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Abstract 
Coral reefs are extremely sensitive ecosystems to climate change and especially to the warming 

oceans. Since 1980, three massive El Niño-associated heat stress periods triggered widespread bleaching 

events in the tropical Pacific that sometimes led to coral mortality. The understanding of potentially 

mitigating phenomena is crucial to choose where to focus conservation efforts. Through its capacity to 

bring cool, nutrient-enriched water in the warm oligotrophic shallows, upwelling can provide heat shelters 

for nearshore ecosystems. Little is known about the dynamics of upwelling during El Niño in the central 

tropical Pacific. Using ten years of subsurface temperature data and a thermocline depth reanalysis 

product, we here study the interconnections between upwelling intensity, thermocline depth and El Niño 

events in the central tropical Pacific. 

Previous methods were designed to quantify upwelling dynamics, in terms of cold-water intrusion 

in the warm shallows or cold pulses. However, these often lack the ability to identify individual events, are 

parameter heavy, which means they require knowledge on the local hydrography, and are unable to 

differentiate the physical processes inducing the cooling event. Here, we first developed a new, automated 

and locally adapted detection method based on a temperature stratification index. Not only our algorithm 

solves issues encountered by the previous methods as it is automatically tuned to the local environment, it 

does not require any parameter, and it separates upwelling from other processes, but we show that it 

improves the detection rate by 10% compared to previously published methods. 

Using our newly developed method, we quantified upwelling dynamics in ten years of subsurface 

temperature at five locations in the U.S. unaffiliated territory of the Pacific Remote Island Area. We 

observed extreme upwelling events at all five locations, and we show that these events are feature of strong 

and very strong El Niño events and their following La Niña as (1) they produce thermocline shoaling 

patterns and (2) shallow thermoclines are associated with intensified upwelling periods. Overall, our 

results show that El Niño and La Niña can produce temporary upwelling-exposed areas that act as shelters 

for nearshore ecosystems during intense heat stress. On the contrary, El Niño can also inhibit upwelling in 

previously exposed areas, temporary redistributing potential shelters. The understanding of the 

thermocline shoaling patterns during El Niño could provide geographical locations that could be naturally 

protected during El Niño and are therefore worthy of conservation efforts. 

 

 

First page photography by Francesco Ungaro on pexels.com.  
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Chapter I. Introduction 
 

Coral reefs are arguably some of the most threatened tropical marine ecosystems in our changing climate 

(Hoegh-Guldberg 1999). Corals are indeed highly sensitive to the properties of the sea water in which they 

live and slight deviations from the normal physicochemical properties of their environment, such as the 

lack of oxygen (Altieri et al. 2017), a lowered water pH (Hoegh-Guldberg et al. 2007; Manzello 2010) or 

an increased temperature (Hughes et al. 2017) can have dramatic effects on the reefs. When corals undergo 

warmer temperature than usual, their endosymbiont algae can be expelled and the corals bleach, leaving 

them without one of their main sources of nutrients which was provided by the algae through 

photosynthesis. If the corals remain bleached for too long, this can lead to their mortality (Glynn 1984; 

Vargas-Ángel et al. 2011; Furby et al. 2017; Sakai et al. 2019). Since our oceans are warming globally, 

increasing temperature is probably the biggest threat to coral reefs worldwide.  

 El Niño Southern Oscillation (ENSO) is a climate mode affecting winds, precipitations, 

temperature and other physical properties of the global climate (Zhang and McPhaden 2006; McPhaden 

et al. 2011). ENSO redistributes surface water in the tropical Pacific and Indian oceans, oscillating between 

a warm El Niño phase and a cooler La Niña (Trenberth 1997). El Niño is noticeably characterised by a 

warming of the tropical Pacific, reaching temperature several degrees warmer than the climatology. Since 

1980, three massive El Niño events induced basin-wide heatwaves in the tropical Pacific, leading to the 

most widespread coral bleaching events on record (Hughes et al. 2017; Donner et al. 2017), first in 1982 

(Glynn 1984), then in 1997 (Williams et al. 2010; Vargas-Ángel et al. 2011; Furby et al. 2017) and in 2015 

(Hughes et al. 2017; Fox et al. 2019; Vargas-Ángel et al. 2019). El Niño events are planned to increase in 

both frequency and magnitude (Yeh et al. 2009), threatening even more coral reefs environments. 

Therefore, it appears crucial to understand and quantify potential mitigating processes that could provide 

support to coral reefs during intense heat stress. 

 In the tropical Pacific, the thermocline separates a warm, nutrient-depleted surface layer from a 

cool, nutrient-enriched deeper water. Upwelling is a process that can bring sub-thermocline water up in 

the shallows (Ross and Sharples 2007), allowing the transport of nutrients and other components of the 

deeper layer (Leichter et al. 1996; Sevadjian et al. 2012). Upwelling can be generated through several 

processes, like shoaling internal gravity waves, that propagate on the thermocline and break when they 

encounter bathymetry (Walter et al. 2012; Sutherland et al. 2013; Woodson 2018), or through a deep-

water current that is topographically steered up, as the Equatorial Undercurrent shallows (Gove et al. 

2006). Upwelling widely affects nearshore ecosystems, and noticeably coral reefs, as it can considerably 



9 

 

change the properties of the water when it brings cooler, nutrient-rich water in the warm oligotrophic 

surface environment. This way, upwelling can affect the spatial organisation (Aston et al. 2019), growth 

rate (Leichter and Genovese 2006) and feeding strategies of corals (Roder et al. 2010; Pacherres et al. 

2013; Williams et al. 2018; Safaie et al. 2018; Radice et al. 2019). Besides affecting corals on a long-term 

scale, upwelling can also mitigate the effects of heat stress and create local refugees, as it can lower the 

water temperature (Schmidt et al. 2016; Reid et al. 2019; Wyatt et al. 2020; Storlazzi et al. 2020), and 

provide a new external source of nutrients to corals (Riegl et al. 2019). Moreover, high frequency 

temperature variability, often associated with internal waves-induce upwelling can increase the coral 

resistance to bleaching (Safaie et al. 2018). On the contrary, excessive nutrients can also exacerbate the 

effects of intense heat stress on reefs (Wiedenmann et al. 2013; DeCarlo et al. 2020; Burkepile et al. 2020). 

One way or another, upwelling affects coral reactions to bleaching events and should be studied 

thoroughly. 

 The work presented here aims at understanding upwelling dynamics linked with El Niño events 

in the central tropical Pacific. Such study could provide a better understanding of the mitigating effects of 

upwelling dynamics during El Niño, which could help define conservation-worthy locations for the future. 

Before any analysis could be made, a systematic way to detect and quantify upwelling dynamics must be 

used. Previous methods to quantify upwelling rely on a parameter-heavy methodology that requires an 

extensive knowledge of the local hydrography (Sevadjian et al. 2012; Gove et al. 2015; Williams et al. 

2018). To complete our study, we first developed a new, automated and locally adapted-upwelling 

detection method that relies on a temperature stratification index. This is the focus of Chapter I. Once our 

method was developed, we applied it to ten years of subsurface temperature data in the U.S. unaffiliated 

territory of the Pacific Remote Island Area (PRIA) to understand upwelling dynamics in the area. The 

period extended from 2008 to 2017 and spanned two El Niño events: one in 2009 and a stronger one in 

2015. We associated these temperature data with an El Niño index and 40 years of thermocline depth 

reanalysis to study interconnections between El Niño events, upwelling dynamics and thermocline depths. 

This is the matter of Chapter II. 

 Both chapters were written in collaboration with co-authors in order to be submitted to peer 

reviewed academic journals. Chapter I was written with Gareth J. Williams, J. A. Mattias Green (Bangor 

University), Jamison M. Gove (NOAA Fisheries) and Justin S. Rogers (Stanford University). In this 

chapter, I designed and developed the method with important feedback from all authors, while GJW, 

JAMG and I designed the study and wrote the manuscript. Chapter I has already been submitted to 

Limnology and Oceanography: Methods and we are waiting for the editors’ comments. Chapter II is not 

yet in an appropriate format for submission but will be in the near future. Chapter II was written with 
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Chapter II. Quantifying upwelling in tropical 

shallow waters: a novel method using a 

temperature stratification index. 
 

II.1       Introduction 
Temperature variations in the ocean can occur over years due to circulation changes (McPhaden 2015), 

over months due to seasonal differences in surface layer warming (Rao and Sivakumar 2000) and sub-

daily due to temporary changes in the physical properties of the water column (Safaie et al. 2018). These 

latter short-term intrusions of cold water can affect a range of ecosystem patterns and processes. On 

tropical coral reefs, for example, short-duration upwelling events can redistribute larvae, plankton and 

nutrients throughout the water column (Pineda 1991; Leichter et al. 1996; Sevadjian et al. 2012), creating 

spatial disparities in resource supply that affect the growth rates of reef organisms (Leichter and Genovese 

2006), their patterns of abundance (Aston et al. 2019), and their feeding ecology (Roder et al. 2010; 

Pacherres et al. 2013; Williams et al. 2018; Radice et al. 2019). Upwelling can also create temporary 

thermal refugia during abnormally high ocean temperature conditions (Reid et al. 2019; Wyatt et al. 2020) 

that can buffer the ecological impacts of mass coral bleaching and mortality (Wall et al. 2012; Schmidt et 

al. 2016; Safaie et al. 2018; Randall et al. 2020). Given these strong links between high-frequency 

temperature variations and the ecology of shallow-water tropical communities, we require a replicable 

method to quantify short-term cooling events. 

 Previous methods to quantify in situ cooling associated with upwelling from temperature time-

series data consist of integrating all temperature values below a daily threshold, such as the daily mean 

(Leichter and Genovese 2006) or mode (i.e. most found temperature value in a day; e.g. Wall et al. (2012); 

Schmidt et al. (2016)). The resulting metric of degree cooling days is then simply a sum of all cooling 

times across the entire temperature time-series. A second method used by Wyatt et al. (2020) quantified 

cooling associated specifically with internal wave activity. Internal waves are sub-surface gravity waves 

that break and dissipate energy at depth and by doing so, drive deep cooler water up into the warmer 

shallows (Alford et al. 2015; Woodson 2018). By filtering the temperature time-series to retain all 

variability associated with frequencies between the local inertial frequency and the time-series sampling 

rate, Wyatt et al. (2020) identified cooling assumed to be linked to internal wave-induced upwelling. The 

aim of this method was not to quantify upwelling dynamics per se, but to quantify the overall temperature 

reprieve internal wave-induced upwelling affords shallow water reefs during thermal stress events. 
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However, the methods developed by Leichter and Genovese (2006) and Wyatt et al. (2020) have some 

limitations. Firstly, they give a summed value of high frequency temperature cooling across an entire time-

series, but do not allow for the identification and timing of individual cold pulse events. Secondly, they do 

not identify the directional origin of the cold-water mass. Wyatt et al (2020) assumed that all high 

frequency temperature drops occurred as a result of deep-water internal waves. This is not always the case 

when cold surface water sinks down through the water column as a result of a thermally driven gravity 

current following cold, possibly nocturnal, atmospheric conditions (Monismith et al. 2006; Williams et al. 

2018). 

An automated method to identify individual cold pulses in temperature time-series data was first 

presented by Sevadjian et al. (2012) and, to date, has been the most widely adopted in tropical coral reefs 

studies (Gove et al. 2015; Williams et al. 2018; Aston et al. 2019; Comfort et al. 2019). The original 

method defines a cold pulse as whenever the temporal temperature gradient drops below a defined 

threshold (Sevadjian et al. 2012). If the temperature gradient stays below this threshold and the final 

temperature drop is greater than a specified value, a cold pulse is recorded. The event ends when the 

temperature recovers to a given fraction of its overall drop. There have been adaptations of the Sevadjian 

et al. (2012) method, including only identifying cold pulses with durations less than 13 hours to focus on 

cooling events associated with tidal and supertidal frequencies (Gove et al. 2015; Williams et al. 2018), as 

well as only those with a defined temperature drop occurring over a defined amount of time; the gradient 

then did not have to be maintained (Comfort et al. 2019). In Williams et al. (2018) and Comfort et al. 

(2019), the routine was applied to subsurface temperature recorders in a depth array at the same location. 

If the cold pulse was recorded in an upslope direction (i.e., recorded first in the deepest logger and then 

sequentially up into the shallows), it was attributed to upwelling induced by internal waves. However, if 

the reverse was seen and the cooling occurred first in the shallows and transitioned across the loggers in a 

downslope order, the cooling was attributed to surface downwelling (Williams et al. 2018).  

In the following we will refer to the Sevadjian et al. (2012) method and its adaptations as the 

Constant Gradient Threshold (CGT) method, because the temperature gradient threshold for defining a 

cold pulse remains the same throughout the time-series. CGT methods are defined by four parameters: a 

gradient threshold, a minimum temperature drop, the overall temperature drop fraction that has to recover 

to mark the pulse end, and a maximum pulse duration. These parameters must be defined a priori, meaning 

cold pulse detection ultimately depends on these somewhat arbitrary parameter choices. For example, a 

cold pulse can be easily missed if it shows a final temperature drop smaller than the defined minimum 

temperature drop. The CGT methods also do not automatically detect the directional origin of each cooling 

event and these must be manually identified from the temperature records, making it a labour-intensive 
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process for isolating upwelling-induced cooling. It would therefore be beneficial to have a standardised 

way of defining the parameters based on the geographic location and time of the study, and an automated 

way to isolate and quantify cooling events related to upwelling. Here we present a new method that 

achieves this when applied to in situ temperature time-series data collected across depths in shallow and 

weakly stratified tropical waters, like those around coral reefs. 

II.2       Materials and procedures 

 

Figure II.1 Location of Palmyra Atoll in the central Pacific (a) and our study site on the north outer reef slope (b). 

Bathymetry data derived from multibeam bathymetry surveys collected by NOAA’s Pacific Islands Benthic Habitat 

Mapping Center (up to 25 m) and IKONOS satellite data (shallower than 25 m). Solid lines represent the 0m, 500m, 

1000m and 1500m bathymetry contour lines. The red circle represents the location of our test data set. 

II.2.1      Data 
For method development, we used temperature recorded over a year from April 17th 2015 to April 17th 

2016 at three depths (6, 14, and 26 m) at a single location on the north outer reef slope (reef habitat facing 

the open ocean) of Palmyra Atoll in the Northern Line Islands, central Pacific (5°53’49’’N - 

162°04’41’’W, see Figure  II.1). Measurements were taken using Sea- Bird Electronics © sub-surface 

temperature recorders (SBE 56) attached to the reef floor and sampling every 5 min with an accuracy of 

0.002°C. The data used were collected by the Ecosystem Sciences Division of the National Oceanic and 

Atmospheric Administration (NOAA) Pacific Island Fisheries Sciences Center’s (PIFSC) Pacific Reef 

and Monitoring Program (RAMP). 

II.2.2       Method 
In weakly stratified tropical marine environments, near-surface stratification variability can be linked to 

the presence of a cool and dense internal tidal bore (Walter et al. 2012). An internal tidal bore is a gravity 

current formed by a breaking internal wave. The bore strength proxy, used in Walter et al. (2014) and 

based on a stratification index (Simpson and Pingree 1978), indicates the magnitude of an internal bore. 

The proxy is calculated as the difference between the potential energy of the water column if it was fully 

mixed and the potential energy of the observed water column divided by the height of the water column. 
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Physically, the bore strength proxy represents the energy required, per metre of depth, to fully mix the 

whole water column. Cold water intrusion, or cold pulses, in a weakly-stratified environment should 

therefore be detectable using a temperature proxy similar to the bore strength proxy. 

In the following equations, depth averaged quantities are overlined (   ̅ ). The bore strength proxy 

for a water column at a time t, ϕ(t), is defined as (Walter et al. 2014): 

ϕ(t) = −
g

H
∫ (𝜌(z, t) − �̅�(𝑡))zdz

zmin

zmax

 (1) 

 

where g = 9.81 m s−2 is the gravitational acceleration, H the water column height, zmax and zmin the 

maximum and minimum depth of the water column, 𝜌(z, t) the instantaneous density at a depth z and 

time t, and ρ̅(t) is the mean profile density. To detect cold-water intrusion in a water column, we adapt 

Eq. (1) to give a Temperature Stratification Index (TSI), ϕT, defined as: 

ϕT(t) =
1

H
∫ (T(z, t) − T̅(t))zdz

zmin

zmax

 (2) 

Note Eqs. (1) and (2) are analogous and different only by a constant multiplier (ϕ ∝ ϕT) if the density in 

Eq. (1) is primarily a function of temperature (𝜌 ∝ −T), which is reasonable for shallow reef 

environments with few freshwater sources. In Eq. (2), T(z, t) is the temperature time-series of the vertical 

temperature structure and T̅(t) is the depth-averaged temperature time-series. If the temperature data are 

discrete over n equally spaced depth levels, z1, z2, . . . zn,  Eq. (2) can be written, using a midpoint 

Riemann sum, as: 

ϕT(t) =
1

n
∑(T(zi, t) − T̅(t))zi

n

i=1

=  (T(z, t) − T̅(t))z̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3) 

In the following, Eq. (3) is used for almost equally spaced data. 
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Figure II.2 Our automated detection of upwelling-induced cold pulses within subsurface temperature time-series 

data in shallow tropical environments using a temperature stratification index (TSI). The figure shows the step-by-

step algorithm in three cases. CASE 1 (b, e, h, k) displays a potential pulse detected linked to heating in the surface 

layer and discarded by the algorithm. CASE 2 (c, f, i, l, n, p-s) displays a potential pulse detected containing a series 

of four successive cold pulses. CASE 3 (d, g, j, m, o, t) displays a potential pulse detected containing only one cold 

pulse. a-d. Input temperature data from the northern reef slope at Palmyra Atoll at 6m (light blue) and 26m (dark 

blue) depth. e-g. STEP 1: the TSI (thick solid red line) is computed from the input temperature data and potential 

pulses are defined as continuous periods of TSI lower than the location-specific threshold (thick dotted line). Hashed 

areas show where no potential pulse has been detected. h-j. STEP 2: boundaries of potential pulses detected are 

expanded to capture the full extent of the pulses. The figure shows the temperature data of the full potential pulses 

detected between the hashed areas. k-m. STEP 3: potential pulse linked to heating of the surface layer are discarded 

by the heating filter. The filter computes ΔT for each depth, defined as the difference between the pre-pulse 

temperature and the temperature of the minimum TSI. A pulse is discarded if ΔT at the deepest logger is positive, i.e. 

the bottom layer is warming, or if ΔT at the deepest logger does not have the biggest magnitude, i.e. a shallower layer 

experienced more temperature changes during the potential pulse. Computed ΔT for 6m and 26m are displayed. The 

ΔT with the biggest magnitudes are in bold. Potential pulse in CASE 1 is discarded, while potential pulses in CASE 

2 and CASE 3 are validated. n-o. STEP 4: when potential pulses detected and validated by the heating filter contain 

several successive pulses, they are broken down into individual pulses. p-t. Individual cold pulse events detected by 

the algorithm. 
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The TSI is negative in a water column where the temperature is decreasing with depth. For a water 

column with a quasi-homogeneous temperature distribution, the TSI is close to zero. The TSI decreases 

as the temperature becomes more stratified as a result of cold-water intrusion at the bottom of the water 

column and the strength of the intrusion is quantified by the magnitude of the TSI. We calculate the TSI 

for temperature time-series data collected by loggers in a depth array at the same location. This allows us 

to quantify cooling events experienced by those loggers shallower than the logger in the array to which the 

TSI calculation is applied. The method is therefore restricted to data collected by two or more loggers in a 

vertical depth array at the same horizontal location. 

 In summary, our novel TSI method detects and quantifies upwelling-induced cold pulses in a 

warm, weakly stratified water column from a vertical array of temperature time-series data (Figure II.2). 

Note that this process only detects pulses at the deepest logger used in the array. The step-by-step process 

is as follows and we provide detailed descriptions of the methods behind each step below: 

STEP 1 – Detecting potential cold pulses: for each time step, we compute the temperature stratification 

index (TSI) for the water column and extract potential cold pulses as being continuous periods of TSI 

below a location-specific threshold.  

STEP 2 – Capturing the full extent of pulses detected: potential pulses detected only encapsulate the 

part of the pulses with the strongest stratification. We therefore expand the boundaries of those potential 

pulses to capture their whole extent.  

STEP 3 – Filtering out potential pulses linked to surface heating: heating of the surface layer may also 

induce temperature stratification of the water column that can show up as a potential pulse. We therefore 

filter potential pulses linked to heating at the shallowest logger using a custom-made heating filter.  

STEP 4 – Separating series of pulses: In the eventuality of several successive pulses detected, the event 

is broken down into individual pulses. Potential pulses remaining at that stage are considered true 

upwelling-induced cold pulses.  

II.2.3       Detailed description of the method steps   

II.2.3.1        Step 1: detecting potential cold pulses 
An upwelling-induced cold pulse should first cause a sharp temperature drop at the deepest logger in the 

array before propagating up the reef slope to shallower depths. The lag between the temperature drops at 

different depths causes a noticeable temperature stratification captured by a negative TSI. A potential 

upwelling-induced cold pulse is defined as a continuous period of abnormally low TSI below a certain 
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threshold. To compute a locally relevant TSI threshold, we use in-depth monthly temperature data from 

the National Center for Environmental Prediction Global Ocean Data Assimilation System reanalysis 

product (NCEP/GODAS; Behringer and Xue (2004)), available from 

https://psl.noaa.gov/data/gridded/data.godas.html. GODAS temperature data are monthly means covering 

the whole globe from 1980 to 2020, with a spatial resolution of 0.333° latitude × 1° longitude, across 40 

depth levels in 10-m increments from 5 to 225 m depth. From the GODAS data, we compute the location-

specific climatological mean and standard deviation of the TSI. We first extract the temperature time-series 

from the GODAS data at the closest data point to our location (for our test dataset: 5°50’N - 162°30’W, 

47 km away from our location). Then, the extracted data is interpolated to the depths of our subsurface 

temperature recorders and we compute the TSI time-series for our temperature time-series. We then use 

the TSI time-series to compute a 40-year climatological mean TSI  and standard deviation, and define an 

abnormally low TSI as a TSI lower than the climatological mean minus one standard deviations. Our 

threshold, θ, is therefore defined as:  

θ = ϕT−GODAS
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − σ(ϕT−GODAS)  (4) 

In Eq. (4), ϕT−GODAS
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the 40-year climatological mean TSI and σ(ϕT−GODAS) the 40-year 

climatological standard deviation. Using the threshold θ in Eq. (4), we can compute a list of the start and 

end times of potential cold pulses within the temperature time-series data. 

II.2.3.2        Step 2: Capturing the full extent of pulses detected 
The potential cold pulses detected only represent the part of the pulses where the TSI magnitude is the 

strongest. To capture the full extent of the pulses we define new boundaries in time for each potential pulse. 

For the new pulse start time, we first compute the last time step before the start of the potential pulse 

meeting one of three criteria (the TSI is increasing, the TSI is positive or the deepest logger temperature is 

not the minimum temperature in the water column). The new start is then defined as the time step right 

after the one we just computed. Similarly, for the new end time step, we compute the first time-step after 

the end of the potential pulse meeting one of two other criteria (the TSI is positive or the deepest 

temperature logger is the maximum temperature in the water column). The new end is then defined as the 

time step before the one we just computed. If potential pulses overlap, they are merged into a single 

potential cold pulse. 

II.2.3.3        Step 3: Filtering out potential pulses linked to surface heating 
Because the TSI is based on temperature differences between temperature loggers in a vertical depth array, 

a potential cold pulse may be recorded due to the water column surface heating instead of the bottom of 

the water column cooling. We therefore apply a heating filter to all potential pulses to remove those that 

are not linked to cooling at the deepest logger. This is done for each potential pulse by computing the 

https://psl.noaa.gov/data/gridded/data.godas.html
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temperature difference between the start of the pulse and the time with the minimum TSI (i.e. the 

maximum TSI magnitude) for each depth. A pulse is authenticated under two conditions. First, the bottom 

temperature needs to be decreasing between the start of the potential pulse and the time of the minimum 

TSI. Second, the magnitude of the temperature difference needs to be greater for the bottom logger than 

for all the other loggers. If one of these conditions is not met, the potential pulse is discarded. 

II.2.3.4        Step 4: Separating successive pulses 
After the heating filter is applied, a detected pulse might in some cases actually be a series of successive 

individual cold pulses in close succession. To identify and separate these, we apply the following recursive 

routine, which we call the S-routine. 

 

Figure II.3 Detailed schematic of our S-routine applied to a hypothetical series of cold pulses. Solid lines represent 

temperature data over time. Horizontal dotted lines are the pre-pulse temperature for each step of the routine. The 

potential pulse detected is split into two individual time-series after two iterations of the S-routine. 

Initialisation: The pre-pulse temperature is defined as the temperature at the first time-step of the detected 

potential pulse (Figure II.3.a and II.3.f). 

IF the temperature of the potential pulse remains below the pre-pulse temperature for the whole duration 

of the event (Figure II.3.f.) 

• We categorise the potential pulse as an individual event (Figure II.3.g) and the S-routine 

ends. 

ELSE (Figure II.3.b) 
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• The potential pulse is split in two parts (Figure II.3.c).  

• We first categorise the part from the start to when the temperature goes back to the pre-

pulse temperature as an individual cold pulse event (Figure II.3.d.).  

• We then define the start a new potential pulse within the residual time-series. The new 

potential pulse starts when the bottom logger temperature decreases (Figure II.3.e).  

IF no such time is found 

• The potential pulse is categorised as nothing and the S-routine ends 

ELSE 

• We apply the S-routine to the new potential pulse (Figure II.3.f). 

II.3       Assessment 
To assess the performance of our temperature stratification index (TSI) against the previous 

constant gradient threshold (CGT) methods (Sevadjian et al. 2012; Gove et al. 2015), we first built a test 

data set by manually identifying cold pulses occurring at 26m depth in our Palmyra time-series data. From 

this data set, we extracted a list of indices, called ‘real indices’, from these test data, corresponding to the 

timestamps of the time series associated with the presence of a cold pulse. We then computed a list of 

indices for the presence of cold pulses as determined using the TSI and CGT methods applied to the 

original unprocessed time-series data, called ‘predicted indices’. From there, we define precision, recall 

and F1 score of each method, classically used for the assessment of anomaly detection algorithms 

(Anneken et al. 2015; Ji et al. 2019; Li et al. 2020), as in Eqs (5-7), where ∩ represent the intersection and 

| . | the size of a set of indices. 

Recall =  
|(Real indices) ∩ (Predicted indices)|

|Real indices|
 (5) 

Precision =  
|(Real indices) ∩ (Predicted indices)|

|Predicted indices|
 (6) 

F1 score =  2
Precision × Recall

Precision + Recall
 (7) 

The higher the recall, the higher number of true positives, the higher the precision and the less false 

positives. The F1 score is affected by both false negatives (as in recall) and false positives (as in precision). 

We consider both errors to matter equally in the process of detecting cold pulses, therefore we used the F1 

score as a proxy to rank the various detection methods against each other.  
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Our TSI method requires at least two temperature loggers (high accuracy and fast response time 

to changes in temperature, e.g. Sea Bird Electronics© SBE 56) to be used in a vertical array in order to 

compute the stratification in temperature across the loggers. To quantify upwelling at a certain depth, the 

TSI computed as in Eq. (3) is affected by the number of loggers used and their spatial organisation. To test 

for an effect of the number of loggers and their vertical depth spacing on the TSI values, we assessed the 

performance of our method in three different ways: first using all three loggers at 6, 14, and 26 m depth 

(called  TSI(3) for TSI with three levels), then using the 26 m and the 6 m loggers (called TSI(2,20) for 

TSI with two levels, 20 meters apart), and finally using the 26 m and 14 m loggers (called TSI(2,10) for 

TSI with two levels, 10 meters apart). The TSI method achieved average precision of 92.6%, recall of 

71.6% and F1 score of 80.6% (Table 1). Precision was consistent across methods and varied from 91.5% 

to 93.1%. Recall varied more, ranging from 65.7% to 75.7%. The best F1 score, i.e. the best of the three 

setups in our case, was obtained by the TSI(2, 20) (82.9%), closely followed by the TSI(3) (82.1%) and 

the TSI(2,10) (77%) (Figure  II.4, Table II.1). 

 The CGT methods detect cold pulses based on the temporal temperature gradient: if the gradient 

exceeds a defined threshold (G, in °C min-1), a potential pulse is recorded. If this potential pulse induces a 

temperature drop greater than a given minimum temperature drop (D, in °C), the potential pulse is 

considered to be a true cold pulse. The pulse event is considered over when the temperature has recovered 

to a defined fraction (F, no unit) of the induced temperature drop. If the pulse is longer than a given 

maximum duration (d, in hours), it is discarded. A given CGT method is thus defined by four parameters 

and will be referred as CGT(G: value of G, D: value of D, F:value of F, d: value of d). We first assessed 

the performance of the CGT methods used in Sevadjian et al. (2012) and Gove et al. (2015) corresponding 

to CGT(G:0.06, D:0.3, F:0.5, d: +∞) and CGT(G:0.00125, D:0.3, F:0.5, d:13), respectively. To compute 

the range in precision, recall and F1 scores and thus the performance extent of the CGT methods, we varied 

all four parameters across reasonable ranges (Table 1). G logarithmically varied from 0.0008 °C min-1 

(minimum detectable gradient using our loggers and sampling frequency) to 0.8 °C min-1 (near the 

maximum gradient found in the time-series: 0.89°C min-1) among 13 values, D varied from 0°C to 1.5°C 

every 0.1°C, F varied from 0 to 0.9 every 0.1, and d varied across three typical values (13h, 24h and 48h). 

The CGT methods examined showed a wide range in precision (0% to 100%) and recall (0 to 97.2%) 

(Figure II.4).  The highest F1 score of all CGT methods tested was 72.9%, obtained by the CGT(G:0.0008, 

D:0.1, F:0.9, d:24), corresponding to the lowest G, highest F and filtering pulses below 0.1°C (Table 1). 

The highest F1 score of our TSI method applied to the test data was 82.9% and varied between 4.1-10.0% 

higher than the best F1 scores achieved by the previously published CGT methods, regardless of the CGT 

method parameter settings (Figure II.4) 
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Figure II.4 Temperature stratification index (TSI) and constant gradient threshold (CGT) methods plotted on a 

precision-recall plane. Curved lines represent the F1 score, increasing from the bottom left corner to the top right 

corner. TSI methods are represented by: a white square for the TSI(3), a white circle for the TSI(2,10) and a black 

circle for the TSI(2,20). All CGT methods are represented by the hatched area. White triangles represent previously 

published CGT methods (downwards for Sevadjian et al. (2012), upwards for Gove et al. (2015) while black 

triangles represent best CGT methods for a certain criterion (upwards for recall, rightwards for F1 score and 

downwards for precision). 
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Table II.1 Precision, recall and F1 score of important methods tested. 

Method Precision (%) Recall (%) F1 score (%) 

TSI1(3) 93.12 73.4 82.1 

TSI(2,20) 91.5 75.7 82.9 

TSI(2,10) 93.1 65.7 77.0 

Mean TSI 92.6 71.6 80.6 

Best CGT3 for precision: 

CGT(G:0.025, D:0.9, F:0.3, d:24) 
100 20.1 33.5 

Best CGT for recall: 

CGT(G:0.0008, D:0, F:0, d:48) 
42.0 97.2 58.6 

Best CGT for F1 score: 

CGT(G:0.0008, D:0.1, F:0.9, d:24) 
73.8 72.1 72.9 

Sevadjian et al. (2012): 

CGT(G:0.06, D:0.3, F:0.5, d(+inf)) 
99.5 18.1 30.6 

Gove et al. (2015): 

CGT(G:0.00125, D:0.3, F:0.5, d:13) 
88.9 52.2 65.8 

1 Temperature stratification index. 

2 Bold values represent the best scores reached by the TSI and the CGT methods in each column. 

3 Constant gradient threshold. 

 

II.4       Discussion 
Gradients in upwelling can have profound effects on the biology and ecology of shallow-water tropical 

marine communities (Leichter and Genovese 2006; Williams et al. 2018; Aston et al. 2019; Radice et al. 

2019; Randall et al. 2020), yet we lack a locally parameterized automated method to quantify the dynamics 

of such events from in situ temperature timeseries data. Here we developed a novel method, the 

Temperature Stratification Index (TSI), that is parameterized based on the local temperature stratification 

of the water column to quantify sub-surface cooling events in highly stratified waters like those found 

around tropical coral reef islands. Based on in situ temperature timeseries data collected in a vertical depth 

array, our method improves on previously published methods by: 1) detecting individual cold pulse events 

to allow the computation of summary metrics, 2) removing the need for user-defined input parameters, 3) 
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automatically determining the directional origin of the cold-water mass to isolate cooling as a result of 

upwelling, and 4) increasing the detection accuracy (F1 score) by up to 10%.  

 Previously published methods quantify integrated cooling across in situ temperature time series 

data (Leichter and Genovese 2006; Wall et al. 2012; Wyatt et al. 2020), but do not identify individual 

cooling events, preventing the calculation of summary metrics of cold pulse temporal dynamics. In 

contrast and like previously published constant gradient threshold (CGT) methods (Sevadjian et al. 2012; 

Gove et al. 2015), our TSI method detects individual cold pulse events, allowing metrics such as mean 

pulse duration, mean maximum temperature drop, and mean pulse frequency to be calculated over 

different temporal windows. Depending on the question at hand, these metrics could be critical. For 

example, around both continental and oceanic shallow-water tropical coral reefs, cold pulses as a result of 

deep-water upwelling are associated with increased nutrient supply to the shallows (Leichter et al. 2003; 

Aston et al. 2019). Cold pulses with a mean short duration could favour macroalgae that are able to 

capitalise on increased nutrient concentrations in the surrounding waters more rapidly than reef-building 

corals (Fujita 1985; Raven and Taylor 2003; Ladah et al. 2012; Den Haan et al. 2016). In contrast, reef-

building corals may benefit where cold pulses occur more frequently or have a longer mean duration. In 

the central Pacific, the percentage cover of reef-building corals around Jarvis Island peaked where more 

frequent deep-water cold pulses occurred (Aston et al. 2019), and mean duration of cold pulses associated 

with night time lagoonal flushing correlated more strongly with coral trophic responses than the total 

cooling time of these events around Palmyra Atoll (Williams et al. 2018). These ecological responses to 

specific cold pulse dynamics would be missed by purely quantifying the summed total amount of cooling 

over time. 

 A cold pulse identification method that requires a priori defined input parameters runs the risk of 

the user making arbitrary choices or them taking parameter values from previous studies conducted under 

different environmental contexts. The CGT method used by Sevadjian et al. (2012) and Gove et al. (2015) 

requires four input parameters to be defined by the user, but our TSI method does not require any pre-

defined input parameters to identify individual cooling events within a temperature timeseries. Our method 

defines a ‘cold pulse’ in a geographically context-specific manner without the need for prior knowledge 

of the hydrographic properties of the study site. We define a cold pulse as a continuous period of 

“abnormally low” temperature stratification in the water column, with this criterion based on a 

climatological threshold of the temperature profile at the study site calculated from the NCEP-GODAS 

reanalysis product (Behringer and Xue 2004). The TSI cold pulse detection threshold is therefore 

automatically tuned for the study site in question, removing biases associated with user-defined input 

parameter choices. 
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In weakly stratified tropical waters, cold pulses can occur in temperature timeseries data as a result 

of surface downwelling in addition to deep-water, internal wave-driven upwelling (Williams et al. 2018). 

Despite both mechanisms creating short-term drops in sub-surface temperature, the cold-water masses 

driving the cooling response have fundamentally different origins and may therefore have different effects 

on shallow-water tropical organisms. Previously, the only way to separate cooling as a result of these 

different physical mechanisms was the labour-intensive process of manually inspecting each cold pulse 

identified by the CGT algorithm (Gove et al. 2015; Williams et al. 2018). The TSI method improves on 

this by automatically separating upwelling from downwelling-induced cooling events by investigating the 

sign of the temperature gradient. Upwelling-induced cold pulses result in a negative TSI, whereas cold 

pulses as a result of downwelling result in a positive TSI and are automatically discarded.  

As well as solving the core limitations of previously published methods that quantify upwelling-

induced cold pulses, our TSI method shows a substantially increased detection accuracy. Around the 

shallow tropical waters of Palmyra Atoll, our TSI method (and its variations tested in terms of number and 

spacing of loggers in a vertical array) achieved an F1 score 4.1-10% better than the best CGT method, even 

with the CGT parameters optimised for the test data set (Table II.1, Figure II.3). The TSI method showing 

the best results was the method using TSI over two depth levels, 20 meters apart, with an overall F1 score 

of 82.9% (10% higher than that of the best F1 CGT score). If two loggers are available, we would advise 

users to choose the TSI method over any CGT method. Of course, the quality of the loggers is required to 

be of sufficient quality for either method. We advise users to utilise loggers with a high accuracy and fast 

response time to changes in temperature, such as the ones used here. Note that some loggers may be 

advertised as having high accuracy, but their response time to changes in temperature is slow and short 

duration cold pulse events may then be missed. The depth of logger placement should be chosen with care 

when using our TSI method as results can be affected by the local stratification. For example, if two loggers 

are too far apart or too deep, one logger could reside in the isothermal layer but not the other. In this case, 

the background stratification will be high and only the strongest upwelling-induced cold-pulse events may 

be detected. Similar underestimates are likely to be obtained in a region subject to constant intense 

upwelling, for example on the west coast of Jarvis Island that experiences high upwelling intensity and 

frequency induced by the Equatorial Undercurrent (Gove et al. 2006; Aston et al. 2019). Similarly, loggers 

too shallow will be affected by the daily temperature cycle in the atmosphere, which can bias the results, 

as pulses producing a smaller temperature difference than the one induced by the warm surface 

temperature are likely to be discarded during our heating filter processing step. Finally, if the two loggers 

are too close to each other, the temperature difference during a pulse might not be sufficient to create 

enough stratification for the event to be detected. With this in mind, we would advise future users who 
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want to detect cold pulses at a depth d to follow these recommendations (note that the depth of detection 

d corresponds to the depth of the deepest logger): 1) both loggers should sit in the isothermal layer and 

thus above the thermocline for the duration of the study, 2) the shallow logger should not be shallower 

than 5-10 m to limit the effects of air temperature on the underlying water mass, and 3) the shallowest 

logger should be at least 5-10 m above the deep logger to create a sufficiently large temperature difference 

during cold pulse events. The current work tested these methods with temperature data only as is 

commonly available. But if salinity data was available in addition to temperature data, the same methods 

outlined here could be extended to the density as in Eq. (1), a topic that could be investigated in future 

work. 

In summary, upwelling has several effects on shallow-water tropical communities, but our ability to 

study these patterns and processes is dependent on our ability to quantify upwelling dynamics in a 

repeatable and rigorous manner. Our novel TSI method presented here improves on previously published 

methods by identifying individual cooling events within a temperature timeseries to allow the calculation 

of summary metrics associated with their dynamics without the need for user-defined input parameters. 

This means our method is easily applied to novel situations to quantify the dynamics of upwelling-induced 

cooling where previous hydrographic knowledge of the study site is lacking.  
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Chapter III. Temporary redistribution of 

upwelling-exposed areas in the tropical 

Pacific during El Niño 
 

III.1 Introduction 
Coral reefs are highly sensitive to local water conditions. Disruptions in the usual physicochemical 

properties, such as oxygen concentration (Altieri et al. 2017), acidity (Hoegh-Guldberg et al. 2007; 

Manzello 2010) or temperature (Hoegh-Guldberg 1999; Hughes et al. 2017) can have dramatic effects on 

corals. Under anomalously high temperature conditions, the algal endosymbionts of corals produce toxic 

reactive oxygen species and are expelled by their host, leading to coral bleaching (Hughes et al. 2017, 

2018). Under normal conditions, the endosymbiont would provide food to the corals through 

photosynthesis, but bleaching leaves corals with no internal source of nutrition. If the heat stress perdures, 

the starvation induced by the bleaching can lead to mortality among corals (Glynn 1984; Vargas-Ángel et 

al. 2011; Furby et al. 2017; Sakai et al. 2019). In a changing climate, ocean warming is arguably the biggest 

threat to tropical reef environments, which is why the understanding of mitigating physical factors is vital 

for the future of reef conservation strategies. 

In the tropical ocean, the thermocline separates a warm, nutrient-depleted surface layer from a 

warmer and nutrient-enriched deep water. Upwelling is a physical process that can bring sub-thermocline 

water up to the shallows (Ross and Sharples 2007). It can be generated by a current below the thermocline, 

like the Equatorial Undercurrent, which can be topographically steered up into the shallows (Gove et al. 

2006), or by internal gravity waves, propagating on or below the thermocline and shoaling when they 

encounter bathymetry (Walter et al. 2012; Sutherland et al. 2013; Woodson 2018). A shallower 

thermocline would theoretically reduce the distance internal waves must travel before reaching shallow 

waters, eventually increasing upwelling intensity, assuming the strength of the stratification does not 

change. The delivery of sub-thermocline water to the surface layer through upwelling can have profound 

effects on nearshore ecosystems, and noticeably on coral reefs. It can create spatial disparities in the 

distribution of reef organisms (Aston et al. 2019), their growth rate (Leichter and Genovese 2006), or in 

the feeding strategy of corals (Roder et al. 2010; Pacherres et al. 2013; Williams et al. 2018; Safaie et al. 

2018; Radice et al. 2019) through the creation of local cool and nutrient-enriched environments (Pineda 

1991; Buerger et al. 2015; Safaie et al. 2018; Reid et al. 2019). High frequency temperature changes can 

also reduce coral susceptibility to bleaching (Buerger et al. 2015; Safaie et al. 2018). During periods of 
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intense heat stress, upwelling can therefore mitigate or exacerbate the intensity of coral bleaching by 

creating thermal refugia (Reid et al. 2019; Wyatt et al. 2020; Storlazzi et al. 2020), limiting the effects of 

the heat stress (Riegl et al. 2019). Because of the associated nutrient delivery, upwelling can also limit the 

mortality of corals and improve their recovery (Riegl et al. 2019), as long as it does not provide an 

excessive nutrient supply that can aggravate bleaching intensity and duration (Wiedenmann et al. 2013; 

DeCarlo et al. 2020; Burkepile et al. 2020). Upwelling is obviously a key process in the understanding of 

coral bleaching and mortality dynamics during heat stress. 

The El Niño Southern Oscillation (ENSO) is a multi-year climate mode deeply affecting the 

global climate in terms of wind, precipitations, ocean currents and surface temperature (Zhang and 

McPhaden 2006; McPhaden et al. 2011). Mostly affecting the Indo-Pacific basin, ENSO oscillates 

between a warm El Niño phase and a cooler La Niña phase (Trenberth 1997). In the tropical Pacific, El 

Niño events are responsible for intense heatwaves affecting nearshore ecosystems. Since 1980, three El 

Niño of very strong magnitude triggered the most extensive bleaching and mortality events on record in 

the tropics: in 1982 (Glynn 1984),  1997 (Williams et al. 2010; Vargas-Ángel et al. 2011; Furby et al. 2017; 

Donner et al. 2017) and in 2015 (Hughes et al. 2017; Fox et al. 2019; Vargas-Ángel et al. 2019). Upwelling 

dynamics during the El Niño phase could potentially condition a reef’s capacity to overcome intense heat 

stress by delivering cold, nutrient rich, water to the surface layer, but a quantification of this is missing in 

the literature.  

Thermocline depth variability in the tropical Pacific is widely associated to ENSO at a basin-wide 

scale (Xu et al. 2017; Yang et al. 2019). During El Niño events, the tropical Eastern Pacific thermocline 

deepens while it shoals on the Western Pacific. Inversely, during the colder La Niña phase of the cycle, 

the thermocline shoals to the East and deepens to the West (McPhaden 2015). On a local scale, El Niño 

can also modulate upwelling variability in the Pacific as in the Galapagos (Riegl et al. 2019), Vietnam 

(Kuo et al. 2004), Chile (Montecinos and Gomez 2010)  or Peru (Espinoza-Morriberón et al. 2017), often 

linked with thermocline variability. Those studies were conducted on upwelling-exposed areas, but the 

thermocline variations induced by El Niño could potentially generate new upwelling areas.   

Palmyra Atoll is part of the U.S. territory of the Pacific Remote Islands Area (PRIA) and is a rich 

tropical coral reef removed from anthropogenic influence (Figures II.1, III.1). This makes Palmyra an ideal 

location on which to study processes at a pristine coral reef (Williams et al. 2010; Gove et al. 2015, 2016; 

Fox et al. 2018). Despite an intense heat stress during the 2015 El Niño, and an island-wide bleaching 

event affecting more than 90% of the corals, Palmyra showed limited mortality and high post-bleaching 
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recovery (Fox et al. 2019). However, the mechanism that saved Palmyra is not obvious, but strong 

upwelling is a prime candidate. 

Here, we investigate interconnections between upwelling variability, thermocline depth and El 

Niño events at five locations in the PRIA. This is done by using ten years of subsurface temperature data 

from Palmyra Atoll provided by the National Oceanic and Atmospheric Administration (NOAA), a 

recently developed automated method to quantify upwelling dynamics (Guillaume-Castel et al. subm.) 

and a thermocline depth reanalysis product (Behringer and Xue 2004). We provide evidence that Palmyra 

was the set of an extreme upwelling event in 2015, which could have provided its corals with thermal 

shelter and food supply during the El Niño-induced heat stress. Moreover, we show that such events are a 

feature of strong and very strong El Niño events, and that all the studied islands were affected.  

III.2 Materials and methods 

III.2.1 Study site 
The PRIA is an unaffiliated U.S. territory in the central tropical Pacific Ocean. Because of their distance 

from human habitation, the PRIA is ideal to study coral reef environments without anthropogenic factors, 

including disturbances such as flushed nutrients, fisheries or tourism. Of the seven locations in the PRIA, 

we will focus on five: Palmyra Atoll, Kingman Reef, and Howland, Baker and Jarvis islands (Figure 

III.1.a; we hereafter refer to them all as islands). Three distinct groups can be created, with Palmyra and 

Kingman 67 km apart just north of the equator (Figure III.1.c), Howland and Baker 70 km apart on the 

equator  and to the west of Palmyra and Kingman (Figure III.1.b), and finally Jarvis on its own at the 

equator, 800 km south of Palmyra and 1800 km West of Howland and Baker (Figure III.1.d). 
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Figure III.1(a) Location of the Pacific Remote Island Areas (PRIA) in the Pacific Ocean, with specific 

locations for Palmyra and Kingman (square), Howland and Baker (triangle) and Jarvis (circle). The 

Equator is represented by the dashed line while the 180°E Meridian is the dotted line. (b) Schematic 

representation of Howland and Baker Islands and the locations of the loggers used in the study. (c) 

Schematic representation of Kingman Reef and Palmyra Atoll and the locations of the loggers used in the 

study. (d) Schematic representation of Jarvis Islands and the location of the loggers used in the study. In 

b-d, land is shown in beige, shallow water in light blue and deep water in blue. Panels b-d are adapted from 

(Miller et al. 2008), Figure 11.2 using Google Maps (https://maps.google.fr/maps). 

III.2.2 Subsurface temperature data 
We use ten years of in-situ subsurface temperature recorded by the Ecosystem Science Division of the 

National Oceanic and Atmospheric Administration (NOAA) Pacific Island Fisheries Sciences Center’s 

(PIFSC) Pacific Reef and Monitoring Program (RAMP). The data studied span the years 2008 to 2017, 

and 2 to 8 study sites per location (Figure III.1.b-d). The subsurface temperature was recorded using Sea 

Bird Electronics© SBE37 and SBE56 loggers (henceforth referred to as STRs), with an accuracy of ± 

0.002°C, and sampling frequencies ranging from 30s to 60min. Full details on loggers are presented in the 

Table S1.  

III.2.3 Quantifying upwelling variability. 
To quantify upwelling dynamics, we used the recently developed temperature stratification index (TSI) 

method (Guillaume-Castel et al. subm.). The TSI method is an automatic algorithm to detect upwelling-

induced cooling events, or cold pulses, in temperature time series. Using two or more temperature loggers, 

the method uses the temperature stratification to compute a TSI. An upwelling-induced cold pulse is 

defined as a continuous period of abnormally low TSI, with criteria based on the local stratification 

climatology derived from NCEP/GODAS temperature data (Behringer and Xue 2004). The TSI method 

is therefore automatically tuned to the study location. When more than two simultaneous loggers were 
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available in an array of depths, we detected cold pulses for all depths but the shallowest one. The TSI was 

then applied to the logger at the given depth and the shallowest logger. For example, if three loggers are 

available, at 5m, 15m and 25m deep, we detected cold pulses at 15m using the 5m and 15m loggers, and 

at 25m using the 5m and 25m loggers. Distribution of the depths and locations were cold pulses could be 

detected are presented in Figure III.1.b-d and Figure III.2. Once we had detected the cold pulses, we 

computed instantaneous degree cooling weeks (DCW) (e.g., Gove et al. (2015); Williams et al. (2018)) as 

the difference between the pre-pulse temperature and the temperature during the pulse, multiplied by the 

time step of the time series in weeks. Instantaneous DCW are zero outside of cold pulse events. From 

there, we derived DCW, as the cumulative instantaneous DCW in the past 12 weeks.  

 

 

Figure III.2 Number of available locations where degree cooling weeks (DCW) are computable - i.e. with at least 

one simultaneous shallower logger is available at the same site – for each island and depth of the study. The 

position of the solid lines and their colour represent the depth while their width represents the number of sites where 

DCW can be computed at the corresponding depth. 

III.2.4 El Niño Southern Oscillation data 
The ENSO phase, used to characterise El Nino or La Nina years, was determined using the Oceanic Nino 

Index (ONI; https://ggweather.com/enso/oni.htm). ONI is a three-month rolling mean sea surface 

temperature (SST) anomaly over the Nino 3.4 region in the central Pacific (120°W to 170°W and 5°S to 

5°N).  El Niño (La Niña) events are defined when the ONI is continuously greater (less) then 0.5°C (-

0.5°C). These events are characterised as weak  if the SST anomaly does not exceed 1°C, moderate if the 

SST anomaly ranges from 1 to 1.5°C, strong if the SST anomaly is between 1.5°C--2°C,  and very strong 

when the SST anomaly is greater than 2°C. Here, we will only consider moderate to very strong events; 

see Table II.1 for a summary. 
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Table III.1 Years associated with moderate to very strong El Niño and La Niña events since 1980 based on the 

Oceanic Niño Index. 

Magnitude El Niño years La Niña years 

Very strong 1982; 1997; 2015 None 

Strong 1987; 1991; 2009 1988; 1998; 1999; 2007; 2010 

Moderate 1994; 2002 1995; 2011 

 

III.2.5 Thermocline depth data 
We use thermocline depth data from the National Center for Environmental Prediction Global Ocean Data 

Assimilation System product (NCEP/GODAS; Behringer and Xue (2004)). GODAS is a global reanalysis 

product providing monthly averaged data from 1980 to the present day at a spatial resolution of 1/3° 

latitude × 1° longitude. The thermocline depth data from GODAS is computed as the depth where the 

temperature deviation from the surface temperature exceeds 0.8°C (see 

https://psl.noaa.gov/data/gridded/data.godas.html). When comparing thermocline depth and DCW, the 

former is the mean thermocline depth over the past three months, so it matches the averaging period of the 

DCW. When comparing thermocline depth to ENSO phases, we computed a mean bi-yearly thermocline 

depth profile by averaging month-by-month all years and their following corresponding to a given ENSO 

phase and magnitude. For example, the very strong Niño thermocline depth is computed by averaging the 

years 1982-1983, 1997-1998 and 2015-2016 (cf. Table II.1). 

https://psl.noaa.gov/data/gridded/data.godas.html
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III.3 Results 

III.3.1 Upwelling and thermocline depth variability linked to 

ENSO phases 

 

Figure III.3 Island-mean degree cooling weeks (DCW, a-e) and NCEP-GODAS three-months rolling thermocline 

depth (g-k) at Palmyra (a; g), Kingman (b; h), Jarvis (c; i), Howland (d; j) and Baker (e; k) along with ENSO phases 

(f; l) from 2008 to 2017. DCW are represented by the solid lines in shades of blue, where the brightness of the line 

represents the depth at which DCW were recorded (darker is deeper). Thermocline depths are represented by the 

solid grey lines. In (f; l), El Niño (La Niña) events are represented by red (blue) patches. The pink rectangles highlight 

the peaks of the 2009 and 2015 El Niño events.  

We can observe variability in the response of thermocline depth and upwelling intensity facing El Niño 

events (Figure III.3). During the peak of the 2009 event, the upwelling was almost stopped and never 

exceeded 0.5 °C weeks at all locations. However, in 2010, Howland, Jarvis, and Baker experienced strong 

upwelling, peaking mid-year and lasting for six months, coinciding with the La Niña event. The DCW 

reached maxima of 6°C weeks at Howland and Baker (at 20 m depth) and 7°C weeks at Jarvis (at 35 m 

depth); note that all depths where we had STRs at that time were affected by the event. During the peak of 

El Niño in late 2015, a second intense upwelling event affected Palmyra and Kingman, again observed at 

all available depths. During this event, DCW reached 2°C weeks at Kingman and 7.5°C weeks at Palmyra 

(both at 25m deep). Similarly to the 2010 intense DCW period, another extreme upwelling event affected 
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Jarvis, Howland and Baker in mid-2016, with DCW reaching 7°C weeks at Jarvis (at 25 m), 3.5°C weeks 

at Howland (also at 25m) and 8°C weeks at Baker (at 35 m depth). This event matches the return to a La 

Niña phase. All the observed events are associated with a shallow thermocline at each of the affected 

islands (Figure III.3.g-k).  At Palmyra and Kingman, the shallowest thermocline is detected in late 2015, 

reaching 40 m, more than 10 m shallower than the second lowest value (Figure III.3. g-h). At Jarvis, the 

two upwelling events detected correspond to thermoclines shallower than 50 m, whereas normally the 

thermocline rarely shoals above 80 m (Figure III.3.i). Finally, at Howland and Baker, the two upwelling 

events correspond to the two shallowest thermocline values at around 50m deep in 2010 and 60m deep in 

2009 (Figure III.3.j-k).  

 

 

Figure III.4 DCW and three-months rolling thermocline depth at Palmyra (a), Kingman (b), Jarvis (c), Howland (d) 

and Baker (e) from 2008 to 2017. Each dot represents the DCW of one site and depth associated with the island 

thermocline depth. DCW are in log scale for better visibility. 

At all islands, more upwelling, quantified through an increase in the DCW, is associated with a 

shoaling thermocline. At Palmyra, Kingman, Jarvis, and Howland, when the thermocline reached above 

70-80 m depth, the DCW exceeded 0.1 oC weeks and often surpassed, 1 °C week above 60 m (Figure 

III.4. a-d). However, Baker still displays low DCW associated with a shallow thermocline. Furthermore, 

a high number of DCW were found for a deep thermocline at Kingman and Jarvis, but the strongest DCW 

remain present when the thermocline is shallow. Overall, these results indicate that strong upwelling can 

happen at various thermocline depths, although shallow thermocline are almost always associated with 

intensified upwelling at our locations. Similarly, deep thermocline at all locations but Kingman show 

limited upwelling when the thermocline is deep. Below 100m-110m, DCW rarely exceeded 2°C weeks. 

III.3.2 Thermocline shoaling and magnitude of ENSO events 
We refer the reader to Figure III.5 for the following discussion. Our five islands experience different 

thermocline shoaling signals during the ENSO phases. Palmyra and Kingman (Figure III. 5. a) experience 

a drastic thermocline shoaling during very strong El Niño years (i.e., 1982, 1997, 2015). The thermocline 
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reaches its shallowest depth between January to October in the El Niño years, when it shoals to 40 m depth,  

while the climatologically shallowest month is only slightly above 80m. Moderate and strong El Niño 

events also induce thermocline shoaling around these islands, but the shallowest depths are only 70 m. La 

Niña only induces deepening of the thermocline, from 80 m to 100 m at the islands.  

 

Figure III.5 (a-c) Mean three-months rolling NCEP-GODAS thermocline depth corresponding to different 

magnitudes of El Niño and La Niña events. Red (Blue) lines represent El Niño (La Niña) events at Palmyra and 

Kingman (a), Jarvis (b) and Howland and Baker (e). The darker and thicker the line, the stronger the magnitude, 

going from moderate to very strong for El Niño and from moderate to strong for La Niña. The monthly climatology 

is represented by the solid black line. (d-i) NCEP-GODAS three-months rolling mean thermocline depth (d-f) and 

thermocline depth anomaly (g-i) for three shoaling periods. The location of the island studied are represented by 

yellow markers: square for Palmyra and Kingman, circle for Jarvis and triangle for Howland and Baker. (d; g) show 

the thermocline depth and anomaly corresponding to November during all very strong Niño events since 1980. (e; 

h) show thermocline depth and anomaly corresponding to May the year after very strong Niño events. (f; i) show the 

thermocline depth and anomaly corresponding to May the year after strong Niño events. In g-i, shallower 

thermoclines than usual are represented by negative values (red shades) and deeper thermoclines by positive values 

(blue shades). Anomalies are defined using the monthly climatology as a baseline. The horizontal grey lines represent 

the Equator. 

Very strong El Niño events affect Jarvis, Howland and Baker (Figure III.5.b-c) in a similar way. 

During the El Niño years, the thermocline is similar to or deeper than in the climatology, but the shoaling 

gradually starts in September until it reaches its minimum depth of 45-50 m between March and June the 

year after. Strong El Niño years experience a shoaling of the thermocline the year after the events at 

Jarvis, Howland and Baker, reaching depths shallower than 60 m. To a lesser extent, Howland and 

Baker also have a shoaling thermocline in the year of strong Niño events, but it remains 5 m deeper than 
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the year after the event. At Jarvis, a strong La Niña induce shoaling of the thermocline in the year of the 

event, lasting for the whole year and peaking at a depth of 60 m. The thermocline also shoals at Howland 

and Baker but only up to 70 m at the beginning of the year of the event. 

El Niño events of strong and very strong magnitude are linked with regional thermocline shoaling 

patterns in the central tropical Pacific. At Palmyra and Kingman, very strong Niño events (1982, 1997 and 

2015) triggered an intense shoaling of the thermocline, reaching three-months rolling means of 40m deep 

in November, 40m shallower than the shallowest monthly climatology. Similarly, La Niña phases 

following both strong and very strong Niño induced shoaling of the thermocline at Jarvis, Howland and 

Baker. The shoaling peaked in March (Howland), May (Baker) and June (Jarvis) reaching between 40 

and 45m deep, 30m to 40m shallower than the shallowest monthly climatology of 70m at Jarvis and 80m 

at Howland and Baker. These events are not only limited to the central tropical Pacific but is basin-wide 

(Figure III.5.d-i). The shoaling during very strong Niño events affecting Palmyra and Kingman displays a 

90° rotated V-shape (Figure III.5.g) pointing towards the West. The northern part of this V-shape allows 

the thermocline to reach depth of 40m in a diagonal line extending from the North tip of Australia to central 

America (Figure III.5.d). Both Palmyra and Kingman are in this northern part. The shoaling affecting 

Jarvis, Howland and Baker also extends across the whole Pacific, but more centred over the equator 

(Figure III.5.e-f; h-i) where the Western pacific equatorial thermocline reaches 40m after very strong Niño 

and 50m after strong Niño events.  

III.4 Discussion 
In 2015 the reefs at the atoll of Palmyra survived despite intense heat stress and a serious bleaching event 

(Fox et al. 2019), and the reason for the survival of the reef at Palmyra is not clear. We provide evidence 

supporting that Palmyra corals could have been saved by a strong, island-wide upwelling event directly 

linked to El Niño. Moreover, we suggest that these kinds of strong upwelling events are a feature of strong 

and very strong El Niño events in the central Pacific, and could affect wide geographical areas as in the 

region 1) strong and very strong El Niño induce thermocline shoaling patterns, and 2) shallow thermocline 

is linked to intensified upwelling. 

III.4.1 Circumstances inducing the survival of Palmyra corals 

in 2015 
Upwelling can provide shelter to coral reefs in times of heat stress through heat relief (Riegl et al. 2019), 

high frequency temperature variability (Safaie et al. 2018) or nutrients supply (Riegl et al. 2019). It can 

also improve post bleaching recovery (Riegl et al. 2019). According to Fox et al. (2019), degree heating 

weeks (DHW), a metrics to quantify heat stress on corals, showed a maximum of 12 °C weeks, widely 
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exceeding the 8°C weeks threshold causing coral mortality. They observed an intense bleaching event 

affecting more than 90% of the organisms at the atoll, but low mortality, contrasting with the intense heat 

stress. An external phenomenon was necessary for the corals to survive through this event, and upwelling 

was a perfect candidate. During the warmest period of the 2015-2016 El Niño (August to December), high 

frequency upwelling increased up to 7.5°C weeks, 13 times more than the ten-year mean intensity at 

0.57°C weeks. Through its properties described earlier, upwelling could have both prevented Palmyra 

corals from dying and improved post-bleaching recovery.  

However, there is no consensus on the intensity of the heat stress that affected Palmyra during the 

2015-2016 El Niño. DHW are the most widely used heat stress metrics in coral reef studies. They are 

computed using a certain temperature threshold above which corals are expected to be affected by the heat. 

This threshold is usually computed as the maximum monthly mean (MMM) from the climatology. From 

the MMM, daily hotspots are then computed as the degrees above the MMM. DHW are finally computed 

as the cumulative hotspots exceeding 1°C in the past 12 weeks. If DHW exceed 4 °C weeks, the corals 

undergo a potential bleaching stress, and above 8 °C weeks they risk mortality. Our ability to predict 

bleaching and mortality is therefore conditioned by our capacity to accurately measure the DHW, and 

therefore, the MMM. Using various sources, products and time periods, we compared 14 different MMM 

values (Table II.2, Figure III.6.a). The MMM varied from 28.48°C (Fox et al. 2019; computed from the 

NOAA’s Pathfinder v.5.2 product) computed from the NOAA’s Pathfinder v.5.2 product) to 29.07 °C 

reached by the 2000-2020 climatology of the Copernicus ERA-5 reanalysis product. Apart from two 

sources (Fox et al. and Coral Reef Watch 50 m product before 2016), all MMM lie in the 29 ± 0.1°C 

range. To understand how MMM affect DHW, we computed the 2008-2017 maximum DHW reached 

by our in-situ data on the Forereef at Palmyra for various MMM values, ranging from 28.3 to 29.3, every 

0.01 °C (Figure III.6.b). As expected, MMM widely affects the outcome of the heat stress computed. If 

the MMM is above 29°C, the DHW computed are close to zero, which would mean that the temperature 

never exceeded the threshold of MMM+1°C. Below an MMM of 29°C, the DHW vary linearly with 

MMM, the DHW are increasing as the MMM decreases, reaching the bleaching threshold for MMM 

below 28.81 °C and the mortality threshold for MMM below 28.63 °C. Among all the MMM we 

computed, only two out of fourteen values gave a DHW high enough to reach the bleaching threshold: the 

Coral Reef Watch 50km product, before 2016 and the one used in Fox et al. (2019); only the MMM from 

Fox et al. (2019) could have coincide with mortality at Palmyra. Given these perspectives, it would seem 

reasonable to consider the MMM to sit in the 29 ± 0.1°C range, which contradicts the bleaching observed 

at Palmyra during both the 2009 and the 2015 El Niño events (Williams et al. 2010; Furby et al. 2017; Fox 
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et al. 2019). This either shows that the method is incorrect for this study, or that there is an underlying 

process that is yet to be understood. 

Table III.2 Maximum monthly means (MMM) computed from different sources and during different periods. 

Source Type Specification MMM* 

Fox et al. 2019 Paper From NOAA PFV5.2 28.48 °C 

OiSSTv2 Satellite 1990-2010 (20 years) 28.96 °C 

OiSSTv2 Satellite 2000-2020 (20 years) 29.06 °C 

OiSSTv2 Satellite 1990-2020 (30 years) 29.03 °C 

CRW Satellite 50km before 2016 28.70 °C 

CRW Satellite 50km after 2016 29.00 °C 

CRW Satellite 5km 28.95 °C 

ARGO In-situ 2.5m deep 2005-2019 29.00 °C 

ERA5 Reanalysis 1980-2000 (20 years) 28.96 °C 

ERA5 Reanalysis 1990-2010 (20 years) 29.01 °C 

ERA5 Reanalysis 2000-2020 (20 years) 29.07 °C 

ERA5 Reanalysis 1980-2010 (30 years) 28.99 °C 

ERA5 Reanalysis 1990-2020 (30 years) 29.05°C 

ERA5 Reanalysis 1980-2020 (40 years) 29.01 °C 
*Maximum monthly mean 

Overall, it seems delicate to settle on which MMM is best to quantify heat stress at Palmyra atoll. 

Indeed, depending on the value used, the DHW could show various scenarios with all possible outcomes 

facing the 2015 event: 1) the heat stress was too high for such low mortality (Fox et al. 2019); 2) the heat 

stress was high enough to cause massive bleaching but low mortality, which would explain the 

observations solely based on temperature (CRW 50km before 2016); and 3) the heat stress was too low to 

cause such a widespread bleaching event, which raises a new problem (Using other CRW, ARGO, OiSST 

or ERA5). In the third scenario, excessive nutrients delivered by intensified upwelling could have 

exacerbated the coral susceptibility to bleaching (DeCarlo et al. 2020) which could explain why the reef 

bleached in 2015 with a limited heat stress. However, the limited heat stress reached in 2009 was not 

associated with intensified upwelling, and yet, bleaching and even some mortality was observed (Williams 

et al. 2010; Furby et al. 2017). It has been shown that the classical DHW definition is not always the most 

adapted to quantify heat stress on coral reefs (DeCarlo 2020), and sometimes other methods are preferred 

(e.g. percentile based MMM at Jarvis island, Barkley et al. (2018)). Our ability to accurately predict 

bleaching and mortality at this location remains low using the classical heat stress bleaching. A locally 

adapted definition based on the local colonies’ history, combined with metrics from processes other than 

temperature only would benefit coral research in this atoll.  
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Figure III.6 (a) Maximum monthly mean (MMM) at Palmyra atoll computed from different sources and temporal 

periods (Table X). The colour of the circles represents the sources. (b) Maximum degree heating weeks (DHW) 

reached in the shallow water of the forereef at Palmyra atoll during the 2015 El Niño event compared to the MMM 

used as a threshold. DHW were computed over all locations and depths on the forereef at Palmyra, and then the 

2008-2017 maxima were extracted for each MMM. The circles represent how much DHW were computed by the 

methods in (a), and their colour represents the method. 

III.4.2 ENSO-induced strong upwelling events 
We showed that an extreme upwelling event happened at Palmyra during the 2015 El Niño. These events 

seem to be a feature of very strong el Niño events and their transition state to La Niña. 

High-frequency upwelling in the area is mostly caused by shoaling internal waves, breaking on 

islands and atolls bathymetry (Kao et al. 1985; Sutherland et al. 2013; Woodson 2018). At all locations 

studied, shallower thermoclines were associated with increasingly intensified upwelling. The highest 

recorded DCW values were always linked with thermoclines shallower than 60m, and the corresponded 

to the shallowest thermoclines at Palmyra, Kingman and Jarvis. We also showed that at all locations except 

Baker, upwelling intensity displayed a lower limit when thermocline was shallower than 80 m. This limit 

increases with shallower thermoclines, reaching almost 1°C weeks when the thermocline was shallower 

than 50 m. A shallower thermocline reduces the distance shoaling internal waves need to travel before 

reaching nearshore ecosystems and therefore the energy they require to propagate, thus increasing both 

the intensity and the frequency of the events. 

Combining our previous findings, we suggest that very strong El Niño and their following La 

Niña phases can produce extreme upwelling events in the tropical Pacific, which can ultimately affect 

nearshore ecosystems. The thermocline shoaling patterns previously exposed induced intensified 

upwelling North of the equator in November during the very strong El Niño and on the Equator during 

the following La Niña. Our ten-year record of upwelling intensity at the five locations studied show that 

1) during the 2015 El Niño, considered very strong, Palmyra and Kingman saw island-wide extreme 

upwelling event matching their shallowest thermocline of the decade, and 2) during the La Niña phase 

following the 2015 and the 2009 El Niño, which was a strong event, Howland, Jarvis and Baker saw 

extreme upwelling periods, also matching the two shallowest thermoclines of the decade. Very strong El 
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Niño and their following La Niña can generate upwelling-exposed areas in the tropical Pacific, ultimately 

affecting nearshore ecosystems (Woodson 2018). If the heat stress undergone by the corals at Palmyra is 

acknowledged, the reef could have been saved by this El Niño-induced upwelling event. Inversely, El 

Niño can also prevent upwelling in certain areas. During the 2015 El Niño, upwelling at Jarvis island was 

stopped (Figure III.3.c), despite Jarvis being constantly exposed to upwelling through the Equatorial 

Undercurrent (Gove et al. 2006). This was associated with a thermocline deeper than the climatology 

(Figure III.3.k, Figure III.5.c;d;g). The interruption of nutrient supply associated with a massive heat stress 

led to one of the worst mortality rates on records for the coral reefs at Jarvis (Vargas-Ángel et al. 2019). 

Similarly, Darwin and Wolf islands, in the Northern Galapagos (92°W, 1.5°N), are usually subject to 

upwelling, bringing nutrients and cool water to their coral reefs. During the 1997/1998 El Niño, the coral 

community bleached while very little bleaching was recorded after the 2015 El Niño. The difference was 

associated with an interruption of upwelling during the 1997 events while upwelling remained active 

during the 2015 event (Riegl et al. 2019). These findings match the thermocline depth data from the 

NCEP-GODAS product (Figure III.7). During the 1997/1998 El Niño, the thermocline deepened to 55m, 

22m below the climatologically deepest month (33m). During the 2015/2016 El Niño, the thermocline 

also deepened but only down to 40m.  

 

Figure III.7 Three month rolling NCEP-GODAS thermocline depth at Darwin and Wolf islands in the Northern 

Galapagos (92°W, 1.5°N). Thermocline depths during the 1997/1998 and 2015/2016 El Niño events are 

highlighted by the red solid lines. 

Our findings are based on averages of each ENSO phase years. However, observed thermocline 

variability, linked with potential upwelling intensification or deprivation can be inconsistent from one 

event to another in certain locations, as it is the case for the Galapagos islands. This provides an uncertainty 

which toughens the predictability of such events. Through important changes in the thermocline depth, 

very strong El Niño and their following a Niña can redistribute upwelling-exposed areas during heat waves 

in the tropical Pacific. These changes can profoundly impact nearshore ecosystems in both a positive and 

a negative way. Extreme sudden upwelling events can give a temporary shelter to previously exposed 

ecosystems facing heat stress, like in Palmyra during the 2015 El Niño, through thermal relief (Schmidt et 

al. 2016; Wyatt et al. 2020) and nutrient delivery (Riegl et al. 2019). However, in some cases like in the 
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Red Sea, excessive nutrient supply can also worsen the effects of heat stress on reefs, increasing their 

vulnerability and facilitating bleaching (Wiedenmann et al. 2013; DeCarlo et al. 2020; Burkepile et al. 

2020). Nutrient-enriched area, immersed in almost constant upwelling can also see a deepening of the 

thermocline leading to the interruption of upwelling, like at Jarvis or in the Galapagos. This process cuts 

an important source of food for the corals which can have devastating effects. With an already going 

increase in both the frequency and intensity of El Niño events, lucky - or unlucky - reefs could theoretically 

see the future trajectory of their corals be disturbed by such upwelling events in the near future. A better 

understanding of this temporary redistribution of upwelling-exposed areas could provide an insight on 

unsuspected naturally sheltered coral reef, which should be focused on by conservation strategies. 

  



41 

 

 

Chapter IV. Conclusion 
 

Upwelling is a physical process able to influence greatly the response of coral reefs to heat stress. Through 

this piece of work, we first presented a new algorithm that allows systematic study of upwelling dynamics 

in various geographical contexts and periods of studies. This new method, based on a temperature 

stratification index improves the detection rate of upwelling-induced cold pulses, but also the human 

processing time as it is fully automatic. This algorithm could be adapted to the detection and quantification 

of various advection processes, whether they are linked with downwelling, upwelling or sideways 

transport, as long as there are measurable differences between two water masses. 

 Using this newly developed method, we identified interconnections between ENSO, thermocline 

depth and upwelling intensity. We showed that very strong El Niño events and their following La Niña 

widely affect thermocline depth on a basin-wide scale. The thermocline shoaling patterns were associated 

with intensified upwelling areas in the tropical Pacific. Overall, we show that, through their effects on 

thermocline depth, very strong El Niño events and their following La Niña redistribute upwelling-exposed 

areas, creating and eliminating temporary thermal refugees for nearshore environments. In our changing 

climate a better understanding of this ENSO-induced upwelling variability could provide insight on 

naturally sheltered areas, that should be the focus of some conservation efforts in the future.  
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Supplementary material 

 

Table S1 Details of temperature loggers used in the study.  

1 SeaBird Electronics© SBE56 or SBE39 2 SeaBird Electronics© SBE37 3 Sea surface temperature buoys 

Site ID Island 

Latitude 

(°N) Longitude(°E) 

Depth 

(m) 

Logger 

type Start End 

Sampling 

frequency (s) 

OCC-BAK-001 Baker 0,206355 -176,475981 25,2 STR
1 

17-03-2012 03:00:00 31-05-2012 09:00:00 3600 

OCC-BAK-001 Baker 0,20636 -176,475921 25,6 STR 09-02-2015 19:39:59 14-06-2018 10:19:59 300 

OCC-BAK-002 Baker 0,204922 -176,476496 14,1 STR 17-03-2012 03:00:00 08-02-2015 21:00:00 3600 

OCC-BAK-002 Baker 0,204946 -176,476516 13,7 STR 09-02-2015 01:34:59 19-09-2016 13:29:59 300 

OCC-BAK-004 Baker 0,191586 -176,456458 24,9 STR 16-03-2012 05:00:00 10-02-2015 21:00:00 3600 

OCC-BAK-004 Baker 0,191548 -176,456438 24,7 STR 10-02-2015 21:04:59 12-04-2016 14:09:59 300 

OCC-BAK-005 Baker 0,191565 -176,460137 15,2 STR 16-03-2012 04:00:00 10-02-2015 00:00:00 3600 

OCC-BAK-005 Baker 0,191589 -176,460124 14,4 STR 10-02-2015 00:14:59 23-06-2016 05:04:59 300 

OCC-BAK-006 Baker 0,194095 -176,467264 5,3 STR 15-03-2012 23:00:00 10-02-2015 01:00:00 3600 

OCC-BAK-006 Baker 0,194085 -176,467248 4,7 STR 10-02-2015 01:09:59 13-06-2018 02:39:59 300 

OCC-BAK-009 Baker 0,191728 -176,488894 25,3 STR 17-03-2012 22:00:00 08-02-2015 17:00:00 3600 

OCC-BAK-009 Baker 0,191715 -176,488912 27,7 STR 08-02-2015 20:24:59 05-11-2016 07:09:59 300 

OCC-BAK-010 Baker 0,191712 -176,488808 16,8 STR 24-01-2004 20:30:00 27-06-2005 00:30:58 1800 

OCC-BAK-010 Baker 0,191813 -176,488696 14,1 STR 11-04-2017 03:04:59 12-06-2018 21:19:59 300 

OCC-BAK-010 Baker 0,191792 -176,488728 14,7 STR 10-02-2015 12:49:59 30-12-2016 20:14:59 300 

OCC-BAK-012 Baker 0,191652 -176,488471 4,47 STR 31-01-2006 03:00:00 09-02-2008 01:00:02 1800 

OCC-BAK-012 Baker 0,191635 -176,488497 4,6 STR 24-01-2004 20:30:00 01-12-2005 20:59:59 1800 

OCC-BAK-012 Baker 0,1917 -176,488511 4,58 STR 09-02-2008 02:00:00 07-02-2010 01:30:00 1800 

OCC-BAK-014 Baker 0,194573 -176,462828 11,4 STR 11-02-2010 15:30:00 17-11-2011 20:00:01 1800 

OCC-BAK-015 Baker 0,205378 -176,47574 18,29 STR 24-01-2004 23:29:59 05-06-2005 19:29:59 1800 

OCC-BAK-015 Baker 0,205386 -176,475932 17,5 STR 07-02-2010 22:00:00 16-03-2012 22:00:00 1800 

OCC-BAK-015 Baker 0,205395 -176,475786 16,96 STR 02-02-2006 00:00:00 10-02-2008 01:00:00 1800 

OCC-BAK-015 Baker 0,205414 -176,475874 16,97 STR 10-02-2008 03:00:00 07-02-2010 21:00:00 1800 

OCC-BAK-016 Baker 0,187837 -176,474756 5,4 STR 07-02-2010 03:00:00 16-03-2012 03:00:01 1800 

OCC-BAK-016 Baker 0,18789 -176,474745 4,52 STR 31-01-2006 01:30:00 09-02-2008 22:00:00 1800 

OCC-BAK-016 Baker 0,187871 -176,474749 4,88 STR 10-02-2008 07:00:00 07-02-2010 02:30:00 1800 

OCC-BAK-017 Baker 0,19179 -176,488645 9,1 STR 07-02-2010 02:00:00 17-03-2012 02:30:00 1800 

OCC-BAK-018 Baker 0,191731 -176,488769 17,57 STR 31-01-2006 02:30:00 09-02-2008 01:00:00 1800 

OCC-BAK-018 Baker 0,191773 -176,488743 17,78 STR 09-02-2008 03:00:00 07-02-2010 00:30:00 1800 

OCC-BAK-018 Baker 0,191788 -176,488679 18,6 STR 07-02-2010 01:00:00 17-03-2012 03:00:00 1800 

OCC-BAK-019 Baker 0,19005 -176,46025 18,9 SBE37
2 

01-02-2002 09:00:00 15-12-2003 21:44:59 900 

OCC-BAK-019 Baker 0,19005 -176,46025 18,9 SBE37 23-01-2004 22:30:01 23-01-2005 05:30:01 1800 

OCC-BAK-019 Baker 0,189907 -176,460129 19,91 SBE37 09-02-2008 22:00:00 06-02-2010 20:00:01 1800 

OCC-BAK-021 Baker 0,187967 -176,47474 2,4 STR 24-01-2004 02:00:00 28-07-2004 13:30:00 1800 

OCC-HOW-002 Howland 0,809322 -176,61042 24,9 STR 12-03-2012 06:00:00 17-02-2014 16:00:00 3600 

OCC-HOW-002 Howland 0,809365 -176,610451 25 STR 04-02-2015 21:04:59 06-04-2016 03:54:59 300 

OCC-HOW-003 Howland 0,809322 -176,610596 14,8 STR 12-03-2012 08:00:00 07-09-2013 09:00:00 3600 

OCC-HOW-003 Howland 0,809348 -176,610588 14,4 STR 11-04-2017 22:04:59 09-06-2018 22:19:59 300 
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Site ID Island 

Latitude 

(°N) Longitude(°E) 

Depth 

(m) 

Logger 

type Start End 

Sampling 

frequency (s) 

OCC-HOW-003 Howland 0,809345 -176,610602 14,5 STR 04-02-2015 21:14:59 23-10-2016 01:24:59 300 

OCC-HOW-004 Howland 0,809188 -176,610835 5,2 STR 13-03-2012 21:00:00 04-02-2015 23:00:00 3600 

OCC-HOW-004 Howland 0,809128 -176,610977 5,2 STR 05-02-2015 02:14:59 21-12-2017 07:29:59 300 

OCC-HOW-006 Howland 0,806505 -176,621533 25 STR 05-02-2015 19:24:59 11-05-2017 14:04:52 300 

OCC-HOW-007 Howland 0,806539 -176,621481 15,3 STR 15-03-2012 01:00:00 05-02-2015 15:00:00 3600 

OCC-HOW-007 Howland 0,806549 -176,621481 14,3 STR 12-04-2017 02:24:59 09-06-2018 01:44:59 300 

OCC-HOW-007 Howland 0,806554 -176,621482 14,7 STR 05-02-2015 19:29:59 01-03-2017 00:54:59 300 

OCC-HOW-008 Howland 0,806603 -176,621336 3,02 STR 28-01-2006 22:00:00 07-02-2008 00:00:02 1800 

OCC-HOW-008 Howland 0,806591 -176,621356 3 STR 21-01-2004 23:00:00 24-01-2006 20:00:01 1800 

OCC-HOW-008 Howland 0,80659 -176,621383 4,9 STR 12-03-2012 22:00:00 27-12-2014 01:00:00 3600 

OCC-HOW-008 Howland 0,806605 -176,621354 4,2 STR 03-02-2010 21:00:00 12-03-2012 21:30:00 1800 

OCC-HOW-008 Howland 0,806608 -176,621343 3,47 STR 07-02-2008 12:00:00 03-02-2010 20:30:00 1800 

OCC-HOW-008 Howland 0,806587 -176,621404 5,2 STR 05-02-2015 22:54:59 17-01-2017 14:54:59 300 

OCC-HOW-009 Howland 0,814806 -176,623984 14,82 STR 07-02-2008 23:30:00 03-02-2010 21:00:00 1800 

OCC-HOW-009 Howland 0,814818 -176,623928 15,2 STR 03-02-2010 21:30:00 11-03-2012 20:00:00 1800 

OCC-HOW-010 Howland 0,806467 -176,621633 38 STR 28-10-2006 22:00:00 07-02-2008 23:30:00 1800 

OCC-HOW-010 Howland 0,806476 -176,621583 37,59 STR 08-02-2008 03:00:00 03-02-2010 19:30:00 1800 

OCC-HOW-011 Howland 0,806476 -176,621645 18,59 STR 28-01-2006 22:00:00 05-02-2008 23:30:01 1800 

OCC-HOW-011 Howland 0,806481 -176,621584 18,7 STR 21-01-2004 23:00:00 25-01-2006 08:00:00 1800 

OCC-HOW-011 Howland 0,806468 -176,621522 19,8 STR 03-02-2010 20:00:00 12-03-2012 20:00:00 1800 

OCC-HOW-011 Howland 0,806505 -176,621509 18,59 STR 07-02-2008 12:00:00 03-02-2010 19:30:00 1800 

OCC-HOW-012 Howland 0,82351 -176,62216 18,9 STR 22-01-2004 23:00:00 26-02-2006 15:30:00 1800 

OCC-JAR-002 Jarvis -0,367639 -159,978816 24,5 STR 10-04-2015 11:54:59 30-07-2018 01:34:59 300 

OCC-JAR-003 Jarvis -0,367768 -159,978811 15,1 STR 13-11-2015 12:50:05 18-05-2016 09:05:05 300 

OCC-JAR-003 Jarvis -0,367753 -159,978816 15,5 STR 18-05-2016 21:39:27 02-04-2017 22:24:27 300 

OCC-JAR-003 Jarvis -0,367764 -159,978808 14,9 STR 10-04-2015 00:39:59 12-11-2015 22:59:59 300 

OCC-JAR-003 Jarvis -0,367668 -159,97882 14,7 STR 04-04-2017 02:24:59 30-07-2018 11:09:59 300 

OCC-JAR-004 Jarvis -0,375102 -159,972299 24,5 STR 09-04-2015 00:49:59 28-07-2018 23:44:59 300 

OCC-JAR-004 Jarvis -0,375062 -159,972331 24,9 STR 05-05-2012 01:01:59 08-04-2015 20:16:59 60 

OCC-JAR-005 Jarvis -0,375112 -159,972473 13,2 STR 09-04-2015 07:09:59 29-07-2018 19:29:59 300 

OCC-JAR-005 Jarvis -0,375096 -159,972482 14,2 STR 05-05-2012 00:59:59 08-04-2015 21:18:59 60 

OCC-JAR-006 Jarvis -0,373945 -159,983394 5,1 STR 19-05-2016 00:58:14 29-07-2018 12:18:14 300 

OCC-JAR-006 Jarvis -0,373939 -159,983417 4,8 STR 13-11-2015 17:51:52 18-05-2016 12:56:52 300 

OCC-JAR-006 Jarvis -0,373936 -159,983422 4,9 STR 09-04-2015 02:39:59 12-11-2015 22:59:59 300 

OCC-JAR-006 Jarvis -0,373966 -159,983391 5,1 STR 05-05-2012 03:22:59 08-04-2015 21:47:59 60 

OCC-JAR-007 Jarvis -0,382443 -160,002952 24,5 STR 10-04-2015 02:09:59 31-07-2018 17:39:59 300 

OCC-JAR-008 Jarvis -0,382343 -160,003032 14 STR 10-04-2015 05:19:59 04-04-2017 20:09:59 300 

OCC-JAR-008 Jarvis -0,382347 -160,002983 14,6 STR 05-04-2017 02:24:59 31-07-2018 00:49:59 300 

OCC-JAR-009 Jarvis -0,381563 -160,002884 5,2 STR 09-04-2015 21:39:59 26-11-2017 19:09:59 300 

OCC-JAR-010 Jarvis -0,379132 -160,015433 15,04 SBE37 20-03-2006 19:59:59 26-03-2008 20:00:00 1800 

OCC-JAR-010 Jarvis -0,37916 -160,015511 14,87 SBE37 10-03-2002 03:00:01 09-12-2003 15:15:01 900 

OCC-JAR-010 Jarvis -0,379136 -160,015462 14,8 SBE37 26-03-2004 22:30:12 23-01-2006 13:30:11 1800 

OCC-JAR-010 Jarvis -0,379188 -160,015438 14,62 SBE37 26-03-2008 21:30:00 01-04-2010 21:00:01 1800 

OCC-JAR-010 Jarvis -0,379253 -160,015518 15,23 STR 27-03-2008 12:00:00 01-04-2010 21:00:00 1800 

OCC-JAR-010 Jarvis -0,379239 -160,015506 15,2 STR 01-04-2010 21:30:00 04-05-2012 00:00:00 1800 
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OCC-JAR-010 Jarvis -0,379222 -160,015448 15 STR 12-04-2015 02:24:59 27-11-2017 12:49:59 300 

OCC-JAR-012 Jarvis -0,368913 -160,008207 22,5 SBE37 01-04-2010 20:22:31 05-04-2010 20:15:01 90 

OCC-JAR-012 Jarvis -0,368923 -160,008249 24,9 STR 03-05-2012 21:35:59 10-04-2015 22:58:59 60 

OCC-JAR-012 Jarvis -0,368917 -160,008239 24,4 STR 12-11-2015 23:04:10 20-05-2016 10:54:10 300 

OCC-JAR-012 Jarvis -0,368945 -160,008258 23,8 STR 20-05-2016 20:45:00 28-07-2018 05:40:00 300 

OCC-JAR-012 Jarvis -0,368908 -160,008228 24,7 STR 11-04-2015 05:39:59 12-11-2015 22:59:59 300 

OCC-JAR-013 Jarvis -0,368944 -160,008135 14,9 STR 12-11-2015 23:03:17 20-05-2016 16:18:17 300 

OCC-JAR-013 Jarvis -0,368956 -160,008164 15,3 STR 20-05-2016 20:57:30 04-04-2017 21:17:30 300 

OCC-JAR-013 Jarvis -0,368957 -160,00814 14,9 STR 11-04-2015 02:49:59 12-11-2015 22:59:59 300 

OCC-JAR-013 Jarvis -0,369007 -160,008201 14,9 STR 05-04-2017 01:09:59 28-07-2018 18:54:59 300 

OCC-JAR-013 Jarvis -0,368995 -160,008166 14,3 STR 03-05-2012 22:55:59 10-04-2015 21:14:59 60 

OCC-JAR-014 Jarvis -0,36902 -160,008051 6,4 STR 28-03-2008 01:59:59 07-05-2008 09:59:59 1800 

OCC-JAR-014 Jarvis -0,369017 -160,008033 6,4 STR 28-03-2004 12:00:00 02-01-2006 01:00:01 1800 

OCC-JAR-014 Jarvis -0,369013 -160,008058 6,4 STR 01-04-2010 23:30:00 03-05-2012 22:00:00 1800 

OCC-JAR-014 Jarvis -0,369019 -160,008035 6,6 STR 21-03-2006 23:06:44 06-02-2007 08:06:44 1800 

OCC-JAR-014 Jarvis -0,369053 -160,008014 5,8 STR 21-05-2016 23:51:47 28-07-2018 10:26:47 300 

OCC-JAR-014 Jarvis -0,369061 -160,007994 5,8 STR 12-11-2015 23:01:50 21-05-2016 13:26:50 300 

OCC-JAR-014 Jarvis -0,369068 -160,007971 5,8 STR 11-04-2015 04:29:59 12-11-2015 22:59:59 300 

OCC-JAR-014 Jarvis -0,369038 -160,008004 5,4 STR 03-05-2012 22:36:59 10-04-2015 23:08:59 60 

OCC-JAR-015 Jarvis -0,368867 -160,008162 18,6 SBE37 05-04-2010 20:33:01 08-07-2010 10:32:02 90 

OCC-JAR-016 Jarvis -0,363274 -159,991109 9,87 STR 27-03-2008 01:00:00 04-04-2010 20:00:00 1800 

OCC-JAR-016 Jarvis -0,363233 -159,9911 9,77 STR 28-03-2004 12:00:01 20-03-2006 22:30:03 1800 

OCC-JAR-016 Jarvis -0,363246 -159,991124 9,9 STR 04-04-2010 20:30:00 04-05-2012 20:30:00 1800 

OCC-JAR-016 Jarvis -0,363246 -159,991124 9,9 STR 04-04-2010 23:49:30 05-04-2011 13:25:30 90 

OCC-JAR-016 Jarvis -0,363275 -159,99112 9,75 STR 21-03-2006 00:19:03 27-03-2008 00:19:03 1800 

OCC-JAR-017 Jarvis -0,362903 -159,9912 29,12 STR 21-03-2006 02:50:49 02-01-2008 05:50:49 1800 

OCC-JAR-017 Jarvis -0,362932 -159,991149 29,07 STR 27-03-2008 12:00:00 04-04-2010 19:30:00 1800 

OCC-JAR-017 Jarvis -0,362898 -159,99118 29,3 STR 04-04-2010 20:00:00 04-05-2012 21:30:00 1800 

OCC-JAR-019 Jarvis -0,375 -159,972283 31,13 STR 20-03-2006 23:25:36 28-03-2008 20:25:36 1800 

OCC-JAR-019 Jarvis -0,375016 -159,97228 33,21 STR 28-03-2008 21:30:00 03-04-2010 21:30:00 1800 

OCC-JAR-019 Jarvis -0,375013 -159,972268 33,2 STR 03-04-2010 22:00:00 05-05-2012 00:00:00 1800 

OCC-JAR-022 Jarvis -0,381828 -159,996632 10 STR 28-03-2004 12:00:00 21-03-2006 17:30:01 1800 

OCC-JAR-022 Jarvis -0,381844 -159,996673 10,22 STR 21-03-2006 22:43:06 12-01-2008 22:13:06 1800 

OCC-JAR-022 Jarvis -0,381844 -159,996645 10,07 STR 27-03-2008 23:00:00 03-04-2010 02:30:00 1800 

OCC-JAR-022 Jarvis -0,381847 -159,996643 10,2 STR 03-04-2010 03:00:00 03-05-2012 23:30:00 1800 

OCC-JAR-022 Jarvis -0,381847 -159,996643 10,2 STR 03-04-2010 02:58:30 16-04-2011 09:37:30 90 

OCC-JAR-023 Jarvis -0,382089 -159,99667 32,4 STR 21-03-2006 19:35:34 27-03-2008 22:05:34 1800 

OCC-JAR-023 Jarvis -0,382099 -159,996615 32,51 STR 27-03-2008 22:30:00 03-04-2010 02:00:00 1800 

OCC-JAR-023 Jarvis -0,382085 -159,996618 32,6 STR 03-04-2010 02:30:00 03-05-2012 23:30:00 1800 

OCC-JAR-024 Jarvis -0,375685 -159,974514 10,1 STR 03-04-2010 01:03:00 20-03-2011 10:51:00 90 

OCC-JAR-025 Jarvis -0,368886 -160,008083 10,1 STR 01-04-2010 23:58:30 11-04-2011 12:12:00 90 

OCC-JAR-025 Jarvis -0,369034 -160,008127 11,14 STR 01-04-2010 22:58:30 14-11-2010 00:00:00 90 

OCC-JAR-026 Jarvis -0,368938 -160,008285 32,2 STR 21-03-2006 21:57:32 28-03-2008 00:57:32 1800 

OCC-JAR-026 Jarvis -0,368928 -160,008262 32,1 STR 28-03-2008 01:00:00 01-04-2010 20:00:00 1800 

OCC-JAR-026 Jarvis -0,368905 -160,008336 31,9 STR 01-04-2010 20:30:00 03-05-2012 20:00:00 1800 
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OCC-JAR-028 Jarvis -0,37545 -159,9745 12,2 STR 28-03-2004 12:00:00 20-03-2006 21:30:01 1800 

OCC-JAR-028 Jarvis -0,375561 -159,974305 13,1 STR 27-03-2008 21:00:00 03-04-2010 00:30:00 1800 

OCC-JAR-028 Jarvis -0,375573 -159,974321 13,4 STR 20-03-2006 21:48:08 13-07-2007 11:48:08 1800 

OCC-KIN-001 Kingman 6,439351 -162,38785 25,1 STR 26-04-2015 21:34:59 07-05-2016 06:39:59 300 

OCC-KIN-001 Kingman 6,439325 -162,387934 25 STR 10-05-2012 23:37:59 26-04-2015 20:22:59 60 

OCC-KIN-002 Kingman 6,438725 -162,38824 13,1 STR 16-04-2010 19:40:00 27-10-2010 23:55:00 300 

OCC-KIN-002 Kingman 6,438789 -162,388262 13,1 STR 20-11-2010 00:00:00 10-05-2012 20:30:00 1800 

OCC-KIN-002 Kingman 6,438797 -162,388002 14,5 STR 26-04-2015 21:49:59 08-08-2018 15:04:59 300 

OCC-KIN-002 Kingman 6,438817 -162,388079 14,6 STR 10-05-2012 23:36:59 26-04-2015 21:46:59 60 

OCC-KIN-003 Kingman 6,437248 -162,388219 5,9 STR 27-04-2015 03:44:59 04-12-2016 16:54:59 300 

OCC-KIN-003 Kingman 6,437272 -162,388245 5,8 STR 11-05-2012 00:55:59 26-04-2015 23:43:59 60 

OCC-KIN-004 Kingman 6,42956 -162,382026 1,1 STR 11-05-2012 02:02:59 22-04-2015 18:35:59 60 

OCC-KIN-005 Kingman 6,392413 -162,342189 7,1 STR 14-04-2010 20:00:00 12-05-2012 00:00:01 1800 

OCC-KIN-005 Kingman 6,392398 -162,342184 7,5 STR 03-04-2004 00:01:01 29-03-2006 15:31:01 1800 

OCC-KIN-005 Kingman 6,392402 -162,342174 7,1 STR 29-03-2006 22:42:40 05-04-2008 19:12:40 1800 

OCC-KIN-005 Kingman 6,392412 -162,342173 6,81 STR 05-04-2008 21:00:00 14-04-2010 19:30:00 1800 

OCC-KIN-005 Kingman 6,392517 -162,342106 7,4 STR 27-04-2015 23:14:59 08-08-2018 10:44:59 300 

OCC-KIN-005 Kingman 6,392435 -162,342138 7,4 STR 12-05-2012 05:39:59 27-04-2015 18:42:59 60 

OCC-KIN-007 Kingman 6,382693 -162,359274 6,7 STR 09-04-2004 06:01:00 29-03-2006 19:01:02 1800 

OCC-KIN-007 Kingman 6,382683 -162,359274 6,6 STR 29-03-2006 20:01:09 04-04-2008 20:01:09 1800 

OCC-KIN-007 Kingman 6,382686 -162,359286 6,5 STR 04-04-2008 21:30:00 14-04-2010 20:00:00 1800 

OCC-KIN-007 Kingman 6,382683 -162,359295 6,7 STR 17-04-2010 19:00:00 11-05-2012 21:00:00 1800 

OCC-KIN-007 Kingman 6,382671 -162,359312 6,9 STR 25-04-2015 08:49:59 07-08-2018 20:59:59 300 

OCC-KIN-007 Kingman 6,382674 -162,359336 6,7 STR 12-05-2012 05:19:59 25-04-2015 00:18:59 60 

OCC-KIN-008 Kingman 6,382138 -162,384081 23,2 STR 10-05-2012 04:02:59 24-04-2015 20:53:59 60 

OCC-KIN-008 Kingman 6,382125 -162,384076 23,4 STR 24-04-2015 21:34:59 10-06-2018 00:34:59 300 

OCC-KIN-009 Kingman 6,382224 -162,384065 13,4 STR 16-04-2010 12:10:00 10-05-2012 01:55:00 300 

OCC-KIN-009 Kingman 6,382233 -162,383967 13,8 STR 24-04-2015 22:14:59 09-08-2018 23:14:59 300 

OCC-KIN-009 Kingman 6,382256 -162,384039 14 STR 10-05-2012 04:14:59 24-04-2015 21:13:59 60 

OCC-KIN-010 Kingman 6,382502 -162,384398 6,6 STR 30-03-2006 01:04:36 04-04-2008 21:34:36 1800 

OCC-KIN-010 Kingman 6,382482 -162,384395 7,01 STR 05-04-2008 00:00:00 15-04-2010 20:00:00 1800 

OCC-KIN-010 Kingman 6,38252 -162,384399 7,1 STR 15-04-2010 20:30:00 10-05-2012 03:00:00 1800 

OCC-KIN-010 Kingman 6,382748 -162,384348 5,4 STR 24-04-2015 21:49:59 15-08-2017 20:24:59 300 

OCC-KIN-010 Kingman 6,382749 -162,384364 5,2 STR 10-05-2012 06:32:59 24-04-2015 21:24:59 60 

OCC-KIN-011 Kingman 6,384848 -162,377589 1,1 STR 10-05-2012 04:24:59 26-04-2015 00:49:59 60 

OCC-KIN-012 Kingman 6,418761 -162,439014 24,7 STR 09-05-2012 21:26:59 25-04-2015 20:26:59 60 

OCC-KIN-012 Kingman 6,418777 -162,43899 27,6 STR 26-04-2015 02:59:59 06-06-2018 23:41:06 300 

OCC-KIN-013 Kingman 6,417777 -162,4382 14,6 STR 26-04-2015 05:49:59 10-08-2018 06:54:59 300 

OCC-KIN-013 Kingman 6,417829 -162,438291 14,6 STR 10-05-2012 01:08:59 25-04-2015 19:53:59 60 

OCC-KIN-014 Kingman 6,402154 -162,385671 14,6 STR 25-04-2015 23:59:59 07-08-2018 12:34:59 300 

OCC-KIN-014 Kingman 6,402197 -162,385672 14,6 STR 10-05-2012 04:37:59 25-04-2015 22:42:59 60 

OCC-KIN-015 Kingman 6,418217 -162,438716 17,69 STR 07-04-2008 21:00:00 16-04-2010 23:30:00 1800 

OCC-KIN-016 Kingman 6,418873 -162,439143 33,11 STR 07-04-2008 20:30:00 16-04-2010 23:30:00 1800 

OCC-KIN-016 Kingman 6,418884 -162,439155 33,3 STR 17-04-2010 00:00:00 09-05-2012 20:00:00 1800 

OCC-KIN-017 Kingman 6,433221 -162,379716 8,01 STR 31-03-2006 00:56:33 06-04-2008 00:26:33 1800 
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OCC-KIN-017 Kingman 6,433207 -162,379694 8,12 STR 06-04-2008 01:00:00 16-04-2010 21:00:00 1800 

OCC-KIN-017 Kingman 6,433247 -162,379715 8 STR 16-04-2010 21:30:00 10-05-2012 22:00:00 1800 

OCC-KIN-018 Kingman 6,428929 -162,381776 5,39 STR 08-04-2004 06:31:00 30-03-2006 14:01:01 1800 

OCC-KIN-018 Kingman 6,428882 -162,381803 5,13 STR 30-03-2006 20:31:04 07-04-2008 01:31:04 1800 

OCC-KIN-018 Kingman 6,428898 -162,381794 5,19 STR 07-04-2008 02:30:00 15-04-2010 23:00:00 1800 

OCC-KIN-018 Kingman 6,428923 -162,38178 5,1 STR 15-04-2010 23:30:00 11-05-2012 01:00:00 1800 

OCC-KIN-019 Kingman 6,385538 -162,377408 3,38 STR 04-04-2004 00:01:01 29-03-2006 09:01:03 1800 

OCC-KIN-019 Kingman 6,385517 -162,377399 3,55 STR 30-03-2006 00:20:56 04-04-2008 23:20:56 1800 

OCC-KIN-019 Kingman 6,385521 -162,377399 3,87 STR 05-04-2008 01:30:00 15-04-2010 00:30:00 1800 

OCC-KIN-019 Kingman 6,385537 -162,377397 3,47 STR 15-04-2010 01:00:00 09-05-2012 23:00:00 1800 

OCC-KIN-020 Kingman 6,402194 -162,385259 9,85 STR 02-04-2006 19:21:34 05-04-2008 22:21:34 1800 

OCC-KIN-020 Kingman 6,402185 -162,385237 10,07 STR 05-04-2008 23:00:00 14-04-2010 23:00:00 1800 

OCC-KIN-020 Kingman 6,402199 -162,385229 10,1 STR 14-04-2010 23:30:00 09-05-2012 21:30:00 1800 

OCC-KIN-021 Kingman 6,392409 -162,342133 0,33 SST-STR
3 

02-04-2004 23:44:51 29-03-2006 20:54:51 600 

OCC-PAL-001 Palmyra 5,897525 -162,078341 29,6 STR 19-05-2012 12:00:00 18-09-2012 22:34:00 60 

OCC-PAL-002 Palmyra 5,897421 -162,078342 25,6 STR 17-04-2015 07:04:59 18-05-2016 14:59:59 300 

OCC-PAL-002 Palmyra 5,897442 -162,078333 25,9 STR 19-05-2016 23:59:59 05-08-2018 02:54:59 300 

OCC-PAL-002 Palmyra 5,897455 -162,078339 25,5 STR 17-05-2012 20:15:59 14-06-2012 09:58:59 60 

OCC-PAL-003 Palmyra 5,897302 -162,078284 14,5 STR 19-09-2012 04:45:27 16-10-2014 16:45:27 3600 

OCC-PAL-003 Palmyra 5,897341 -162,078171 14,4 STR 20-05-2016 19:29:59 05-08-2018 11:04:59 300 

OCC-PAL-003 Palmyra 5,897288 -162,07834 14,6 STR 17-05-2012 23:36:59 18-09-2012 20:01:59 60 

OCC-PAL-003 Palmyra 5,89733 -162,078171 14,3 STR 17-04-2015 03:59:59 17-05-2016 20:44:59 300 

OCC-PAL-004 Palmyra 5,89669 -162,078179 5,6 STR 19-09-2012 01:43:27 16-04-2015 20:43:27 3600 

OCC-PAL-004 Palmyra 5,896948 -162,077879 6,2 STR 20-05-2016 19:49:59 25-04-2018 08:44:59 300 

OCC-PAL-004 Palmyra 5,896679 -162,078181 5,5 STR 18-05-2012 01:19:59 18-09-2012 20:28:59 60 

OCC-PAL-004 Palmyra 5,896953 -162,077879 5,8 STR 16-04-2015 21:34:59 19-05-2016 01:49:59 300 

OCC-PAL-005 Palmyra 5,876062 -162,001955 25,7 STR 15-04-2015 22:09:59 08-06-2018 23:04:59 300 

OCC-PAL-005 Palmyra 5,876094 -162,001978 26 STR 19-05-2012 23:21:59 15-04-2015 19:50:59 60 

OCC-PAL-006 Palmyra 5,875603 -162,003791 15,2 STR 16-04-2015 03:14:59 23-11-2017 17:04:59 300 

OCC-PAL-006 Palmyra 5,875648 -162,003912 14,8 STR 20-05-2012 02:08:59 15-04-2015 19:29:59 60 

OCC-PAL-007 Palmyra 5,863563 -162,030672 24,6 STR 16-04-2015 09:34:59 30-03-2017 02:04:59 300 

OCC-PAL-008 Palmyra 5,86378 -162,030634 15,6 STR 09-04-2010 00:57:30 08-08-2011 04:20:00 150 

OCC-PAL-008 Palmyra 5,864228 -162,030671 10,68 STR 02-04-2008 01:30:00 09-04-2010 00:00:00 1800 

OCC-PAL-008 Palmyra 5,863805 -162,030619 14 STR 16-04-2015 05:24:59 04-08-2018 03:51:26 300 

OCC-PAL-009 Palmyra 5,874508 -162,040443 5,39 STR 02-04-2008 21:29:59 09-04-2010 20:30:01 1800 

OCC-PAL-009 Palmyra 5,874508 -162,040414 5,8 STR 09-04-2010 21:00:00 15-05-2012 23:30:00 1800 

OCC-PAL-009 Palmyra 5,874504 -162,040379 4,9 STR 15-04-2015 21:34:59 06-03-2018 18:24:59 300 

OCC-PAL-009 Palmyra 5,874482 -162,040359 4,9 STR 16-05-2012 09:07:59 15-04-2015 21:14:59 60 

OCC-PAL-010 Palmyra 5,870325 -162,045083 1,5 STPR 16-03-2002 19:30:00 02-06-2003 02:30:01 900 

OCC-PAL-010 Palmyra 5,870297 -162,045044 1,41 STR 01-04-2004 00:01:00 14-05-2005 07:31:00 1800 

OCC-PAL-010 Palmyra 5,870295 -162,045036 1,31 STR 26-03-2006 22:28:28 18-06-2007 15:58:28 1800 

OCC-PAL-010 Palmyra 5,870305 -162,045067 1,51 STR 02-04-2008 02:30:00 12-04-2010 23:00:00 1800 

OCC-PAL-010 Palmyra 5,870304 -162,045114 1,5 STR 12-04-2010 23:30:00 09-05-2012 02:00:00 1800 

OCC-PAL-010 Palmyra 5,870307 -162,045108 1,5 STR 01-09-2017 15:27:57 04-08-2018 15:42:57 30 

OCC-PAL-010 Palmyra 5,870308 -162,045094 1,6 STR 18-05-2012 07:16:59 16-04-2015 00:59:59 60 
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OCC-PAL-011 Palmyra 5,869433 -162,075215 24,53 STR 29-09-2012 00:36:51 17-04-2015 19:36:53 3600 

OCC-PAL-011 Palmyra 5,869458 -162,075245 24,4 STR 17-04-2015 23:39:59 07-07-2018 20:44:59 300 

OCC-PAL-011 Palmyra 5,869458 -162,075245 24,4 STR 19-05-2016 12:04:59 06-08-2018 12:09:59 300 

OCC-PAL-011 Palmyra 5,869418 -162,07522 25 STR 15-05-2012 22:15:59 28-09-2012 22:36:59 60 

OCC-PAL-012 Palmyra 5,869598 -162,075129 14,7 STR 28-09-2012 23:50:31 23-02-2015 08:50:31 3600 

OCC-PAL-012 Palmyra 5,869606 -162,075107 14,2 STR 18-04-2015 02:24:59 18-05-2016 09:49:59 300 

OCC-PAL-012 Palmyra 5,869736 -162,075496 14,2 STR 19-05-2016 15:59:59 06-08-2018 06:54:59 300 

OCC-PAL-012 Palmyra 5,869594 -162,07514 14,6 STR 15-05-2012 21:41:59 28-09-2012 23:37:59 60 

OCC-PAL-013 Palmyra 5,870118 -162,075097 5,5 STR 02-10-2012 20:47:21 20-08-2014 09:47:21 3600 

OCC-PAL-013 Palmyra 5,870139 -162,075118 4,9 STR 18-04-2015 03:14:59 17-05-2016 11:39:59 300 

OCC-PAL-013 Palmyra 5,870108 -162,075086 5 STR 15-05-2012 21:08:59 28-09-2012 23:37:59 60 

OCC-PAL-015 Palmyra 5,863967 -162,126958 15,2 STR 02-04-2004 00:01:02 28-03-2006 00:31:02 1800 

OCC-PAL-015 Palmyra 5,864062 -162,126973 15,33 STR 06-10-2009 00:00:00 07-04-2010 19:00:00 1800 

OCC-PAL-015 Palmyra 5,86415 -162,126986 15,5 STR 07-04-2010 19:00:00 14-05-2012 21:00:00 1800 

OCC-PAL-015 Palmyra 5,864103 -162,126939 15,2 STR 18-04-2015 03:14:59 03-08-2018 05:29:59 300 

OCC-PAL-015 Palmyra 5,864145 -162,126988 15,4 STR 15-05-2012 00:01:59 18-04-2015 01:06:59 60 

OCC-PAL-016 Palmyra 5,88398 -162,168891 24,7 STR 20-04-2015 18:34:59 01-08-2018 23:54:59 300 

OCC-PAL-016 Palmyra 5,883987 -162,16889 24,9 STR 19-05-2012 03:26:59 19-04-2015 20:13:59 60 

OCC-PAL-017 Palmyra 5,883225 -162,13321 14,5 STR 19-04-2015 00:44:59 28-10-2017 06:54:59 300 

OCC-PAL-018 Palmyra 5,882432 -162,121279 3,87 STR 03-04-2008 01:30:00 11-04-2010 01:00:00 1800 

OCC-PAL-018 Palmyra 5,88247 -162,121345 4,6 STR 21-05-2016 03:09:59 02-08-2018 07:04:59 300 

OCC-PAL-018 Palmyra 5,882459 -162,121347 4,6 STR 17-05-2012 06:05:59 18-04-2015 14:42:59 60 

OCC-PAL-018 Palmyra 5,882479 -162,121339 4,6 STR 19-04-2015 06:04:59 20-05-2016 10:39:59 300 

OCC-PAL-021 Palmyra 5,891878 -162,12242 0,9 STR 19-05-2012 20:00:00 08-09-2014 15:00:00 3600 

OCC-PAL-021 Palmyra 5,891894 -162,122452 0,8 STR 20-04-2015 04:34:59 02-12-2016 17:24:59 300 

OCC-PAL-022 Palmyra 5,886245 -162,085904 3,58 STR 02-04-2004 03:01:01 25-03-2006 01:01:03 1800 

OCC-PAL-022 Palmyra 5,88624 -162,085886 3,32 STR 25-03-2006 01:46:09 15-11-2007 18:16:09 1800 

OCC-PAL-022 Palmyra 5,886221 -162,085897 3,37 STR 03-04-2008 00:30:00 08-04-2010 21:30:00 1800 

OCC-PAL-022 Palmyra 5,886195 -162,085932 3,4 STR 17-05-2012 02:00:00 22-04-2015 07:00:00 3600 

OCC-PAL-022 Palmyra 5,886047 -162,086089 3,4 STR 23-04-2015 01:09:59 06-08-2018 03:24:59 300 

OCC-PAL-027 Palmyra 5,869354 -162,075254 30,2 STR 19-05-2012 12:00:00 28-09-2012 23:38:00 60 

OCC-PAL-028 Palmyra 5,89713 -162,078286 10,1 STR 17-05-2012 23:06:59 18-09-2012 00:33:59 60 

OCC-PAL-029 Palmyra 5,897374 -162,078338 19,1 STR 17-05-2012 22:50:59 18-09-2012 11:23:59 60 

OCC-PAL-030 Palmyra 5,882758 -162,06182 4,38 STR 01-04-2008 02:00:00 01-12-2009 03:15:06 1800 

OCC-PAL-030 Palmyra 5,882774 -162,061827 4,26 STR 24-03-2006 21:46:05 30-03-2008 12:16:05 1800 

OCC-PAL-030 Palmyra 5,882752 -162,061842 4,5 STR 11-04-2010 00:00:00 16-05-2012 23:00:00 1800 

OCC-PAL-031 Palmyra 5,869727 -162,075153 10,7 STR 15-05-2012 21:30:59 28-09-2012 23:37:59 60 

OCC-PAL-032 Palmyra 5,869528 -162,075166 19,5 STR 15-05-2012 21:43:59 28-09-2012 22:51:59 60 

OCC-PAL-033 Palmyra 5,874508 -162,040443 0,19 SST-STR 02-04-2008 21:30:00 24-11-2009 02:30:00 1800 

OCC-PAL-034 Palmyra 5,87611 -162,00237 20,6 SBE37 14-04-2010 14:40:01 16-05-2011 23:45:02 150 

OCC-PAL-034 Palmyra 5,87611 -162,00237 21,1 STR 13-04-2010 23:00:00 15-05-2012 00:30:00 1800 

OCC-PAL-034 Palmyra 5,876111 -162,002369 18,89 STR 02-04-2008 22:30:00 13-04-2010 22:30:00 1800 

OCC-PAL-035 Palmyra 5,87637 -162,00206 32,5 STR 12-04-2010 21:30:00 27-03-2012 21:30:00 1800 

OCC-PAL-035 Palmyra 5,876367 -162,002059 32,61 STR 02-04-2008 22:00:00 12-04-2010 21:00:00 1800 

OCC-PAL-036 Palmyra 5,88383 -162,168568 19,2 SBE37 16-04-2010 04:37:31 16-05-2011 23:45:03 150 
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OCC-PAL-036 Palmyra 5,883783 -162,168585 19,41 STR 31-03-2008 22:30:00 11-04-2010 22:00:00 1800 

OCC-PAL-036 Palmyra 5,88383 -162,168568 19,2 STR 11-04-2010 22:30:00 18-05-2012 20:30:00 1800 

OCC-PAL-037 Palmyra 5,884125 -162,169101 32,91 STR 31-03-2008 22:00:00 11-04-2010 21:00:00 1800 

OCC-PAL-037 Palmyra 5,884095 -162,169059 32,8 STR 11-04-2010 21:30:00 18-05-2012 20:00:00 1800 

OCC-PAL-038 Palmyra 5,882062 -162,062363 25,19 STR 24-03-2006 23:14:59 27-02-2008 15:14:59 1800 

OCC-PAL-038 Palmyra 5,882037 -162,062354 25,19 STR 01-04-2008 02:00:00 10-04-2010 23:00:00 1800 

OCC-PAL-038 Palmyra 5,882084 -162,062356 25,6 STR 10-04-2010 23:30:00 09-01-2014 13:30:00 1800 

OCC-PAL-041 Palmyra 5,882429 -162,033001 10,4 STR 09-04-2010 19:30:00 16-08-2011 06:32:30 150 

OCC-PAL-042 Palmyra 5,882775 -162,032983 14,6 STR 10-04-2010 12:00:00 14-09-2011 11:17:30 150 

OCC-PAL-043 Palmyra 5,882934 -162,032928 19,6 SBE37 16-04-2010 04:37:30 16-05-2011 23:45:04 150 

OCC-PAL-044 Palmyra 5,864452 -162,031769 10,1 STR 09-04-2010 08:10:00 01-11-2011 10:07:30 150 

OCC-PAL-045 Palmyra 5,864227 -162,030652 9,75 STR 27-03-2006 23:20:05 02-03-2008 22:50:05 1800 

OCC-PAL-045 Palmyra 5,864258 -162,030704 10,1 STR 09-04-2010 00:17:30 22-09-2011 03:37:30 150 

OCC-PAL-045 Palmyra 5,864258 -162,030704 10,1 STR 09-04-2010 00:30:00 15-05-2012 02:30:00 1800 

OCC-PAL-046 Palmyra 5,863655 -162,030592 18,9 SBE37 16-04-2010 04:37:31 16-05-2011 23:45:02 150 

OCC-PAL-047 Palmyra 5,866383 -162,113638 19,3 STR 18-09-2009 22:39:00 08-04-2010 20:27:00 90 

OCC-PAL-047 Palmyra 5,866403 -162,113658 19,6 STR 08-04-2010 20:30:00 15-05-2012 00:00:00 1800 

OCC-PAL-048 Palmyra 5,866544 -162,112766 12,2 STR 08-04-2010 20:00:00 15-05-2012 00:00:00 1800 

OCC-PAL-048 Palmyra 5,866562 -162,112751 12,19 STR 18-09-2009 22:48:00 08-04-2010 19:33:00 90 

OCC-PAL-049 Palmyra 5,866482 -162,113624 14,67 STR 08-04-2010 02:20:00 25-10-2010 23:57:30 150 

OCC-PAL-049 Palmyra 5,866467 -162,113515 13,61 STR 18-09-2009 22:33:00 08-04-2010 02:19:30 90 

OCC-PAL-050 Palmyra 5,896388 -162,128132 11,3 STR 08-04-2010 00:37:30 23-08-2011 10:02:30 150 

OCC-PAL-050 Palmyra 5,896363 -162,128171 11,08 STR 16-09-2009 21:19:30 08-04-2010 00:31:30 90 

OCC-PAL-051 Palmyra 5,896426 -162,127251 10,7 STR 08-04-2010 00:10:00 24-07-2010 11:55:00 150 

OCC-PAL-051 Palmyra 5,896454 -162,127226 10,17 STR 16-09-2009 21:15:00 08-04-2010 00:09:00 90 

OCC-PAL-053 Palmyra 5,897099 -162,12831 21,2 SBE37 14-04-2010 14:40:01 16-05-2011 23:47:31 150 

OCC-PAL-053 Palmyra 5,897103 -162,128218 20,61 STR 16-09-2009 21:24:00 07-04-2010 23:22:30 90 

OCC-PAL-055 Palmyra 5,866668 -162,126519 10,3 STR 07-04-2010 21:22:30 03-05-2011 02:55:00 150 

OCC-PAL-056 Palmyra 5,86089 -162,126709 20,4 SBE37 14-04-2010 14:40:01 16-05-2011 23:45:03 150 

OCC-PAL-057 Palmyra 5,884613 -162,102852 9,13 STR 01-04-2008 22:59:59 10-04-2010 20:30:01 1800 

OCC-PAL-057 Palmyra 5,884665 -162,102831 9,11 STR 25-03-2006 23:42:55 01-04-2008 21:12:55 1800 

OCC-PAL-058 Palmyra 5,884665 -162,102831 1 SBE37 26-03-2006 12:59:53 01-04-2008 20:59:54 1800 

OCC-PAL-058 Palmyra 5,884683 -162,102833 0,67 SBE37 15-03-2002 04:29:28 23-10-2002 23:59:28 900 

OCC-PAL-058 Palmyra 5,884613 -162,102852 1 SBE37 01-04-2008 23:00:01 10-04-2010 19:00:02 1800 

OCC-PAL-058 Palmyra 5,884674 -162,102813 1 SBE37 30-03-2004 22:30:00 25-03-2006 20:30:01 1800 

OCC-PAL-058 Palmyra 5,884613 -162,102852 1 STR 01-04-2008 23:00:00 15-05-2009 22:00:00 1800 

OCC-PAL-058 Palmyra 5,884665 -162,102831 0,97 STR 26-03-2006 00:00:22 17-10-2007 12:30:23 1799 

OCC-PAL-058 Palmyra 5,884674 -162,102813 1 STR 30-03-2004 23:01:03 25-03-2006 18:01:03 3600 

OCC-PAL-059 Palmyra 5,88235 -162,062168 15,84 STR 24-03-2006 22:55:05 08-01-2008 02:26:31 1800 

OCC-PAL-060 Palmyra 5,882783 -162,061833 0,19 SST-STR 24-03-2006 21:30:00 14-05-2007 21:00:00 1800 

 

 

 


