To expla1n the kinds of effects which may 

be happening, if in looking for main effects, rotation is shown in the one 

way analysis of variance to have an effect of adding complexity to the 

tasks this can be investigated over all knot shapes to see if the effect is 

always the same. If, in a similar way, the shape of a knot is shown to 

have some effect on complexity, and it is already known that rotation 

affects complexity, what happens when the two are combined? Are the 
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two effects additive or will there be an interaction effect which alters this 

overall effect of rotation and knot type? What may happen is that one 

knot shape will be more affected by rotation than another, we may find 

that some knot shape 1, for example, is adversely affected by rotation to a 

greater extent than knot shape 2. These issues can be investigated using a 

two way analysis of variance. As with the first set of data in order for the 

assumptions for the F test. to be upheld, a log transformation was applied 

to the data. The results of both analyses are described in the following 

subsections. 

7.6.1 Knot or Unknot pairs? 

Figure 7.5 illustrated the distribution of log decision times for different 

pair types. Decision times were significantly longer for knot pairs than 

for other pairs [F(l,3310) = 22.72 , p < 0.001)] . There was no statistically 

significant difference in mean decision times between unknot pairs and 

the combination of a knot with an unknot [F(l,2482 ) = 0.69 , p =0.41 )] . 

The mean decision time for an unknot pair was 10.7 seconds compared 

with 11.1 seconds for a knot with an unknot. The mean time for a knot 

pair was 12.6 seconds. Figure 7.13 shows this graphically. 
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Decision times for different pair types 

12.5 

CJ) 
(.) 

12.0 Q) 
CJ) 

Q) 

E 
~ 11.5 

11 .0 

unknot/unknot unknot/knot knot/knot 

pairtype 

Figure 7.13 Mean decision times for different pair types 

7.6.2 Orientation differences 

Figure 7.5 illustrated the distribution of log decision times for different 

relative rotations. Once again pairs with no rotation offer the least 

difficulty to subjects in terms of producing shorter decision times. These 

items also have the smallest standard deviation of log time, standard 

deviations being 0.56 for 0° compared to 0.64 and 0.67 for 90° and 180° 

respectively. Decision times were fastest for 0° rotation and slowest for 

180° [F(2,3309) = 37.18, p <0.001] and the overall means were 9.5 seconds 

(0°), 12.0 seconds (90°) and 12.6 seconds (180°) . Greater orientation 

differences were found to produce longer decision times overall, 

however, the differences in mean decision times between the 90° and 

180° were not found to be significant. Mean times for all pair types and 

the three relative rotations are shown in Table 7.2 and in the graph in 

Figure 7.14. 
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Mean decision times (all values in seconds) 

Knot/unknot 

Unknot/unknot 

Knot/knot 

Overall 
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Figure 7.14 Mean decision times for different rotations 

7.6.3 Crossing number and knot type 

Figure 7.3 illustrated in a box plot the distribution of log decision times 

for different crossing numbers and Figure 7.4 showed the histogram of 

distribution of log decision times for different knot shapes. The mean 

decision time for 4 crossings was 9.8 seconds compared to 12.0 seconds for 
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3 crossings and 12.3 seconds for 5 crossings (see Figure 7.15). Although 

crossing number did seem to be a factor which was giving rise to 

significantly different decision times [F(2,3309) = 38.9, p < 0.001], the actual 

number of crossings could not be used as a predictor for decision times, 

some other effect was causing this difference. Knots with higher numbers 

of crossings were not found to take longer. The variable which was 

causing the significant difference was not so much the number of 

crossings as the knot shape. 
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Figure 7.15 Mean decision times for different crossing numbers 

Within the group for crossing number 4, decision times for knot 

shape 3 (four crossings) were significantly different to decision times for 

knot shape 4 (also four crossings) [F(l,1103) = 168.21, p < 0.001]. No 

significant difference was found between the knots with three crossings 

[F(l,1103) = 1.1, p = 0.294] but there was a difference between the knots 

with five crossings [F(l,1103) = 5.19 , p =0.023]. When treated as two 

groups the three crossings knots were not significantly different to the 
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five crossing knots [F(l,2206) = 0.01 1 p = 0.922]. 

There was a significant difference in decision time between knot 

shapes [F(5,3306) = 53,85, p < 0.001] with shape 3 and shape 4 sharing the 

same crossing number but not the same decision times. Both in the pilot 

study and again here, the figure eight knot (shape 3) required shorter 

decision times than all the others. The mean decision time for this knot 

shape 3 was 7.5 seconds in comparison with 12.1 seconds for shape 4, the 

overall mean being 11.4 seconds. Figure 7.16 shows the graph of mean 

decision times for different knot shapes. 
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Figure 7.16 Mean decision times for different knot shapes 

The longest mean decision time for the various knot shapes was 

13.1 seconds and occurred for Shape 6. Table 7.3 shows all the data for the 

different shapes. 
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TABLE 7.3 

· Mean decision times by knot type and rotation 

Mean decision times (all values in seconds) 

Rotation All types Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

n=3312 n=552 n=552 n=552 n=552 n=552 n=552 
oo 9.5 10.4 10.2 6.6 10.9 9.0 10.0 
goo 12.0 13.4 12.4 7.4 12.4 12.1 14.5 

180° 12.6 14.0 11 . 9 8.6 13.0 13.4 14.8 

All rot's 11 .4 12.6 11 .5 7 .5 12. 1 11 .5 13.1 

7.6.4 Errors 

The overall error rate was 8.1 % (268 errors out of 3312 responses). The 

mean decision time for all errors was 14.2 seconds in comparison with 

11.1 seconds for correct responses (see Table 7.2). This difference was 

significant [F(l, 3310) = 29.87, p < 0.001], showing clearly that incorrect 

responses were associated with longer decision times. Table 7.4 shows 

the mean decision times for the errors data. 

TABLE 7.4 

Mean decision times for errors (8.1 % of all data) 

Mean decision times (seconds) 

Rotation 
All errors oo goo 180° 

n=268 n=63 n=76 n=129 

Knot/ unknot 13.4 13.6 13.3 13 .2 

Unknot/unknot 14.4 6.9 10 .1 16 .3 

Knot/knot 16.8 10. 7 13.5 19 .5 1 

Overall 14.2 12.9 12.8 15 .7 1 

The rate at which subjects made errors also varied with the 

different input variables. There was a higher error rate for 180° rotation 

with 11.7% of items involving 180° rotation being answered incorrectly 

[F(2,265) = 4.04, p= 0.019]. Figure 7.17 shows the percentage error rates for 

different rotations. 
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The variation in the occurrence of errors through knot shapes is 

shown in Figure 7.18 and in Table 7.5 shape 1 being particularly error 

prone. Shapes 3 and 5 on the other hand produced significantly fewer 

errors [F(5, 3306) = 13.68, p < 0.001]. Where errors did occur for these 

knots, they occurred mostly for 180°. Table 7.5 shows the percentages of 

errors by knot type and by rotation. The data for knot shapes were 

combined to form two groups, knots 1,2 4 and 6 in one group and knots 3 

and 5 in the other group, these formed two significantly different groups 

[F(l,3310) = 58.97, p < 0.001] with regard to error rate. 
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Although there were fewer errors for shape 5, these items took 

significantly longer than other errors [F(5,262) = 2.69, p =0.02]. 

TABLE 7.5 

Percentage of errors (incorrect responses as a % of the total responses) 

by knot shape and rotation 

I 
I Rotation Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 All types 

n=74 n=60 n=15 n=51 n=18 n=50 n=268 

1

0° 9.8 7 . 1 0 .5 9 .8 1 . 1 6.0 5.7 1 
90° 12.0 10.9 1 .6 8.2 1 .6 7 .1 6.9 

180° 18.5 14. 7 6 .0 9 .8 7.1 14 .1 11. 7 

Overal l 13 .4 10.9 2.7 9 .2 3.3 9.1 8.1 

With regard to pair type, there was a significantly higher error rate 

for different pairs [F(2,3301)= 8.5 ,p <0.001] . Error rates were 10% for 
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knot/ unknot pairs compared to 6.5% and 5.8% for unknot/ unknot pairs 

and knot / knot pairs respectively. Of the errors which were made for 

these 'same' pairs, most occurred for 180° rotation (72.2% and 64.6% for 

unknot/ unknot pairs and knot / knot pairs respectively) whereas rotation 

appears not to affect the 'different' pairs. In other words subjects were 

saying erroneously 'yes', that a pair was the same 10% of the time when 

they were not. Similarly, the correct response for 'same' items is 'yes' but 

subjects were saying 'no' that the images were not the same. 

Error rate by pair type 
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Figure 7.19 Mean error rates for different pair types 

7.6.5 Groups 

Data for all 48 subjects are reported in this section. The footnote on page 

177 at the start of this results section explained that not all of the data for 

all 48 subjects would be used in the analysis up to this point. For this part 

of the analysis the full data were analysed according to the four different 

page 196 



Chapter 7 

groups taking part in the study, mathematics students, science students, 

language students and IT staff researchers. Figure 7.7 showed the 

distributions of the log decision times for the four groups. There was a 

significant difference in decision times between the four groups with 

language group taking longer to perform the tasks than the other three 

groups [F(3,3440) = 44.67, p < 0.001] with a mean decision time of 15.4 

seconds in comparison with the overall mean of 11.6 for the 48 subjects 

data. The computer scientists were the fastest group having a mean of 8.0 

seconds. 
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Figure 7.20 Mean decision times according to group 

No significant difference was found between the mathematics and 

science groups [F(l ,2874) = 0.02, p =0.878] and their mean decision times 
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With regard to error rate the computer scientists did the worst 

with an error rate of 12.8%. There was no significant difference between 

error rates in the other three groups (5.7% 7.3% and 8.0% linguists 

mathematicians, and scientists respectively) 

7.6.6 Gender differences 

In this second study it was decided to look for gender differences both in 

terms of decision times and error rates. An overview of the data for 
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gender was shown in the histograms in Figure 7.6. 

It was described in the previous section that the four groups had 

significantly different decision times. The language group had 

significantly longer decision times whereas the computer scientists had 

significantly shorter decision times. The language group subjects were all 

female and the computer scientists were all male. It would not be 

possible to state which of the two variables, gender or educational group 

was responsible for any result involving these small groups. In fact it 

could be argued that the effect upon decision time is not generated by 

academic background at all but by gender. 

In order to resolve this, the two large groups (the PGCE groups) 

which showed no inter-group difference were examined for gender 

difference. Analysis of variance on these groups show that the female 

subjects were faster than the male subjects [F(l,2807) = 8.43, p =0.004]. It is 

interesting to note that if the data for the mathematicians and scientists 

had not been available a conclusion may have been made that the effect 

of gender is not significant. It may be the case that many studies which 

purport to find gender differences (usually the reverse of that found 

here!) may be identifying differences which are due to some other 

variable which has not been controlled for. 

So_ with regard to the small group of linguists it is probably the fact 

that they are linguists and not that they are women that they take longer 

to perform the tasks. However, the result does appear even more 

surprising since females should take less time according to the finding on 

gender difference. 

Error rate overall was 8.1 %. Error rates for gender show males 

with an error rate of 8.5% and females with 7.2%. The error rate for the 

linguists was the lowest of all at 5.7%, however, their sample size is too 

small and none of these differences is significant [F(l ,3311) =1.41, p = 

0.236]. 
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7.6.7 Interactions 

Initial analysis of the effects of the individual variables such as pair type 

showed that each of the variables under consideration had an effect on 

decision time. However, the effects were not always as predicted and, it 

was also possible that there may have been some interactions taking 

place between the variables, for example, different pair types may be 

affected differently by different rotations. 
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Figure 7. 22 Interaction plot for pair type and rotation acting on mean 

decision times 

In fact greater orientation differences do not produce longer 

decision times for all the pair types. Interaction between rotation (0°, 90° 

and 180°) and pair type (knot/ knot, unknot / unknot or knot/ unknot) 

can be observed in the data shown earlier in Table 7.2. Overall, rotation 
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has the effect of increasing decision time and overall, pair type has an 

effect on decision time with unknots being the fastest. However, the 

rotation effect is not additive for all pair types. An interaction plot 

demonstrates this and it is evident from the plot shown in Figure 7.22 

that rotation has little effect on the decision times for knot/ unknot pairs. 

This suggests that mental rotation may not be the process by which these 

tasks are performed. 

Whereas unknot/unknot pairings produced the shortest decision 

times overall, they did not produce shortest decision times for the 180° 

rotation nor for the data which resulted from incorrect responses (see 

Table 7.2). The plot shows that the shortest decision times at 180° 

rotation occur for knot/ unknot pairs. 
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Figure 7.23 Interaction plot of pair type and rotation acting on error rate 

A similar result can be seen in the occurrence of errors for 

different pair types under _different rotations whereby error rate increases 
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with rotation for knot/knot pairs and for unknot / unknot pairs but 

remains fairly steady at around 9% for knot / unknot pairs under any 

rotation. See Figure 7.23. These results add weight to the proposal that 

knot/unknot pairs are not solved by mental rotation but by some 

different method(s). 

With regard to the interaction between knot shape and rotation, 

one knot shape was more adversely affected by rotation than the others. 

Shape 6 was most affected perhaps suggesting that mental rotation was a 

strategy used for this knot shape. Decision times for all knot shapes were 

affected by rotation but Shape 3 was the least affected and Shape 6 the 

most. 
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An interaction plot of knot shape and rotation is shown in Figure 
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7.24 and it can be seen that the steepest rotation gradients lie between 0° 

and 90° and the steepest gradient of all occurs for knot shape 6 between 

0° and 90°. 

This interaction can be plotted in another way by switching the 

variables between axis and legend and this is shown in Figure 7.25. This 

plot shows clearly how shape 6 stands apart from the rest exhibiting the 

largest gap between the plotted points for 0° and 90°. The knot shape 

which shows the largest gap between 90° and 180° is shape 5. 
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The difference which rotation makes to decision times for Shape 6 

and the other knots is illustrated in Figure 7.26 where knots 1 to 5 have 

been combined into one group and compared as a whole with Shape 6. 

Shape 6 shows the steepest rotation gradient between 0° and 90° as well as 
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showing longer decision times overall. 
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Figure 7. 26 Interaction comparing the decision times for knot shapes 1 

to 5 with knot shape 6 with and without rotation 

The effect of the interaction of knot shapes and rotation on error 

showed that Shape 4 error rates were little altered by . rotation. . All other 

shapes show the highest number of errors for 180° rotation. It was 

reported earlier that Shapes 3 and 5 produced significantly fewer errors 

overall. Where errors did occur for these knot shapes they occurred 

mostly for 180°. 

An interaction plot on error rate for all knot shapes under the 

effect of rotation is shown in Figure 7.27 where it can be seen that shapes 

3 and 5 have the highest percentage of correct responses and yet have a 

steep rotation gradient (large gaps on the graph) from 90° to 180°. This 

interaction plot also clearly shows how shape 6 has the steepest rotation 

gradient between 90° and 180°. Shape 6 is most affected by rotation in 

error rates as well as decision times. The effect of rotation on knot shape 
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6 is clearly demonstrated in the errors data (see Table 7.5) where it can be 

seen that 14.1 % of errors occurred on 180° rotation compared to 6.0% and 

7.1 % for 0° and 90° respectively. It is also demonstrated in the interaction 

plot in Figure 7.27. The figure also shows that Shape 1 has the worst 

error rate of all for 180° rotation. 
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rate 

The interaction between knot shape and pair type also shows some 

interesting properties. Knot / knot pairs times show a fairly steady 

increase in decision time through knots 3-6 (see Figure 7.28). Knots 3, 5 

and 6 are fastest for knot / unknot pairs increasing through 

unknot / unknot to the longest decision time for knot/ knot pairs. Knots 

1, 2 and 4 had their longest decision times for knot/ unknot pairs. 

The interaction between knot shape, pair type acting on error rate 
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shows mainly that shape 3 and 5 have unusually low error rates for 

unknot/knot pairs in comparison with other knot shapes (see Figure 

7.29). Overall these two knots produced more accurate responses with 

little effect due to pair type whereas shapes 1 and 4 attract the worst error 

rate for unknot/knot pairs. 
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Figure 7.29 Interaction plot of knot shape and pair type acting on error 

rate 

When considering interactions between gender and the other 

variables the only noticeable effect is pair type. Females seem to show a 

steeper pair type gradient, taking longer than males for knot pairs. 

Females have more difficulty with knot/knot pairs than the other pair 

types. The interaction plot is shown in Figure 7.30. 

No statistically significant interactions between group and other 

variables were found. 
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7.6.8 Learning curve 

Analysis of the decision times as the experiment progressed showed that 

there was an overall decrease. The order in the sequence of the 72 items 

has a significant effect on decision time [F(71,3240)= 3.99, p<0.001]. The 

mean decision time for the first 12 items over all subjects was 14.3 

seconds compared to the mean dec~sion for the last 12 items of 8.8 

seconds. One of the research questions to be addressed was, 'Can 

visualisation be taught using knot tasks?' This result suggests that the 

answer is 'yes'. What was of interest, was to find out if subjects could 

learn these strategies and improve their ability to solve these spatial tasks 

by practice. In fact subjects did learn how to do the tasks as they 

proceeded through the experiment. 

The time taken to respond to any item decreased as the experiment 
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progressed and when decision times are plotted against the order of the 

item being measured, a steady decrease can be observed. This finding was 

explored both for the data as a whole and also for each individual subject. 

Figures 7.31 plots the mean decision times for the items against the order 

of execution from 1 to 72 of the data for all subjects. The order in the 

sequence and the decision time data was also plotted for each subject and 

a regression line fitted the data. In addition, an overall regression of 

decision time and order was carried out for the whole data set. These 

plots are shown in Figures 7.32 to 7.37. 
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Figure 7.31 Graph showing how decision times shorten during the 

experiment 

The regression plot for the complete set of data results in a 

negative gradient of 0.008 for log decision time over order of item. This 

amount to an average decrease in decision time due to learning of 1.8 
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seconds. Forty four out of forty six subjects show an individual negative 

gradient in the raw data and forty five subjects show an individual 

negative gradient in the data when corrected for the known affective 

variables7. This would suggest that 45 of the 46 subjects learn how to do 

the tasks during the course of the experiment. Table 7.6 gives the values 

for the learning gradient for each subject. The mean gradient for all 

subjects remains 0.008 even after adjustment due to the ordering of 

difficult items. 

7 Some subjects may have had some of the more difficult items towards the end of the 

experiment and so the effects due to rotation, pair type and knot shape have been 

accounted for by taking the residuals after each analysis of variance and plotting the 

final set of data. 
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TABLE 7.6 

Learning curve gradients for all subjects 

Subiect Raw data oradients Grad ients after correction 
1 · 0.0122 -0 .0106 

2 -0.0041 -0.0049 

3 -0.0136 -0.0135 

4 -0.0006 -0.0011 

5 -0.0165 -0.0160 

6 -0.0074 -0.0073 

7 -0.0075 -0.0073 

8 -0.0017 -0.0013 

9 0.0032 0 .0041 

10 -0.0049 -0.0057 

11 -0.0078 -0.0085 

12 -0.0152 -0.0141 

13 -0.0083 -0.0094 

14 -0.0038 -0 .0054 

15 -0.0111 -0.0100 

16 -0.0063 -0.0070 

17 -0.0069 -0.0072 

18 -0.0079 -0.0076 

19 -0.0082 -0.0071 

20 -0.0002 -0.0023 

2 1 -0 .0115 -0.0130 

22 0.0016 -0.0003 

23 -0.0081 -0.0068 

24 -0.0119 -0.0113 

25 -0.0 133 -0.0127 

26 -0.0086 -0.0087 

27 -0.0105 -0.0115 

28 -0.0053 -0.0048 

29 -0.0150 -0.0134 

30 -0.0145 -0.0133 

31 -0.0048 -0.0044 

32 -0.0098 -0.0080 

33 -0.0056 -0.0062 

34 -0.0124 -0.0098 

35 -0.0051 -0.0050 

36 -0.0125 -0.0109 

37 -0.0070 -0.0071 

38 -0.0092 -0.0101 

39 -0.0098 -0.0104 

40 -0.0083 -0 .0092 

4 1 -0.0109 -0.0091 

42 -0 .0011 -0.0010 

43 -0.0076 -0.0082 

44 -0 .0060 -0.0046 

45 -0.0055 -0.0056 

46 -0.0084 -0.0072 
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7.7 Summary 

7.7.1 Limitations of the research 

Subjects taking part in this study came from a variety of backgrounds, 

were of both genders and of various ages. They were, however, 

academically able with the majority being graduates in mathematics or 

the sciences. Although the significant effects present in the first study 

were confirmed here, it should not be assumed that they will apply across 

the ability range. The conclusions drawn regarding imagery and 

visualisation are specific to the sample. 

The sample were, however, 'mixed ability' in relation to the range 

of individual means and error rates measured. No significant difference 

was found between the mathematics group and the science group. A 

difference was found, both in terms of decision times and accuracy, 

between the mathematics and scientists classified together, the graduates 

in social sciences and languages, and the group of IT spec~alists, but these 

were not balanced samples. A better research design would be to carry 

out the experiment with balanced subsets of these groups. 

Although this is an unrepresentative sample, it is an interesting 

result that forty five out of the forty six subjects in the sample improved 

their performance of the tasks. 

7.7.2 Main findings 

The results of this second study confirm the main finding of the pilot 

study, that increasing rotation of these knot stimuli does not result in a 

corresponding proportional increase in decision time, the differences in 

mean decision times between the 90° and 180° were found not to be 

significant. Rotation does add to the complexity of the tasks but does not 

result in a requirement that mental rotation be used as a method of 

solution. 
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Increasing the number of crossings in a knot diagram (up to five) 

does not necessarily increase the time required to process the pairs 

involving that knot. Crossing number alone does not 1ncrease 

complexity, but different knot shapes do affect the ease with which 

subjects can solve the tasks and some shapes are affected more adversely 

than others by rotation. Different pair types gave different results for 

decision time and error rate. The comparisons of an unknot with 

another unknot, and an unknot with a knot are easier to resolve than 

the comparison of a knot with a knot. Errors were highest for 

comparison of knot/unknot pairs, subjects perhaps 'guessing' that the 

pair were the same when they were in fact different8 . 

Rotation · was shown to adversely affect both decision time and 

accuracy overall but knot/unknot pairs, when considered separately, 

showed little increase in decision time with rotation and, whereas error 

rate increases with rotation for knot/knot pairs and for unknot/unknot 

pairs, it remains steady for knot/unknot pairs under any rotation. 

Shape 6 was more adversely affected by rotation than any other 

knot shape. The percentage increase in mean decision time was 48.0% 

for Shape 6 whereas it was only 19.3% for other knots. Perhaps the 

asymmetrical nature of knot shape 6 together with the fact that it had the 

highest number of crossings in the experiment resulted in subjects being 

more confused when this shape was rotated. 

A difference was found between males and females . These spatial 

tasks are solved more quickly by females than by males when other 

variables such as educational background are controlled for. Educational 

background does affect decision time and subjects with technical 

backgrounds performed the tasks more quickly than those from language 

studies backgrounds. 

8 It should be noted that equal numbers of 'same' and 'different' pairs were presented so 

no 'probability estimates' were responsible here, see Table 7.1. 
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7.7.3 Conclusions 

All apart from one subject became more proficient at doing the tasks as 

the experiment progressed. The regression plots show that the subjects 

improved their spatial skills as a result of tackling the problems, 45 

regressions showed a negative gradient indicating decreasing decision 

time during the course of the experiment. 

The hierarchy of levels of complexity for each of the knot shapes 

which emerges from the results does not establish a clear explanation for 

the factors which affect their complexity. Bilateral symmetry and the 

existence of a foundation part of a shape do seem to assist mental 

processing, and Shape 3 incorporates both of these. There is some degree 

of symmetry in the other shapes9, knots 1 and 5 showing bilateral 

symmetry and knots 2 and 4 showing both a horizontal and vertical line 

of symmetry. However, none of these has a distinguishing local feature 

which could act as a foundation part. Knot shape 1 could be assigned a 

top and a bottom, as could Shape 5, but such designated features are not 

quite so easy to distinguish when rotated as the obvious loop in the 

figure eight knot. Furthermore, because knot shape 2 and 4 have an 

additional horizontal mirror line, it is difficult to process a 180° rotation 

for these knots. 

The other finding, that for comparable groups, f_emales are faster at 

performing these spatial tasks than males, refutes the usual endorsement 

of a fundamental gender difference in spatial ability. Proponents of this 

theory may need to find other factors to explain any observed superiority 

in spatial ability of males. 

The results reported thus far give some indication of the strategies 

which were used to solve certain items and also give an indication of the 

relative complexity of the tasks. These issues are explored in greater 

depth in the interviews with new subjects reported in the next chapter. 

9 These symmetries are approximate and do not take into account the nature of the 

'unders' or 'overs' in the crossings in knot diagram 
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Chapter 8 

The Case Studies 

8.1 Issues 

The previous two chapters have raised such issues as the efficacy of 

strategies and the acquisition of skills in performing the spatial tasks. 

This chapter describes how these matters were explored in more depth. 

The main reason for carrying out this further study was that qualitative 

data regarding spatial thinking and mental strategies would clarify the 

inferences made from the results of the quantitative data in the previous 

two studies. Furthermore, comments were recorded in Chapter 2 

regarding research techniques for exploring imagery and it was noted that 

many researchers (such as Bishop, 1983) advocate a combination of 

quantitative and qualitative data collection. This view was accepted and 

appropriate procedures undertaken. 

The opinions of subjects who have performed the tasks provide 

information regarding the level of difficulty of the tasks and 

confirmation or otherwise as to whether imagery skills are improved by 

thinking in this spatial way. If pupils' imagery skills are to be developed 

effectively then suitable sequenced tasks are needed. Interviews with 

subjects performing these mental manipulative tasks may provide the 

necessary information to do this. This information may then be used to 

plan activities for a spatial development curriculum. 

In some ways the tasks are intuitive, individuals have experience 

of how ropes move, but mental tasks showing images of ropesl will 

probably be unknown to subjects and how they react to the problems and 

to the mode of thinking required will be of interest. The mode of 

1 See also the comment made in Chapter 2 regarding pictorial instructions on how to tie a 

bow tie shown in Figure 2.14 
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thinking will be out of context rather than unfamiliar, since the subjects 

will be familiar with interwoven strands of rope or fibres of some kind. 

Any acknowledgement by the subjects of the usefulness of prior 

experience will also be of interest. If, as a result of working on the tasks, 

subjects do begin to feel 'successful and confident' in one kind of mental 

imagery, then the aim expressed by Bishop (1983) and reported at the end 

of Chapter 5 may have been met. 

According to the data from both of the studies already described, 

the answer to the question 'Do subjects learn how· to do the tasks?' seems 

to be 'Yes' (Figures 6.10 and 7.31). In following up on the quantitative 

study, this chapter explores such questions as 'Can this finding be 

confirmed verbally by the subjects themselves?', and 'What do subjects 

believe are the changes taking place in their performance of the tasks?' 

and also 'Do subjects report a dichotomy of approaches between verbal 

and spatial?'. 

Subjects for the case studies were drawn from tw:o backgrounds, 

mathematics and languages. Detailed verbal reports on the development 

of strategies were sought, whether they were verbal or visual, as well as 

comments on what the subjects found easy or difficult in the tasks and 

whether they became more able to solve them as the experiment 

progressed. 

8.2 Methodology 

The two approaches used in this research employ very different 

methodologies, each with a role in answering the research questions 

posed. A qualitative research technique was to be used in this phase of 

the study and the data to be collected would not be of measures such as 

decision times or error rates, but characteristic data regarding 

performance of the tasks. 

The research method used was to record on video, the subjects 

performing a subset of the experimental tasks. Five subjects were studied 
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and, in seeking to determine various modes of thinking, it was 

considered beneficial to investigate subjects who were likely to be 

articulate and to be able to express their thoughts clearly. As in the 

quantitative studies, the subjects therefore represent an able and perhaps 

atypical sample. Two subjects were graduates in English (aged 22), one 

was a mathematics graduate (aged 23), one a Welsh graduate (aged 43) 

and one had a PhD in Celtic Studies (aged 43). 

After completion of the tasks, extended interviewing took place 

whilst viewing the first recorded video tape. The purpose was to 

investigate in depth the subjects' personal perceptions of their thought 

processes during the performance of the tasks. 

TABLE 8.1 

Knot pairs used for interviews with Subjects 1,2 and 3 

Knot shape Pair type Rotation 

5 unknot/unknot 0 
2 unknot/unknot 90 

2 knot/knot 0 

2 unknot/knot 180 

6 knot/knot 180 

6 unknot/unknot 0 

6 knot/knot 90 
5 knot/knot 0 
2 unknot/unknot 0 
3 unknot/unknot 0 

2 unknot/knot 0 
6 unknot/knot 0 

knot/knot 90 
3 unknot/knot 180 

1 unknot/knot 0 
4 unknot/knot 0 
2 unknot/knot 90 
3 knot/knot 180 

6 unknot/knot 90 
6 knot/knot 90 

Twenty knot pairs were used so as to give a mixed sample of each 
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knot type, pair type and rotation. In all other respects the experimental 

setup was the same as in the pilot study. The interviews were carried out 

in two phases; the first group consisting of the first three subjects, were 

presented with the items listed in Table 8.1 and the second group 

consisting of subjects 4 and 5 were presented with the items shown in 

Table 8.2. 

TABLE 8.2 

Knot pairs used for interviews with Subjects 4 and 5 

Knot shape Pair type Rotation 

3 unknot/unknot 0 

3 unknot/knot 0 

5 unknot/unknot 90 

6 knot/knot 180 

1 knot/knot 180 

5 knot/knot 90 

4 knot/knot 90 

4 knot/knot 0 

2 unknot/knot 90 

6 unknot/unknot 90 

4 unknot/knot 0 

6 unknot/unknot 0 

4 unknot/knot 90 

5 unknot/knot 90 

3 unknot/knot 0 

4 knot/knot 180 

2 unknot/unknot 0 

4 unknot/knot 90 

2 knot/knot 90 

knot/knot 90 

Subjects were shown the initial demonstration as for the two 

previous studies and then viewed three random pairs to make sure that 

they had understood what the tasks involved. The process for filming 

was explained and when the subjects indicated that they had understood 

the procedure, the experiment commenced and filming began. 

The main difference between performance of the tasks in the 

previous studies and in the case studies was that decision times were not 
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measured, this measurement was of no importance in this phase of the 

study. Instead, the subjects were requested to articulate their thoughts 

and to 'think aloud' as they progressed through the tasks and to try to 

explain the methods and strategies they employed in the decision 

making process. 

The camera was placed behind and to the side of the subject so that 

the computer screen and the knot pair being worked on were visible on 

camera. Some discussion between subject and researcher did take place 

during this phase but the in depth questioning and analysis was left until 

the interview stage. After completion of the twenty trials the tape was 

removed from the camera and played back. During the viewing, the 

subject was invited to stop the tape as desired at any stage and to observe 

the process of their thinking. The subject was encouraged to expand 

upon the explanations being articulated on tape during the 'thinking 

aloud' process. This extended explanation was also recorded on 

videotape for analysis. 

During this second part of the procedure, subjects were questioned 

as to which items they had found difficult and as to whether they had 

made any changes in strategy as the experiment progressed. A general 

discussion between subject and researcher occurred. For the five subjects 

in all who were interviewed, there resulted about 4 hours of videotape. 

The retrospective comments regarding reasoning processes were not only 

helpful for this research but were also beneficial to subjects as an 

introspective debriefing exercise. Transcripts of the interview part of the 

experiment are given in Appendix III. 

8.3 The five domains to be reported 

Details of the interviews are presented in this chapter according to five 

domains, namely; strategies, use of a foundation part, changes of strategy, 

learning of skills and finally, the relative difficulty or ease which subjects 

had experienced with the various items. 
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The previous studies had revealed some of the strategies used by 

subjects and these interviews were carried out so as to allow exploration 

of those strategies and also to identify any new strategies. 

The presence of a foundation part seemed to be a factor affecting 

decision times in the earlier experiments, and the figure eight knot shape 

(shape 3), which exhibited a pronounced foundation part, showed shorter 

times. This effect was also reported by subjects in their debriefing 

interviews after the first experiments. Another comment emanating 

from these debriefing interviews was that subjects reported changing 

strategies as they became more familiar with the tasks. Deeper 

investigation of both of these issues is reported here. 

The subjects' views on how successful they felt at the start and at 

the end of the experiment is discussed in the context of how much 

benefit, in relation to mental spatial skills, they had derived from doing 

the tasks. Likewise, their views on which tasks were harder to do and 

which were relatively easy is summarised. 

In the following sections, details are given about each of the 

subjects, and their performance of the tasks is described. Strategies and 

modes of thinking used by the subjects are analysed and a detailed 

summary of the interviews is reported. 

8.4 Subject 1 

Subject 1 had graduated in English and was training to become a 

secondary school English teacher. She had a not uncommon fear of 

mathematics and considered her spatial ability to be weak. She used her 

hands a lot when doing the tasks and also when expressing herself. She 

was able to give quite detailed descriptions of her thoughts during the 

initial phase whilst performing the tasks as well as clear explanations 

later. 
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8.4.1 Strategies 

Subject 1 started the first few items by tracing around each knot with one 

finger. She started the interview afterwards with: 

'Initially it seemed easier to do it with my finger, but then it got 

confusing.' 

This subject found for later pairs, with relative rotation, that she was 

unable to succeed with a tracing strategy and hence proposed in the above 

statement that the 'finger' method was confusing. 

In the early stages of the experiment, this subject was tracing 

around the knot and looking for differences by using a 'matching' 

strategy (see Section 6.6.1 in Chapter 6) which she verbalised as follows : 

'This one goes over and this one goes under' 

She later employed a verbal technique corresponding to the 

' identifying sequences of crossings' strategy described in Section 6.6.1 in 

Chapter 6, but when she noticed that one was the unknot, she adapted 

her verbal strategy. This is demonstrated in the following quote: 

" They look the same initially - that's under, over, under . . . I'd 

say that one's a knot . . . . and that1s a loop. Yes that's lying on 

top, I 

The subject was compiling a sequence of words as a verbal coding 

of the knot by its various crossovers, under, over, over, over, under etc., 

but this descriptive coding was soon superseded by other strategies. 

When explaining her thoughts about a shape 2 pair, presented as a 

knot / unknot pair with 90° relative rotation, (see Figure 8.1) she said: 

'Initially I was going like this (shows how she was following 

the rope around with her finger) but I think you can take that 

and pull it and then open the whole thing out. ' 
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Are these two knots the same? 

Yes I ..___N o___.l 

Figure 8.1 Shape 2 unknot/ knot pair with 90° relative rotation 

Here the subject was articulating her n ew strategy for identifying 

unknots. In the statement 'open the whole thing out' she was starting to 

use a new strategy, 'unravelling', which may have resulted from her 

coding2. Talking about the figure 8 knot shape 3, she said: 

'The loop here and the loop there 

through, the other seemed to be on top. ' 

and also: 

'This one is folded or balanced on top. ' 

one seemed to go 

Having realised, by whatever means verbal or visual, that some of 

the crossings can b e removed the subject is articulating an essentially 

visual strategy. 

A very quick response was forthcoming for the pair of unknots 

2 A sequence such as under, over, over over, under, suggests that the knot can be 

simplified, the part of the rope comprising the three 'overs' can be slid away from the 

'under' strand and part of the 'knot' simplified 
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shown in Figure 8.2. She said: 

'I'd say they' re identical and it's just a matter of untwisting that 

and pulling ' (she used her hands to demonstrate) 

Are these two knots the same? 

.___No __ l 

Figure· 8.2 Shape 3 unknot / unknot pair with 0° relative rotation 

This subject did not readily use a strategy of mental rotation. 

Whenever there was a 90° turn, rather than mentally rotating the image, 

the subject tracked the rope around to try to spot differences, 

8.4.2 Foundation part 

The figure 8 knot, shape 3, provoked the characteristic 'foundation part' 

response whereby this subject's attention was focused on the upper part 

of the shape which she, and other subjects, call the ' loop'. For the pair 

with 180° relative rotation shown in Figure 8.3, this subject said, 

'That one (pair) struck me straight away as being both knots 

because it seemed to go through the top loop in both of them. ' 

page 229 



Chapter 8 

and also added 'It stood out.' 

Are these two knots the same? 

Yes I ....__N o____.l 

Figure 8.3 Shape 3 knot/ knot pair with 180° relative rotation 

The statement 'it stood out' referred to the part of the rope passing 

through the 'top loop'. The subject was focussing on this, observing its 

route and then mentally judging the figure. 

This subject spoke about a 'dominant' shape when describing a 

shape 2 pair with 180° relative rotation. One of the pair drew her 

attention and she was inclined to start from a particular part of the knot 

diagram, (see Figure 8.4): 

said: 

'This seems more dominant than this. It seems to lead the way 

more. This one (the one on the left) just seemed easier to 

follow.' 

Later, when pressed to explain her use of the word 'dominant', she 
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'It was just that it went over and round and it seemed to have 

a strong shape to it.' 

Are these two knots the same? 

Yes I .___N o___.l 

Figure 8.4 Shape 2 unknot / knot pair with 180° relative rotation 

The subject's attention was drawn to some part of the shape, 

possibly the lower half of the shape on the left, which seemed to either 

have more significance for her or was easier to recognise. 

8.4.3 Changes of strategy 

After only two or three pairs, subject 1 stopped tracing the path of the 

rope systematically with her 'under, over' coding and began to use a 

different strategy involving looking for unknots. She explained that the 

tracing strategy was relinquished but that the new strategy did not always 

work: 

'That can also be misleading . . . . , because then I was trying to 

do a bit more, trying to see if they were a loop first of all or not.' 
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She found this method quite successful but when the knots 

wouldn't unravel she looked for an alternative. At this stage she tried 

the strategy which she liked the least - matching crossings: 

'That one was harder. I was a bit lost there. It was more a case 

of following the rope and seeing if both fell in the same places' 

She explained the situations in which she needed to switch to this 

matching strategy: 

'I think that's how I went through with most of them but then 

it didn ' t work all the time. Usually when it didn 't work it's 

because there was intertwining.' (she used her fingers 

interlocked to explain) 

After the unravelling strategy failed the subject tried to explain the 

evol~tion of her other strategy. She said: 

'I started working on one individually and then on the other 

individually and then matching them. But then sometimes it 

was easier to look at them both and ·to say 'oh that goes there' 

and then it goes there as well. And if you find a couple of 

things that do match up then just go through them both again 

until you find that they all either match up or are different.' 

She added: 

'The ones that had a lot of different loops on . I wasn't just 

looking at one for a long time on its own because that would be 

too confusing. . . ones with a lot of different loops and turns -

I was just looking at them both and without trying to go 

through one just seeing, do they both do this, do they both do 

this. It was easier to do it like that. If I was just to concentrate 

on one and just go into it, I would just confuse myself. ' 

She was beginning to consider a global shape, or at least consider a 

larger portion of the image as one element. Whether any mental 

rotation was involved in this global matching is unclear. 

This subject's method in attempting a shape 2 unknot/ knot pair 
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with 180° relative rotation was unusual but topologically sound. She 

assumed that the 180° rotation did not affect the topological properties of 

the knot, she seemed to be treating the two orientations as if there was no 

rotation but simply a distortion of the knot, she was accepting the objects 

as truly deformable. and she tried to compare the two global structures. 

Later she became uncertain about this as a strategy and began to check her 

assumptions by applying another method. 

8.4.4 Learning 

The subject recognised that she learned to use the unravelling strategy 

more effectively and also developed her matching strategy so that it was 

simpler to apply, she tried to remember the spatial properties as a whole 

and the global shape. 

'After seeing a couple of the knots I got more into what I was 

looking at and so it was easy to actually break it down and see if 

there was a bit that was just twisted and folded on top which 

would . . pause . . If you folded it back and untwisted. it it would 

just make a loop. It became easier to do that when my eye 

became a bit more tuned in. ' 

She repeated: 

'I got more into what I was looking at.' 

Thus emphasising that she was learning how to solve the tasks. 

8.4.5 Difficulties 

For those pairs which had no relative rotation, this subject commented 

that they were the easier ones to work on and it was easier to reach a 

decision. She also commented that when there was some rotation, it 

immediately had the effect of making the knots look different, and 

harder to compare. She commented: 

'These look different straight away. That seems to make it a lot 

harder (90° rotation) , the fact that it's turned around I think I 

should turn my head round to see them the same way.' 

This statement implies that mental rotation was difficult for her and the 
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statement which followed: 'They are both knots', suggests that she found 

analysing the topology easier than performing a mental rotation. 

Are these two knots the same? 

....__N o____.l 

Figure 8.5 Shape 6 knot/knot pair with 90° relative rotation 

In the following dialogue3 the subject was speaking about the pair 

with 90° relative rotation shown in Figure 8.5. The idea of ~ journey 

around the knot refers to the matching process. 

S I found it harder to try and imagine this one turned slightly 

although I tried to do that, I tried to visualise that it was straight 

and then look at it but I couldn't hold that for too long. 

I So you went for this other strategy of looking at the journey round 

the knot? 

S Yes. 

I And what were you finding from that? What were you noticing? 

S Just that they all went under at the same place or they all rested on 

3 Throughout this chapter the abbreviations I and S are used for the Interviewer and the 

Subject respectively. 
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another part of the knot in the same place and that if they were all 

to undo that they would have the same picture. 

Overall, the subject has summarised in this dialogue the 

utilisation and efficacy of her different visualisation strategies 

8.5 Subject 2 

Subject 2 had also graduated in English and was training to become a 

secondary school teacher. She was more apprehensive about her 

mathematical ability than subject 1 but was interested to find out about 

both the experiment and about how she would tackle the tasks. 

8.5.1 Strategies 

This subject began by trying to match crossings. Where there was 

rotation she tried to rotate and then match. One of her strategies for 

dealing with a rotated image was similar to the well documented one of 

reassigning the top of the image which was reported in Chapter 3. 

Speaking about the pair shown in Figure 8.6 she said: 

'What I'm looking at is the top and the bottom of the knot on 

the right and then the left and the right of the other knot and 

whether they are going underneath or over the top. They look 

the same.' 

Later during the interview she said: 

'That 's sideways on. There are two loops, one below the other 

so I called it . . . , I identified a top loop and the other one · the 

bottom, so in this other one I'm looking at the sides, left and 

right. I 
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Are these two knots the same? 

Yes I 
Figure 8.6 Shape 2 unknot/unknot pair with 90°relative rotation 

With a pair of knot shape 6 and no relative rotation, this subject 

just went through matching crossings one by one. With the same knot 

shape 6 and 180° relative rotation, (See Figure 8.7) she attempted to deal 

with more than one crossing at a time and, although she was unable to 

focus o~ the whole image, she did deal with a larger portion of it at one 

time. She focussed on two regions of the shapes and said: 

'These two bits are the same definitely and I'd say those two 

bits are the same. ' 
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Are these two knots the same? 

Yes I .___N o___.l 

Figure 8.7 Shape 6 knot/knot pair with 180° relative rotation 

She explained further: 

'As soon as I see them lying in a different way I look to see .. 

well that might be the same but it's lying on its side and this 

one's top . . . well the way I'm identifying them is this little 

loop here (left hand side) and this little loop here (right hand 

knot), nothing else. The big spaces confuse me so I have to 

find something small and start from there. I have to have one 

point to start from and I don't like looking at things that are in 

different ways. (rotated) So these two loops here are th_e same 

as these two loops here. Well that goes over the top and 

underneath (RH) and underneath there and over the top '(LH) 

8.5.2 Foundation part 

When working on the trefoil knot, shape 1, with 90° rotation this subject 

started to use a verbal description of the shape. She separated the whole 
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shape into two regions, the central 'egg shape' and the lower two 

crossings with outer loops: 

'When I saw this egg shape to the right, I looked at the other one 

to see if I could see the egg shape then I checked, is it going 

underneath?' 

In trying to clarify this notion, the following dialogue took place: 

I When you had identified the 'egg shape' where did you head 

for then? 

S The two other shapes - the other two shapes were similar and 

all I wanted to establish was when that egg shape comes up to 

the top like the left hand image are those two other things 

going to come down to the bottom. Are they going to be at the 

bottom? 

I So you were looking generally for the two . . . or were you 

looking for the left part and then the right part? 

S No, two. 

I So you were trying to deal with two at once? 

S Yes. The egg shape was a separate thing and then the other two 

shapes on each image together. Not one and then the other, 

not like that, the two together, I linked the two together and 

then I quickly looked at the ropy bit - is it lying on the top or 

underneath? 

8.5.3 Changes of strategy 

Although this subject talked a lot about unravelling in the introductory 

session, she did not use it very much as a strategy. She relied upon 

rotating and matching equivalent portions of the images. We may 

perhaps make the assumption that this subject was not proficient at 

mental manipulation and preferred a more verbal strategy. The 

following quote explains her thinking: 

'What I'm trying to do here is identify which loop is which. If 

they are going to be the same there's going to be one that is 

shaped like that (pointing) but it may be in another place. It 
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looks like that one there. So it takes me longer (with rotation) 

because I've got to sort it out, switch this round and bring this 

loop up to the top. That's going under, that's going under so 

that's OK.' 

8.5.4 Learning 

This subject had difficulty with the knots at 180° relative rotation. At 

one point she said: 

'They're the same at the edge but the one ( crossing) zn the 

middle is the same in reverse. ' 

She assumed that the knots could still be the same when two crossings 

matched and a third was 'the same in reverse'. The topological 

properties were not being considered, or at least she was not calling upon 

this as a strategy. 

Earlier in the experiment, having already found a difference at 

some point, this subject still continued comparing. This might have 

been because she was unconvinced by the first comparison rather than a 

lack of understanding of the fact that one difference was sufficient to 

respond 'No'. She eventually decided, incorrectly, that the pair were the 

same. 

The subject learned that she did not always need to apply a mental 

rotation but used instead the relative positions of crossings within the 

shape: 

'I didn't try to do that (rotate the image) with all the loops. 

There were two loops and I thought, there they are up there 

and there they are down there.' 

What the subject did was to key in to an equivalent point in both 

images. She identified a specific part in the first image and then looked 

for that part in the second image to see if the two crossings matched. The 

crossing or pair of crossings were in the same relative positions and she 

did not need to rotate these but knew which to compare by their relative 
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positions in the knot shape. 

During the course of the experiment the subject became more 

confident and faster, but did not show any significant change in overall 

strategies. The strategies which she used remained the same and whilst 

they depended upon the pair type and relative rotation, the strategies 

which she employed in the beginning were still being used at the end, 

possibly with a more restricted use of rotation. Her strategies did not 

change due to any learned technique or one which she perceived to be 

more effective. 

8.5.5 Difficulties 

This subject had particular difficulty with knot shape 6. Referring to one 

of the items, the subject said: 

'I didn' t like this one because it had a lot of loops and I don't 

know where to start. Your eyes are jumping from one place to 

another. ' 

She had particular difficulty with this shape with 90° rotation. 

8.6 Subject 3 

Subject 3 had graduated in mathematics and was training to be a 

secondary school mathematics teacher. She was confident both 

mathematically and spatially. 

8.6.1 Strategies 

Initially, Subject 3 used her fingers to trace around both knots 

simultaneously starting from two equivalent points. She always 

determined an equivalent starting point to begin with, for both the left 

and the right hand knot, and then traced the journey around. She 

matched over, under, over, under, sometimes using a sequence of 

crossings and other times matching crossings one by one. A typical 
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verbalisation as she worked was: 

'Start from here, that's over, that's over (matching) under, 

under following right the way round that's under again they're 

the same.' 

When faced with knot shape 2 and 180° relative rotation she said: 

'That one needs to be turned around, so starting from here 

(matching relative positions and tracing) . . . they're not the 

same. 

With shape 3 at 180° rotation and a knot/unknot pair she said: 

'Those two are placed on top and that's one of each (talking 

about crossings) so they can't be the same.' 

Once she had found one difference she was happy to answer 'No'. This 

was no doubt due to her mathematical training. 

Subject 3 began to formulate another strategy with the two 

unknots pairing of shape 3: 

'I think this was one of the first points I actually realised that 

because they're both over the top (the top loops in the figure of 

eight) it struck me that they are not really knots. They are both 

the same unknots. ' 

8.6.2 Foundation Part 

This subject did not appear to use a foundation part as a strategy, until, 

during the interview she said: 

'Your eye automatically goes to the middle of this one, where 

they are actually knotted' 

She was speaking about shape 4 (see Figure 8.8) and the section in the 

middle where the rope seems to link together. She felt that this was a 

focus for her attention in spite of the fact that the rope appeared linked at 

this point even when it was the unknot form. The only sense in which 

she may have been drawn to one part of a shape was in choosing where 

to begin her traced journey around the knot. 
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Are these two knots the same? 

Yes I .___N o___,I 

Figure 8.8 Shape 4 knot / unknot pair with 90° relative rotation 

At one point in the interview she commented that the choice of 

starting point may or may no.t have been conscious: 

'I always .started from the same point and I still started from 

here at that point by the look of things. . . But the one I started 

off at was where the difference was, whether that was ihat· 

coincidence at that point or not I don't know.' 

8.6.3 Changes of strategy 

Eventually Subject 3 used the unravelling strategy more readily and for 

the pair shown in Figure 8.9, she said, 

'This loop here lifts off and that's (the other knot) actually 

knotted.' 
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Are these two knots the same? 

Yes I 

Figure 8.9 Shape 6 knot/unknot pair with 90° relative rotation 

She remarked in the following dialogue about the noticeable 

change in strategy: 

S I didn't actually match on this one. I just looked and saw 

those two together and that leapt out and I saw they were 

different there. So this was actually different. 

I You solved this differently? 

S Yes. I just looked at that loop and saw it was on the top and it 

was unknotted, and I looked at that one and saw it was 

knotted (pointing at the loop). I didn't go through the same 

pattern of turning it the right way up and finding my starting 

point and tracing it round. It just seemed to be obvious - that 

was obviously a loop.' (an unknot) 

Watching herself on film she explained how the realisation 

happened, 

'I've noticed here that that one is a knot and that one isn 't 
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knotted there. I still started from here (pointing) but where I 

started off at was where the difference was.' 

8.5.4 Learning 

The subject recognised that she had learned to use the unravelling 

strategy more frequently and noticed that in solving an early item she 

has not used the strategy which later she developed successfully during 

performance of the twenty pairs. 

'Looking at that now I can see that that lifts up and that one 

doesn't' 

In discussion she explained: 

I You were doing a lot of tracing round and checking crossing 

by crossing weren't you? 

S Yes. In the early stages, yes. Whereas now looking at this I can 

see that flips off there, it's not knotted there but it is there. 

I So you probably wouldn' t feel the need to use the same 

strategies that you were using. 

S No, I wouldn't. I'd look at this and I might not even have to 

turn it round. I can identify that point as being that point and 

.... you see, that's knotted and that isn' t there. 

This subject made some further comments regarding her initial 

strategy: 

'At the start I seemed to spend longer getting it orientated and 

then going from there' 

She explained that she thought the new strategy of unravelling was more 

effective: 

'Before I would have had to go back and check it again. This 

time I didn 't have to.' 

She also commented that she learned that when a pair was different, one 

was the unknot, and hence 'undoable ', whereas the other was the knot 

and fixed: 

'I hadn ' t made that distinction that if they aren't the same, one 
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is going to be undoable and the other isn't. That has just come 

to me now.' 

8.6.5 Difficulties 

This subject also commented that pairs with rotation were more difficult, 

she said: 

'Because they weren't the same way up I found it more 

difficult to picture in my mind so I started to tilt my head like 

that and follow it but I found it easier with my finger and 

followed them round. They were both at the same point at the 

same time. I could simply check that they were both doing the 

same thing. I think later on it became easier for me to 

visualise without having to use my (finger).' 

The subject explained in more detail why she was slow at deciding 

upon a particular pair (shape 2 unknot /knot pair with 180° relative 

rotation) she was watching on the video: 

'I was checking on this one because I found this more difficult 

because they were upside down (a relative rotation of 180) and I 

had to actually think about my finger on. It seemed difficult. 

Once again I started from here, but it was difficult to match 

here, and follow round. I found that one much. more difficult 

than the other ones and I had to check again at the end 

whether it was right. I was not that confident in myself like 

before, to say yes, they are the same. This one I just wanted to 

check again because it did not look immediately so right to me.' 

8.7 Subject 4 

Subject 4 has a first degree in Celtic Studies, a PhD in Breton and is an 

accomplished linguist who works as a researcher in bilingualism. 

Having found mathematics 'difficult' at school, she was not confident 

mathematically. 
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8.7.1 Strategies 

This subject was very thoughtful and took a long time to reach a decision 

for the first few pairs. She found the tasks very difficult and was 

reluctant to make a decision until she had tried several times to confirm 

it. This was particularly noticeable when she was looking at a pair of the 

same knots. 

While working on the pair of shape 5 unknots with 90° relative 

rotation shown in Figure 8.10, she said: 

'I'm trying to tilt them in my mind' 

She found the mental rotation difficult and added: 

'Every time I try to turn it round in my mind I lose my 

bearings spatially. I find it difficult spatially to make the 

correspondence. If I follow through both parts of the knot ... ' 

Are these two knots the same? 

Yes I ...___N o_____.l 

Figure 8.10 Shape 5 unknot/ unknot pair with 90° relative rotation 
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When dealing with knot shape 6 and 180° rotation (shown in Figure 8.7), 

she said: 
'Now this looks as though the right hand one is upside down. 

So once again I'm trying to swivel it round in my mind and I 

find that hard. ' 

On several occasions this subject used the strategy of reassigning 

the top (or side) of an image. She remarked about shape 1 with 180° 

rotation: 

'If I tilt it so that the bottom becomes the top 1 

and: 

'If you turn the left hand one so that the right hand side is at 

the top ... . ' 

With shape 6 and 180° rotation, she said: 

'This one I can see there is a top and a bottom which are 

different. With the right hand one you can see that the top is 

at the bottom.' 

In the following quote regarding shape 4 with 90° rotation, she 

seemed to be combining the strategy of rotation ('tilting') with 

reassignment: 

'The right hand one is as though it's on its side, if I can tilt it up 

in my mind so that the right hand bit is at the top . . . ' 

This subject also used the strategy of matching crossings within the 

pair as follows: 

'I've checked the way the rope crosses itself and it seems to 

cross itself in exactly the same way.' 

When speaking about another the pair, the subject took some time 

but noticed a difference after attempting to match crossings: 

'I'm trying to follow with my eye the top and I'm going round -

the left one goes underneath no they're not the same because 

the intersection at the bottom is not the same.' 
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Reflecting upon this combination of rotation with matching, she said 

later: 

'My strategy is trying to get the right hand one identical with 

the left by switching it round in my mind and following it 

round piece by piece and switching back from the left hand 

knot to the right hand and then when I've decided that bit is 

identical, then I go back to the left hand knot. But the problem 

is if they' re not in identical positions it's not always easy to find 

your bearings. You get lost and I kept on getting lost. That was 

my problem. ' 

Sometimes this subject used a hitherto unarticulated strategy 

which can be termed topological equivalence4. She used this strategy 

with the shape 1 and shape 5, the trefoil knot and the pentoil knot. 

Mathematically, these knots belong to the family of torus knots5, which 

have a regular form and as such are more well-suited to this strategy 

than the other shapes. The subject did not rotate or try to match 

crossings but distorted the knot such that the relevant information held 

in the crossings remained but the 'loops' were manipulated until they 

resembled the loops in the other knot. She saw the stimuli as truly 

deformable objects and was able to mentally distort the rope. Speaking 

about the pair shown in Figure 8.11 she said: 

'If you got hold of the right hand one and pulled it a little bit it 

would be exactly the same.' 

4 The strategy was evidently considered by Subject 1 in the initial part of her 

performance of the experiment whilst she was thinking aloud, but it was not developed. 

This was referred to in Section 8.4.3 of this chapter. 

5 A torus is a donut shape and a torus knot will wrap neatly around a donut without the 

rope touching or crossing itself on the torus. See Figure 4.25 in Chapter 4) 
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Are these two knots the same? 

Yes I ..____N o__,I 

Figure 8.11 Shape 5 knot /knot pair with 90° relative rotation 

In the following quote the subject was continuing to use rotation 

as well as unravelling: 

'Oh this is terrible. (after a long pause) . . . . This isn't a knot, I 

don't know if the others were knots but that strikes me 

immediately, that I can actually pick that up and straighten it 

out. I'm going to see if the rope is positioned in the same way. 

Once again I have to swivel the right hand knot around 90 °. 

Yes they are the same, they aren't knots.' 

She later emphasised the fact thaf she continued to use rotation as 

a strategy with shape 2 at 90° rotation: 

'I'm twisting (the subject means rotating) the right hand knot. I 

have to do this . I cannot do it any other way, I have to try and 

get them both - looking at them in the same position in my 

mind. I cannot do it as it stands.' 
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This comment ignores the fact that initially she was going round 

the knot as well as mentally rotating. 

8.7.2 Foundation part 

This subject not only commented about seeing a 'top' and a 'bottom' of 

some shapes, but also mentioned that she saw a 'star shape' and 'two 

triangles'. She said: 

'Some of them look almost symmetrical. Like two circles 

where you have - like that - almost like two triangles.' 

This would have constituted some sense of a foundation part for 

the pentoil knot, shape 5. However, this subject also commented on a 

particular part of shape 6: 

2: 

'I think this is a bit easier than the one before (shape 5) because 

the one before looked the same no matter which angle you 

looked at it from, and this one , I can see that there's a top and a 

bottom which are different and then with the right hand one 

you can see that the top is at the bottom.' 

In a similar way to other subjects, she spoke of a 'top loop in shape 

'The top loop lies on top of the other loop and there's a twist in 

the middle.' 

8.7.3 Changes of strategy 

Once this subject noticed that she could undo one of the knots, she used 

this strategy more and more. In the first few cases she still used rotation 

as a back up, but eventually abandoned this strategy even as a checking 

mechanism. She summarised: 

'I don 't have to look any further I know they are not the same.' 

With regard to the strategy of tracing around the path of the rope 

she said: 
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'What I've stopped doing is following it round. In the 

beginning I was following the whole piece of rope round, was 

tracing it like a path and I'm just looking at the . . . it seems like 

I'm just switching back and forth, getting the same positions, 

here yes that corresponds that corresponds - yes they're the 

same. 

She commented that processing a global picture was still difficult 

and not a preferred strategy: 

'I still can't see the whole thing at once but I find it easier to 

keep my bearings as I go back to the left hand one and the right 

hand one and I compare each bit of it.' 

At the end, this subject was unknotting without rotating although 

at the start she had felt the need to use both. When there were no 

unknots present and she couldn't use the unravelling strategy, she 

reverted to following the rope around or mentally rotating or, in the case 

of shape 5, looking for topological equivalence. 

8.7.4 Learning 

This subject realised that the tasks which she had initially found very 

difficult she could now do with ease: 

and: 

'It seems very obvious to me now that they are the same. That 

corresponds to that and that corresponds to that . . ' 

'I can do it a lot quicker now. I can see immediately that that's 

not the same.' 

Commenting upon a pair of unknots, she said: 

'They look so easy now, I can just open them up and they're 

the same.' 

For shape 3 and an unknot/knot pair she said: 

'If I put my hand, in my imagination, on the piece of rope that 
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goes across at the top on the right hand knot I could just pick 

that up and straighten it out with the one on the left I couldn't 

do that because it goes in and out.' 

This subject reflected that the practice of the spatial tasks had 

enabled her to deal with spatial problems which previously she would 

have avoided: 

'I think I got used to it generally, I have more confidence now 

to look at it as a whole. It seems to be easier now to switch it 

and turn it upside down and say yes I think that is the same. I 

am more able now to look at the whole pattern.' 

'I was a bit lost in the detail at the beginning because you feel 

you' re looking at each separate little piece of knot' 

When watching herself reasoning about one of the pairs she said: 

'I wasn't sure - I'm sure now (about her answer), but I wasn't 

then. ' 

and she confirmed that although she found the thinking challenging at 

the start, she had ~ow achieved a much better grasp of how to tackle the 

problems: 

'It seems to be easier now to correspond. I still can't do it very 

well, hold the whole image in my mind, but I can check the 

various bits. I seem to have got my bearings. ' 

She also s_aid: 

'I think that what I'm doing now which I didn 't think I could 

do before . .. . . 

'I don't have to switch the whole thing round in my head, I can 

switch each little bit through 90 °.' 

This latter comment occurred because the subject was matching and 

rotating at the same time. 

8.7.5 Difficulties 

This subject articulated her difficulties very thoroughly: 
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'If they are in the same position it's quite easy. If they're not in 

the same position I get confused and I lose my bearings. It's 

very much like losing your way in a town when you turn a 

corner and you don't think you're in the same street because it 

looks different from the other way and I'm having this 

problem here. I'm pretty sure they're the same but .... (long 

pause) yes they are the same. ' 

'I find it very hard to hold the whole picture in my mind.' 

Occasionally, after taking some time on a pair she broke off to 

explain her general perplexity at spatial tasks: 

'No it's still not the same . . . I find this very difficult, I have 

this problem reading maps I'm not a very visual person.' 

'It's as though I'm losing my bearings . . . . . (long pause) Every 

time I try and turn it round in my mind I lose my bearings.' 

'I find it very difficult spatially to make them correspond' 

This subject tried to compare the unfamiliarity of the tasks with 

other new learning experiences: 

' It 's like when you are learning a foreign language, at the 

beginning, everything when you are learning a foreign 

language is just a blur. It's just one thing of speech and you're 

trying to make sense of it all and then as you get your bearings 

you pick out words which are significant. It's almost as if with 

this it's like a foreign language and suddenly you see what is 

significant - you don't have to look at everything.' 

The following dialogue illustrates her thinking further: 

S You suddenly see what's significant, you don't have to look at 

everything. I can pick out the important bits with my eyes. 

Like a foreign language when you can pick out the important 

bits. 

I So when it comes to solving it, is there any sense in which you 
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are using language or pictures? 

S 'I'm not using language - it's almost as if its familiar and I can 

see the whole thing and its immediately obvious that its 

identical. I don't do that any more.' 

8.8 Subject 5 

Subject 5 graduated in Welsh and works as a researcher preparing a 

Welsh and English dictionary of terminology. She considers herself 

weak mathematically and was a reserved and somewhat inhibited 

subject. She found the tasks difficult and spoke frequently about 

'checking' in her strategies. She was able to visualise and hold a 

stationery image but found dynamic imagery very difficult. 

8.8.1 Strategies 

The first remarks were simply 'under, over, under, over' indicating that 

she was following the rope around. Later on, regarding crossings which 

were not alternately under and over in an unknot, she said: 

'I'm picturing the rope just dropped down.6 ' 

The novel way in which this subject seemed to deal with unknots 

was to think about the closed loop of rope, the unknot, as the starting 

point, and tried to imagine it folded onto itself. She said: 

'If I thought it was twisted (not a knot) I'd visualise twisting it 

to see if it would work out.' 

She started with an image of an unknot and tried to deform it into the 

image on the screen. 

Ideally, she wanted to have access to the actual rope and became 

rather frustrated. She said: 

'If I had that rope that's lying over there to play with I could see 

whether it matches.' 

6 This effect of gravity has been commented upon in conference presentations of this 

research by delegates not involved in the current study 
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Since she could not manipulate the actual rope she explained: 

'I had to visualise a circle of rope and twist it and drop it.' 

Chapter 8 

This subject commented that she found the three crossing trefoil 

knot, shape 1, with 180° rotation relatively easy and that the mental 

rotation strategy was effective for this pair: 

'That one was so simple in terms of .. .. , it only crosses over 

three times and you could see easily that it was . . . . , if you 

rotated the right hand one you would find that the images 

looked similar and you could see whether they were matching 

by again looking where they crossed over' 

She further explained: 

'First of all I changed the right hand image round so that it 

faced the same way as the left hand one. And then I checked 

the 3 crossovers points to make sure they weren't just lying on 

top of each other. ' 

It was not clear how subject 5 was 'changing round' the image, one 

can easily conclude that this was by mental rotation but it could be by 

some other form of mental processing. She frequently touched the 

screen with her finger whilst processing the pair but commented: 

'Even though I was touching a point on the screen there, in my 

mind I was touching the rotated vision not what was actually 

on the screen, even though I was touching the screen. 

'The difficult part was holding the rotated vision m my mind 

and touching that not what was actually on screen.' 

8.8.2 Foundation part 

This subject did not seem to make use of a 'foundation part' for the 

manipulation of any of the shapes. Her statement about one of the knot 

pairs: 'I can't even work out which way to rotate it, to get it similar' 

perhaps indicates that this subject did not have access to the notion of a 
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foundation part at all. She did make one remark which shows some 

recognition of a whole shape and that was regarding her perception of 

the similarity of shape 5 to a Celtic knot design. She said: 

'It 's like a Celtic knot really. It's a common motif. ' 

8.8.3 Changes of strategy 

At the start, rather than using rotation, this subject tried the method of 

tracing around the knot, noting 'unders' and 'overs'. She originally 

believed that her 'unders and overs' method would be a better method 

than mental rotation but then changed her mind: 

'I think I decided after that (trying unders and overs) that it 

would be simpler just to turn the knot over (rotate it)and see if 

I could get it - the two pictures if they were aligned in the same 

direction to see if they corresponded. I decided I wanted a 

second method of proving whether they were knotted or not.' 

The subject was reluctant to use rotation as a strategy since she 

doubted its effectiveness and returning again to the first method she said: 

'I decided that I wanted a second method of proving whether 

they were knotted or not, as well as rotation I thought I'd 

investigate the way they crossed over each other.' 

8.8.4 Learning 

This subject made less progress with these spatial tasks than any of the 

other subjects. During the interview phase she reconsidered one of the 

pairs which she had answered incorrectly. This was the pair shown in 

Figure 8.1. The subject still could not see that the left hand image was an 

unknot. She said, 'I still can't see the difference.' 

This was puzzling since earlier the subject has expressed ease with 

the other three crossing shape, shape 1, giving the reason that it has only 

three crossings. After further study, she realised that two consecutive 

crossings go 'over' and deduced that the left hand image was in fact the 

page 256 



Chapter 8 

unknot. 

When questioned about how she felt she had learned to solve the 

tasks, she explained: 

'You had to use more than one criterion in a way. To look at 

them both, and try and turn them round to see if they match by 

looking at the crossover points, and then visualising if you 

think it 's not a proper knot, but twisted over. Then visualising 

it as a rope being twisted, a circle of rope twisted and laid down 

in that pattern. Those were the three criteria that I did use. ' 

She continued: 

'If I thought it was twisted, I'd visualise twisting it to see if it 
would work out whereas if I thought it was knotted, I wouldn't 

use that technique.' 

8.8.5 Difficulties 

When looking at shape 6 with 180° rotation this subject said: 

'It's more complicated. I can't make sense of it straight away, I 

can't even work out which way to rotate it.' 

She also had difficulty with shape 4 and 180° rotation. When 

there was no relative rotation the subject used matching for most cases 

and relied very little on unravelling, a strategy which did not spring 

readily into her mind. 

This subject stated that she was able to recreate an image and could 

match and rotate the image, however, what she claimed to find 

extremely difficult was manipulating, twisting or distorting the image. 
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8.9 Summary 

8.9.1 Common themes 

Most subjects reported using a variety of strategies, the initial one being 

one to one matching of crossings, possibly using some kind of verbal 

under/ over system. The other reported strategies of unravelling and 

recognition of a foundation part were present for four out of the five 

subjects. Mental rotation was reported as one of the strategies used, but 

less so towards the end of the experiment when more effective strategies 

had been discovered. However, for the knot / knot pairs most subjects 

continued to test their decision that the knots were the same by matching 

or rotating. 

All except subject 5 actually reported that they felt more confident 

towards the end of the experiment, some saying that they felt they had 

improved their spatial skills. It was also evident that the mathematician 

in the group had modified her range of strategies. At the start she had 

been very methodical employing non-visual strategies which although 

effective were not the most efficient or the most suitable. As she became 

more familiar with the nature of the images, she adapted her initial 

strategy to a more visual one where imagery and mental transformations 

played a greater part. 

The language specialists did not adhere to verbal strategies finding 

their spatial capacities improving as the experiment progressed. 

Although some verbal component could be identified at some point in 

each subject's technique, they all reported using visual processes in their 

principal strategy. 

8.9.2 Differences 

The subject who was a mathematics graduate tackled the tasks from the 

start in a confident and systematic manner, perhaps so effectively that 

she failed to search for alternative strategies, until the unravelling 

strategy presented itself in a particularly obvious way. Once she had 
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learned this strategy she used it very effectively. The subjects who were 

not used to solving problems of a spatial nature were more inclined to 

doubt the effectiveness of their initial strategies and try to seek 

alternatives. 

One of the English graduates tried to deal with more than just one 

crossing at a time by grouping parts of the knot shape into some larger 

aggregated section, possibly so that she had fewer data points to 

remember. 

The fourth subject, although she did not consider herself a capable 

mathematician, made the most remarkable and mathematically astute 

observation, that two knots (shape 5 pair shown in Figure 8.11) can be 

shown to be topologically equivalent without performing mental 

rotation, she explained how she was able to distort one of the knots to 

exactly match the other. 

The strategies reported in this phase of the research were mostly 

the same as those reported in the short debriefing interviews which took 

place after the earlier quantitative experiments. There were two new 

strategies which emerged, one which could be termed 'topological 

equivalence', and the other which could be considered to be in the same 

genre as 'unravelling' but in reverse, was the strategy which 

'reconstructed' the unknot diagram from the simple loop. Each of these 

were reported by one subject only and this latter strategy may have been 

adopted due to an association with the demonstration given at the start 

of the experiment rather than referral to any previous experience of 

ropes. 

8.9.3 Generalisations 

The tasks were seen to be quite difficult, mainly due to orientation 

differences and, in some cases, due to the presence of more crossovers. 

The items which subjects found the most difficult were those involving 

knot shapes 4 and 6, notable quotes regarding shape 6 being: 'I can't even 
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work out which way to rotate it.' and 'It had a lot of loops and I don't 

know where to start.' 

In agreement with the findings from the first studies, shape 3 was 

considered to be relatively easier to deal with and items composed of two 

knots required the most checking. 

The consensus seemed to be that visualisation was employed and 

that it improved during performance of the tasks. A fitting conclusion to 

this chapter would seem to be a collection of quotes from the subjects 

talking about their experience: 

I think that what I'm doing now which I didn't think I could 

do before . .... ' 

'It became easier to do that when my eye became a bit more 

tuned in' 

'My brain has just got used to finding the significant parts' 

'You suddenly see what's significant' 

'I got more into what I was looking at ' 

'You learn to know what to look for' 

'I'd look at this and I might not even have to turn it round' 

'Before I would have had to go back and check it again. This 

time I didn't have to.' 

'It seems very obvious to me now' 

'They look so easy now' 

'I think I got used to it generally, I have more confidence now ' 

'I wasn't sure - I am sure now ' 
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Chapter 9 

Discussion and conclusion 

9.0 Introduction 

In the 1970s, Krutetskii's (1976) major study showed that visual imagery 

is a component of mathematical ability. More · recently, many other 

researchers in the field of mathematics education, notably M.A. 

Clements, (1981, 1983), Clements & Del Campo (1989), Clements & 

Wattanawaha (1978), Clements & Battista (1992), Battista (1990, 1994), 

Presmeg (1986, 1998) and Wheatley (1977, 1990, 1991) have highlighted 

the importance of this ability in the teaching and learning of 

mathematics. Thus the ability to visualise and to manipulate images has 

become a concern for teachers, such that techniques to develop the ability 

in pupils are needed. During the same period, psychologi_sts established 

certain facts concerning some of the processes involved in imagery and a 

theory of mental imagery was proposed by Kosslyn (1980, 1983). Much of 

the research in the psychology literature focussed upon the possibilities 

for image manipulation of 2-D or 3-D rigid objects. The research 

described in this thesis brings together these two separate academic fields 

and extends the investigations to the processes and skills involved in the 

mental manipulation of deformable objects. 

The terms 'imagery', 'visualisation' and 'spatial ability' are used 

throughout this thesis, both in the contexts used in previous research 

and in the description of this research. A discussion and clarification of 

these terms was included in Chapter 2 and, in this chapter, refined 

interpretations which have evolved as a consequence of the research are 

proposed. 
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9.1 General comments on methodology 

Visualisation 
One of the stated aims of this research was to investigate the perception 

of deformable 3-D structures and the strategies used for their 

manipulation. The choice of stimuli derived from the author's 

experiences using similar tasks with school pupils when it was observed 

that some pupils possess great skill in dealing with these images whilst 

others do not. 

The Mathematics 

The stimuli used m the research reported in this thesis were knot 

diagrams and the research bears some similarity to the work of 

Strohecker (1991)° who carried out her study using actual knots. Whilst 

the tasks in either study do not relate directly to knot theory, certain 

aspects are concerned with one of the major questions which some 

algebraists seek to answer, 'When are two knots the same?'. 

The mathematical nature of the tasks is confirmed in the results of 

this study by the way in which the thinking of many of the subjects 

evolved whilst performing the tasks, from an initial haphazard strategy 

to a more logical and clearly applied strategy as the experiment 

progressed. The experience of these subjects may be compared to that of 

young children experiencing early mathematical activities such as in the 

comparison of a number of 3-D shapes, a typical challenge being to place a 

hexagonal prism into the correct shaped hole in a 'letter-box'. The way in 

which the child learn.s to perform the task is not yet known. Whether 

she tries to visualise the action, or learns to recognise the appropriate 

shape by some spatial information it is not possible to say, but the child is 

experiencing mathematical thinking in whichever way the task is 

performed 1 . 

1 The child may learn that the 'green' shape goes into the 'square' hole, thus forming a 

concept of 'squareness' or, alternatively, may acquire the full spatial concept of, for 

example, a cuboid including the property that the 3-D solid will fit through a 2-D 

rectangular hole. 
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The notion of relationships of parts of objects is important in 

conceptualising 3-D solids and their cross sections On the subject of 

geometrical objects and spatial reasoning, Clements and Battista (1992, 

page 420) begin their comprehensive work by stating: 

'Schoo l geometry zs the study of those spa t ial objects, 

relationships , and transformations that have been formalized (or 

mathematized) and the axiomatic mathematical systems that have 

been constructed to represent them. . .. . .. . Usiskin (1987), for 

instance, has described four dimensions of geometry; (a) 

visualization, drawing, and construction of figures; (b) study of the 

spatial aspects of the physical world; (c) use as a vehicle for 

representing nonvisual mathematical concepts and relationships; 

and (d) representation as a formal mathematical system. The first 

three of these require spatial reasoning' 

The 'mathematization' and constructed axiomatic mathematical 

systems as well as the notion of relationships are also important in the 

case of knots. Strohecker (1991, page 215), in describing her research on 

knots as follows: 

' . . . . . a research project concerned with the development of 

understanding of topology, a branch of geometry concerned with 

properties of objects which are invariant when the object itself is 

distorted or deformed. ' 

Strohecker (1991, page 215) continues by claiming that working with 

knots and studying the positions and interrelationships of crossings aids 

spatial awareness: 

'Arriving at an understanding of such properties can involve a 

process of constructing ways of identifying relationships among 

parts of the object.' 

Hence it can be argued that the study of knots can aid geometry 

learning, spatial reasoning and visualisation. 

Relationships in mathematics 

Battista (1994) suggested that cognitive development involves acquiring 
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facts about a new situation and establishing routes and relationships 

connecting these facts and assimilating them into a schema. With time, 

increasingly higher levels of interrelationships are established and these 

become integrated into the schema. The van Hiele levels also refer to the 

significance of relationships. At Level 2 (Descriptive/ Analytic) there 

begins a development of awareness of parts of figures and their 

properties but relationships between classes of figures are not recognised. 

At Level 3 (Abstract / Relational) relationships and definitions are 

beginning to be recognised; for example, the relationship between a 

square, a rectangle and a parallelogram is understood. 

Krutetskii (1976) also paid attention to how the learner deals with 

mathematical relationships when he characterised the geometric type by 

a tendency to interpret visually any mathematical relationship or 

situation. Brown and Wheatley (1997, page 69) emphasised the 

importance of this way of thinking and stated: 

'We believe that forming images of mathematical relationships zs 

essential for effective problem solving.' 

Reynolds and Wheatley (1997, page 104) commented that imagery 

was the route by which relationships were explored by their subject, 

Elaine: 

'Elaine's zmagzng activity was the result of her intention to make 

sense of relationships. ' 

According to Reynolds and Wheatley (1997), imagery had given this 

learner great mathematical power enabling her to construct, examine, 

and reconstruct complex mathematical relationships.' 

It is abstract relationships which tend to be of prime importance in 

mathematics and, in order to establish mechanisms for coping with 

abstract relationships, concrete relationships concerning many kinds of 

objects must be constructed first of all. 

The Curriculum 

The experiments were carried out using diagrams of knots presented on a 
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computer screen. At the start of each experiment, subjects were shown a 

demonstration using actual ropes but had no personal tactile experience. 

It was assumed that the samples of mature subjects would have had prior 

experience of string or rope and that they would have some tacit 

knowledge about the workings of topology. Before similar activities can 

be contemplated in the classroom, it would be desirable to begin by 

offering pupils experiences with actual ropes which they could touch and 

manipulate as they wished. 

Mitchelmore (1980) warned that passive viewing of 3-D 

representations is unlikely to be effective in training spatial ability. 

Strohecker (199$, page 228), describing topological thinking in children 

and adults, remarked: 

'The microworlds of knots make a similar offer (to the LOGO 

turtle). By twisting and turning with a piece of string, and by 

seeing and feeling the relationships of different parts of a knot, a 

child can construct vivid understandings of what is crucial about 

those relationships.' 

The relationships were described by Strohecker's (1995) subjects in 

interesting and varied ways, for example, when describing the difference 

between a granny knot and a reef knot, one of her subjects explained: 

'The granny is a kind of bridge between the Pretzel ( trefoil) and 

the Square ( reef knot) . . . It 's like a Pretzel, double, but it's not 

quite a Square. 'cause it's a Square if you keep on going instead of 

if you do it right. Some people say that a Square is you do it one 

way and then you do it the other way, but since the string 

strings change places, its really doing it twice.' 

Indeed the emphasis in Strohecker's (1995) research was as much 

concerned with the language and verbal descriptions of knots as with 

spatial conceptions and diagrams. 

If activities involving knots are to be introduced into the 

curriculum, either by viewing on a computer screen or on the printed 
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page, pupils should engage in introductory experiences with real ropes 

first of all, perhaps in the way that Strohecker worked with her pupils, so 

as to ensure that all pupils have knowledge of the objects before they 

attempt to work on them mentally. Later activities would include the 

requirement that pupils work on their images in the way that Mason 

(1992) recommends. 

9.2 Review of the aims of the research 

The key aims of this research are related to improving the learning of 

mathematics, in particular through the development of imagery. The 

main questions which the research has sought to answer are whether the 

performance of the tasks used here can enhance visualisation ability and 

how these kinds of tasks may be sequenced so as to develop a teaching 

programme. Hence it may be possible to improve not just geometry 

learning but problem solving generally. The term 'geometry' is used in 

this thesis in much the same way as Freudenthal (NCTM, 1989, page 48) 

uses the term: 

'Geometry is g~asping space . . . that space in which the child 

lives, breathes and moves. The space that the child must lear!1 to 

know, explore, conquer, in order to live, breathe and move better 

in it.' 

This study aimed to examine novel kinds of structures occupying 

space and to extend the ideas concerning imagery and visualisation of 

mental rotation of rigid structures to structures which can be deformed. 

The question regarding how to classify the tasks in terms of 

complexity was explored by measuring two fundamental indicators, the 

time taken to perform each of the tasks and the accuracy of response. 

These measures enabled a comparison to be made between the control 

variables. If a significant decrease in decision times occurred during the 

performance of the experiment, it may be concluded that subjects were 

discovering better strategies for solving the tasks, probably by improving 

their visual imagery skills. 
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The different strategies used by subjects were explored so as to 

provide insight into different modes of thinking and also to aid 

understanding on the part of educators of the range of cognitive styles 

which may come into play in dealing with deformable structures. The 

strategies applied in solving the spatial tasks used in this study may be 

such that they provide a route for teaching visualisation. 

One of the research questions posed was concerned with what 

prior knowledge and experience enables us to predict the possible 

deformations of a non-rigid object, and specifically how easy it is to apply 

this knowledge to the tasks. This question was explored by questioning 

subjects about the strategies which they used in order to bring about the 

manipulations The methods of comparison of the deformable objects 

varied, and were sometimes adapted during the course of the 

experiment, and this response was investigated. 

The question as to what type of thinkers prefer visual over verbal 

strategies and whether these strategies may be altered according to the 

tasks was dealt with by testing subjects from different backgrounds and 

with different knowledge. Facility with the tasks was measured and the 

strategies used by a variety of subjects at different stages in the 

performance of a series of the tasks were investigated. 

9.3 Characteristics of this research 

The literature makes some distinction between 'visual' and 'spatial' 

when describing tasks and strategies for solving them, but there are 

discrepancies and ambiguities in the meanings attached to the various 

terms. As a result of carrying out this study, some clearer definitions 

have emerged. In trying to make some distinction between the terms 

discussed throughout this thesis: 'visualisation', 'imagery', and 'spatial 

ability', it may now be useful to suggest the following more precise 

definitions of these terms: 

(1) visualisation may be described as the actual process by which an 
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internal image is created, 

(2) imagery may be used in the sense of the possession of an internal 

representation or mental image and the ability to perform manipulations 

on it, and crucially: 

(3) spatial ability may be considered to be the awareness which is 

developed as a result of the use of both visualisation and imagery. 

Wheatley's (1990) three components of imagery which derived 

from Kosslyn's (1983) theory were described earlier in Chapter 2: 

(i) the construction of images from directly viewing the objects, 

(ii) re-presentation of the image at some time after its original 

construction; and 

(iii) transformation of an image 

The first two of Wheatley's components relate to 'visualisation' (1) and 

the third relates to 'imagery' (2) in the sense defined here. Guay and 

McDaniel (1977) noted that high spatial ability (3) was characterised as 

requiring the visualisation of 3-D configurations and the mental 

manipulation of these visual images. 

Bishop (1983) proposed two types of ability, one of which he 

named visual processing (VP). Bishop (1983) described VP ability as 

involving visualisation and the translation of abstract relationships and 

nonfigural information into visual terms and also the manipulation and 

transformation of visual representations and visual imagery. In 

considering the definitions (1) to (3) above, Bishop's VP ability 

encompasses (1) and (2) and it is suggested here that VP ability be 

separated into two parts, the second part, 'manipulation and 

transformation of visual representations', being defined as 'imagery'. 

Furthermore, what McGee (1979) describes as the two components of 

spatial ability2 , may also be associated with 2 and 3 above. 

Where manipulation of an image is involved, the question as to 

2 Vz - the ability to mentally manipulate a pictorially presented stimulus and SR-0 - an 

aptitude to remain unconfused by the changing orientations in which a spatial 

configuration may be presented 
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whether the nature of a mental image is visual or propositional becomes 

even more complex. In the situations described here, the subject is 

required to manipulate a currently viewed image and to transform it 

mentally. The question arises as to whether this favours a visual 

method over a verbal method and, if so, is it therefore to be 

recommended as an educational practice. 

The tasks used in this research were expected to be solved by 

different methods depending upon the prior experience of the subjects 

and upon the efficacy of any one method for a particular task. The tasks 

utilised deformable objects and hence allowed different methods of 

solution to the rigid shapes used in previous research. The strategies for 

solution may be more intuitive, since most individuals already have 

experience of ropes and knots, thus untutored skills may be called upon 

as a means of developing some other related mathematical abilities. 

The extent to which subjects held a picture of the knot in their 

mind's eye and manipulated it cannot be verified, but it appears that 

some pictorial imagery did take place in the sense of Mason's (1988) 

visual experiments rather than some other form of internal 

representation. 

The findings from the interviews have been analysed in some 

detail but Presmeg (1998, page 62) has indicated that this can be rather 

subjective and she made the plea for the reader to be able to make up her 

own mind: 

I have to admit that I experience annoyance when a 

researcher is so explicit about his or her own subjective 

interpretations that the reporting does not enable me as a reader to 

get close to the people in the research, . . . Again a balance is 

required, in this case, between reporting of interpretations of the 

phenomena investigated, and of evidence for these 

interpretations, for instance in actual transcript data. ' 

One characteristic of this research has been to collect a large 
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amount of data, both quantitative and qualitative. These data have 

received detailed analysis here, but the opportunity for further study of 

the data from the video case studies is offered by the inclusion of the 

transcripts in Appendix III. 

9.4 Characteristics of previous research 

Much research has been carried out to discover what are the 'abilities' 

which are needed in doing mathematics, and many studies have drawn 

conclusions on the efficacy of different thinking styles. The consensus is 

that imagery is a valuable skill in mathematics, especially in problem 

solving, and must receive attention in the classroom. This has been 

acknowledged formally by inclusion in the National Curriculum for 

Mathematics (DFE, 1995). 

Some of the previous research (Gattegno, 1965; Mason, 1991) has 

involved asking subjects to close their eyes in order to form pictorial 

images and manipulate them. Other research has considered how 

individuals implement imagery manipulations. (Kosslyn, 1987) has 

shown that different parts of the brain may be used for different purposes 

and that the left hemisphere may develop a categorical spatial relation. 

Whereas the right hemisphere is more concerned with the detail of 

spatial inter-relationships and possibly therefore with pictorial 

representations, the left can be employed for decision making regarding 

explicit spatial properties such as whether a shape is inside or outside 

another shape (Kosslyn et al., 1986) and hence with some other less 

pictorial form of internal representation. 

Wallace and Hofelich (1992) considered the effect of practice and 

found that for mental rotation tasks of 2-D random polygon shapes both 

accuracy and speed improved with practice. They also found that the 

exercise of a mental process due to practice of tasks involving that process 

can be transferred to the performance of other tasks, for example, from 

mental rotation tasks to geometric analogy tasks. 
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9.5 Main findings of this research 

With regard to the question of how the tasks used in this study were 

solved, either verbally or visually, it may be the case that for some 

subjects a combination of methods was used. It has already been shown 

that the ability to switch strategies is effective in mathematics (Smith 

1991). Clearly the strategies reported in Chapter 8 would support both 

verbal and spatial roles and the most successful subjects were those who 

were able to use a range of strategies. 

Shape recognition and rotation would be primarily spatial in 

nature. Unravelling is a novel strategy in imagery research and could be 

viewed as either verbal or visual depending upon whether sequences of 

crossings are labelled and analysed logically, or if immediate mental 

manipulation is performed. 

In the analysis of the results, the question 'Why are some knots 

more difficult than others?' received attention both in terms of 

identifying high error rates and longer decision times as well as verbal 

reports from subjects in the case studies. The factors affecting the level of 

difficulty were rotation, knot shape and pair type, and there were some 

interactions between these factors. 

The hypothesis that stimulus pairs of knots with higher numbers 

of crossings would yield longer decision times was not supported. 

Neither was a linear relationship found between decision times and 

rotation. Although subjects in the case studies mentioned the number of 

crossings present in the diagram as being a component affecting 

difficulty, the quantitative results did not confirm this. The number of 

crossings was not found to impart complexity to the tasks. The overall 

shape seemed to be the main contributing factor with shape 3 being the 

least difficult of all the knot shapes. The search for a hierarchy according 

to number of crossings failed, but the notion that 'families' of knots 

having similar shapes such as the 'figure eight family' shown in Figure 

4.24, could form similarly complex groups, is one which is worthy of 

investigation. 
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The effect of rotation interacting with certain complex shapes 

served to compound the complexity for those shapes. Lowest decision 

times and error rates were recorded for all stimulus pairs at 0° of 

rotation. Decision times for all knot shapes were affected by rotation but 

knot 3 was the least affected and knot 6 the most. 

Pair type had an effect on the level difficulty, with unknot/ unknot 

pairs being the simplest and knot / knot pairs the most difficult. Rotation 

had noticeably little effect upon unknot / knot pairs suggesting that 

mental rotation was not a strategy for these pair types. Not only was 

there no evidence to support rotation as a solution strategy for 'different' 

unknot/ knot pairs, but neither was there for ' same' unknot / unknot 

pairs. However, knot/ knot pairs with rotation did require additional 

processing time and in some cases (knot shape 2) a range of strategies 

including rotation may have been utilised. 

In the pilot study, there was no significant difference between 

relative rotations of 90° and 270°, and the differences in mean decision 

times between the 90° and 180° in the second study were found not to be 

significant. This provides further evidence that mental rotation was not 

a preferred strategy. Although mental rotation was one reported strategy 

used by subjects in decision making, no relationship between decision 

time and degree of rotation was found in the quantitative studies. 

Rotation clearly caused an increase in decision times overall, but this 

does not imply that mental rotation was the strategy used, rotation 

merely added complexity to the tasks. This is confirmed by the fact that 

the highest error rates occurred at 180° rotation. 

The interaction between rotation and knot shape showed that knot 

pairs with rotation to 180° took significantly longer for Knot 2 than those 

to the intermediate 90 °, suggesting perhaps that this was the closest 

result to those obtained by Shepard and Metzler (1971) and Shepard and 

Feng (1972). This may have been the only knot shape where mental 
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rotation was a plausible strategy. 

When the data for errors were considered, apart from shape 3 

which presented the least difficulty as measured by lowest error rate as 

well as shortest decision times, no statistically significant conclusions 

could be made regarding complexity for the remaining five knot shapes. 

There were fewer errors for shape 5 but this shape did not have 

significantly shorter decision times than the others. 

With regard to gender, females were significantly faster than males 

when controlled for educational background. All subjects taking part in 

the research improved their performance during the course of the 

experiment. An important finding in this study has been the effect of the 

order of the item on the decision time recorded. Not only did subjects 

report that they felt that their ability improved as the experiment 

progressed, but the results clearly show that this is the case. This was true 

for both the quantitative studies and in the case studies, where subjects 

gave emphatic reports of noticing that they had learned how to do the 

tasks. The range of knots shapes used in the tests would suggest that a 

general ability to process these images is being developed. 

9.6 Relationship to previous research 

Although mental rotation has been shown to be a major strategy for 

some tasks involving rigid objects, the data from this research show that 

there is no evidence to support such a conclusion here. This conclusion 

has been reached in the past by other researchers, Suzuki and Nakata 

(1988), also found no evidence to support rotation as a solution strategy 

for 'different' pairs of Shepard and Metzler (1971) type figures. 

The stimuli presented in this study were deformable, with the 

nature and relative attributes of crossings confirming the knottedness, or 

otherwise, of the figure. The figures were portrayed as comprised of rope 

which could be moved, twisted or turned in any manner. The figures 

used in most previous research were completely rigid and non-
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deformable. Even the folding paper figures of Shepard and Feng (1972), 

whilst being deformable, could only be deformed along adjoining sides of 

the squares. In solving the Shepard and Feng (1972) tasks, only 

successive folding along adjoining edges of the squares was required. In 

the case of knots and unknots, a number of factors were present for 

consideration; differences in the number, nature and relative position of 

crossings, the overall shape of the stimulus, its topology and its figural 

symmetry. 

The relative efficacy of verbal versus pictorial strategies was 

studied by Brandimonte, Hitch and Bishop (1992). For their tasks, 

involving drawings of familiar objects, they found that verbal strategies 

were often preferred and were commonly used even when these 

strategies were ineffective. This oddity was also observed by Denis (1991) 

who . found that the most. obvious strategy was not necessarily the one 

used. Denis (1991, .page 124) believed that imagery is important for many 

types of problem and commented: 

'situa tions where imagery is most · readily available are not 

necessarily those where imagery is truly needed. For instance, 

while imagery is easily available in relation to concrete or spatial 

stimulus materials, imagery may be needed the most in abstract 

highly unstructured tasks.' 

Reisberg and Chambers (1991) reported a strategy which can be 

considered to be verbal, involving the reassigning of the 'top' of an 

image. They found that this method was more effective than mental 

rotation for recalling and reinterpreting an image. 

It has not been established here which are the most efficient 

strategies for performing these tasks but, in the case study interviews, 

subjects reported being more at ease with certain strategies and, as a 

result, found the later tasks easier to complete. The most notable of these 

strategies was learning how to undo the figure. This strategy highlights 

another complex aspect of imagery identified by Kosslyn (1994), that 

when a subject imagines new situations for a viewed object, novel. 
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previously unseen representations of an image are required. The notion, 

termed 'motion-added transformations' was proposed by Kosslyn (1994) 

whereby the transformed image assumes novel configurations or 

structures. In the case of knots, the subjects must use tacit knowledge of 

the possibilities for the movement of the ropes in the images so as to 

create the imagined novel representation. 

For the tasks used in this study, the presented images involved 

transformations which were rotations in the image plane and the images 

had both a surface representation and a deep (structural, encoded shape 

information) representation as described by Kosslyn & Shwartz (1977). 

The strategies described by the subjects in performing these tasks do not 

unequivocally confirm the use of the Kosslyn & Shwartz (1977) model, 

but do suggest that the conceptions of surface and deep representation 

play a part. 

In trying to explain the short decision times for one of the knots, 

shape 3, Kosslyn's (1994) theory of a 'foundation part' of an image and the 

theory proposed by Reisberg and Chambers (1991) of reassigning the 'top' 

of the image (some subjects report that it had a pronounced 'right way 

up' ) may provide an explanation. Some knot shapes had more obvious 

foundation parts than others and the presence of such a characteristic 

may be a factor in determining the complexity of the image. Another 

possibility is that the strong bilateral symmetry present in the outline 

shape of Knot 3, a symmetry prevalent in our natural and man-made 

environment, may be a contributory factor to the ease with which 

subjects can memorise and manipulate such shapes. A further study 

using diagrams of the family of figure eight knots of crossing number 4 

upwards would clarify this. 

Tarr and Pinker (1989) found that, with practice, subjects could 

recognise objects almost equally quickly at all familiar (already seen) 

orientations. This indicates that subjects could memorise the shapes and 

that they stored representations of different orientations of the shapes 

which later they called upon to respond to recognition tasks. This would 
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explain why no mental rotation was required in performing their tasks. 

The same may be true here, and the ease with which subjects could 

memorise the shapes and orientations of some of the knots might 

explain why some of them are performed more quickly than others. 

Where subjects had to perform two image transformations 

Wallace and Hofelich (1992) found that practice improved performance 

on geometric analogy tasks. Kosslyn et al. (1989) found further evidence 

for practice improving performance. They found that, with practice, the 

left hemisphere of the brain develops a new function related to spatial 

processing. In the studies reported here, practice did result in an 

improved facility with the tasks, the ability of the subjects to perform the 

tasks in a shorter time improved as the experiments progressed. This 

suggests that certain spatial skills are improved as a result of tackling 

these problems. 

9.7 Implications for the curriculum and for teaching 

The results show that there is a difference between. the method which 

subjects use for mental tasks involving rigid objects and that which 

seems to be preferred for some of these knot tasks. The existence of a 

topological strategy which can be brought into play where necessary, 

offers subjects increased scope for creativity and helps them . to use a 

variety of strategies with this novel range of spatial tasks. The possibility 

of switching strategy is much more apparent in these tasks than other 

spatial tasks involving rigid structures. This would imply that these 

tasks would serve as a useful tool in teaching problem solving which has 

been shown to be improved by good spatial ability and a readiness to 

switch strategy when appropriate. 

It has been mentioned earlier that memory plays a leading role in 

spatial ability (Smith, 1991). Other mathematical thinking also relies 

heavily on short term memory. The following remarks appear in the 

introduction to the SMP book (1994, page 6) 'Developing Mathematical 

Imagery': 
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'Much mathematical thinking can be analysed in terms of 

working with a pair of mental boxes (rather like a calculator with 

two memory cells and a display); we have to store information in 

one box while processing that held in the other box. Whenever 

this process is needed, it is crucial that the contents of the first box 

are remembered accurately, and that they are not 'forgotten' or 

changed as a result of thinking about, or processing, the contents 

of the second box. Such mental gymnastics can be taught and 

learned.' 

The last sentence of the above quote makes a rather bold statement 

but the truth of it has been confirmed in this research. 

Teachers have a duty to help pupils develop their mental 

strategies and mathematical thinking. The findings have implications 

for the teaching of visualisation with suggestions for incorporation into 

the curriculum of certain aspects of an area of mathematical theory (knot 

theory) into the school curriculum as a teaching aid. Indeed, the interim 

results of this study have been adopted by NFER and items have been 

incorporated into some new tests under development in 1999 

It seems clear from this research that children can be given 

activities which improve their visualisation skills. The research has also 

identified. some suitable activities, involving knots, for achieving this 

goal. Some relatively simple tasks have been distinguished from others 

which are more complex. The skills needed to perform these knot tasks 

are latent in most individuals and the potential for development of 

spatial ability by offering such tasks is a powerful one. 

Just as language is a genetic potentiality in us all, it has been 

argued that perhaps the same may be true for the mental manipulation 

skills required to deal with knots and unknots. It is certainly a skill 

which has been available to humans throughout history. This raises 

another question worthy of investigation: 'Does a deficiency in the left 

parietal cortex of the brain, the region which is responsible for number 
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and which causes dyscalculia, affect ability in the area of mathematics 

known as topology.' It is possible that dyscalculics have no disability in 

this area. The part of the brain which may be required for topology is the 

right parietal cortex which is traditionally regarded as being responsible 

for spatial thinking. Perhaps dyscalculics could be helped by developing 

this other part of the brain. Keith Devlin (1988, page 230) has explained: 

'Though topology is. an extremely difficult subject to pursue 

properly, a facility to visualise geometric objects is all that is 

required .. . . to grasp the general principles.' 

The tasks in this research were presented to subjects on a computer 

screen and as such may be considered to be intrinsically different to a 

picture on a page or to actual ropes. The ideal situation for the classroom 

would be to have a variety of means of presenting tasks to pupils, 

beginning in most cases with the opportunity to work with actual knots 

and ropes. 

Other activities which may be used alongside knot tasks in the 

mathematics classroom include visualisation exercises such as those 

recommended by Mason3 (1991), where the entire process is carried out 

inside the visualiser's mind and may require the mental drawing of a 

shape followed by the manipulation of that shape. Other tasks could 

involve a starting point given by the teacher in the form of a picture on a 

card. The pupils could then be asked to imagine applying some 

transformation to the picture. A transformation such as reflection in the 

vertical could be carried out and the pupils may then be asked to describe 

or draw their new version or, more simply to pick out the correct one 

from a list, either on a printed page or on a computer screen. With 

practice the pupils may be asked to imagine two transformations, such as 

a reflection followed by a rotation. 

What is clear is that as more emphasis is placed upon developing 

'personal' mathematics through the use of imagery, all pupils should 

benefit, but particularly the average or less able child, not only from the 

3 See Chapter 2 section 2.1 
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point of view of making respectable the visual approach, but also by 

allowing the child to do their own mathematics in their mind rather 

than always in an exercise book. 

The tasks developed by Clements and Wattanawaha (1978) are also 

interesting and varied, and deserve to be included in classroom activities. 

Clements and Wattanawaha's (1978) tasks covered many aspects of 

imagery at a range of levels of difficulty. Teachers tend to be offered only 

a limited selection of tasks of this kind in current texts, but this deficiency 

may soon be rectified with the adoption of visual imagery tasks in the 

new tests being developed by NFER. Logic and imagery may be utilised 

to solve these tasks efficiently, and a rich variety of different imagery 

tasks, including knots, will assist pupils in becoming better problem 

solvers. 

9.8 Concluding remarks 

There are some questions which this research has raised and which are 

not fully answered here. One intriguing question is: 'What is it that 

makes knot shape 3 so much easier than the rest?'. An explanation has 

been offered regarding the presence of a strong ' foundation part' together 

with its bilateral symmetry, but further experiments need to be conducted 

in order to substantiate these ideas. 

A more general question is related to the specificity or generality of 

the ability to perform these spatial tasks. Although the subjects in the 

study had different strengths and weaknesses academically, they were all 

highly educated in some field. It is not known whether the same effects 

would be observed with a more mixed sample and whether individual 

differences in pupils' abilities may interact with the training. It is 

possible that greater mathematical success may be evident for lower 

ability pupils who find a spatial approach more accessible (Wheatley and 

Wheatley, 1979). 

Subjects in this study reported that they were unsure of the 
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effectiveness of some strategies for performing these tasks and that they 

needed to check by utilising a second alternative strategy. The inadequate 

strategies were those of mental rotation and matching of crossings. 

When subjects learned to use the unravelling strategy they were quite 

confident that it was effective. 

What the research seems to show is that mental rotation is not the 

most efficient strategy for these tasks and that perhaps the non-rigid 

nature of the objects provides a route to a more efficient mental 

manipulation strategy via untwisting mentally and sliding the rope. The 

fact that unravelling was reported to be used more frequently as the 

experiment progressed and also that unknot pairs had shortest decision 

times support this. 

There has been some debate in the literature as to which strategies 

are useful for individuals in performing visual tasks, but if the outcome 

of any strategy is the successful solution of a problem then it is a valid 

strategy. As has been pointed out by Bryant (1982), a child recognises that 

a certain strategy _is effective when it consistently produces the same 

answers as another strategy. 

The fact remains that many pupils need help to develop their 

thinking strategies and skills. Some skills may arise out of everyday 

experiences as well as classroom activities and we should be aware of 

this. Some learners will find certain strategies more successful than 

others and it is the role of the teacher to offer practice and support for the 

child's preferred strategy so long as that preferred strategy is effective. 

This research has attempted to clarify some issues surrounding the 

teaching of visualisation and imagery. Some progress has been made 

and suggestions for suitable activities have been formulated. A small 

contribution to the literature has been made and with the continuing 

efforts of mathematics educators to produce better teaching materials, 

procedures and educational practices, then more children will become 

successful and confident in mathematics. 
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Appendix 1 

Table of knots up to 9 crossings 
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Knots Experiment Protocol - Pilot and second study 

This is an experiment on knots and how you see them and manipulate them. If 
you normally wear corrective lenses for distance/near you should do so during 
the experiment. 

This is a knot and this is an unknot or loop: 

<Show actual knot and unknot> 

The difference between them is whatever you do to the knot it will always 
remain knotted whilst the unknot or loop can always be manipulated into a 
circular loop. 

<Demonstrate> 

We say that two knots are the same if one can be manipulated into the other 
without cutting. 

You will be shown pictures of 
• pairs of knots 
• pairs of unknots 
• pairs containing one of each 

and ·asked to answer the question 'Are these two knots the same? For example, 
the drawings may be like this: 

<Show unknot in shape of Knot 1 next to knotted shape of Knot 1. 
Demonstrate undoing the unknot and show that it is not possible to do 
this for the knot> 

These two are not the same. 
Or like this: 

Show two trefoils where one has been rotated 

These two are the same. 

During the experiment you should not ask any questions, however you may 
wish to do so during the short practice session which we shall begin in a 
moment. 

Your decision times will be recorded. You may take as long as you wish to 
respond, your criteria should be to aim for a correct answer. After you press the 
mouse button to indicate that you are ready a picture will be presented, this is 
called a trial. There will be (126) (72) such trials. 

Do you have any questions before we begin? 
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Knots Experiment Protocol - Case studies 

This is an experiment on knots and how you see them and manipulate them. If 
you normally wear corrective lenses for distance/near you should do so during 
the experiment. 

This is a knot and this is an unknot or loop: 

<Show actual knot and unknot> 

The difference between them is whatever you do to the knot it will always 
remain knotted whilst the unknot or loop can always be manipulated into a 
circular loop. 

<Demonstrate this> 

We say that two knots are the same if one can be manipulated into the other 
without cutting. 

You will be shown pictures of 
• pairs of knots 
• pairs of unknots 
• pairs containing one of each 

and asked to answer the question "Are these two knots the same?" For example 
the diagrams may be like this: 

<Show unknot in shape of Knot 1 next to knotted shape of Knot 1. 
Demonstrate undoing the unknot and show that it is not possible to do 
this for the knot> 

These two are not the same. 

Or the diagrams may be like this: 

<Show two knotted versions of Knot 1 where one has been rotated> 

These two are the same. 

During the experiment you should try to explain your thinking in deciding how 
to respond to the item on the screen. There will be 20 items. You may ask 
questions at any time. 
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Transcripts of Interviews 

Subject 1 

Subj. 1 

Initially, it seemed easier to do it with your finger, but then it got 

confusing. 

Int. 

What made it confusing? 

Subj. 1 

I think after seeing a couple of the knots I got more in tune with what I 

was looking at so it was easy to actually break it down if there was a little 

bit twisting or folding on top which would ..... if you folded it back and 

untwisted it, it would just make a loop. It became easier to do that when 

my eye became a bit more tuned in. 

Int. 

And you didn't feel that you needed to ..... 

Subj. 1 

Yes. I didn't feel I needed to do that. Funnily enough, I kept going to the 

left first. I don't know if that's because I'm left handed. . . But that can 

also be misleading because then I would try to do a bit more - trying to see 

if they were a loop first of all or not. 

Int. 

That was your first line of attack? To see if it would undo? And you 

thought 'Ah, I've found a strategy ' ... . 
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Subj. 1 

Yes. Then I went through with most of them but then it didn't work all 

the time. 

Int. 

So when it didn't work, you had to try another strategy? 

Subj. 1 

Yes. Usually when it didn't work it was because there was intertwining 

and so then it was .... 

That again was when I was looking for this . . . would they just open out, 

is one just folded or balanced on top of the other, looped on the other 

rope or is it intertwined? 

Int. 

That was the conversation about the dominant shape and you were lead 

to a dominant part of the shape. 

Subj. 1 

Yes. On the left hand side it was just because it went underneath and 

then it went over and round. It just seemed to have a strong shape to it. 

Int. 

So when you were trying to do some that you were not sure whether 

they would undo. . . You were then going to this strategy? Is that what 

was happening? 

Subj. 1 

If the matching was harder. 

Int. 

If you were not able to see a place that would undo with your first 

strategy, you were then looking at that strategy? 
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Subj. 1 

Yes, and then matching, seeing each one, seeing if this bit goes over there, 

this bit here goes over there. Does this bit go under as well. Or does it go 

under, or then, possibly working through it to see was there any . . . . . I 

started working on one individually and then on the other individually 

and then matching them and then sometimes it was easier to look at 

them both and to say 'that goes there' and 'that goes there' and if you 

find a couple of things that do match up then just go through them both 

again until you find that they all either match up or are different. 

Int. 

So sometimes you spent a little bit of time on one and then you looked at 

the other and spent quite a bit of time on that, but at other times you just 

had a quick glance at one bit of that one and then a quick glance at the 

other. I wonder why it was different? 

Subj. 1 

The ones that had a lot of different loops on, but I was not looking at one 

for a long time on its own. That was too confusing. Ones with a lot of 

different loops and turns - I was just looking at them both and without 

trying to go through one just to see if they both do this. Do they both do 

this? It was easier to just do that. If I was to just concentrate on the one 

and just go into it I would just confuse myself. 

Int. 

You seemed to get quite a number of that type! They keep coming up 

don't they? 

They are a bit blurred on the screen but that was an unusual shaped one. 

Do you remember the one I mean? 

Subj . 1 

Yes. That was a hard one. I did find that hard. It was turned anyway. 

The other one was on sideways and that made it harder. You don't see 
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just straight away to them - they looked like the same - go back to the 

usual procedure. It was more a case of I was a bit lost there, actually, 

following the rope and seeing if they were both balanced on .. . 

Int. 

When there was some amount of turn on one of the pictures, you started 

to follow the rope around. 

Subj. 1 

I found it hard to try and imagine this one turning slightly, although I 

tried to visualise that it was straight and then look at it, but I couldn't 

hold that for too long. 

Int. 

So y~u went for this other strategy of looking at the journey round the 

knot and what were you finding from that? What were you noticing? 

Subj. 1 

Just that they all went under at the same place or they all rested on 

another part of the knot in the same place and that if they were all to 

undo that they would have the same picture. 

Int. 

Could you rewind that one a second. I just saw something. Do you 

remember doing that one? 

Subj. 1 

That one initially struck me straight away as being knots because it 

seemed to go through the top loop in both of them. 

Int. 

One of the strands? 

Subj. 1 

Yes, it stood out. 
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Int. 

And that made your mind up for you? 

Subj. 1 

I think that was a quick one - quite a basic shape. The one from the 

demo. 

Subject 2 

Int. 

You got a bit louder as time went on. Came to a conclusion - that's what 

you were saying. I liked this description , listen to what you said here. 

'Taking the top and the bottom of one and going to the right and the left 

of the other. 

Subj. 2 

That's sideways on. Two loops, one below the other so I called it 

identified a top loop so the other one . . . . bottom ... I'm looking at the 

sides, left and right. 

Int. 

'I called it top ... and bottom', do you think you 'called' it in your 

mind? Do you know what you meant by that? If it happens again, let me 

know. 

When you said 'the same in reverse' . .. 

Subj. 2 

Yes, I remember saying it thinking 'why did I say reverse?' Maybe I 

should have said 'turned over'. 

Int. 

The same but turned over? That's what you felt is it? So you were trying 
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to imagine it turned over? 

Subj. 2 

I should look at it again just to see why I ~aid reverse. 

Int. 

That's what you said then. Do you remember what you meant by that 

now? Something about that middle part. 

Subj. 2 

The middle part because they're the same at the edge. One was going 

under and one was going over the top. So maybe I'm using an incorrect 

term. I am just trying to say it's not the same at this point. 

Int. 

That was the difference, you found. 

Subj. 2 

One was going under and one was going over the top so I said 'in 

reverse'. Meaning ... . 

Int. 

So you were explaining the difference? I see. 

That particular shape - you didn't like that shape? 

Subj .2 

No. 

Int. 

Because it had a lot of loops? 

Subj. 2 

So I have a lot of points to look at and at first I don't know where to start. 

I am trying to find two points the same. I know these two are the same. 
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I'm working to· where the next two points that are similar. And your 

eyes are jumping from one place to another and then when you think 

you have identified it, and looked at something else, you go back and 

think 'what did I say about that?' 

Int. 

You have forgotten by the time you get there. So, there was too much 

information. 

Subj. 2 

Too much detail. Yes. 

Int. 

You were actually very clear in your explanation when I was sitting there 

listening to this . You went round it very systematically. Do you 

remember that? 

Subj. 2 

Yes. I found it more difficult and this one as well. 

Int. 

Do you remember that? - 'I have to have one point to start from' 

Subj. 2 

Yes. One point that is in each one. So I have kept to look at two - that is 

the middle loop. I just thought it's small enough for me to focus on to 

look at. Find the small loop in the other one. Not the other two. You 

can see the two loops at the side and the two at the bottom. I didn't want 

to look at that - that is too .... . 

Int. 

So you found that one identifiable point? 

Subj . 2 

Loop, yes. So on its side there, and then there. I thought 'well it's turned . 
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up'. You know - go up - rotated so it's at the top on the left hand side. 

Int. 

So you were actually trying to picture that one on its side put back the 

other way. That's what you were trying to do? 

Subj. 2 

Yes. But I don't think I tried to do that with all loops. There were 

another two loops and I thought there they are up there and there they 

are down there so that must be the same, so as soon as I started seeing 

three things that looked the same, I just want to carry on and think 'well, 

it's got to be the same.' 

Int. 

So basically, you are taking one little bit and imagining that that bit has 

been rotated - checking that, and then you have moved somewhere else. 

Subj. 2 

Yes. I then saw the other two pieces. The other two loops. When I saw 

they were at a certain place, I just thought 'well, if that is rotated, they 

would come underneath'. But I was also assuming things. 

Int. 

What are you assuming? What do you mean 'I am assuming things '? 

That the rest comes with it? 

Subj. 2 

Yes. Maybe if I went back and looked at some of those things and spent a 

little bit more time .. .. . 

Int. 

You felt as though you were having to rush? 

Subj. 2 

I feel I wanted to get through all of them. 
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Int. 

But when you were dealing with the processing you said you identified 

the one point and you imagined that bit r?tating and then you had to go 

to another part of it. You spoke about the two then. You spoke as though 

there were two pieces - that then had to be dealt with. Now, did you try 

to do these both at the same time? 

Subj. 2 

Yes. I just looked at the two loops in the one position. The two loops in 

the other position - looked at the shape - the shape was the same and I 

thought 'well, that's probably the same so, therefore, I am assuming that 

they are both . . . I could be wrong there. 

Int. 

But, basically, you were trying to deal with the whole part. What shall we 

say? The bottom in the left hand one with the two loops and you try to 

deal with both of those at the same time in the rotated one, rather than 

one at a time. 

Subj. 2 

Yes. Both together. 

Int. 

That's interesting. 

This is the same strategy isn't it? This one doesn't have as many ..... 

Subj.2 

No, so that was easier. 

Int. 

And you were basically trying to get hold of the part of it and transfer it to 

the other piece. Can you remember how you were actually trying to do 

that transfer? 
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Subj. 2 

I looked at it straight away and saw that they were obviously turned 

around and they could possibly be the same. But they were lying in 

different positions. So when I saw the egg shape on the right I looked at 

the other one to see if I could see a shape - egg shaped - where was it, 

where did it occur in the image? And then when I saw the egg shape 

then I checked is it going underneath. 

Int. 

Were you thinking 'egg-shape'? 

Subj. 2 

Egg-shape. Yes. 

Int. 

You were looking for an egg-shape? 

Subj. 2 

Yes. The other one was a fatter shape. So I thought if you turned that 

down the two other shapes are going to be lying at the bottom just like 

the image on the right hand side. So I checked the loop to make sure that 

it either went underneath or over the top. Were they both going the 

same? And they were the same. I may not have verbalised that - I just 

looked quickly and I thought 'that's the same' . 

Int. 

But when you were trying to identify the point of contact for the left hand 

with the right hand knot, one of them having been turned, you were 

thinking the word almost - egg-shaped. Do you think that was in your 

mind at the time? And then, when you identified the egg-shape, where 

did you head for next? 

Subj. 2 

The other two shapes were similar. They were similar shapes and all I 
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wanted to establish was that when that egg-shape comes up to the top like 

the left hand image, are those two other things going to come down at 

the bottom. Are they going to be at the bottom? 

Int. 

So, you were looking generally again for two - or were you looking for 

the left part and then the right part? 

Subj. 2 

No, two. 

Int. 

You were trying to deal with two at once? 

Subj. 2 

The egg-shape as a separate thing and then the other two shapes on each 

image - together - not one and then the other - not like that, but two 

together. I linked the two together. And then I quickly looked at the ropy 

bit to see if it's lying on the top or underneath. I tend to be quite 

impatient. 

Int. 

You were doing it like that rather than any of those other strategies, that 

perhaps when we did the demonstration about undoing the thing, you 

know the idea that maybe it would be an unknot and maybe you could 

lift it up. Then you were trying to identify the bits of the diagram. I 

wonder if you felt that you were using the unknotting strategy in any of 

the others. Did you think you were using that strategy at all? 

Subj. 2 

Yes I did. At times when you look at them there were one or two where I 

could see it was just a twist and lifted. It was not actually a knot. 
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Subject 3 

Subj. 3 

Well this one, right from the start, I was checking that all these sizes 

were actually the same as it had occurred to me that maybe they could be 

different, whereas by the end of it I was not spending so long checking 

that they are actually the same size. I thought maybe you could have had 

a bigger one here and a smaller one there, but they were actually - you 

rotated them. There were not any situations where they were not the 

same because maybe that bit was bigger and that bit there. 

Int. 

These loops sticking out at the side? 

Subj. 3 

These loops were all the same _size. I thought at one point maybe it could 

be they were different knots. I classified them as different if the loops 

were different sizes. And, of course, it would make a difference. As to 

which way I put the knots to check them. At the start I spent longer 

getting them orientated. 

Int. 

You were actually pointing at that point to both of them at the same time. 

Do you want to tell us what was going on when you were doing that. 

Subj. 3 

It was because they weren't the same way up I found it more difficult to 

picture in my mind. I tilted my head but I found it easier with my 

fingers and followed them round. They were both at the same point at 

the same time. I could check they were both doing the same thing. I 

think later on it became easier for me to visualise without having to use 

my . . . . . They were both over and then followed the knot itself. 

Int. 

Trying to keep your finger in the relatively same position? 
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Subj. 3 

So I was actually following so it would be quite easy to go off in the wrong 

direction and end up going under rather than following it over. 

Int. 

How did you decide on which direction? 

Subj. 3 

Some of them I actually decided to turn that way - I think later on I 

changed my mind. Whichever way seemed easier at the time. For some 

reason, maybe because I went over - it's easier starting off going over. It 

does start off going over. 

Int. 

You preferred to start at an 'over'? 

Subj. 3 

Yes, and usually the_point at the bottom. I seem to be going for a point 

there, rather than turn that round. Actually turning that round that way 

rather than that way. 

Int. 

Any feelings as to why that might have been? 

Subj. 3 

I don't know really. It just seemed to be the natural thing to do. 

Int. 

With that particular shape? 

Subj. 3 

With that shape .... I think that with others I did things differently. But 

right from the start I turned my head that way. I seem to try to turn this 

one round rather than this one up. Actually, first and then second rather 
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than second and then first. 

They seemed to be much easier - when I was familiar with the shape and 

they were up the right way. I didn't really have to use my hands much. I 

just followed my eyes. It was much easier. 

Int. 

You seem to sometimes also have an immediate response and say 

something like 'They are up the right way.' 

Subj. 3 

In the first place I am always trying to check they are the same shape. 

That is bigger and so I turn it round the other way up. 

Int. 

So that was your first thought? 

Subj. 3 

Are they the right way up with each other and then I pick a point to start 

with. In this case it was just a case of following my eyes. Once again I 

start from the side. This side. Following it round. I was familiar with 

the shape after the last one. 

Int. 

That one was a relatively easy one because you had just done one like it. 

Subj. 3 

Yes. 

I was checking on this because I found this more difficult because they 

were upside down and I had to actually think about my finger on . . . . . It 

seemed difficult. Once again I start from here but it was difficult to match 

here and follow round. I found that much more difficult than the other 

ones. I had to check again at the end whether it was right. I was not that 

confident in myself like before, to say yes, they are the same. This one I 
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just wanted to check again because it did not look immediately so right to 

me. 

Int. 

So it was upside down? You recognised that - that was the first bit. One 

of them was upside down - and then you set about trying to deal with 

that by following your ..... 

Subj. 3 

Following the shape again - under over, under over. 

Int. 

Starting from the same point in each one. 

Subj. 3 

Yes, but strangely enough, I did start from this side. Which was ..... but 

looking at it now this comes out more to me that it is over that side. If I 

look at this now that goes under but it is not actually knotted here. On 

this side they are both . . . . . I did not think on those lines at the time, 

but towards the end I was thinking more on those ways. There seem to 

be more that would just sort of flip over and they were not knotted. I had 

not come across many like that. 

Int. 

At that stage, when you were trying to solve this one, you started here 

and what did you do with the one on this side? 

Subj. 3 

I started there. 

Int. 

Now did you do that because you turned it in your mind? 

Subj. 3 

Yes. I turned it, I visualised it that way. I just followed it round and 
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decided that matched with that. 

Int. 

How did you do that? Will you tell me again? 

Subj. 3 

Well, this one here went over and this one here went under. I matched 

them like that. They both went under. 

I was just turning it round, checking that I had got things the right way 

up, and that I said this before that the sizes of the loops were the right 

way so these two could not have been maybe turned round the different 

shape. Only one chance of it being one way round. 

Int. 

You were saying where were these two. 

Subj. 3 

I would turn it round and check that that one corresponded with that one 

and that one corresponded with that one and they are different sizes. 

Rather than having them ... . both the same, they are different sizes. It is 

quite easy to match up. 

Int. 

So, how then did you end up dealing with this one? 

Subj. 3 

I turned that one upside down. I think I started from this point again and 

I traced it exactly the same way. I was just following the same pattern 

really. 

Int. 

You were doing a lot of that tracing round and checking crossing by 

crossing weren't you? 
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Subj. 3 

In the early stages, yes. Whereas now looking at this I can see that flips 

off there, it's not knotted there but it is there. 

Int. 

So you probably would not feel the need to use those same strategies that 

you were using? 

Subj. 3 

No, I would not. I would look at this and I might not even have to turn 

it round. I can identify that point as being that point. You see? That's 

knotted and this isn't there. I think towards the end I was thinking more 

on those lines but initially I was still checking that if I turned it round 

they were exactly the same knots. 

Int. 

Also on one or two of the items I think you said 'that one's different' and 

then I don't think you were finished at that point. I think you were 

carrying on. 

Subj. 3 

Yes, just checking. I was not yet convinced that maybe this was all 

different. I could not maybe turn it round again. 

Int. 

By turning it in a different orientation, it might have .. ... ? 

Subj. 3 

If there was an odd one different - but there was more than two of them. 

At the back of my mind maybe I could have turned it round a different 

way. I didn't actually come to that so I didn't have to worry about it. 

With these like that it seemed much easier to check using both hands. If 

there was one I wasn't sure about I went back and checked it. I was just 

showing the way my eyes were going really. Much easier - I could follow 
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it round. 

Int. 

Much easier that way up. 

Subj. 3 

Well, they are both the same. The same way up rather than one being 

upside down. It was much easier to visualise and just look right to left 

and right to left. 

Int. 

The way you are doing that one there ..... You are actually keeping your 

finger at some point on both of these, on the same point. 

Subj .. 3 

Actually on the point where it crosses. I was just going to where they 

crossed. 

Int. 

You were starting there? 

Subj. 3 

To find out the spots I turned that round - always turning the first to 

match the second it seems. I started off here and those points were 

exactly the same but I have just followed it round the same way. It went 

underneath there and underneath there too. I followed it around again. 

It goes over the top of that point and over the top of that one and it goes 

underneath there. Back over. 

Int. 

You were very methodical. You never got lost. That was very clear 

thinking. 

That was too easy for you, that one! 
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Subj. 

They looked the same right away. It was just a matter of following with 

your eyes - as soon as it came up that looks the same. 

I think this was one of the first points I actually realised it goes ... 

because those are both over the top. They are not really knots and that's 

the first one I have seen where they have been both the same - unknots. 

I hadn't really twigged that they were unknots the other times. This is 

one of the first times I have actually thought in my mind, yes, these are . 

. . . . they flip up so they're both unknotted, it's just a matter of lifting 

them up. 

Int. 

Although you had some in the past before this one, that would undo, 

they were unknots ... . 

Subj. 3 

Have I had some that were the same? I cannot remember actually seeing 

any. I remember seeing the difference, one with a knot. I mean two that 

were not so obviously unknots and the same. This one was the first that 

struck me in my mind. 

Int. 

I have got a feeling there might have been another one that might have 

been an unknot. So there it jumped out at you. . that they were both 

unknots? 

Subj. 3 

I noticed here, that one there isn't a knot. It's not knotted there. I think 

that held the line. I think it jumped out more. I wasn't going through 

the whole tracing. I started off and then I saw that one was under and 

that one was over. 

Int. 

So you changed your strategy after you started? 
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Subj. 3 

I always started from the same point and I still started from here at that 

point by the look of things. But the one I started off at was where the 

difference was, whether that was that coincidence at that point or not I 

don't know. 

Int. 

So having started off at that one 

Subj. 3 

I think I may have been checking in my mind. Later on I was confident 

to say they are not the same now. But at this point I think I was still a bit 

tentative. 

Int. 

But you have already said at the beginning they are the right way up . 

That might have been the reason for you to have said 'because they are 

both the right way up' ..... you looked at these two maybe that was 

helpful? 

Subj. 3 

Yes. You can see instantly they are the right way up and you can see that 

these two are different. 

I have just noticed that I started saying that this is different because this 

loop would come undone and I am saying that this one is tied up. These 

two together both over the top - the loop could undo itself. So I was 

trying to say 'that flips over' - 'that one's knotted', so that one's different. 

Int. 

So, that was really how you made up your mind. 

Subj. 3 

Yes, and that was one quite near the start. I think I was still going 
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through the same process, but as soon as I have seen ... that .... 

Int. 

You had some of these earlier on. I don't think you were happy to say 

anything of the sort there because you were still checking one by one, the 

crossings, but by the time you got to this one, you started to find 

particular places to look. 

Subj. 3 

I was still looking in the same places. I have always been looking at 

where they crossed. I still started off again. I have not been looking at the 

whole picture - even this one I am starting off here and following them 

around. I do not look at that and think 'this is going to leap off' and 

'that's not'. It was only by looking at the two individually again that one 

and _then that one I thought that's going to leap off. That's going to come 

undone. Rather than looking at the picture as a whole. 

Int. 

You weren't actually looking at a single crossing though. You were 

looking at two there. 

Subj. 3 

I still went about it singly. Check that - Check that. Check that and say 

those two ..... I didn't look at this picture on its own and think 'that is 

going to come off.' 

Int. 

You were just collecting the information as you went round and using 

the up-to-date information. 

Subj. 3 

Yes, just the last few there, the last couple have been knots and loops that 

came undone. That is obviously why they are different then. Whereas 

up until that point I had just been tracing and had not really thought 

about it. Once I'd thought of that it seemed to be much easier. 
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That was a different one. I didn't actually match on this one. I just 

looked and saw those two together and that leapt out and I saw they were 

different there. So this was actually different. 

Int. 

You solved this differently? 

Subj. 3 

Yes. I just looked at that loop and saw it was on the top and it was 

unknotted, and I looked at that one and saw it was knotted (points at the 

loop). I didn't go through the same pattern of turning it the right way up 

and finding my starting point and tracing it round. It just seemed to be 

obvious - that was obviously a loop . . untied and that one there 

obviously was not.' 

Int. 

So, you didn't need to actually do any of this turn with tha,t one. 

Subj. 3 

I think I may have gone like that originally, just to sort of . . . . I did at the 

start, can we just rewind it a bit? 

Int. 

'These are just reversed round the other way'. What were you thinking 

then? 

Subj. 3 

That one goes over and that one goes under. That one goes under and 

that one goes over. It should be the other way round. That should be 

over and that one under. I expected them to be the same. I would expect 

that to be on top and that underneath and they weren't. 

Int. 

And that made you think there were different? 
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Subj. 3 

Yes. I was just checking that I could not turn it round. That they would 

be that way round - it would be symmetri~al. I had to check if it was 

symmetrical. 

Int. 

You were doing this to . . . ? 

Subj. 3 

To see if that and that were not the same. So I thought one is under and 

one is over. It was quite nice - and there were two of them that were 

different again. I was just checking that there was a rotation that I had 

not missed. And by rotating it round ... . opposite . . . I could 

accommodate the fact that they were opposites. 

Int. 

So, you were trying to see if the shape looked the same? 

Subj. 3 

If these two had been the same as these, then all three of them would be 

the same shape and then I turned it round. 

Int. 

So the fact that it was almost a symmetrical shape with all three made it a 

little bit tricky for you? 

Subj. 3 

It just made me check. At first glance that seems to me the way 

everything should be. I just wanted to check again because they both ... 

and did look quite symmetrical. 

This is the same again. They looked the right way up. In the middle they 

looked the same but I was actually going right back to where I started 

from before, under and over, there's an obvious difference. 
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Int. 

Yes, you said one was under and one was over. 

Subj. 3 

I didn't even try to turn this one upside down because I think that was 

the right way up and if one is right and the other is wrong then if you put 

one the other way up it won't make any difference. 

Int. 

So on this one you have gone back to your old strategy. 

Subj. 3 

Just looking now, it has not leapt out at me this one, that that's not a 

knot. I find that more difficult. I couldn't ... Your eye automatically 

goes to the middle of this one, where they are actually knotted 

Int. 

So, now looking at_ it you can see something new again? 

Subj. 3 

Yes. I did not spot this before, that that's not a knot. 

Looking at it now I can see that that lifts up but I was going back to my old 

way. It didn't seem to me much slower. 

Int. 

You had that system working very effectively. If you were now try to do 

that one ... . 

Subj . 3 

I would automatically turn it round. The same way. I just see the two 

overs. See it as a loop. I'm going to check that that loop. I don't know 

whether in the long run that would be quite inefficient. 
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Int. 

Just tell me what you mean by 'checking that loop'. 

Subj. 3 

This one down here, is like a loop that would come undone. 

Int. 

O.K. You have identified this part here - this undoable part here .... 

Subj. 3 

I checked it. That loops up and I am not imagining it completely undone. 

I am only imagining it lifting up. 

Int. 

But you seem to be saying also that you are not sure which would be the 

easiest way. You are doing the finger movements again. 

Subj. 3 

It all looks like completely knotted. I am just checking the knots are the 

same. I had not thought that if they are all knotted - if they are all 

knotted - I am just checking that they are all the same way. I haven't 

thought .... it is going to be an undoable knot. I haven't made any 

distinction ... if they are not the same, one is going to be undoable and 

one isn't I'm just checking that the two knots are going the same way. I 

hadn't thought of, at this point, that if they are all knotted .... I hadn't 

thought that they can either be all knotted or . . . I hadn't made that 

distinction that if they aren't the same, one is going to be undoable and 

the other isn't. That has just come to me now. 

Int. 

In effect, that's how you were doing this with the strategy that you seem 

to have been putting into practice effectively throughout. 

Subj. 3 

I was getting quite confident there. Saying 'Yes. That's knotted and that's 
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not. They are not the same.' Before, I would probably have checked it 

again. This time I didn't have to. 

Int. 

The first place you actually pointed to on the screen was up here. 

Subj. 3 

I was matching up the same way again. To check the shapes were the 

same. I started here and here - always started on the right, it seems. 

Int. 

So, your mind had gone to here and your finger had gone to the part that 

you had identified as being equivalent to there. 

Subj. 3 

I think I started the way I was doing them before, getting my mind to see 

if they were the same way up. I find it easy to picture them together and 

then, as soon as I had done that, I could see this one was knotted and this 

one wasn't. It seemed quite obvious. Because once again - it is right by 

where I started from. I don't know how it would have been if it had been 

that bit over there, the middle loop. If that had been the one that was 

undoable. 

Subj. 3 

I am checking this because although these two are the same it could still 

be that later on - that may be this had been turned round and . . .. so it 

was quite easy to start off with the same shape and it was the same way 

round as the one before. I still followed it round to check. 

Int. 

Obviously we had a random sample there, you did get quite a lot of those 

that seemed to be complicated ones. Do you remember when we first 

looked at them? As we got to the end there, you were actually managing 

to do them quite easily. 
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Subj. 3 

Yes, they did get easier 

Int. 

So when the first was the picture of the rotation what made it look so 

difficult? Because you groaned when you saw some of them didn't you? 

Subj. 3 

It was one that had lots of bits to see, different sizes and they all are round 

the wrong way. Lots of loops, lots of sections, obviously different shapes. 

Some of them had little loops that were. . . . You had to check that they 

were actually different if they were very similar in size to other loops. 

Maybe double check again .. 

Subject 4 

Subj. 4 

I suddenly realised_ that's not a knot and I don't know why I didn't know 

before. I think I kept looking ..... 

Int. 

I think this is one you actually spent a lot of time on. 

Subj. 4 

And the fact that I didn't realise, when I looked at it first, that it was not a 

knot. I don't know if I was looking for that. I had forgotten that you had 

said that some of them would not be knots. One thing I think I realise 

now, having done about twenty of them, I have gained more confidence 

to look at them as a whole. I think I was getting lost in the details at the 

beginning because you feel you are just looking at each separate little 

piece of knot. 

I do find this very hard and I think I have decided now that it's the same, 

but it's only after looking at it for a very, very long time and I think I can 
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now switch it round in my mind more easily. But it has not been easy. 

My strategy is trying to get the right hand one identical with the left by 

switching it round in my mind and then following it round piece by 

piece and switching back from the left hand knot to the right hand knot 

and then when I have decided that bit is identical, then I go back to the 

left hand knot, but the problem is if they are not in an identical position, 

it's not always easy to find your bearings. You get lost and I kept on 

getting lost. That was my problem. 

Int. 

So, you were doing it by zooming in to a specific part and then you said 

eventually you got to looking at it more globally 

Subj. 4 

Yes, because I think I got a bit used to it. I realised you didn't have to look 

at every part of it to establish that they were not identical. Once you 

found one thing that was not identical, you could say 'well those are not 

the same.' 

Int. 

In the first place, you were not happy with just one thing not being 

identical. 

Subj. 4 

I am still not sure. I kept on thinking 'well, perhaps they are not 

identical'. If I switched it round, perhaps one is upside down because 

some of them look almost symmetrical. Like two circles where you have 

- like that - .almost like two triangles and you wonder whether .. . .. if 

you switched it back the other way round they would come back the 

same. So, I thought I had to check to try and look at it both ways. 

Int. 

So, you found that one quite hard? You were interested to know 

whether you finally got it right. You were saying to me a minute ago 'did 

I say yes'. 
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Subj. 4 

I was not sure. I am sure now. 

Int. 

We have moved on to the next. 

Subj. 4 

Oh yes. This was a killer. 

Int. 

You didn't like this one? 

Subj. 4 

No. I think now I can see that one is upside down. I still get confused, 

but it's a little bit easier. 

Int. 

It's easier because you know how to do it now, or because the knot itself 

is easier? 

Subj. 4 

I don't know. I think it's because the knot itself is easier. I think I have 

got used to it generally and I think I have got more confidence now and 

look at it as a whole. It seems to be easier now to switch it and turn it 

upside down and say 'yes, I think that is the same'. It's as though I have 

got used to it. I'm more able to look at the whole pattern. 

Int. 

So, you are taking the whole thing and turning it upside down. 

Subj. 4 

I am trying to. Yes. 
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Int. 

And just holding one picture and comparing that picture with the other 

one. 

Subj. 4 

Yes it's easier now and I would say . . . . I don't know what I said last 

time but I'd say those are the same. I don't think I would remember the 

individual knots because so many of them were similar. If they were all 

totally different, I would say 'yes'. I remember this one but some of them 

look quite alike, if not almost identical. I will just see what I said last 

time. I'm not very sure, am I? I'm saying 'yes' but I think I am sure 

now. 

Int. 

You were like this with all the ones that were turned. 

Subj. 4 

I found that very, very difficult. 

Int. 

I think some of them were found worse than others. I am not sure 

which ones you found worse than others. Certainly in the very 

beginning .... 

Subj. 4 

I think this is a bit easier than the one before because the one before 

looked the same whichever angle you looked at it. 

Int. 

The star shape? 

Subj. 4 

Yes, the star shape. This one I can see there is a top and a bottom which 

are different. With the right hand one you can see that the top is at the 

bottom. 
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Int. 

You are picking the left hand one at this stage. Later on you switch. 

Subj. 4 

I do not know why. I just thought it might be something to do with the 

way you read. You start from the left and you work over. And certainly I 

was looking at the left hand one first. I don't know why I switched to the 

right. It was just one of them I suddenly noticed that the right hand side 

was not a knot. 

Int. 

So you kind of focussed in ... ? You must have scanned the two and 

seen something. 

Subj. 4 

Seen something in the right hand one. I am looking at that one now. I 

cannot remember what I said last time. I can see now that is not 

identical. I am turning the right hand one upside down so it corresponds 

with the left hand one and I can see that on the left hand side of the left 

hand one the top part goes underneath and the bottom half does that. 

Int. 

You are just comparing one little bit and finding a difference. 

Subj. 4 

Finding a difference and then there is no point in going over the rest. I 

find it so hard to switch them round and you are wondering whether 

there is something you have missed. Whether you should be looking at 

them from different angles. Because in some of the cases, where the 

knots appear identical the rope was not arranged exactly the same way. 

Int. 

Your strategy on that particular one .... sounds similar to the one that 

you did in the first place. Did you find that one easy or hard? That shape. 
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Subj. 4 

Relatively easy because I could get the different parts of it. A top and .... 

this one is hard again. These star shaped ones I found much harder. 

Int. 

You were talking about two triangles and I presume that that is one of the 

triangles. Is the other one going to there? 

Subj. 4 

Yes. It's not quite two triangles but that is one triangle. 

Int. 

But that is how you've pictured it or noted it .... ? 

Subj. 4 

That is why it seemed as though any way you turned it, it looked fairly 

similar - the same sort of shape. I will see if I agree with it now. Once 

again I'm turning the right . .. 

Int. 

You are worried that you can't find parts of it. This is what you mean by 

'it's difficult to orient it' because that bit there you are not sure which 

that bit occurs to over here. 

Subj. 4 

I do know if I could actually get hold of it on the screen and turn it round 

- I find I get lost spatially. I just cannot correspond the different bits. I am 

just turning that bit round to the top in my mind. 

Int. 

They are not actually identical but they are close enough to make it 

difficult for you. 
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Subj. 4 

It's as though all the bits look the same. 

Int. 

So, if I said I want to find that little bit there in the left hand knot? 

Subj. 4 

I think what I am doing now, which I didn't think I could do then - if I 

swivelled that round 90 degrees to there, then I compare those two bits -

then that would be obviously corresponding to that - swivel that round 

90 degrees and I compare them all. But I didn't think of doing that at the 

time. 

Int. 

You were doing it a bit at a time. 

Subj. 4 

I am still doing a bit at a time, but I found that I don't have to swivel the 

whole thing round in my head. I can swivel each little bit through 90 

degrees. So, I started with that. I swivelled that through 90 degrees and 

tried to hold the whole picture in my mind. But now, I have realised 

that what I can do - that goes through 90 degrees - that corresponds to 

that. If they go through 90 degrees that will correspond to that - which it 

does - and if that goes through 90 degrees, that will correspond to that -

which it does. I find it very hard to hold the whole picture in my mind. 

The only way I can solve it if they not in the same position is by 

swivelling it round in my mind and I have now discovered which I 

have just thought of, I hadn't thought of it before. I can take every little 

piece and swivel it in the same direction, which always seemed to be anti 

clockwise - I don't know why - and compare each little bit individually. I 

am still not finding it easy but I'm finding it easier. 

Int. 

Before, you felt very daunted by having to hold the image. 
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Subj. 4 

I could not hold it in my mind. I could not do it. If I had them on a piece 

of paper I could just swivel them round, but you can't do that on the 

computer screen. 

Int. 

You were saying something there about rearranging it a little bit. I had a 

feeling that what you were saying - I remember now - was you thought 

that one of these loops had been enlarged on the right hand side - that the 

rope had somehow been moved. 

Subj. 4 

Now I look at it, it hasn't. 

Int. 

Do you remember feeling that at the time? I don't know whether - I 

think it is that knot. I certainly recall you saying something that I 

thought .... 

Subj. 4 

What I think is that if I turned it - I am wondering whether I meant - if 

you turned it so that is at the top then it still corresponds - but not quite 

the same. The loops are not the same size. If you turn it that Wqy, I can 

see now it's going to be almost identical. This is what I still have not 

worked out with these knots. If it all corresponds when you put that at 

the top, would it still correspond if you turned it another way? I don't 

know whether it would correspond. 

Int. 

It would. You mean if you actually just turned it anti clockwise rather 

than clockwise, or do you mean pick it up and turn it over? 

Subj. 4 

I have always been turning on anti clockwise so I presume that that 

corresponds to that - so that is what I have been working on. But I 
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suddenly thought of it now that if I turned this - if I tilted it .... I'm not 

sure if I did that. 

Int. 

And made this the top? 

Subj. 4 

Yes. It would still correspond. 

Int. 

It would in that knot. 

Subj. 4 

I don't know whether it would in all of them. I just don't know. This is 

wh~t I have not worked out. This is why I find it very hard. If I am 

taking it for granted that that on the right hand knot corresponds to that 

on the left hand knot. I may not be right. It may not work that way. I 

still have not worked that one out with the knot. Would it always be the 

same whichever piece you started from? 

Int. 

Well there are some knots where there is a symmetry and it doesn't 

matter which you call the top. There are five possible 'tops' for that 

particular knot. It doesn't matter which one. 

Subj. 4 

It would always work out? 

Int. 

Yes. 

Subj. 4 

I cannot see that but I will accept it. 
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Int. 

But it's not the same with all of them. 

Subj. 4 

So, it is important to work out. 

Int. 

Well, it is a possible strategy if you are a mathematician and you know 

something about knots, but the strategy for somebody who doesn't, 

would have to be more intuitive. The sort of strategies that you have 

been using. 

Subj. 4 

That's interesting that you used the word 'intuitive' because I wouldn't 

say that I am an intuitive person. I would not just look and think 'that 

looks the same'. I have to check. That is very much the kind of person I 

am. I have to check - almost like logically - the correspondence between 

each part. I would not just look at it and say 'they are the same'. I would 

not be able to do that. I would have to look and work out the 

correspondence. I wouldn't just get the general impression. 

Int. 

You checked more than once sometimes. 

Subj. 4 

Yes. 

Int. 

You started with this one as your key. 

Subj. 4 

Yes. I was always starting with the left hand one and then trying to turn 

the right hand one up and now it looks quite easy. It looks to me . . . .. 

Actually, I didn't spend much time on it this time. 
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Int. 

There were a number of this shape - more of this shape as it happens 

than some of the others. And at the beginning I think you thought 

'Aarrgh!' when you saw it. 

Subj. 4 

I sort of became used to it. 

It seemed to be easier now to correspond. I still can't do it very well, 

holding the whole image in my mind, but I can check the various bits. I 

have got my bearings. It's like looking at a map. 

Int. 

Bits became more familiar? 

Subj. 4 

Yes, and it seems very obvious now they're the same. 

Int. 

Which bits are the bits you are homing in on? 

Subj. 4 

Intersections - that corresponds to that, and that corresponds to that, and 

that corresponds to that. 

Int. 

But you just check them all. There is no place that you think 'I will go 

there first.' 

Subj. 4 

No. I always start from the left. I don't know why. 

Int. 

I don't know if it was that item. I think we may have gone on to the next 

item on the video there. Do you want to pause it there. There's one of 

these later ones, the same shape but a different pair and you were very 
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much describing this bit in the middle, I think. I think that came later. 

Subj. 4 

I think perhaps because I noticed that wasn't the same. The thing is, if 

you notice immediately that one thing is not the same, you can just say 

'yes '. But with those - because it all seemed to correspond - I had to check 

each part. 

Int. 

This was the one and you were talking about crossing at the bottom 

weren't you? 

Subj. 4 

Yes, I got to the stage when I could tum them and then once again check. 

Of course, I can see now the one on the left is not a knot. 

Int. 

I don't think you did then. Can we rerun that one and see if you notice 

that? 

Subj. 4 

I don't think I noticed - only about halfway through - that some of them 

were knots. It's a pity these are not numbered actually. It would be a 

help. 

Int. 

This camera that's running now puts the time in the bottom corner. 

Subj. 4 

I can do it a lot quicker now. I can see immediately that is not the same 

because that part is not the same. I don't know - my eyes seem to be 

accustomed to it - and I can home in on a certain part of it. I can see that 

the rest is the same, but that goes underneath there, and it goes on top 

there and that is not a knot and that is. But at the beginning I was very 

unsure. 
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Int. 

At the beginning, I didn't think you had found that strategy for 

unknotting at that point - it's quite interesting really how many into the 

experiment before you started noticing and I wonder if it was triggered by 

a particular knot. 

Subj. 4 

Yes. I think I suddenly noticed and I think I remembered that you had 

said ..... 

Is this that one? 

Int. 

This is this one there. This is not a knot. 

Subj. 4 

I think, yes. I think I saw that one. I could pick that one up and undo it. 

Int. 

But the previous one you could also now see. 

Subj. 4 

I can see it now. But I don't think I was looking for it. As I went on, I 

became more confident. I think at the beginning I was saying 'Aarrgh! ' 

and immediately trying to home in on the details. Whereas now, I am 

just looking and taking the whole picture - looking at it for a minute as 

one whole thing. And that is when I think that is the first time I have 

looked at it as a whole thing and thinking that is not a knot. I can pick 

that up as an actual picture. I can put my hand into the computer screen 

and pick up the loop and it would just all unravel. 

Int. 

And that seemed to occur at this point in the experiment? 
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Subj. 4 

Yes. I think it did. I just said on there that I didn't think it was a knot. 

And then I seemed to be able to switch and swivel the right hand one in 

my head and it seems to be quite obvious now that they are the same. It 

seems to be easier to be able to switch back and forth between them. I still 

can't see the whole thing at once but I can find it easier to keep my 

bearings as I go back to the left hand one and the right hand one and I 

compare each bit of it. 

Int. 

So, even though you have noticed this part of the knot that will undo, 

you are still going to it an rotating it in some way. 

Subj. 4 

Because even if the left hand one is not a true knot, the right hand one 

might be. So I am still checking each part of it. 

Int. 

I see. You have noticed that this one will come undone and then ..... 

Subj . 4 

I can see that that one will come undone as well. But I am still not sure 

whether it's arranged in the same way. It could have been that that one 

might have been crossed in another way. I don't know whether it would 

be possible. So, I am just checking through them. 

Int. 

So, you could see that this part of it would undo but had you actually 

thought it would all undo? 

Subj. 4 

Yes. I can see that. It is as though I can imagine it in my mind. Grabbing 

hold of the top loop and I can see there is nothing to stop it just opening 

out into one whole circle. 
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Int. 

And the same on that side? 

Subj. 4 

Yes. I can see the same - that that one would open as well. But I wasn't 

sure whether they were the same. I was just checking. 

Int. 

What did you say there? 

Subj. 4 

I said 'I am getting a bit tired of this.' 

I can see immediately the one on the right hand side is not a knot and it 

seems to me that I know the arrangement that - I can see that that is on 

the top and there is just a twist in the middle and that is not a knot. I can 

see immediately that one part of it is underneath, the other one is on top 

which is the knot-like shape. So, it has taken me about two or three 

seconds to see that because I have got more confident. I can just look. At 

the beginning, I was getting lost in the details. 

Int. 

There is no turning involved in that one. 

Subj. 4 

No, it makes it easier. See how long it take me on this one. 

Int. 

You are describing these two points. They're different there, aren't they? 

Subj. 4 

I am still worrying whether I could turn them round upside down and 

whether they would be the same. 

Int. 

Yes. I know what you mean. Because they are so similar it's just a slight 
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difference in size of the loops. 

Subj. 4 

I just wondered whether I could turn them round. 

Int. 

Well, they are in identical positions - you started at the top and going 

round in your normal way. 

Subj. 4 

Whereas now I am just looking at it and saying they are the same and 

they are not knots. It is immediate now. I don't think it's something I 

could remember because there are so many of the same type - I could 

almost say that that is identical with the one that was about two goes ago. 

Int. 

But they were probably with a different orientation. So they're getting 

easier? 

Subj. 4 

They are getting easier. Yes. 

Int. 

And you are using more of this unknotting strategy. Do you remember? 

Subj. 4 

I can see now that the one on the left is a knot and the one on the right 

isn't. 

Int. 

I think this is where you decided to go for the one on the right first. 

Do you think it is because of the orientation itself or the shape? 

Subj. 4 

Yes. It could be that right hand one is . .... 
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Int. 

More the right way up? Although you are not familiar with these objects 

that seems the right way up and that one doesn't? 

Subj. 4 

Yes. I think that might be. it. 

Int. 

I wonder if it looks as though it would sit without falling over more than 

the other one. 

Subj. 4 

I don't know. I have not noticed it. I am looking at the right hand one 

once again. I'm getting a bit more - I have to check every little piece. I 

think that the fact that I remember that some of them were not knots was 

a help. Because once you see that one is a knot and one isn't, you don't 

have to look any further. 

Int. 

And you got more strategies to rely on and more experience. 

Subj. 4 

I think it is experience. I seem to be able to find my bearings. That's the 

only way I can describe it. In the beginning I was totally lost. I could not 

see where I was supposed to be starting from. And now, I can almost see 

the whole thing. Once you have seen that there is one basic difference 

between them - in the beginning I was checking everything. 

Int. 

So, in that one now. Do you think you would do, any sense in which you 

would turn your head or trying to turn one of the pictures round. 

Subj. 4 

No, because I can see that the one on the right is not a knot and the one 
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on the left is. Again, I can see immediately the one on the left is not a 

knot. It's almost as if, when you are learning a foreign language, if you 

have ever experienced - like in Welsh or another foreign language. At 

the beginning when you are learning a fo~eign language everything is 

just a blur It is just one thing of speech and you are trying to make sense 

of it all. And then, as you get your bearings, you can pick out words that 

are significant. It is almost the same with this. Like a foreign language 

and then suddenly you see what is significant. You don't have to look at 

everything. I think that is the only way I can describe it. That suddenly it 

looks familiar and I realise that I don't have to look at it all and it's as 

though I can pick out the important bits with my eyes. Like a foreign 

language. When you are learning a foreign language you realise what 

the important bits are - that you can get the gist of it. You don't have to 

have it all washing over you like a blur of sound. 

Int. 

You know which bits to look out for. So, when it comes to solving it and 

undoing it, or checking it or whatever, is there any sense in which you 

are using either language or pictures? 

Subj. 4 

I am not using language. It's almost as if it is familiar - like that - I know 

that's fairly simple because they are sort of looking in roughly th~ same 

position, but I am just ... .. Once again, I started reading from right to left. 

I don't know why. 

Int. 

Even with this one? 

Subj. 4 

Yes. I have started on the right now. That crosses over and then that 

goes over that and I can see the whole thing and it's immediately 

obvious it's identical. 
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Int. 

You seem to be on the left hand one actually. 

Subj. 4 

But there I looked at the right hand one but I think what is happening I 

am still following the whole rope round with my eye. Whereas now I 

am not bothering to do that. I'm just looking at the shape and I'm 

looking at where it crosses over and that's what I'm doing. I'm not 

following the whole thing round - that looks so easy now. I can just open 

them up. 

I don't know whether I am slower because I'm trying to explain what I'm 

thinking. 

Int. 

Yes. You were being very careful at explaining. 

Subj. 4 

Yes. I think it probably that made me do it a little bit slower. But I still 

have the impressior:i. that now I can - I can see immediately there that 

they are not. 

Int. 

Your first line of attack here is the left hand side knot. 

Subj. 4 

I think that's because the left hand side is upright. Perhaps I have taken 

that to be - it looks like a more - an easier shape. It looks the right way 

up. Although I don't know why - on what basis I thought that out. It's as 

though I go for the one which is easier to decipher. 

Int. 

What you seem to be doing is looking and concentrating and describing 

the left hand without even looking at the right hand one at this stage. 

Because you started to look at the left hand one and said 'Oh yes! That is 

knotted.' rather than say 'let me just look at this part of the left hand 
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knot. .... ' 

Subj. 4 

Once I've discovered that some of them aren't knots - I'll check that first -

It's as though that's my first line of attack. 

Int. 

Then, if that failed, you had got somewhere to go back to. 

Subj. 4 

It does seem very easy now to see that they are not the same, but it did 

seem a lot more difficult. I realise now that one is not a knot. It is 

obvious now. 

Int. 

You were concentrating on the difference here. You were describing -

Subj. 4 

I certainly homed in on one thing. I could have said , when I think about 

it, I'm still not looking globally all the time. I am getting lost in the 

details. Instead of having a look at both of them. 

Int. 

We'll see what the next picture is. We have gone on to this one. 

Subj. 4 

Obviously they are identical. 

Int. 

You say that with such conviction. 

Subj. 4 

It seems that I can seem to look at both of them at the same time, whereas 

before I think I was looking at one of them and then sort of following 

that right round - it seems to be easier now just to look at them both at 
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the same time and say 'Oh yes' as though my brain has just got used to 

finding the significant parts and corresponding them. I think it's a bit 

like reading a map. You learn to know what to look for. 

Int. 

It's interesting that it happens as quickly as it does though, because in the 

course of twenty of these items - by half way through, you have learned 

the strategy about the unknotting and by this stage now in reflecting, you 

seemed to really develop the strategy - develop the technique. 

Subj. 4 

It's as though I have got used to looking at them. But I don't know. 

There seemed to be a lot of knots or pseudo knots that are quite similar. I 

don't know how I would be if you showed me different ones. I might 

find them more difficult. But, I think, perhaps, I would find them quite 

easy now. I can see they are the same. I don't know if I do that any more. 

What I stopped doing - I stopped following it round. At the beginning I 

was following the whole piece of rope round. I was tracing it like a path. 

And, I'm just looking - switching back and forth. I'm just getting the 

same position here. That corresponds, that corresponds, that 

corresponds. They are the same. 

Int. 

This is what I would like to ask you a bit more about. Now I've found 

one that you would come back to - remember that you did trace it round. 

As you were going round and observing, what do you think was going 

on? Do you think you were remembering a picture or do you think you 

were coding it in some way? 

Subj. 4 

I don't know. 

Int. 

What was happening there as you did that from the top - I'm going to 

follow this round. 
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Subj. 4 

I think I'm remembering the picture. I don't think I'm putting it into 

any kind of code. I'm not saying what would go ... .. I'm trying to look at 

that part and following it round and then trying to make it correspond 

with the other part. It's fairly easy with that ..... the right hand one is only 

tilted 45 degrees so it's not very difficult to do that. In the beginning in 

the first time I was following the whole piece of rope around. 

Subject 5 

Int. 

Keep playing on until there is something you want to add 

Subj. 5 

I started by just looking, especially where the rope was going under and 

over each other thinking that with the simpler knots you were trying to 

fool me so that I m~ght have been taking more time with the ones that 

looked similar than the ones that looked different, in case it was a trick 

question. So I was careful there to make sure that they were actually 

going under and over in the same way. 

Int. 

Right, so you thought that it looked easy in the beginning but you took 

more time to just check? 

Subj. 5 

I think I might have been going a bit slow in the beginning to make sure 

you weren't trying to pull a fast one on me. 

Int. 

What did you decide here? That picture; what did you say? 
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Subj. 5 

I decided they weren't the same. 

Int. 

'Under, over, under, over, that's not a knot'. 

Subj. 5 

I'm picturing the rope just dropped down when it folds over itself. 

Int. 

You started counting, 'one, two, three, four'. Do you remember what you 

were doing there? 

Subj. 5 

Yes. Was it ... ? Did it have the same number of overs. Was it crossing 

each other the same number of times? 

Int. 

Yes. You were counting all of these points? 

Subj. 5 

I think I decided after that it would be simpler to turn it over, to see if I 

could get the two pictures . . . If they were aligned in the same direction 

to see if they corresponded. 

Int. 

So originally you weren't rotating and then you decided that perhaps it 

would be a .good idea to rotate it? Is that what you're saying? 

Subj. 5 

Yes, that's correct. 

Int. 

So at what point were you doing the rotating? After you'd already made 

a decision? Just checking? 
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Subj. 5 

Here I haven't started rotating. I'll tell you when I remember when I've 

started to do that. 

I was looking to see if they were knotted or just folded. 

Int. 

I think what you say here is 'Yes, they're both knotted but they still look 

different'. 

Subj. 5 

Then I realised that if I just turned one around it would ... I think this 

was the one that was so simple .. it was easy to see that it . . I turned one 

around. 

Int. 

What's interesting to me is that you suddenly saw that 'Oh yes, all I need 

to do is rotate it'. 

Subj. 5 

I had thought about it when you were explaining to me with the knots 

on the table, but I thought that's too simplistic, she might be trying to 

fool me. I must be a naturally suspicious sort of person and I decided I 

wanted a second method of proving whether they were knotted or not. 

Int. 

Rather than just taking the image and turning it in your mindi you 

thought that was not going to be a satisfactory method? You wanted a 

more theoretical method? 

Subj. 5 

I thought I'd investigate the way they crossed over each other, if that 

would give me an indication of whether they were knotted or not. 
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Int. 

And you started to do things like looking for it lying on top? 

Subj. 5 

Yes, I think that was the first thing I did. 

Int. 

And then when you came to this one now, you decided you were going 

to rotate it rather than what? What was your alternative? 

Subj. 5 

I think I was going to use that as an additional means of verification. 

Because this one is so simple. 

Int. 

Simple in respect of ... ? 

Subj. 5 

It only crosses over three times and you could see easily that if you 

rotated the right hand one, you would find that the images looked 

similar and then you could see whether they were matching by looking at 

the places where they crossed over. 

Int. 

So you started by turning that one upright? 

Subj. 5 

Yes. 

Int. 

And then what did you do next? 

Subj. 5 

Let me play it again. 

I think I was looking at the three crossover points there. 
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Int. 

So do you take them one at a time? 

Can we pause it there? I'd like to press you on this one as I'd like to 

know what you were thinking if you can remember. 

Subj. 5 

First of all I changed the right hand image round to face the same way 

round as the left hand one and then I looked at the three crossover points 

to make sure they were not just lying on top of each other. 

Int. 

OK 

Subj. 5 

So in a way I was adding matching the image with 

Int. 

Testing for unravelling? 

Subj. 5 

Yes. 

Int. 

You said 'yes' to this one . . . 

Subj. 5 

'Twist it round', that means I . . . I turned it. I'm just checking there. 

Int, 

Because you'd made your decision? 

You're doing them quickly. 

page 338 



Appendix III 

If we go back to this idea of rotating as a strategy ... Is that how you did 

that one? 

Subj. 5 

Yes, I've rotated it first in my mind. 

Int. 

So when you'd got the second image rotated you went through matching 

did you? 

Subj. 5 

Yes. Even though I was touching a point on the screen there, in my mind 

I was touching then the rotated vision, not what was actually on the 

screen, , even though I was touching the screen. 

Int. 

So you found it simple really to do that, then say I'm going to check that 

crossing with its rotated version? 

Subj. 5 

Yes. 

Int. 

And was that easy for you to do? 

Subj. 5 

Yes, once I'd figured it out. The difficult part was holding the rotated 

vision in my mind and touching that and not what was actually on 

screen. 

Int. 

Right. Did you, what shall we say, re-produce that image during the 

checking process, or did you keep going back reminding yourself how ... 

have I got the right image after rotation? 
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No. I noticed that I had rotated them all anti clockwise. 

And I was holding that quite firmly in my mind. 

Int. 

Appendix III 

Do you think that particular image was easier or harder or the same as 

any of the others, to rotate and remember? 

Subj. 5 

That was an easy one to remember, yes. 

Int. 

Because you mention in the previous one, you said that was easy because 

there were only three . . . 

Subj. 5 

Yes. 

Int. 

So that one you didn't find . .. although it had four in that one, you still 

found that quite easy to rotate? 

Subj. 5 

Yes. 

That one doesn't need to rotate. Again I'm suspicious that they look so 

similar - what are you hiding from me? 

Int. 

OK. Just pause that for me. You answered 'yes' to that one, and I'm 

wondering if you have a look at it again now . . actually they're .. well 

I've implied already that they are actually different. Can you see? I'm 

wondering if there's something to do with . . . You said you had 

difficulty seeing some of the crossings there. If you look at that one now . 
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Subj. 5 

Was it this one I found difficult? It was this sort of shading that I found 

difficult to follow. 

Int. 

I don't think that was where you said it on tape but perhaps it was a 

factor? 

Subj. 5 

Yes. You're telling me that they're different? 

Int. 

I'm telling you that those two are different. 

Subj. 5 

Yes? 

Int. 

And you were quite certain that they were the same weren't you? 

Subj. 5 

Yes, and I still see them as the same. 

Int. 

How were you doing it then? If you tried to do it again now ... 

Subj. 5 

Well first of all I rotated it that way and I visualised them as the same, 

and when you said they were different, I rotated it the other way. 

Int. 

You did this one? 
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Subj. 5 

No, I rotated it this way, instead of turning it up, I turned it clockwise and 

I looked at the crossover points and I thought 'under, under', and that's . 

. . . Ah, that's where I've made a mistake, there in the middle. Because 

that goes over. 

Int. 

Which way are you rotating it now? 

Subj. 5 

I'm rotating it clockwise. 

Int. 

So the middle is where you think you've made a mistake? 

Subj. 5 

Yes. 

Int. 

Which way round is this one then? 

Subj. 5 

If I rotate it clockwise, that crossover point is the same as that crossover 

point, but the middle one goes under there .... and it goes under here as 

well. I still can't see the difference. 

Int. 

You're rotating that one clockwise, you've checked that and you 've 

checked that and I agree with you there, but have a look at the third one. 

Subj. 5 

Oh yes, it goes under there and it goes over there. 

Int. 

Right, so you would agree with that then now? 
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Subj. 5 

After long thought. But I ... well, I mean looking at it, it still doesn't 

jump out at me. 

Int. 

At this point then, what would be your best strategy, from what you've 

done already and what you've picked up as you were doing it, what's 

your best shot at that one? How would you try to do that one now? 

Subj. 5 

That's the one that has just been twisted isn't it? Am I right? I mean it's 

not actually knotted so again I have to visualise a circle of rope and I twist 

it and drop it. 

Int. 

And is that one .. ? 

Subj. 5 

Well if you try to do that it doesn't work because that's over and that's 

under. They both fold up. (weave) 

Int. 

So in fact you weren't trying that strategy when you did it on screen? 

Subj. 5 

No. 

Int. 

You probably decided they were the same and didn't . . . . You did use 

that strategy in others didn't you? 

Subj. 5 

A complete circle, yes. 
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Int. 

Shall we move on? 

Subj. 5 

It's more complicated. Because I can't make sense of it straight away. I 

can't even work out which way to rotate it; to get it similar ... 

Int. 

You said 'They look as if they might not be proper knots'. Following on 

from that previous one In this one you started to see that there was a 

sense in which you could lift some of it up. Do you remember that? 

Subj. 5 

I remember thinking that if I had the actual circle of rope to fiddle around 

with and see whether I could reproduce that sort of image, by folding it. 

Int. 

So you did it by constructing it from the rope rather than deconstructing 

it from that image? That's interesting. 

Subj.5 

Because it's not familiar to me I think. Like the simpler shapes were 

familiar. I'd come across those sort of shapes before. 

Int. 

And that one was just a mess really! 

Subj. 5 

Yes. 

Int. 

So you wanted to start from the simple loop of rope and make it look like 

that? That was the way you were doing it? 

page 344 



Subj. 5 

Yes. 

Int. 

You said 'yes' again to that one. 

Subj. 5 

Yes, they look similar. Did I get it wrong? 

Int. 

Now have a look at it. 

Subj. 5 

It goes under and over, and under and under. 

Int. 

So the difference is there . 

Subj. 5 

Appendix III 

So that one's knotted. Have I been fooled by the way that middle bit has 

been twisted? 

Int. 

A minute. ago you were looking at this one (crossing) and this one, the 

one at the bottom and this one at the top and then again in this diagram. 

And you seemed to find a difference there didn't you? 

Subj. 5 

Let's see. 

Int. 

I think you said 'yes'. 

Subj. 5 

What did 'yes' mean? 'Yes they're different' or 'Yes I'm satisfied with 
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the answer'? Yes, I think I said those are similar ..... 

Int. 

'Yes they look similar' and 'yes'. In fact I think you clicked on the 'yes' 

there but a moment ago you were seeming to find a difference. 

Subj. 5 

Yes. Both those crossover points, this passes over, and that's under and 

that's over. 

Int. 

O.K. So you've found a difference now. 

Subj. 5 

Yes. I didn't stop long enough did I? I was fooled by the fact that ... 

Int. 

They were the same shape and the orientation was the same? . . . . You 

were happy that they were the same? 

Subj. 5 

I'm checking that all the crossover points to make sure that they all 

match. Again I've rotated this one. I can't see that one .. 

Int. 

You're looking at that crossing there and you're not sure which way it is? 

Well if I say that the way it's meant to look is that comes over and where 

that dark shadow is there, is meant to be under, is that clear to you now? 

Subj. 5 

Yes. 

Int 

I think you finally did interpret it like that. 
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Subj.5 

Yes, I worked out that the shadowy part was meant to be the shadow of 

being underneath. I'm not sure what foxed me. 

Int. 

So if that's that way .... if that particular crossing is over .... if you were 

to try and do that now ... ? 

Subj.5 

The crossovers are different ways. I'm not sure if I'm looking to see if 

they crossover . .. with this one on top there, would it pass . . . It 

depends on which way it turned doesn't it? 

Int. 

Whether you end up with that one matching with that, or that one 

matching with that? 

Subj. 5 

Yes. 

Int. 

Which direction do you want to try? 

Subj. 5 

Well if I tum it clockwise I can see that that matches with that but that 

doesn't match. 

Int. 

Now, what if you were trying to o that one from what you might have 

discovered during the 20, what would be your best attempt, how would 

you ... what would be your best strategy to deal with that one? Would 

you do the rotation. Is that what you would be trying to do? 

Subj. 5 

Instead of rotating anti clockwise, I would look at it now and find a 
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matching point and then rotate it either clockwise or anti clockwise 

according to whether - which point I'd fixed upon as being the same and 

then it would be easier to compare other points. Because if I'd rotated 

this anti clockwise . . . comparing these two well they're different, it's 

easier to start with something that's the same. 

Int. 

I'm with you. 

Subj. 5 

Whereas if I'd tried what I did now the other way I'd find 'yes' I can 

match those two points and then look at them. 

Int. 

Just out of interest, you've come to the conclusion that you think they 

are different. So which is the knotted one and which is the unknotted 

one? 

Subj. 5 

That's the knotted one because it passes over one and under the other. 

This one's not knotted because the rope lies on top of the lower one and 

the two sides . . . if we look again using the trick of just visualising a 

circle of rope and twisting it and laying it down ... 

Subj. 5 

So you're again doing that starting with a circle of rope. You're 

constructing again rather than deconstructing. You 're starting with your 

circle and making it look like that shape? That's interesting, that's 

unusual that. 

Subj. 5 

Perhaps that starts from being frustrated at not having this actual rope 

here to play with which is where I started from. Thinking 'oh if I had 

that rope that's lying over there to play with I could see if I could match 

it. 
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I found that one easy to visualise as a twist of rope lying down 

Int. 

It's interesting to me that the previous one ... it didn't come out at you 

somehow, that fact, and you didn't use that strategy at all in that item 

and yet the next item along, suddenly your strategy is ' ah yes, I can see ... 

Subj. 5 

Because I'm familiar with that shape. 

Int. 

Is that why you think it is? 

Subj. 5 

Yes. 

Int 

Why do you think that is a familiar shape. What does it remind you of? 

Subj. 5 

It's like a Celtic knot really. 

Int. 

Right, so that's what you mean by a familiar shape, you've seen it 

represented elsewhere? 

Subj. 5 

It's a common motif. 

Int. 

And because of that, what happened when you were looking? 

Subj. 5 

Because this was turned this way, those two points sort of come out at me 
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quite strongly. 

Int. 

They were not how you would normally have seen them, is that what 

you mean? When you've seen this familiar icon? 

Subj. 5 

Yes. 

Int. 

So you were immediately able to do that one, and spot that it was the 

wrong .... 

Subj. 5 

Yes. 

Int. 

0.K. Well you quickly dealt with that one. You were looking up here 

weren't you? And you can see I think the same thing that you were doing 

earlier. 

So you dealt with that one quickly too. You're moving on rapidly with 

these. I didn't actually hear what you responded for this one here. The 

previous one . .. you'd had a lot of difficulty with it earlier and yet 

somehow that one seemed easier to do. 

Subj. 5 

Was it learning from experience or was I still getting it wrong? 

Int. 

No. I think you said they were both the same. 

What do you say for these two? 
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Subj. 5 

I'm saying 'here and here and here' 

Int. 

So you were just checking one to one? You weren't using any other 

strategy? Other than the one at a time going through each of the 

crossings? 

Subj. 5 

Because I didn't need to turn them round. 

Int. 

Right. 

That's another one of that shape. Can you remember what you were 

doing? 

Subj. 5 

This isn't the one you've got up now? It looks the same to me. 

Int. 

That's the one we've got on screen now. Oh, you've done it already. I 

think you were finding that one easy by this stage. 

You were checking each crossing there. 

You're doing this matching again, one to one with the three .. . 

Subj. 5 

I must have decided that it was easier to match them by turning the left 

one because I've been quite consistently turning the right one. 

Int. 

I don't know whether you feel at the end of those that there is any kind 

of learning of strategies, that you feel as if now if you were to go and do 

another 20 if you are any better prepared having done a few of them? 
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Subj. 5 

You had to use more than one criterion in a way. To look at them both, 

and try and turn them round to see if they match by looking at the 

crossover points, and then visualising if you think it's not a proper knot, 

but twisted over. Then visualising it as a rope being twisted, a circle of 

rope twisted and laid down in that pattern. Those were the three criteria 

that I did use. 

Int. 

When it was the situation that you were trying to make the loop of rope, 

construct it from the loop of rope, some of the shapes you seemed to 

immediately use that strategy and others you didn't. We talked about the 

pentoil as a sort of Celtic shape as being a familiar one, and it looked 

different. Any of the others? 

Subj. 5 

I think I used it to back up my theory that it was a piece of rope just 

twisted rather than knotted. If I thought it was twisted, I'd visualise 

twisting it to see if it would work out whereas if I thought it was knotted, 

I wouldn't use that technique. 
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