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SUMMARY 

The equivalence between the category of double categories 

with connections and the category of 2-categories was proved by 

C.P. Spencer and Y.L. Wong. 

In this work we try to generalize this result i.e. to prove 

that there is an equivalence between the category of w-categories 

with connections and the category of co-categories. This we have 

not done, though we have quite a lot of information on on the 

general case. We however managed to get a clear equivalence 

between triple categories with connection and 3-categories. In 

particular, we have 

Theorem: The functors 7, A form an adjoint equivalence 

7: 3-~---+ 3-e: A 

where 3-~ is the category of triple categories with connections 

and 3-e is the category of 3-categories. 

In chapter II we explore the equivalence between w-categories 

and co-categories and get information as much as possible on this 

equivalence. In fact we define a functor 

7: w-ea-t---+ co-eat. 

where w-ea-t denotes the category of w-categories and co-eat. denotes 

the category of co-categories. Also we define an operation~ 

(we call it folding operation) in an w-category G and prove that 

this operation transforms an element x e G into an element of the 

associated co-category 7G. 

The key problem which stands as an obstacle from establishing 

the equivalence in the general case is to find a good formula for 

the composition~(~ o 1 i> in G for n > 3. 



In chapter III we give a full version of the equivalence 

between triple categories and 3-categories. 
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CHAPTER I 

INTRODUCTION 

1. 1 Overall aims and background. 

This work develops some of the algebra of multiple categories, 

by relating notions of "w-categories" and of "co-categories". 

Here an w-category is an algebraic structure based on cubical 

sets with an extra structure introduced in [B-Hi-2], that of 

"connections". These are like extra degeneracies, in which some 

adjacent faces are equal, unlike the standard degeneracies of 

cubes in which some opposite faces are equal. Cubical sets with 

connections appear in many instances to combine the advantages of 

cubical and simplicial sets. 

An w-category is a cubical set with connections which in 

addition has n category structures in dimension n. An analogous 

concept of w-groupoid was introduced by Brown-Higgins in [B-Hi-2]. 

The main result of that paper was an equivalence of categories 

between w-groupoids and "crossed complexes" This result has 

important implications for homotopy theory, which were exploited 

in [B-Hi-2). Additionally, there are a number of other algebraic 

objects equivalent to w-categories, for example simplicial 

T-complexes, cubical T-complexes, and co-groupoids (see [As-1), 

[8-Hl-31. [B-Hi-4) ). Our aim ls to extend some of these results 

from the groupold to the category case. 

This seems to be a difficult task. We focus attention on the 
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relations between w-categories and oo-categories. There are several 

reasons for this. One is that it is not hard to give a definition 

of each of these objects, so that the question of their 

relationship arises immediately. Another ls that the equivalence 

between w-groupolds and oo-groupoids given by Brown-Higgins is 

round about, going via crossed complexes. So is of interest to 

give, if possible, a direct proof. 

A third reason is the importance of oo-categories. They arise 

naturally in terms of homotoples and higher homotoples. They have 

been studied considerably by the Australian School (for example 

see [Jo-1], [K-st-1], [St-11), for various reasons, including 

their occurrence in Computer Science. 

However, manipulation with the elements of an oo-category 

presents difficulties, because the compositions in different 

directions seem to have a different geometry. This leads to a 

number of "pasting problems" [K-St-1], which seem to be have been 

solved in principal in dimension 2. 

By contrast, Spencer [S-1] has shown an equivalence between 

2-categories and "double categories with connections", and he and 

Spencer-Wong (S-Wo-1] have shown the utility of this equivalence 

for homotopy theory. The basic idea is that complicated pasting in 

a 2-categories are replaced by a simpler manipulation with "thin 

elements" in a double category with connection. 

The overall aim of this work is to provide a similar 

situation in all dimensions, that ls to establish an equivalence 

between c.>-categories with connection and oo-categories. This we 

have not done, though we have quite a lot of information on the 
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general case. We are however able to establish a result of this 

form in dimension 3. This give some evidence for the general case, 

and some idea of the kind of problems that have to be overcome in 

this approach to a verification of the general case. 

The complications of this case are such that we have not been 

able to venture into potential applications. We hope this thesis 

will give some idea of the interest in the blend of algebra and 

geometry in this kind of "higher dimensional algebra", to use a 

phrase coined by R.Brown. 

The notion of double category was first introduced by 

Ehresmann [Eh-1] and has occurred often in the literature (see for 

example [Gr-1], [Ma-1]. [K-S-1]. [ [B-S-1], [S-W-1]). 

Cubes in a double categories with connection were used by 

Spencer-Wong [S-W-1] to develop the abstract theory of homotopy 

pullbacks and pushouts introduced by Spencer in [S-1]. They have 

shown that there exists an equivalence between the category of 

2-categorles and the category of double categories with 

connections. Brown and Spencer in [B-S-1] have proved the 

equivalence between double groupoids and crossed modules, which 

was generalized by Brown and P. J. Higgins in [B-Hi-2) where they 

obtain an equivalence between the category of w-groupoids and the 

category of crossed complexes (over groupoids). In [M0-1] G. Mosa 

has introduced the notion of w-algebroids and develop a parallel 

theory in a more algebraic context. He proved an equivalence 

between the category of crossed modules (over algebrolds) and the 

category of special double algebroids with connections. He also 

proved a similar result for the 3-dlmenslonal case but with much 
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less details. In (B-Hi-3], Brown and Higgins have proved a 

powerful result when they prove the equivalence between 

w-groupoids and cubical T-complexes. 

1.2 Structure and main results. 

In chapter I I we introduce the notion of w-categories with 

connections via the cubical complexes. We established the relation 

of m-categories tow-categories following a similar argument given 

by Brown-Higgins [B-Hi-3] in the relation of m-categories to 

w-groupoids. This relation yields of the functor 

1; w-ea-t ~ m-ea-t, 

by the rule: 

C = {x E G 
n n 

where C is an m-category and G is an w-category. 

In section 5 we introduce an operation 

'II: G ~G n n 

in an w-category G . This operation is based on an operation 1/J. 
n J 

defined by G.Mosa [Mo-1], we define 

'II = 1/J 11/J 2· · .1/Jl and 'II= "'2· · .t 1"' ' r r- r- n- n 

and in§ 6 we prove that this operation transforms an element x in 

an w-category to an element in the associated m-category. 

In 2.6.5 we give an explanation why we could not give a 

formula for t(x o. ~) in the general case. 
l 

In § 7 we construct the coskeleton in terms of "shells" for 

a an n-tuple category and we define a 
1 

, 

operations on D G to prove the following 
n 

2.7. 1 Proposition. 

I-iv 
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If is an n-tuple category, 

G' = ( □ G ,G 1, ... ,G0 ) is an (n+l)-tuple category. 
n n-

then 

In the proof of this proposition we follow a similar argument 

to the corresponding case of algebroid given by Mosa [Mo-1). 

The key point for defining the coskeleton of w-category is 

shown in the following key proposition for the case where n = 3 ; 

2.7.3 Proposition. 

Let G be a triple category, and let C = rG be its associated 

3-category. Let~ e D G2 and~ e c3 . Then there exist x e G3 such 

ct ct 
that ax= x and ix=~ if and only if d1~ = a1i~ 

We also give the definition of then-skeleton of an w-category for 

n ~ 3 and the definition of a commuting shell: 

2.7.5 Definition. 

A shell x e O Gn ls called a co11111PJt1ng shell if 

0 1 a1i~ = a1i~ . 

Chapter III ls devoted to prove the equivalence 

---+ r: 3-~ 3-e: A 
~ 

between triple categories and 3-categorles. 

In§ 1 and§ 2 we explain the difficulty of finding a formula 

for the composition t(x O i ff) , for x , ff e Gn , in the general 

case, but we were able to find a formula for that composition in 

dimension 3. First we give in (3. 2. 4) explicit formulae for the 

0 1 faces a
1
ix and a

1
ix. These formulae play a key part in evaluating 

t(x o
1 

ff) and in the proof of associative and interchange laws in 

G =AC. Proposition 3.2.S gives the evaluation of the composition 

t(x o
1 

ff) for n = 3. 

In section 3 we define the functor A 3-e ---+ 3-~ as 
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follows: 

given a triple category G with associated 3-category C = rG, and 

unique element~ e G
3 

such that~~=~ and~~=~ Proposition 

3.3.1 defines the compositions ~ o. ~ and 
l 

shows 

compositions in Gare also determined by rG. We define 

that 

G3 = {<~, ~> : ~ e D G2, ~ e c3 such that ~2£~~ = £~} , 

where ~2 : rG2 ~ c2
, and we define operations oi in G3 . 

these 

In section 4 and 5 we prove the associative and interchange 

laws in G
3

. The proof of these laws shows a great deal of 

complexity of algebra. By this we have a triple category 

(G3, .. ,G
0

) and isomorphism ~3: c3 ~ rG3 of 3-categories. 

In the final section of this chapter we prove the main result 

in this work: 

3.6. 1 Theorem. 

There is a functor A from the category 3-~ of triple 

categories to the category 3-e of 3-categories such that 

A: 3-~ ~ 3-e are inverse equivalencies. 
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CHAPTER II 

w-CATEGORIES, oo-CATEGORIES AND FOLDING OPERATION 

§ 2.0 Introduction 

We begin this chapter by defining w-categories and 

oo-categories and establish the relations between them following 

an analogous to that between w-categories and oo-groupoids given by 

R. Brown and P. Higgins in [B-Hi-3). By this we define a functor 

1 : w-ea,t,--+ oo-eevt. For x e G ( G is an w-category) we define an 

operation~: G --+ G and prove that ix e rG. n n 

§ 2. 1 CUbical complexes with connections. 

2. 1. 1 Definition. [B-Hi-1) 

A cubical complex K is a graded set (Kn)~0 with 

(X 
K --+ K ( i = 1, 2, ... , n a:= 0,1 a. : n-1 

; 
l n 

and degeneracy maps 

c
1 

: Kn-l--+ Kn (i = 1,2, ... ,n) , 

satisfying the usual cubical relations namely 

( i) 
(X f3 f3 (X a
1
a
1 

= a
1
_1a1 

(1 < j) • 

( 11) c
1
c
1 = cj+lcl (1 ~ j) ' 

(X 
(1 ~ j) 

{ •1-1
8

1 

(iii) 
(X 

= C .a~ l (1 > j) a
1
c1 J 1-

id (1 = j) 

2. 1.2 Definition. [B-Hi-2] 

) 
' 

face maps 

Let K be a cubical complex. We say that K is a cubical 
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complex with connections, if it has for n ~ 2 additional 

structures maps 

r
1
. • r'. : K 

1 
~ K Ci = 1, 2, .. , n-1) , 

1 n- n 

satisfying the following relations: 

{ r, 1r (i ~ j) • 
( i ) r l J = J+ l 

r .r. 1 ( i > j) • J 1-

{ rJ.li ( i ~ j) • 
( i il r'.r'. = 

l J r'.r'. 1 
(i > j) 

J 1-

C j+li 
( 1 < j) • 

(iii) r.c. = C .f. l (i > J) l J J 1- ' 
2 (i = j) C. 
J 

cj+l1 (i < J) , 

(iv) r'.c. = c
1
r1_1 (i > J) l J ' 

2 
(i = j) CJ 

0 0 id, a .r . = a j+l J = 
J J 

( V) 

1 1 1 
a jr j = a J+l j = cl1 

a 1r' = a~+ 1r1 = id 
j J 

( v1) 
a~r1 = a~+l1 

0 
= cl J 

r a~ 
(i < J) , 

(vii) a~r = J-1 i 
1 1 r aa. (i >J+l) J 1-1 

{ r· a" (i < J) • 
(viii) a~' = J-l 1 

1 J r'aa. ( i >J+l) • J i-1 
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{ rJ. 1r1 
(i < J) . 

(ix) rirJ = 
f'.f. l (i > J+l) 

J 1-

The functions rand r' are first introduced by R.Brown [B-Hi-1] to 

deal with double groupoids. They are to be thought of as extra 

"degeneracies". A degenerate cube of type c .::c has 
l 

a pair of 

opposite faces equal and all other faces degenerate. A cube of 

type r.::c has a pair of adjacent faces equal and all other faces of 
l 

type rJ~ or cJ~. Those cubes can be represented by the following 

symbols which will be used frequently through this thesis 

.J 

r::c 

r II □ r i+l 

i 

These elements are called thin elements and were initially 

introduced by R.Brown and P.J.Higgins in their discussion of 

double groupoids and other higher dimensional 

([Br-1], [B-Hi-1], [B-Hi-2], [B-Hi-5], [B-S-1]). 

2. 1. 3 Example. 

objects 

Let X be a space. Then the singular cubical complex KX is a 

cubical complex where 

(singular n-cubes) 

K n 
is the set of continuous 

The connection r 1 
Kn-l ~ Kn is induced by the map 

n n-1 
1

1 
: I ~ I 

defined by 

maps 

1 1 ( t 1 , t 2, .•• , t n) = ( t 1 ' t 2, . . • , t i -1 ' max ( t i , t 1 + 1 ) , t i + 2, . . . , t n) 

§ 2.2 w-Categories. 
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2.2. 1 Definition. 

a An w-category G = ( G ; a. , c.) is a cubical complex and 
n 1 l 

for n z 1 , G has n category structures 
n 

0 1 
(G ,o .,a. ,a .,c.l 

n 1 J J l 

related appropriately to each other and to a~ , 
l 

following axioms: 

with the 

(i) If z, IJ E G , and :I: 0 • IJ is defined then for a= 0,1 
n J 

= {8! < 

a. (i <j) 0 ' a i IJ a. 
0 ' IJ) 

J-1 a. (x 
l J a. 

i > j) ai X ojailJ 

0 
0 J IJ) 

0 1 
0 J IJ) 

1 
8/x = 8. X 

' 
a .Cx = a . IJ , 

J J J 

{'J' OJ+l C/J (i ~ j) 
Ci (X 0 • y,) = 

J C 
1
x o . C .IJ (1 > j) 

J l 

( ii) 
0 1 

C 1a j o,x=x=x o . C .8 .X 
J J l J 

(iii) (The interchange law). If i * J , then 

(x o . IJ) o . (f o i a,) = (x o • 1-) o . (IJ o . a,) 
l J J l J 

whenever both sides are defined. 

(iv) If X , IJ E G and x o. IJ is defined, then 
n J 

{ 
r ix o ·+i r ilJCi < Jl, 

r 1 (x O • IJ) = J 
J r.xo.r.lJ (i>J), 

l J l 

= { r;, 0 r' ff (i < j) 
' 

r 1cx oJ ff) 
J+l i 

r'x o . r'.IJ (1 > j) 
1 J l 

(v) rJx OJ+l rjx = CJX r'x OJ r'.x = CJ+l;t; j J 

(vi) The transport laws. 

1 0 
If X' ff E G with ajx =a.ff. Then n J 

rj(x OJ y,) = (rjx oj+l CjlJ) OJ (cj+llJ oj+l rJIJ) 
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It is convenient to use a matrix notation for compositions of 

cubes. Thus, if x e G, (1 ~ s ~ h, 1 ~ r ~ k) are cubes in G sr n n 

satisfying 

we write 

for 

1 0 ax = a.x (1 ~ s ~ h, 2 ~ r ~ k) , i s(r-1) 1 sr 

xll 

x21 

xkl 

0 =a-~ J sr 
(2 ~ s ~ h 

x12··· .xlh 

x22·· · .x2h 

xk2'' .. xkh 

1 ~ r ~ k) 

r j 

i 

(xll o i . . . . o ixkl) o J . . . o J (xlh o i . . . o i xkh) . 

An w-subcategory of G is a cubical subcomplex closed under 

all the connections and compositions oJ 

2.2.2 Definition. 

A morphism between two w-categories, f : G ---+ H , is a 

family of category morphisms, fn: G ---+ H n n such that 

f G ~ H commutes with all the structures. We denote the 
n: n n 

resulting category of w-categories by w-ea-t. 

2.2.3 Definition. 

An w-category G is called an w-category with connections if the 

cubical complex Gn has connections. 

2.2.4 Definition. 

A morphism between w-categories with connections, f: G---+ o 

ls a morphism of categories preserving the connections. The 

resulting category also will be denoted by w-ea-t 

For the rest of our thesis we will consider only w-categories 
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with connections. For shorthand we wi 11 call them just 

w-categories unless stated otherwise. 

It is clear that we can define finite dimensional versions of 

the above definitions. 

2.2.5 Definition. 

An m-tuple category is an m-truncated cubical complex 

G = (G ,G l' .... ,G0 ) m m- with connections, having n category 

structures in dimension n (n ~ m), and satisfying all the laws for 

an w-category in so far as they make sense. We denote by w-ea-t 
m 

the category of m-tuple categories. 

Note that for all n ~ 2 and 1 ~ i ~ n-1, the pair (G , G 
1

) n n-

wi th the category structures in directions i and i + 1 forms a 

double category. 

§ 2.3 ~-categorie■ • 

2.3. 1 Definitions. 

An n-fold category is a class G together with n mutually 

compatible category structures i i O 1 
G = (G ,a.,a.,oi) 

l l 
where 

0 0 ~ i ~ n-1 , each with Gas its class of morphisms (and with ai , 
1 ai giving the initial and final identities for 0 i). The objects of 

i the category structure G are here regarded as members of G , 

i coinciding with the identity morphisms of G . The compatibility 

conditions are: 

( i) a~aj = aja~ for i .i: J and a. , f3 E {O, 1} 

(ii} 
(X. 

OJ~) 
(X. (X. 

for i .,, j and a. a 1 (/1; = a .::c o J a 1~ l 

fo, lll (I; , ~ e G and where (I; o J ~ is defined. 

(iii) (The interchange law) If i .i: j, then 

II-6 
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(:i:; 01· y,) 0 • (1 01· a,) = (:i:; 0 • 1-) 0 • (y, 0 • a,) 
J J l J 

for all :i:;, y,, 1, a, E G such that both sides are defined. 

~e denote the two sides of (iii) by 

j 

The category structure Gl on G ls said to be stronger than 

the structure Gj if every object ( identity morphism) of Gi 

also an object of Gj . An n-fold category G is then called 

n-category if the category structures GO , Gl n-1 
' .... ' G can 

arranged in a sequence of increasing (or decreasing) strength. 

1.3.2 Definition 

ls 

an 

be 

An m-category is a class G with mutually compatible category 

1 structures G for all integers 1 ~ 0 satisfying 

Ob G1 c Ob Gi+l for all i ~ 0 

§ 2.4 The relation of m-categories tow-categories. 

In [B-Hi-4), R. Brown and ?.Higgins have found a direct route 

from w-groupoids to m-groupolds and used it to reformulate the 

definitions of m-groupolds and m-categorles. They used this 

account to show how m-groupolds flt into the pattern of 

equlvalencles established in [B-Hl-2) and [B-Hl-3). They followed 

an elegant procedure for passing from an n-fold category G to an 

n-category induced on a certain subset C of G. This account and 

procedure are useful for our aim of establishing the equivalence 

between w-categories with connections and m-categories. Below we 

have followed the same procedure to find the relationships between 
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w-categories and oo-categories. 

First, let G be an w-category, we write 

O'.. O'.. 
~- = c.8. G ~ G 

l l l n n 

and 

i O'.. Ob (G) = c.G l = {x e G ~.x = x for a= 0, 1} n 1 n- n 1 

The axioms for w-categories now ensure the category structures 

0 • ) ' 
l 

1=1,2, .. ,n 

are mutually compatible. Thus for n ~ 0, G carries the structure n 

of n-fold category and c. : G 1 ~ G embeds G 1 as (n-1)-fold 
1 n- n n-

subcategory of the (n-1)-fold category obtained from G 
n 

by 

omitting the J-th category structure. 

Next we show how to pass from an n-fold category H to an 

n-category structures on a certain subset C of H. So let 

i O 1 H = (H, a., a., 0

1
) 

l l 
i = O, 1, ... , n-1 be the n-category 

structures on H. Write 

and define 

C = { x e H I a~x e 8
1 for O ~ i ~ n-1 , a= 0, 1 } . 

By the compatibility conditions, each Bi is an n-fold subcategory 

of H and hence C is also an n-fold subcategory of H , with 

category structures c1 = (C, 
0 1 

0 • ). But, for C a 1' a 1' ::t E 
l 

a 1 a .x E 8 t'I C 
l 

so Ob(C1 ) c Bit'\ C conversely, if !J, E Bit'\ C then 

a1c Ob(H1 ), a Thus Ob(C1 ) i Since !J, E so a 1!1- = !r = B t'I C 

BOC Blc n-1 ... c B ; it follows that C ls an n-category. 

Applying this procedure to then-fold category Gn, we find 

that G is an n-fold category with respect to the structures H1 . n 

Also 
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= cn_iGn-1 n cn-i-lGn-1 n. · .n clGn-1 

We therefore define 
a j-1 c = {x e G I a .x e c G for 1 ~ j ~ n, a= 0,1}, n n J 1 n-j 

and deduce that, for each n ~ 0 , 

0 
respect to the structures (Cn' ai' 

C is an n-fold category with n 

a!, 0 i) , 0 ~ i ~ n-1 . These 

structures are all categories. The family (en)~0 admits all the 

face operators a~ of G and also the first degeneracy operator c1 

in each dimension. Since c1 embeds Gn-l in G as n (n-1)-fold 

subcategory omitting 0

1 , it embeds en_1in Cn as (n-1)-subcategory 

omitting 0 

1 
. In other words, it preserves the operations 

n-

o ~ i ~ n-2 and its image is the set of identities of 

follows that if we define 

D = lim cc
0 
~ c1 ~ c2 ~ ... ) , 

~ cl cl cl 

0 

n-1 

0 i ' 

It 

then the operations 0

1 (for fixed i) in each dimension combine to 

give a category structure D
1 

= (D, a~, a!, 0

1 ) on D. Also Ob(D1 ) 

is D
1 

, the image of c1 in D Thus if G is an w-category, then G 

induces on D the structure of ~-category. 

Clearly, the structure on D can also be described in terms of 

the family e = (Cn)~0 . The neatest way to do this is to use the 

operators 
a a n-i a a a 

d
1 

= ca 1) = a 1a 2 ... an-i : Gn ~ G1 , o ~ i ~ n-1, a= o, 1 

n-i 
Ci= cl : Gi ~ Gn O ~ i ~ n-1 

a 
Since e admits c

1 
and all a 1 , there are induced operators 

d~: en~ c1 , s 1 c 1 ~en, o ~ 1 ~ n-1. 

a n-i-1 
If x e en , we have an_1x = c1 f for some y. e G 

1 
and this is 

a unique, since c
1 

is an injection. The effect of d1 is to pick out 

this 1-dlmensional "essential face" f of x, because 
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d (X, a(X,a(X, a(X, ca(X, ) = ca(X,l)n-i-lc~nl-i-llL) =II, • . x = 1 2· . . . 1 .x "' .,, .,, 1 n-1- n-1 

If we pass to D = lim C , the operators c. induce the 
~ n l 

inclusions D. ~ D and the operators d~ induce the d~ D ~ D 
l l l 

a n-i a since, for x e en, we have dix = c 1 y,, where y, = d
1 

x 

Now we can give an equivalent deflni tion of co-category to 

the definition (2.3) given previously. 

2. 4. 1 Definition. [B-Hi-4] 

An co-category consists of 

(i) A sequence C = (Cn)ruO of sets. 

(11) Two families of functions 

da. C C 
l n ~ i i = 0,1,2, .... n-1 a = 0, 1 , 

1 = 0,1,2, .... n-1 

satisfying the laws: 

(ii){a) d«dfJ "' d« for 1 < j ' <X., fJ "' 0, 1, i i i 

{ii)(b) s .s. 
J l "' Si for i < J • 

r~ for j < 1 
fJ (ii)(c) dJsi = 1 for J = i 

Si for j > 1 

(111) Category structures o. on C (0 ~ i ~ n-1) for each n ~ 0 
1 n 

0 dl. such that o. has C. as set of objects and d. , 
l l l l 

, s. as its 
l 

initial, final and identity maps. These category structures must 

satisfies the compatibility conditions: 

(iii){a) If i > j ' « = 0, 1 and x 0 J If is defined, then 

0 0 0 
d 1(x oJ If)= d1x OJ d 1lf 

(iii)(b) if X oj If is defined then 

s i (x o J If) = six 0 s 1lf j 

II-10 



(iv) (The interchange law) if i *J then 

(x o
1 

i> o • (1- o. u,) = (x o • 1-) o. (i o • u,) 
J l J l J 

The transition from an oo-category C as defined in Section 2 

to one of the above type is made by putting C = Ob(An) and n 

defining s
1 

: C.-+ C 
l n 

(1 < n) to be the inclusion map 

and d~: en-+ c1 to be the restriction of a~: A-+ A. 

In [S-1] it was shown that the category ~2 of double 

categories with connections is equivalent to the category e2 of 

2-categories. We prove in the next . chapter that there is an 

equivalence between triple categories ( 3-~ ) and 3-categories 

c J-e l . 

§ 2.5 Folding operation. 

In this section we introduce an operation~ on cubes in an 

w-category G (or in an m-tuple category). This operation has the 

effect of folding the odd faces 
a. a i(l; , where i +a.is odd ,onto the 

0 a. where face a 1~xand the even faces 8.ie, i + a. is even ,onto the 
l 

face a1~(C for iC e G . This operation ~ transforms a; into an 
1 n 

element of the associated oo-category rG. It is important that ~x 

is constructed from x and the "shell" of x consisting of all faces 

a~x of x. This will imply that x itself can be reconstructed from 
J 

~x and the shell of x. 

In [B-Hi-2] R. Brown and P.J. Higgins have defined a similar 

folding operation ~ in an w-groupoid which has the effect of 

0 
folding all faces of x e Gn into the face a1~x This operation 

transforms an element x in an w-groupoid to an element in the 

associated crossed complex. 
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In [Mo-1] G. H. Mesa also defined a folding operation in an 

w-algebroid and proved that it transforms an element of 

w-algebroid to an element of the associated crossed complex. We 

utilize some techniques in [Mo-1] 

First, we define an operation 

by the formula 

(2.5.1) 

for ::c e G and 1 ~ J ~ n-1 , the effect of this operation can be n 

seen from the diagram 

r j + 1 

J 

in which unlabeled faces are appropriate degenerate cubes. 

This operation was first introduced by G. Mesa in [Mo-s] and 

it is a generalization of the foldings in the case of dimension 2. 

Second we define 

~ = ~ 1~ 2··. -~1 . r r- r-

Finally, we define 

~ =~2· ... t lt . n- n 

To give a clear picture for the above definitions, we shall 

use the cube in dimension 3 . So let ::c E G3 have edges and 

vertices given by: 
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X C y 

/r 
2 

b 
z 

f 
3 1 

c' y' 

h g 

b' 

Then ~l has edges and vertices in the form 

X cf y' 

y' 

and ~
2
~

1 
has edges and vertices in the form 
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In chapter I II we will see that the 0 face a1'11x is the "sum" of 

the faces 0 a1x , 1 a1x, 0 a1x while the face 1 a1 x is the "sum" of the 

1 0 1 faces a1x , a
2
x 

' 
a3x 

This shows that the vertices and edges of 'lix are appropriate 

to an element of 1C where C is a 3-category. 

The operation ~J defined above satisfies several laws which 

will be stated and proved next. Those laws from 2.5. 1 to 2.5.5 are 

taken entirely from [Mo-1]. 

2.5.2 Lemma. 

(i < j) 
( i) 

(i > J+l) , 

(ii) 

(iii) 
1 0 1 a ~.x =a. 1x oJ a1x, 
J J J+ 

(iv) 
(X (X 

= Cl l j) 

(v) 

Proof. 

(i) For i < j, let x e G . Then 
n 
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by ( 2. 2. 1 ) ( i ) 

= r'. 
1
a~a~x o . a~x O • r. 1a 1.a~x = l/J. 1a~x , 

J- J l J l J J- J l J- l 

by (2. l.2)(vii,viii) and (2.2. l)(i). 

For i > j+l , let x e Gn. Then 

" "cr'a0 x r a
1 

x) ail/)jx = ai j j+lx oj+l oj+l j j+l 

= a~rJa~+lx oj+l x 0 j+l rja}+lx by ( 2. 2. 1 ) ( i) . 

by (2.1.2)(vii,vii1) and (2.2. 1)(1). 

(11) Let x e G . Then n 

If a= 0, then 

0 - a0 r'a0 
x aj+ll/JjX - j+l j j+l 

0 0 
= c//j+lx 

If a= 1, then 

Ct Ct Ct 
Thus a j+l l/J j = c / / j+l 

1 lcr'ao r al l (iv) ajl/JjX = aj j j+lx oj+l X oj+l j j+lx ' 

= a}r1a~+1x oJ a}x oJ a}r1a~+1x 

II-15 

by ( 2. 1. 2 )(vi ) . 

by (2. 1. 2)(v1). 

by (2.2. l){i) . 

by (2. 1. 2) (v, vi). 



0 1 1 1 : a, lx O, a .x (since C .a .a, lx is an identity for O .). 

J+ J J J J J+ J 

(iii) Let XE G . Then 
n 

= ao r1 a~+l x 
0 0 1 o . a .x o.a.rJa. 1x 

J J J J J J+ 

0 0 0 1 
= c .a .a . 1x 0 • a .x 0 • aj+lx J J J+ J J J 

(v) This follows from (iv) . 

2.5.3 Lemma. 

i < j) 
(i) 

(i > j+l) , 

(1 < J) 

(1 > J+l) ' 

Proof. 

(i) Let x e G , then for i < j we have n 

~jci = rJa~+lcix oj+l cjx OJ+l rja}+lcix 

= C .~. 1 
l J-

1 
c1x oJ+l r1c1aJx 

1 
c/J-laJx 

for i > J + 1 , let x e G . Then n 

~jci = r1a~+ 1c1x oj+l c1x oj+l r1a}+lcix 

II-16 

by (2.2.l)(i) 

by (2.1.2)(v,vi). 

by ( 2 . 1. 1 ) ( ii i) 

by ( 2 . 1. 2 ) ( i i i, iv ) 

by ( 2. 2. 1 ) ( i ) 



= r'.c. 
1
a~+ 1x O • 1 c.x O • 1 r.c. 1a 1. 1x by (2.1.l)(iii) J 1- J J+ l J+ J 1- J+ 

= cirja~+lx 0 j+l cix 0 j+l cirja~+lx by (2.1.2)(iii,iv) 

= ci(rja~+lx 0 j+l x 0 j+l r1a~+lx) by (2.2. l)(i) 

= cil/Jj . 

(ii) 1/Jjcjx = r1a~+lcjx 0 j+l cjx 0 j+l rja~+lcjx, 

= rjcja~x oj+l cjx oj+l rjcja~x by ( 2. 1. 1 ) ( iii ) 

by (2. l.2)(iii,iv) 

0 1 
= cjx , (since c .c .a .x and c .c .a .x are identities ) . 

J J J J J J 

(iii) Let x e G , then n 

j j-1 _ j-1 
I/Jj(c

1
) a;= I/Jje: 1 (c 1) - c 11/Jj-l(c1 ) by (2.5.3)(i) 

j-2 2 j-3 = clcll/Jj-2(cl) = (cl) £11/JJ-3(cl) 

Thus by induction we get 

j · 1 j-1 
1/J (c) x = (c )J- 1/J c = (c1 ) e: 1 = 

j 1 1 1 1 

(iv) For i < j, let a; e G , then n 

a. 
= c.a.1/Jj 

l l 
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2.5.4 

( i ) 

(ii) 

(iii) 

Proof. 

Lemma. r . 1 VJ .r. = l J-
J l 

r ii/I J 

1/Jjfj = CJ ' 

(i < j) 

(i > j+l) 

(i) Let x E G 1 . Then for i < J, we get n-

= r.cr'. 
1
a0
1

x o. x o. r. 
1
a 1

.x) by (2.2. l)(x) 
l J- J J J- J 

= r .r/J. 
1
x . 

l J-

For i > J + 1 , we have 

by ( 2. l. 2 ) (vi i , vii l) 

= r /:/~+lx r 1x oj+l 
1 by (2.l.2)(ix) 0 f//J+lx j+l 

= r.Cr_?~ 1:i:: 
1 

by (2. l. 2) (x) OJ+l X OJ+l r l J+lx l J+ 

= r 1"' Jx . 

(ii) Let x E G n-1 Then 

tJJJr/; = rl~+1 r .x oj+l rjx 
1 

0 rlJ+ll; J J+l 

r'.x r .x 1 by ( 2. l. 2 ) ( v, vi ) = 0 0 rjc l Jx J j+l J j+l 
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by ( 2. 1. 2 ) ( i i 1) 

1 
= c.x, (since c.c.a .xis an identity). 

J J J J 

(iii) Let x e G l . Then n-

2.5.5 Lemma. 

(ii) 

(iii) 

Proof. 

(i < j) 

(i > j+l) • 

( 1) Let x e G 1 . Then for i < J, we get 
n-

' r' a0 r' ~Jr ix= j j+l ix OJ+l r'x 
i 

0 r .a~ 1r'.x J+l J + l 

= rJ r'.a~x 0 r'x OJ+l r1 r1a~x 
l J J+l i 

- r' r'. 1 
0 r1x oj+l r1 rJ-1 a1x oJ+l - i J-

= ri ~ j-1 X , 

For 1 > j + 1 , let x e Gn-l then 

by (2. 1. 2) (viii) 

1 a ,:i; 
J 

by ( 2. 1. 2 ) ( ii ) 

by ( 2. 1. 2 )( x) 

~j r' 
1
x = rj a~+l r1x 0 j+l r1x 0 j+l rj a}+lx r1 

by ( 2, 1. 2 ) (vi ii ) 

by ( 2. 1. 2 ) (l 1) 
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= r'.t/J .. 
l J 

(ii) Let x e G l Then n-

1/J .r'.x = r'.a~ 
1 
r'.x 0 r'.x 

J J J J+ J J+l J 

= r'.c .a~x OJ+l r'.x 
J J J J 

0 
= C .C .a X 0 C .X 

J J J+l J 

= C .X 
J 

2.5.6 Proposition. 

by ( 2. 1. 2) ( X) 

0 r .a 1
. /'.x J+l J J+ J 

0 r .x 
J+l J 

by ( 2. 1. 2 ) (vi ) 

by ( 2. 1 . 2 ) ( iv ) 

by ( 2. 1. 2 ) ( vi l 

Let x, i e G with a~x =a~~, where a= 0, 1 , then 
n J J 

{ ~1£ 
0

) ~1~ lfj;ti,i+ 

(x o • ~) = {'t/J/,:,Qoi+l Ci 
1 0 

1/J i~) "'i a 1+1~> 0 • (ci ai+lx 0 1+1 if j = i 
J l 

(t/JiX o i+l 
1 

(c 1a /c 0 1+1 t/Ji~) oi ciai~) if j = i+l 

Proof. 

Let J < i , then we have 

by ( 2. 2. 1 )( i ) and ( 2. 1. 2 ) ( x ) 

by ( 2. 2. 1 ) ( iii ) 
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=t/J/r;ojt/J/J 

For j > i + 1 , we have 

r'. 0 !f) (x oj !f) 1 

"'i (x 0 j !f) = ai+l<x 0 • 0 0 ri a i+l (x 0 !f) 
l J i+l i+l j 

0 0 (x !f) 
1 1 

= r'. (ai+lx 0 • 8 i+l!f) 0
i+l 0 • 0 ri (a i+l X 0 a i+l!f) 

l rl J i+l j-1 

by (2. 2.1) {i) 

0 r' 0 (x oj !f) er. 1 1 
= (r'. a. lx 0 • a i+l !f) 0

i+l 
0 a i+lx oj r.a. 

1
y,l 

l 1+ J i i+l l l l+ 

by {2.1.2)(x) 

0 r. 1 (r' 0 1 
= er'. a i+lx 0 i+l X 

0 i+l ai+lx) 0 • a i+llf 0 
i +1 !f 0 i+l riai+ly,) 

l l J i 

by {2.2. l)(ill) 

=ipixojl/Ji!f· 

The equalities for j = i , i + 1 follow from 2. 1 in [S-1] 

since (G , G 
1

) is a double category for direction i , i + 1 . □ 
n n-

§ 2.6 The associated ~-category 1G and i. 

In this section we state and prove some important results 

about the operation i. These results prove that ix is an element 

of the associated ~-category aG. 

Before we give the following proposition we recall the 

following standard relations: 

ex n ( )n a« 
(2.6.b) an+l (cl) X = cl lx, 

2.6. 1 Proposition. 

Let x E Gn, then for n ~ 2, 

(i) in (cl)n::c = 

(11) 
1 

tr (cl) !f where !f E G 1 and 1 > r, n-
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<iii) if i > j + 1 then a~'lt . 
1

::r:: = 'I' ao: 
l J+ j+l ix 

Proof. 

We will use mathematical induction to proof this proposition 

and the next ones. 

(i) For n = 2 we have 

by ( 2. 5. 2 ) ( i i) 

Also 

"'n+l 
( )n+l n n n 
cl ::r:: = I/In "' (cl) cl::r:: = I/In (cl) cl::r:: = (cl) cl::r:: n 

by induction 

n+l 
= (cl) ::r::. 

n n 
all n . Thus "' (cl) ::r:: = (c

1
) ::r:: for 

n 

(ii) t (cl) ifr 
r i-r r (cl)i-rfl, = i 

= "' (E;l) (cl) fl, = (cl) (cl) IJ r r 

by ( 2. 6. 1 ) ( i ) 

(X (X (X ( 
(iii) a 1iJ+l::r:: = a 1"'J"'J-t· ... I/J1::r:: = "'Jai"'J-l' ... I/J 1::r:: by 2.s.2J(il 

= 1/JJI/JJ-la~I/JJ-Z' ... 1/11::r:: by (2.5.2)(i) 

(X (X 

= "'J"'J-1· · · ·"'18 1 = "'J+18 1 

2.6.2 Proposition. 

(i) 

(ii) 

Let x E G , then for n ~ 2 
n 

a n-1 an 
an tn:z: = (c1) (a 1 ) ::r:: , 

aa ix= (cl)n-1 (aa)n 
n n ' 

(ill·> aa ~~ = c~
1

J1- 1 aa aa aa ~ t "'x n T- ~ 1 2 · · · · 1 Ti+l 1+2 · · · · n · 

Proof. 

(1) For n = 2, we have 

aa ·'· == aa .,. aa aa aa aa caa l 2 
2 T2X 2 ~1:t:,. cl 1 2::r:: = cl 1 1:t: = cl 1 ::r::. 

by ( 2. 5. 2 ) ( iv ) and ( 2. 1. 1 ) ( i) 
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Also 

(X (X 
= c a a ii, x 

n n n n 

= en a~ (cl)n-1 (a~)n x 

= en (cl)n-1 a~ (a~)nx 

n o: o: n 
= (cl) al (al) X 

= (c
1

)n (a~)n+lx by induction 

by (2. 5. 2) ( iv) 

by (2.6.b) 

by (2.6.a) 

(11) For n = 2 

by (2.5.2)(iv) 

Also 

a~+l wx = a~+l ii,2 .... wn+lx 

Thus 

by ( 2. 5. 2 )( i) 

by (2.6.2)(1) and induction 

by ( 2. 6. 1 ) ( 1 ) 

by ( 2. 6. 1) ( 11 ) 

by (2. 6. 1) ( 11) 

(X 

= f2·· .. tl-1 al fl f1+1·· .tnx by (2.6. 1)(111) 

1-1 a 1 
= t 2 .... t 1_1 (c 1 ) (a 1 ) ~l+i··-~nx by (2.6.2)(1) 

= t
2 
.... t 1_2 Cc1 )

1
-

1 
(a~)

1 
t 1+

1 
... ~nx by (2.6. l)(ii) 
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Thus ~xis an element in the associated oo-category rG. 

It is clear that if x e C , then the formula (2.5. 1) becomes 
n 

ljJJx = x. This implies "1x = x, so we have: 

2. 6. 3 Corollary. 

"1x = x if and only if xis an element in rG. In particular 

"1
2i ="'~for all~ E G. 

2.6.4 Lemma. 

Let x E Gn-1 then, 

(i) "1cix = ci"1x, 

(ii) "1rix = c1ix 

Proof. 

( i) '11c 
1
x = "'n-1· · .ljllcix 

= "'n-1· · ·Vl1"11-1c1"1i-2· · .v,lx 

= "'n-1· · ·Vl1C1-1"'i-2· · .v,lx 

= c. 1"1 2 ... v,lx 1- n-

= c. 1 '11 lx 1- n-

(ii) for n = 2 we have 

~r
1
x = "11r 1x = c 1x 

For n = 3 and i = 1 ' 
we have 

"1f.x = "11"12"1{1x l 

= "11"12c1x 

= tplCltplX 

= C V, X 1 1 

= c 1'1tx . 

The case where i = 2 is proved in appendix 
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by (2.5.3)(i) 

by ( 2. 5 . 3 ) ( i i) 

by ( 2. 5. 3 ) ( i ) 

by ( 2. 5 . 4 ) ( i i ) 

by (2.5.4)(ii) 

by (2.5.3)(i) 

by (2.5.3)(ii) 



This lemma shows that c lx , r i't'x and r1't'x are identities 

for o 1 . 

2. 6. S Remarks. 

In the previous section and section S we investigate the 

folding operation 'ii in the general case except for finding an 

appropriate formula for 'ii on composite elements x oi ~. The key 

problem which stands as obstacle from finding this formula came 

from the fact that 't'X and 't'~ lie in an =-category and so the faces 

of 't'X and 't'~ contain much more information because they involve 

many faces which are not degenerate. In chapter II I we give this 

formula for the case n = 3 • It involves very complicated formulae 

which gives a clear indication that the formula 'i'(x o. ~) for the 
l 

general case looks extremely difficult with the available 

information. The same thing can be said about 't'r .x and 'l'r'.x in 
l l 

Lemma 2.6.4 for the general case. 

2.6.6 Lemma. 

(i = 1,2) . 

The proof of this lemma and the next proposition will be given in 

III-2 since they require the compositions 't'(.t: 0. ~) 
l 

for 

x, 1 E G
3 

and 1 = 1,2,3, which will be determined by Proposition 

3.2. s. 
Recall from 2.1.2 that an element x E Gn (n ~ 1) is thin if 

it can be written as a composite of c 11 or r1y. or r1~ for 

1 E Gn-1' 

The collection of all thin elements of G ls closed under all 

the c.>-category structures except the face operation. It is useful 

to think of the thin elements as the most general kind of 

degenerate cubes. 
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2.6.7 Proposition. 

Let x e G (1 ~ n ~ 3). Then x is thin if and only if n 

IVX = 1 . 

The proof ls given in III-2. 

§ 7 Skeleton and coskeleton of w-categories. 

If one ignores the elements of dimension higher than n in an 

w-category, one obtains an n-tuple category G'. In (B-Hi-2) 

R. Brown and P. J. Higgins have constructed the skeleton and the 

coskeleton in an w-groupold. G. H. Mesa , in (Mo-1], has followed 

the same notations and terminology and constructed the coskeleton 

in an w-algebroid. We will follow the same notations and 

terminology and construct the skeleton and coskeleton in an 

w-category. 

We start to construct the coskeleton in terms of "shells" as 

follows: 

In any cubical complex K , an r-shell means a family 

(X 
x = (xi) of r-cubes (1 = 1, ... ,r+l , <X = 0, 1) satisfying 

13 (X (X (X a
1 

~
1 

= a1_1 x
1 

for 1 ~ j < 1 ~ r+l and <X,/3 = o, 1 

(X 
In particular the faces a.~ of any (r+l)-cube form an r-shell a~. 

l 

We denote by OK , the set of all r-shells of K r 

Let K • (K , K 
1

, ... , K0 ) be an n-truncated cubical complex. n n-

Then K' = (0 K ,K ,K 1, ... ,K
0

) will denote the (n+l)-truncated n n n-

cubical complex in which, for any~ E OK , 
n 

(X 
x

1 
and for any~ EK , c -~ is defined to be 

n J 
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(X a
1
~ 1s defined to be 

then-shell t, where 



{ e. 1 a~v (i < j) 
J- l 

a. a. (i > j) (2.7.a)(i) 11 = cj ai-1~ 

~ (i = j) 

If K has connections, we can also define r .~ = u, , r'.n = e_ where J - ;7· 

a. (i < j) 0 0 
{ r., a.v a, . = "'j+l = ~ 

(2.7.a)(ii) 
a. J- l J 

"'1 = a. 1 1 0 r. a. 1~ (i > j+l) u,j = "'j+l = c .a-~ J 1- J J 

« _ { r· 1_1 a~v (i < j) 0 0 - 0 
ej = ej+l - c .a-~ 

(2.7.a)(iii) J J 
ei - a. 1 1 r' . a. 1~ (i > j+l) ej = ej+l = ~ J 1-

In this way K' becomes an (n+l )-truncated cubical complex with 

connect ions. 

Now we replace K by an n-tuple category G. We define 

D G as follows: 
n 

{ 

~a. 0 'J:.a. 
a. -i j i 

(iv) 11 = a. a. 
~1 ° j 'J:.1 

2.7. 1 Proposition. 

(i<j) 

(i> j) 

The above structure 

(n+l)-truncated ~-category. 

Proof. 

G' = (0 G ,G ,G 1, ... ,G
0

) n n n-

Let~, 'J:. e D Gn such that~ 0 j 'J:. is defined. Then 
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(i<j) 

(i>j) 

in 

is an 



{ 

(X (X a .X O • a .IL 
= 1- J l~ 

<X <X a .x o . a .n 
1- J l~ 

(i <j) 

(i> j) 

( 11) Let x , IJ e G such that x o • IJ is defined. Then for k < i <j 
n J 

we get 

= a<X a<X k cix oj k Cilj 

= a~ (cix oj+l CilJ) 

Thus 

(since 

elements in G 1) n-

Similarly we can prove 

are 

that 

(iii) Let x e D G Then fork< j, we get - n 

= aa:x 
k-

0 1 Thus cJ a .x o • x = x . We can prove similarly that x = x o . c . a .x 
J- J - J J J-

(1.v) Let x, IJ e Gn such that x oJ 1J 

k < i < j we have 
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r. (x o • b) = r.x 
l J l 

routine to prove 

(v) Let X E G n 

aa (r'- r -) 
k j"' 0 

j+l j'"" 

0 riy.. for i < J 
j 

(iv) for r'. 
l 

Then for k < j ' 
we 

= aa f'.X o • aa f X 
k J J k J 

We 

get 

Thus r '.- o f X = 
1'"" j+l j 

Similarly 

can follow the same 

we can prove that 

Thus G' = ( □ G ,G ,G 1, ... ,G0 ) n n n-
ls an (n+l)-truncated 

w-category. 

2.7.2 Proposition. 

If G = (Gn,Gn-i•· .. ,G0) 1s an n-tuple category, then the 

w-category G with 

for m ~ n 

form> n 

and operations defined as above, 1s the n-coskeleton of G. 

Proof. 

If H ls any w-category and f k 

k = 0,1,2, ... ,n, that ls 

......... 

G ---+ G l ---+ n n-
......... 

~ -+ Gk are defined for 

so as to form a morphism of n-tuple category from n-truncated H to 

G, then there ls a unique extension to a morphism of 
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w-categories f: H ~ G defined inductively by, for ~ e H , 

ex ex n 
f ~ = 1, where 1. = f 

1
a -~ (m > n). This shows that G ~ Cos G.O m 1 m- 1 

~e apply now the folding operation~- and"' in thew-category 
l 

n Cosk G where G = (G , G l' ... , G
0

). n n-
Given an n-shell 

(X 

~ = (~i) e Gn , we obtain n-shells ~i~ and "'" = "'2 ... 'l'n!t . By 

Proposition 2. 6. 2 , all faces a7 of 'lilt are i-fold degenerate 

0 except for i = 1 , where a
1
~ is a "kind of sum" of the odd faces 

aa. h 1· l dd i~ were + ex so and a!i is a "kind of sum" of the even 

a. faces a .x, where i + ex is even. If His a given ~-category, then 
l 

adjointness gives a canonical morphism 

f H ~ Coskn H = coskn(trn H) 

with f 
1
x = ax for x e H 

1 n+ n+ 
Since f preserves the folding 

operations we have 

(2.7.3) 

for any element x of dimension at least two in an w-category. 

2. 7.3 Proposition. 

Let G be a w-category, and let C = 1G be its associated 

co-category. Let ~ E D Gn-l and ~ e Cn . Then there exist x e Gn 
(X (X 

such that ax= x and 'ltx =~if and only if d 1~ = a1'11~, a.= o, 1 

Proof. 

If ax= x and tx = ~ , then, by (2.7.3), ~tx = 'lt~x ='It~, so 

d (Xc a«,y, 
1' : 1 T~ 

Suppose, conversely, that we are given~ and~ with 

d(Xc a«,y, 
l' = l"'~ Then, 

(X (X 
since the faces d1 E and a 

1 
t~ determine the 

faces d:E and a~t~ respectively, we have ~E = t~, an equation in 

D Gn-l . We have to show that there is a unique x e Gn such that 

~:i:: = ~ and tx = I; . To prove this it is enough to show that if 

~ e Gn and~~= ~ii, i e D Gn-l , then there is a uniquer e Gn 

with ~J • i and ~ii=~. This can be done by unwinding each ~11 
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as follows; 

0 0 0 
r'.a ~ 11 c ic i+la i+la i 1 c.a.1 l l l l+ 

r?~+1i 
1 r i+l 

1 r1a1+11 

0 1 1 1 
ria1+11 C ia if cici+lai+lai1 i 

0 0 0 
cici+lai+lai1 C ia if 

1 1 
C/:i+lai+lai1 

0 1 . 
= ciai+11 1 c1a1+11 

H•<••-••••••••o•H•••••••H•••••••--••H<Ho•o•••·•••••• 
........................................ 

0 0 1 1 1 
c 1c i+la i+la i 1 C ia if c ic i+la i+la 11 

which shows how to recover 1 from ~11 and i. This 1 ls unique and 

has boundary f • D 

By using the notations of thin elements Proposition 2.7.3 can be 

proved as follows: 

= 1' . □ 

2.7.4 Corollary. 

11 

1 
11 

(since [ ~ ] = ] ) ' 

A thin element of a triple category is determined by its 

faces. Given a shell ~ e □ G2 , there is a thin element t with 

0 1 
at= x lf and only if a 1~~ = a 1~~. 
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Proof. 

Put I;= 1 in Proposition 2.7.3 and use the fact that t, is 

thin if and only if "'t, = 1 (see Proposition 2.6.6). 

We can now describe the 3-skeleton construction of a triple 

category. 

2.7.5 Definition. 

A shell~ E □ G is called a commuting shell if 
n 

0 1 
al"'~ = a 1 "'~ . 

This definition does not lead to a definition of skeleton in 

the general case because of the lack of good formulae for"' of a 

composition. 

2.7.6 Proposition. 

Given a double category G = (G2,G1,G0 ), the 3-skeleton S of G 

- 3 
is the triple subcategory of G = cosk G generated by G. For 

m s: 2, S = G , while s
3 

consists entirely of thin elements, m m 

namely, the commuting shells in □ G2 .Proof. 

Then 

Let S be defined by 
m 

r S = m 
0 1 m {~ E □ G2; at"'~ = al"'~ > 

G c S 3 c cosk G. By Corollary 

1f m s: 2 

if m = 3 

2.7.4 applied to the triple 

- 3 category G = cosk G , s3 contains only thin elements.Clearly, S 

is closed under face maps, degeneracy maps and connections (since 

Also, s3 is closed under 0 • 

l 

(1 s: is: 2 ); for if;, ~ E s3 and~ 0

1 ~ ls defined, then f o
1 
~ 

0 1 has faces in s2 and a1111(~ o 1 ~) =8 1111(~ 0

1 
~) because composites 

of thin elements in Gare thin. Thus~ o 1L - 1 &; 
e s3 . Hence Sis a 

triple subcategory of G . Also, by Corollary 2. 7. 4, any triple 

subcategory of G containing G2 must contain G3 , so Sis generated 
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by G 
2 

If His any triple category and¢: G ~ tr His a morphism 

of triple categories, then ¢ extends uniquely to a morphism of 

triple categories¢: S ~ H by the inductive rule that, for any 

commuting shell~ ED s2 (m > n), ¢2 (~) is the unique thin element 

t of H
3 

such that a~t = ¢2x~ for 1 ~ i ~ m and a: = o, 1 The 

element t exists by Corollary 2.7.4 since the element ¢2x~ form a 

commuting shell in H. This shows that S = sk
3

G.O Given a triple 

category G , this the 

n-skeleton of G. There ls a unique morphism "' : Sk
3
G ~ G of 

triple categories (the adjunction) which ls the identity in 

dimensions 0, .. ,2. 

2.7.7 Proposition. 
3 

The adjunction ~: Sk G ~ G is an injection and identifies 

sk3G with the triple subcategory category of G generated by 

It is clear that "' ls the identity in dimensions O, 1, 2. If 

x E (sk3G), then ~
3

(~) ls the unique element of G3 with ~t = ~. 

so ~
3 

ls injective. Since G0,G1,G2 generate sk
3
G in csk

3
G, then it 

3 
also generate ~3(sk G) in G.O 
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CHAPTER III 

TIU: EQUIVALENCE BETWEEN TRIPLE CATEGORIES WITH CONNECTIONS AND 

3-CATEGORIES 

§ 3.0 Introduction 

In this chapter we prove the equivalence between triple 

categories and 3-categories. One of the advantages of this proof 

is to highlight the key problems in the equivalence of the general 

case so one can concentrate the efforts to solve these problems. 

It seems that the key problem ls to evaluate the composition 

~(~ 0

1 ~) because it involves many faces and edges. 

§ 3. 1 The functor 1: 3-~--+ 3-e. 

In II-3 we have defined a functor r w-ea,t--+ ~-eat by the 

rule 

(X J-1 
en={~ E Gn I aJ~ E c1 Gn-J for 1 s: J s: n, a= o, 1} 

By this rule, c
3 

is 3-fold category with respect to the structures 

0 1 (C3, a 
1

, a 1' o 
1

) , for O s: 1 s: 2 . The elements of C are thus 

those cubes with boundaries partially represented by 

1 
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The proof of the axioms of Care given in II-3. 

In chapter II we also constructed a "folding operation" 

'l' : G --+ G 
n n 

for any w-category G and proved that 'l'G ~ (rG) . n n 

The key difficulty in proving that r w-ea-t--+ oo ea-tis an 

equivalence of categories resides in finding appropriate 

formula for 'l' on composite elements x o 1 i 

Recall that in the w-groupoid case, Brown-Higgins [B-Hi-2] 

consider an analogous folding operation I and obtain a formula of 

the form 

= {~ o {lx)uliif n = 2 andi = 1, 

(~x)ul~ o ~~therwise, 

where u
1
i involves only one edge of i. In our more general case, 

the formula for 'l'(x 0

1 i> should be expressed in terms of wx, wi 

and some "operations" involving the faces of x and i. The problem 

is that the folded form 'l'x lies in an oo-category and so the faces 

of wx contain much more information than in the case considered in 

[B-Hi-2] where~ lies in a crossed complex, i.e. all faces but 

one of ~x are totally degenerate. 

we are able to obtain a formula in dimension 3. At present 

the general case looks difficult, and may need new ideas for 

codifying and applying the information contained in the faces of 

an element of an oo-category. 

3.2 The compositions t(x 0

1 i> • 
In II-5 we have defined an operation 'l' Gn--+ Gn and proved 
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in I-6 that t transfers an element x e Gn to an element ix in the 

associated n-category 7G. Also we have seen from Propositions 

(2. 6. 1) and (2. 6. 2) that ll'a.: involves many faces which are not 

totally degenerate. In fact all the faces of ~a.: are not degenerate 

ex except a 
n This makes the evaluation of i(a.: 0 , ~) 

l 
for 

i = 1, 2, .. , n , of great complexity. For this reason we will see 

the situation for the case n • 3 and evaluate ll'(x O i ~) , for 

i • 1,2,3. This will give us a picture about the situation in the 

general case. 

The best way to get this evaluation ls to study the faces of 

We have seen that acx 
3 are totally 

degenerate and a; are partially degenerate i.e of the form of c
1 

This suggests that the faces a~ are the key point to get the 

evaluation of the compositions i(~ 0 • ~) • 
l 

First we define operations in an n-category for n = 2, 3 . 

These operations will help us in simplifying some of the 

complicated formulae. 

3.2. 1 Definition. 

Let C be an ~-category. If~ E c2 , 8, ~ e c1, we define 

This operation satisfies the following properties: 

( 111} and for 

~, ~ E c
2

, 8, ~ E c1 and whenever the operations are defined. 
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Likewise we can define a similar operation in C 3 

3.2.2 Definition. 

Let C be a ~-category, let 

1 = 1,2, then we define 

for 

where the compositions are defined. This operation satisfies the 

following properties: 

8 8 
(11) (~ 02 1') = ~ 

(iii) (~ 03 1')
8 

= ~ 
where 1' e c

3 
and~ o2 1' is defined. 

3.2.3 Remark. 

The analogous in higher dimensions of these operations has to 

be considerably more complicated than those dealt with above, 

because a line can be subdivided whereas a point cannot. 
(X 

Now we want to see how the faces a1tx are composed, this 

will help us in evaluating the composition 'l'(x o 1 u,) and in the 

proof of the associative and interchange laws. So let x e G3 have 

boundaries and vertices given by 

1 
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We want to see how the faces a~~::r; are formed from the faces 

(X a .x when the operation ~ is applied. This will support our claim 
l 

0 in I-5 which asserts that a
1
i::c is a kind of "sum" of the faces 

(X a.x where 
l 

i + o: is odd, and a~,i,::r; is a kind of "sum" of the faces 

(X a
1
x where i +«is even. 

First we will prove this pictorially because that will help us 

to have a clear picture about what is going on, then we prove 

formally in the next proposition. We recall from I-5 that 

0 The following diagrams represent partially the faces a 
1 

tJ,
1 

, 

0 0 
a11/J2"'1 and a1"'1"'2"'1 respectively, 

a 

1 1 
a 

0 
0 r2 8 1 -111::r; = 

C 81::r; b 

1 

f 
1 a2::c g 

(Figure F-3.2. 1) 

a b g 
r , 

0 0 0 11 0 11 11 
a 
. 

0 g , 
' ao::c, .. ,, 

0 r C 11 c 1 b 11 b J 11 
C d 

' r 

g 1 
.. 1 , , .. 

0 I I r r a
2

::c g - - g J - g -

C f d' 

(Figure F-3.2.2) 
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a b g 
, 

D D D 11 D 11 11 
a b g 

, 

D D D 11 D 11 11 
a . 

I, ao . 
0 g 

,I, ,I, 

D r C = C 
1~ 

b = b _J 11 
d 

C g 1 

r r 1 ,1, 

D II a2~ g = g = g _J 

C l' d' 
I, 0 

f _J 11 r e a3~ D D D 
. 

e c' d' 

(Figure F-3.2.3) 

From this digram we notice that 

(row 1 o 1 row 2 °1 row 3) = row 3, 

and since rf o
1 

_Jf = =r ,then the above diagram can be reduced to 

a 
, 

0 g 
ao~. I, ,I, 

D r C = C 
1 b - b _J 11 
d . 

C 
, 

g 1 
' 1 I, I, 

D 11 r r a2~ g = g = g _J 

. 
C f d' 
0 I, 

re a3~ f _J 11 D D D 
. 

e c' d' 

Figure (F-3.2.4) 

Now we give the face a~~ in terms of elements of c2 , 1. e. the 

folded faces "'8~ for 1 +«is odd, and thin elements of the form 
l 

c
1 

. To make it clear we can rearrange diagram F-3.2.4 to get 
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and 

a b 

r C 
0 

al~ b .J 11 

C g 

C d 
2 r 11 r f 1 g .J a2~ 

1 
C 

C f d' 

re 0 
a3~ f .J II 

e C 

Figure {F-3.2.5) 

0 so a
1
t~ can be given in the following formula 

0 0 g c 1 0 d' a 1 t~ = (ta 1 ~) 0 1 (ta2~) 0 1 Cta3~) ' (3.2.1) 

1 Similarly we can follow the same steps and find that a1t~ can 

be represented partially by 

a b g 
7 

. It 1 ' I, 
11 r h a3~ g _J 

. . 
a tl o' 

a h b' 
r 

~ 0 ' I, 
r e a2~ h II 

' e a' o' 1 

~ ~I b' 
' , 

' .. 1 ' • 
II re' al~ b' 11 

. 

e c' d' 

Figure (F-3.2.5) 
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(3.2.2) 

The following diagrams represent the final reduced form of 

0 1 diagrams of a
1
fx and a1fx respectively. 

a bg 

D r ' 
0 

C ala:: b 
C d g 

r ao . I, 1 . , _J 
e 3x f a2a:: g 

1 

e c' d' 

Figure (F-3. 2. 6) 

a b g 
, 

' 0 ' 1 re a2x h a3a:: g _J 

e . 
a' o' 

i, 1 I, 

c' a
1
x b' _J D 1 

ec' d' 

Figure (F-3.2.7) 
1 and by formula a
1
fx can be given as follows 

1 0 1 (0 0 O 1 
alfx = (c2a o28lfcla3x) ol altcla2x o2 cld') ol (c2e o2 altclalx) 

= a(ta;x) ol (ta~x)b' 0

1 e(ta!x) (3.2.2) 

(we shall call the formulae (3.1. 1) and (3. 1.2) the folded face 

forrrula for a~tx and a~tx respectively). 

In the following proposition we give formal proof for (3.2. 1) 

and (3.2.2). This proof shows that the face a~ta:: is a composite of 

1 the odd faces and a
1
~x is a composite of the even faces of x It 

also shows how complicated the situation of the general case will 

be. 
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3.2.4 Proposition. 

Let x e G3 , then 

(1) a~tx = (~~x)a o1 b(~~x) o
1 

(t8~x)c 

(11) ait:i; = d(~;x) o
1 

(t8~:i;) 8 
o

1 
f(~!x) , 

1 1 
where a = a

2
a

2
x , 

0 0 and f = a2a2x 

Proof. 

( 1) 

• e 

by ( 2. 5 . 1 )( i i) 

0 
= "'18 1"'1:Zi 0 1 

0 
<a31P1 :Zi 

1 02 821/11:Zi) by ( 2. 5. 1 )( 1 , 11 1 ) 

0 1 0 1 by ( 2. 4. 5 )( 1, 11, iv) = "'1<a1a; 01 a2a;) o 1 <83"'1 :Zi 02 82"'1 a;) 

0 1 1 0 0 1 
== (1/11 8 1:Zi o2 cla2a2a;) 01 <c1a2a1:i; 0 2 "'182a;> 0 1 

0 1 1 
(I/J183a; o2 c181a1x> 

0 1 0 
== (tjl

1
a

1
x o

2 
c

1
a) o

1 
(c

1
b o

2 
1/1

1
8

2
:i;) 0

1 (1/1 183a; 0
2 c 1c) by (2.5.5) 

= (~~:i;)a ol b(~!:i;) ol(~~:i;)c 

( 11) 
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Now we move step further towards finding an evaluation of the 

compositions t(~ 0

1 ~) using the folded face formula of the faces 

a~ and a~ of i~ and i~. We start by considering the case where 

1 = 1 and study it in details to get intuition about the rest of 

the cases and possibly about the general case. 

First we will have a quick look at the compositions i(~ o. ~) 
l 

in the case of dimension 2, to see the analogy between the two 

cases and to get some light for our case and possibly for the 

general case. We first consider i(~ o 1 ~) 

Let~, ~ e G2 with edges given by 

1 

Then 

t(~ o
1 

~) = (i~ o
2 

c 1h) o 1 (c1a o 2 ii) 

and pictorially t(~ 0

1 ~) can be visualized by 

C d h 
, 

r a d ...I 11 

. . . 

a 0 n 

a b h 
~ 

~ 

11 r e~ h ...I 
1 

a e g 

In dimension 3 we have a similar si tuatlon in evaluating the 

compositions t(~ o
1 

~) but in more complicated way. To explain the 

situation and make more clear let~ e G3 be given with edges and 
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boundaries given by 

C 

b 

f 
1 

c' 

h g 

b' 

and~ E G3 have edges and boundaries given by 

c' 

s t 

b' 

V u 
c" 

b" 

then folded face formulae of a~ for ta:, II/~ and II/(~ 0

1 ~) are: 

0 0 u c' 1 0 d" 
a 1 "'~ = c ta 1 ~ > o 1 c ta 2~ l o 1 c ta 3~ > , 

a!t~ = a' <ta;~> o
1 

(ta~~>b" o
1 

s(tai~> , 

First, 

namely 

1 0 since the faces a1 ta: and a1 t~ have one face in common, 

0 1 a3a: C• a
3
~). then the order of the composition t(~ 0

1 ~) 

starts with ta: . Second, by examining the formulae of II/~ , \If~ and 
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IJt(x o
1 

y,) , we notice the following: 

0 (l) a 
1 

"1 ( x o 
1 

y,) ls composed of fl ve squares, three are those 

which composed 
0 

a 1 "1::c and the remaining two are 1 
a 2Y- and 0 

a 3Y- of 

0 
a 1 "'Y- , 

c ii) a~a~"1(x y,) 
0 1 y,) 01 = a
1
a

1
'1'(x 01 = abgu, and 

1 0 'J,) 
1 1 y,) a1a1 IJtC::c 01 = a1a1"1C::c 01 = es"c"d", 

(iii} ai"1(::c o
1 

y,) ls composed of five squares, three are those 

1 0 1 which composed a
1

"1y, and the remaining two are a2::c and a3::c of 

1 
a i "'::c , 

(iv) a~a~"1::c = a~ai"1::c = abg and 

and 1 0 1 1 
a a IJt::c = a a IJt::c = sc" d" 1 1 1 1 

0 1 
(vi) The composed face (a3y, 0

2 a2y,) has boundaries given by 

c' d' 

s t u 

c" 
,, 1 

0 1 
(vii) The composed face ca 2::c 0

2 a3::c) has boundaries given by 

a b 

e h g 

0 a 
1 

From the above discussion we can attach "1c 1 a ~:t:: 1 and '1'c1a
3
x to 'l':t:: 

to get 
0 0 

from the right a1"1:t:: matching a1"1(:t:: o
1 

y,) 
' the resulting 

element is represented by "1::c 0

2 
1 0 

IJtc 1 a 2Y- 02 tcta3y, 
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1 0 Similarly we attach ~c
1
a

3
~ o

2 
~c

1
a

2
~ to~~ from the left and get 

0 1 a
1
~~ matching a

1
~(~ o

1 
u,) the resulting element ls 

1 0 represented by ~c
1
a

3
~ o

2 
tc

1
a

2
~ 0

2 
tu, 

The following digram makes it clearer 

ab..-.. ·· 

a ./ 

✓----/ 
c' d.~/ 

--~// 

,• 

e .... ...-
,• 

,• 
.. 

,----/ 
- /ci" - / .. · 

.··'c" / 

e 

e 

-· e _-_ .. / 

where the cube doted by 

represents tv,. 

✓----/ 
.··' / 

/c"d" 
/ 

represents t~ and the cube doted by - -
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Unfortunately this evaluation gives a little light to the 

general case. Any how the following proposition evaluates the 

compositions for i = 1,2,3 The proof of this 

proposition is complicated and involves a lot of algebra, we put 

it in a separate appendix. 

3.2.5 Proposition 

Let iC E G
3 

with edges given as in 3. 2. 4 and let 

IJ , 'f , t e G
3 

with edges and boundaries given in the following 

diagrams 

c' p b 

s t f f' h g 

b' r z 

V u g g' h" g" 

c" p' b' 

b" r' z' 

IJ 'f t. 

such that iC o
1 

IJ, ~ 0
2 'f and~ 0

3 t. are well defined then 

u ec' 1 e O d" < 1) 'I'(~ ol IJ) = [ ('I'~) o2 ('l'c1a21J> o2 ('l'c1a31J) 1 ol 
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Proof. 

The proof of this proposition is given in appendix II . 

We now give proofs of Lemma 2. 6. 6 and Proposition 2. 6. 7 

stated in 11-6. 

First we recall Lemma 2.6.6, 

"'~i : i: G3 ~ G3 , i = 1,2. 

Proof. 

(1) the case for i = 1. 

Let~ E G
3 

have edges given by 

C 

b 

el 
f 

c' 
1 

h g 

b' 

then 

"'~12: =- tCr'a
0
~ 

1 
1 2 02 2: 02 r 1 a22:> by definition of ~

1
2: 

by ( 3. 2. 5 )( 1 i) 

III-15 



by (2.5.6) 

= [X] o
1 

[Y] o1 [Z] , say. 

We have to prove that [Y] = ~x and [X], [Z] are identities for o
1

, 

So 

[Y] 

by (2. 1. 1) (vii), (viii) 

by (2.6.4)(1) and (2.6.4) 

C 28080:1:)c' d' 1 cl 2 2 

[ab(cig) 
2 bg ec' 2 (cie)c'd'] = 02 (cla) o2 ( ~X) o 2 ( cl d' ) o 2 

2 2 (~x) o2 (ciec'd') (c2ec'd')] = [(c
1
abg) 02 (c

1
abg) 02 02 1 

2 (~x) o 2 
(c2ec'd')] = [ (c1

abg) 02 1 

To prove that [X] and [Z] are identities for o1 we have to show 

that (X] = c
1

[a~~x] and [Z] = c1Caitx] , which is true since 

[X] = [(~cla~rla~x)bgo2(~cla~x)g o2c(tclrla!x) o2 (~cla~x)d' o2 
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by ( 2. 6. 4 ) ( i ) and ( 2. 1 . 1 ) (vi ) 

by (2.5.3)(1) and (2.6.4)(1) 

by ( 2. 2. 1 ) ( i ) 

(since 

by (3.2.4)(1) 

i.e. [Y] o
1 

[X] = [X) 

Similarly we can prove that [X] o 1 [Z] = [X]. Thus t~1~ = t~. 

(ii) for 1 = 2, we apply a similar argument and get t~2~ = t~ 

Thus t~1.:c = t.:c, for 1 = 1,2 . □ 

Proposition 2.6.7. 

Let .:c E G (1 ~ n ~ 3). Then .:c is thin if and only if t.i; = 1. 
n 

Proof. 

By proposition (2.6.4), tc.~ • 1, tr1~ = 1, and tr'.~= 1 for 
l l 

all ~ E G
2 

and i • 1,2 . It follows from Proposition (3.2.5) that 

t.:c • 1 whenever .:c is thin. To see the . converse, we recall the 

definition 

~1.:c • cr1a~.:c • .i;, r 1a;.i:1 1• 1 

which can be rewritten as 
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0 0 
c1c1+la1+la1'J, 

0 
c la 11 r1a1+11 

::i:: = r?~+l'I- 'J, 1 
r1a1+1 1 

0 1 1 1 r1a1+11 c la 1'1- c1c1+1a1+1a1'1-
1+1 

These two equations show that "11x. ls thin if and only if a:: ls 

thin. Hence i::i:: ls thin if and only if ::i:: ls thin. In particular, if 

t::i:: = 1 then t::i:: ls thin, so ::i:: ls also thin. □ 

3.3 The functor A: 3-e---+ 3-~. 

In this section we start to construct a triple category from 

a 3-category by using the folding operation. 

In [Mo-1] G. Mosa has constructed a 3-tuple algebrold A
3 

from 

3 
a 3-truncated crossed complex !:! . He defined the appropriate 

algebraic structure on A3 but he did not prove that this structure 

ls indeed a 3-tuple algebrold. He just refers to the proof for the 

case of dimension two which he proved earlier. In fact the proof 

for dimension 3 is much more complicated and involves a lot of 

information and complicated algebra. 

Given a triple category G with associated 3-category c = rG, 
(X (X 

and given~ e D G2 , ~ e c2 with d1~ = d1t~. we write<~.~> for the 

unique element ::i:: E G3 such that a::i:: =~and t::i:: = ~. Proposition 

(3.3. 1) shows that compositions in Gare also determined by rG. 

3.3. 1 Proposition. 

G3 and let~, ~, i and~ have edges given as 1n 3.2.S such that 
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the compositions~ 0
1 ~, ;t; 02 i and~ 0

3 ~ are well defined then 

(i) u ec' 1 e O d" 
X o1 ff= <x 0 1 ~ ; [ (~) 02 (S10'2ff2) 02 (Sl0'2ff3)] 01 

a 1 u 0 b'u e 
[ ( s 1 er 2x3) 02 ( sl er 22:2) 02 (l))]> 

0 rg' 
<~ 02 i ; [ (slo-22:l) 02 

[ab(~c11;> o2 (~)r' o2 

Proof. 

This follows from Proposition 3.2.5 and the rule 

8(2: 01 f) = ~~ 01 ~f .o 

Now let C = cc3,c2,c
1
,c

0
) be a 3-category and let G

0 
= c

0 
• 

G1 = c1 . In [S-1) C.B.Spencer has constructed a double category 

G = AC from a 2-category c and isomorphism a-2 : rG2 ~ c2
. Then 

(□ G2,G2 ,G1,G0 ) is a triple category and we define 

G3 = {<~, ~>: ~ E O G2, ~ E c3 such that 0'2~~~ = ~~} , 

so by this definition if~ have edges and boundaries given by 

C 

b 

f 

c' 

h g 

b' 

then the faces a« of~ are given by the following formulae 1 
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since tc.!f = 1 by (2.6.4) 
l 

The maps 

a 
c

1 
: G

2 
~ G

3
, with the obvious face maps a1 : G3 ~ G2 defined 

by a;c~. 1;) = ~; , give (G3, .. , G
0

) the structure of an 3-cubical 

complex. Similarly one can defined connections r 1 , r1 : G2 ~ G3 

by r ,11. = Cr .!f, 1) and r'.!f = (r'.!f, 1) It is clear by (2. 6. 4) that 
lr l l l 

r 
1

!1- • r1!f e G • 

we now define operations 0

1 , for 1 = 1,2,3, as follows. For 

(~,I;) , (~.~) , Ct,~> , Ct,~) E G3 with~ o 1 i, ~ o 2 1 and~ o 3 i 

are well defined, let 
u ec' 1 e O d" 

(~ ol !f) • (~ ol ~; [(I;) o2 (S1CT2!f2) o2 (S1CT2!f3) ] ol 

a 1 u O b'u e 
[ (slcr2~3) 0 2 (slcr2~2) 0 2 (~)]) 

(~ 03 t) 

we claim that (G
3
,., ,GO) is now a triple category. Firstly, 

it is clear that, for~ E G2 , c1~ acts as an identity for o 1 

In the next two sections we prove the associative and 

interchange laws in G3 · 

3.4 The associative law in ~c3. 

In this section we prove the associative law. The key points 
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in this proof are the next lemma and the interchange law in c
3 

3. 4. 1 Lemma. 

Let :t:, ~ E c3 such that :t: o
3 
~ is defined and let a~:t: =a, 

1 0 0 a2:t: = b, a
2

~ = c and a
2

~ = d, then 

c b a d 
(:t:) 02 (~) = (~) 02 (:t:) • 

Proof. 

(:t:)c o 2 b(~) = (:t: o
3 

c:c) o
2 

(c:b 0

3 ~) 

0 1 (since a2:t: = a and a
2
~ = d) 

2 2 
=(ca 3 ~) 02 (:t: 03 c

1
d) 

1 

a = (~) 02 (:t:) 
d 

.□ 

Now let :t: = <~ ' ~> ' ~ = <ft ' 7)> and 'J, = <i , <:> be elements 

of G3 such that~ o
1 

fl:, fl: o
1 

i and i 0

1 ~ are well defined (we 

will write q.. for :t: o
1 
~ and ~7) for~ 0

1 7) in each case) then 

say, and we have to show that•=•' . 

(i} The case for 1 • 1 . 

Let :t:, fl: and i have edges given by 
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C c' c" 

s t s' t' 
b b' b" 

el f 
V 

c' 
u V u' 

c" p' 

h g 

b' b" q 

::c 

then 

by (3.2.S)(i) 

by (3.2.5)(1) 

by (2.5.6) 
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= I.)' = (:,; 01 (ff 01 J)). 

(11) The case for 1 = 2. 

Let~, ~ and i have edges given by 

C p 

b r 
z 

c' 
fl 

p' 

g g' 

b' r' 

:,; ~ 

I II-23 

by ( 3. 2. 1 ) ( 1 ) 

by ( 3. 2. 5 ) (1 ) 

s 

u 

f' f" 
s' 

g" 7· u' 

i 

by ( 3. 2. 5 )( ii ) 



by {3.2.S){ii) and {3.2.1) 

by (2.5.6) and (3.2.1) 

by (3.4.1) 

c dr 11 u' fp' 1 0 p's't' 
{ (slo-213 °2 (7)) 0 2 (s10-211)} 0 2 (s10-iz:3) 1 0 1 

[ab(s10-2Csn);> o2 (~)r'u' o2ec' (slo-2(sn,)~)l by (3.2.1) 

ab 1 r'u' ec' 1 
[ (slo-2(sn,)3) 0 2 (~) 0 2 (s1~2(sn,)1)] by (3. 2. 5 )(ii) 

= (~ o
2 

(f 0

2 f) by (3.3.1). 
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(iii) The case of o
3

. 

Let«:, f and i have edges given by 

C b z 

h g h" g" 
b z p 

el f 
h" 

c' 
g" V u 

b' z' 

h g 

b' z' p' 

«: 

then 

by ( 3. 2. 5) ( iii) 

O b'w'q' e 1 w'q' [ar(J-) ( ( )0 1 ' 
(s1~2«:2) 02 (s1~2«:l) ] 01 ~ 02 5 1~2 ~ 2 °1 (~)l))q 1 

by (3.2.5)(111) and (3.2. 1) 

= [a(r(s1~2(1~ ol 1~)02 (s1~2(~~ ol ~~))q' )02 (~)w'q' J ol 

ar Ou arz 1 a q' 0 b'w'q' 
[ (s1~211) 02 (s1~212> 02 (l)) 02 (s1~2«:2) 02 

e 1 w' q' [ar(l:) 0 1 0 0 1 ff!) ) } q' ] ) (s1~2«:1) 1 01 0 2 { s 1 ~ 2 ( ( «:2 0 «:1) 02 (f.t-2 1 

by (2.5.6) and (2.2.1)(1) 

a o 1 0 1 (~) w' q' ] 
= [ {s1~2((~1 01 ~2) 02 (11 01 12))} 02 01 
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by (2.5.6) and (2.2. 1)(1) 

by (2.5.6) and (2.2.1)(1) 

by ( 2. 2. 1 )( 11 il , ( 2. 5. 6 ) and ( 3. 2. 1) 

= [a(s1~2(ff)~)u ol ab(s1~2(ff)~) o2 (~)w'q' 1 ol 

by (3. 2. 5)( 111) 

by (3.3.1).0 

3.5 The interchange law in AC3 . 

The proof of the interchange law will be more complicated 

because it involves four elements and two directions. The key 

points in this proof are Lemma 3.4.1 and the interchange law in 
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t = <-t T> be elements of G3 such that the composite shell 

rJ 
1 

is defined. Then 

say, and we have to show that•=•' in c
3 

. We will prove each 

case individually. 

(i) The case where 1 = 1 and J = 2. 

let~, ~ be given as in (3.4)(1) , i and~ have boundaries and 

edges given by 

p p' 

f f' t t' 
r r' 

g g' u u' 
p' p" 

r' 

then, by (3.2.5) 

f O " [( ~O)rg'u' c(')u' o2 cfp' (slfJ'2~21) o2 c (slfJ'2-t3)q o2 = SlfJ'2wl 0 2 ' ~ 
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and 

( a,' ) = 
0 rg' u' 

[(s1~2~1) 02 c(~)u' o2 O p' q' u' 
(s1~2~3) 02 

ec' p' 1 
(s1~2t2) 02 

ec' 0 q" e O p"q" ab 1 u' r' u' 
(s1~2t3) 02 (s1~2Y.3l l 01 [ (s1~21-3> 02 (~) 02 

ec' 1 u' 
(s1~2111 02 

ec' p' 1 
(s1~2t.2) 02 

ec' 0 q,, e O p,,q,, 
(s1~2t.3) 02 (s1~2Y.3l l 01 

ab 1 u' a 1 r' u' 0 b'r'u' e O r'u' 
[ (s1~2f3) 02 (s1~2~3) 02 (sl~2~2) 02 (s1~2y,1) 02 

To simplify the situation, we write 
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(11' ) = [2'] o [X'] o [T'] o [Y' l 
1 1 1 

say, and we have to prove that [2] = [2'] 

[Tl o
1 

[X] • [X' J o
1 

[T' ]. So 

[Y] = [Y'] and 

[Z) 

by (3.4. 1) and (2.4. l)(iv) 

by (3.4.1) and (2.4.l)(iv) 

= [2' 1 . 

by (3.4.1) and (2.4. l)(iv) 

by (3.4.1) and (2.4.l)(iv) 

• [Y'] . 
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by (3. 4. 1) and (2. 4. 1) (iv) 

by (3.4.1) and (2.4.l)(iv) 
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= 

ec' 0 u' p' 0 0 q" ec' (i:)}) { [(sla-2t.1) 0 ( st a-2t.2) 02 (s1a-2t.3) 1 0 0 2 1 2 

e O p"q" 
(S10'2~3) 

ab 1 u' {(~)r'u' o2 ec' 1 u' ec'p 0 = [ ( s 1 a-213) 02 (sla-27-l) 0 
( 8 1 a-2t.2) 02 2 

ec' 0 q" e O p"q" a 1 r' u' ab 1 u' ( sl a-2t.3) 02 ( s 1 a-21'-3 ) J 01 [ (sla-2a:3) 02 (Sl0'2f3) 02 

= [X'] 0 [T' ] 
1 

Thus (a,) = ( a,' ) 

(ii) The case of 1 = 1 and j = 3 . 

Let a; I ~ be given as in (3.4)(1) I 1- and t. have edges 

and boundaries given by 

b b' 

h g 
z z' 

h" g" 
b' 

vi u 

b" 

v' u' 

z' z" 

-t 

then 
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and 

(a,' ) 

[X] 

ab 1 a 1 uw" 02 <st2''Jll)~o2<srpd 02 
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by (3.4. 1) 

a O g"u' ab 1 u' (~) w' u' ec' 1 = [ (s1cr2f1) 02 ( 9 1 <r2f2) 02 02 (slcr2a2~) 

= [X' ] 

ak 1 u' a O z' u' ah( ) 0 b"w" 
[Tl= [ (s1<r2f3) 02 (s10-21-2) 02 't' 02 (slo-2(~)2) 02 

by ( 2 . 2. 1 )( 1) , ( 2. 5. 6 ) , ( 3. 2 . 2 ) 

eh' ( ) 
02 't' 02 

by (3.4. 1) 

ak 1 u' 
= [ (s1cr2(:1:f)3) 

es 1 w" 
( 9 10' 2ft) ] by (2.2.l)(i) and (2.5.6) 

= [T' l . 
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by (2.2.1)(1) and (2.5.6) 

by (2.4.1)(1v) and (3.2.2) 

by ( 2. 4. 1 )( 1 v) 
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ea' 1 u' ea'b' 1 e w" 
(sa-211) 0 2 (s1a-2t2) 0 2 (l)) l 

by (2.5.6), (3.2.1) and (2.2.l)(i) 

= [Z' ] o 
1 

[Y' ] 

Thus (a,) = (a,' ) 

(111) The case where i = 2 and J • 3. 

We follow a similar steps as (i) . 

Thus 

(a:: 0 j 1) 0 j (u, 0 i t) = (a:: 0 j u,) 0 j (J O j t). 

We now have a triple category (G3 , .. ,G0 ), and we must 

identify rG3 . For any~ e c3 , let~~ denote the shell a:: e □ G
2 

with a::~• a-2d~E. Define 

a-3~ = C ~E, ~ > . 

Clearly a-
3

~ e G
3 

and every element of rG3 is of this form. The 

bijection a-
3 

: c
3 

---+ rG
3 

is compatible with the boundary maps 

(l (l (l 
since d 1a-3~ • a1a-3~ = a-

2
d

1
~ To show that preserves 

compositions let ~, l), ~, Te c3 , and 2~, 27>, 2~, dT be 

given with boundaries and edges as a:: , V;- , i and !: in 3. 3. 1 
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respectively, then 

u ec' 1 e O d" 
(~~ ol ~1) • [(~) o2 (sler2(~1))2) o2 (sler2(~1))3) 1 ol 

(~~.~) 02 (~~.~) = 

(~~ 02 ~~. 

a 1 u O b' u e 
[ (sler2(~~)3) 0 2 (sler2(~~)2) 0 2 (1))]) 

0 rg' C O p'q' 
[(sler2(~~)1) 0 2 (~) 0 2 (sler2(~~)3) 1 0 1 

[ab(~cl(~~>;> o2 (~)r' o2 ec' (s1er2(~~)i)1) 

a O g" ab 1 ' (~~ 0 3 <;!-r' [ (sla-2(<;!-r)l) 0 2 (sla-2(~-r)z) 0 2 (~)w] 0 1 

a O b' w' e 1 w' 
[ ( T ) 0 2 ( s 1 er 2 ( ~~ ) 2 ) 0 2 ( s 1 er 2 ( ~~ ) 1 ) J) 

Thus er
3 

ls isomorphism of 3-categorles. 

By this we obtain a triple category G = AC and isomorphism of 

· 3-categories. 

In the following section we state the main result of this 

work, this result establishes the equivalence of triple categories 

with connections and 3-categories. 

3.6 The equivalence between triple categories with connections and 

3-categories. 

3.6.1 Theorem. (The main result) 

There ls a functor A from the category 3-~ of triple 

categories to the category 3-e of 3-categories such that 

A: 3-~ ~ 3-e are inverse equ1valenc1es. 

Proof. 

We have proved the existence of the functors 
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r : 3-e ---+ 3-e, .:\ : 3-e ---+ 3-e and isomorphism a-3 : C ---+ rG 

We now complete the proof of the equl valence. So let G' be a 

triple category and <1'' : C ---4 rG' be a morphism of 3-categories 

then there ls a unique morphism 8: G--+ G' of triple categories 

such that the following diagram 

C ri\C .:\C 

~ /re /a 
J, J, 

rG' G' 

commutes. We define 8 by induction. For n = 0,1 it is clear that 

G' = rG' . For n n n 

where 

= 2,3 , 

a::' E G' - n-1 

each a::' E G' is uniquely determined by n 

~' E rG' n and This 

definition gives a morphism of triple categories. From this 

universal property, it follows that i\ is a functor from 3-e to 3-e 

and is left adjoint to r : 3-~ ---+ 3-e The adjunction 

o-c C ---4 ri\C is an isomorphism for all C, so 13_e ~ ri\. Also, 

the adjunction .:\7G' ---+ G' is obtained by putting G = rG' 

a-' = identity, in which case 8 is an isomorphism i\7G'--+ G' , as 

is clear from its definition. Hence i\1 = 13_~ and we have inverse 

equivalencies i\ and r between 3-e and 3-~. D 
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CHAPTER IV 

COMMENTS AND POSSIBILITIES FOR FURTIIER VORK 

In this final brief chapter we make some remarks about the 

work of the thesis. 

Technical work involved in this study ls an indication of the 

dlfficul ties underlying the use of multiple categories. However, 

the clear equivalence obtained in the 3-dlmenslonal case ls also 

an indication of the prospective power of this method. 

The Australian school on multiple categories are 

concentrating on the slmpllclal case, in order to define the 

slmpllcial nerve of an m-categorles. This ls achieved in an 

interesting and complex way (Street, Street-Walters). This is 

still a long way from obtaining an equivalence of categories, 

analogous to that between m-groupoids and simpllcial T-complexes 

in the groupold case. 

The basic problem arising in this work ls to find good 

formulae for~(~ 0

1 ~) , ~r1 and ~r' for n > 3. 
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APPENDIX I 

Proof of Lemma (2.6.4) for n = 3 and i = 2. 

This case is more complicated and will be proved using matrices. 

So let~ e G
2 

have boundaries given by 

1 

then 

~r2~ = ~1~2~1r2~ 
1 

= ~1~2<r1~ 0 2 r2~ 0 2 r1c282~> ' by ( 2. 5. 4 )( 11 i) 

= ~1~2<ri~ 0 2 r2~ 0 2 r1c2d> 

= ~1~2<ri~ 0 2 r2~ 0 2 c3rld) by ( 1 . 1 . 2 ) ( 1 i i ) . 

By using matrices, ~
2

cr1~ 0 2 r2~ 0
2 c3r1d) = 

r'r'a 2 1 c2r 1a c2r 1a 

c3r 1a r'~ 2 c2~ 

c3r 1a CJ~ r;l1d r2 

r' ~ 1 r2~ c3r 1d 3 

r 2r 1d c3c2d c3r 1d 

c2c2d r 2c2d c3r 1d 

c2r 1d c2r 1d r 2r 1d 
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r'r'a 2 1 c2r 1a c2r1 a 

c3r 1a r' (I; 
2 C2(1; 

c3r 1a C3(1; r~t1d 
r 

2 
= 

r' (I; 1 r 2(1; c3r 1d 3 

r 2r 1d c3c2d c3r 1d 

c3c2d c3c2d c3r 1d 

c2r 1d c2r 1d r 2r 1d 

2 (since r 2c2d = c2d = c3c2d ). 

Looking at row 6 and row 7, we find that row 6 is an identity for 

row 7, i.e. row 6 o3 row 7 = row 7. So 

~2<r1~ o2 r2(1; o2 c3rld) = 

r'r'a 2 1 c2r 1a c2r 1a 

c3r 1a r' (I; 
2 C2(1; 

c3r 1a c3~ r 2r 1ct 
r2 

r' (I; 
1 r 2(1; c3r 1d 

3 

r2r1ct c2c2d c3r 1d 

c2r 1ct c2r 1ct r2r 1ct 
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3 a r'r'a c 1a 1c 2 1 c2r 1a c2r 1a r 1r 1a 

3 a c3r 1a c1a 1 c r'x c2x r 1x 2 

J a c3r 1a c1a 1c c3x r2r 1ct rlrld 

2 r'x r
2
x 3 a c1c 1 c3r 1ct clald 

r'r'ct r 2r 1ct c3c2d c3r 1ct 3 a 
1 clald 

r 1r 1ct c
2
r1ct c2r 1ct r 2r 1ct 3 a 

clald 

(for short hand we will use Oto denotes identities) 

0 r'r'a 2 1 
c2r 1a c2r 1a r 1r 1a 

0 c3r 1a r'x 2 E:2X r 1x 

0 c3r 1a CJX r 2r 1d r 2r 1d 
= 

2 r' :i:: r 2x c3r 1d 0 c
1
c 1 

r'r'd 
2 1 r 2r 1d c

3
c

2
d c3r 1d 0 

r 1r 1d c2r 1d c
2
r1d r 2r 1d 0 

0 r'r'a 
1 1 

c
2

r 1a c
2

r 1a r 1r 1a 

0 c3r 1a r'x 2 c2:t: rl:i:: 
··········""''''"'""''"''''''--~··-····· .. 

0 c3r 1a E:3X r2r 1d r 2r 1d 
= 

··········"··z--······ 

r'x f r 2:i:: c3r 1d 0 c1c 1 

r'r'd 2 1 r 2r 1d! c3c2d c3r1d 0 

.................................. , ... , ... 

r 1r 1d c2r 1d! c2r1d rltd 0 
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(here the subdivision by the dotted line represents the entries 

which will be change and substitute by equivalent elements using 

the appropriate laws (see[Br-2])) 

D r'r'a 1 1 c2r1a r 1r1a D 

D c3r 1a r' ::c 2 rl::c D 

D c3r1a c3::c c
3
r

1
d D 

= 

□ r' ::c 1 r2::c c
3
r

1
d □ 

□ c3r 1d c3c2d c3r 1d □ 

□ r 1r 1d c2r 1d rlrld D 

□ r'r'a 1 1 c2r 1a r 1r1a □ 

□ c3r 1a r' ::c 2 r 1::c D 

□ c3r 1a c3::c c3rldl D 
= 

D r' ::c 1 r2::c c3rldl □ 

□ c3r 1d c3c2d! c3r 1dl.. □ 

□ r 1r 1d c2r 1d rl1d □ 

since row 3 and row 5 have entries either identities or of the 

form c
3

, then 

row 2 o
3 

row 3 = row 2 and row 4 o 3 row 5 = row 4, 

so, RHS = 
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D D D D D 

D r'r'a 1 1 c2r1a r 1r1a D 

D c 3r1a r'x 2 r 1x D 

D 

D 

D 

r'r'a 
1 1 

r'x 1 

rifld 

D 

r 2x 

c2r 1d 

D 

...... , ................................................ . 

= 

i r1x 

r2x ! c3r1dl 

= 

(since c
3
r 1a o

3 
r1x = r1x 

r
1
x o

3 
c

3
r

1
d = c

3
r

1
d) 

AI-5 

c3r 1d D 

rlrld D 

D D 

f'a:; o f X = ~ -2 3 2 ... 2.., and 



= 

since 

r'r'a 
1 1 

r'x 
1 

r1r 1
d 

r1r;ai 

column 2 = c2(rla 02 a; 02 rld) and column 3 = rlcrla 02 a; 02 rld) 

then, column 2 °2 column 3 = column 3, and so 

RHS = 

= 

since 

column 1 = r' (r'a O (I; 
1 1 2 

0
2 r

1
d) and column 2 = r (r'a 

1 1 02 a; 02 

then column 1 o 2 column 2 = cl(rla 02 ~ 02 rld) ' 
and so 

RHS = 

c1r1a 

= cl~ = cl(rla 02 a; 02 rld) = clv,lx = tc1x . 

cl1d 

Similarly we can prove that tr2x = c1~~. Thus tr1x = c1~x and 

tr1x = c
1
tx, for 1 < n ~ 3. □ 

AI-6 

r
1
d) 



Proof of Proposition 3.2.5 

(1) For 1 = 1 , we have 

~Cx ol il = W1W2W1Cx ol il 

APPENDIX II 

1 0 
= w1w2 ccw1x 0

2 c 1a2i) 0
1 (c1a2x 0

2 w1i)J by (2.5.6) 

= W1 [~2(~1~ o2 cla~i) ol W2(cla~~ o2 W1i>J by (2.5.6) 

{ 
1 1 0 1 

= W1 [(W2W1X 03 c2a3c1a2i) 02 (c2a3wl~ 03 W2c1a2i)l 01 

[Cw2c1a~~ 0
3 c2a1w1i) 0

2 (c2a~c 1a~~ 0
3 w2w1i>l} by (2.5.6) 

To simplify the situation let 

1 1 0 1 
Al= (W2W1~ o3 c2a3c1a2i) A2 = (c2a3w1~ o3 W2c1a2i) 

0 1 0 0 
A3 = (w2c 1a2~ 0

3 c2a 3w1i) and A4 = (c2a 3c1a2~ 0
3 w2w1i) , then 

~(x ol i) = W1 [(Al o2 A2) ol (A3 o2 A4)l 

1 
= [Wl (Al o2 A2) o2 c1a2(A3 o2 A4)l ol 

0 
[c1a2(Al 02 A2) 02 W1 (A3 02 A4)l by (2.5.6) 

= {[(cla~Al o2 W1A2) ol (WlAl o2 cla~A2)] o2 cla~A4} ol 

{c1a~A1 02 [(cla~A3 02 W1A4) 01 (W1A3 02 c1a!A4)l} 

by (2.5.6) and (1.2. l)(i) 

We now compute each entry alone; 

0 0 1 1 
c1a1A1 s c1a1(~2W1~ o3 c2a3c1a2~) 

0 0 1 1 
= c181~2W1~ 03 c1a1c2a3cla2~ by ( 1. 2 . 1 ) (l ) 
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by ( 2. 5. 2 ) ( i i ) and ( 1 . 1 . 1 ) ( i i i ) 

0 g C 1 2 1 1 
= (cllj,lalx) 02 (cllj,la2:i:) o3 c1a2a2y. by (2.5.6) 

0 g C 1 2 
= ( (cllj,lalx) 02 (cllj,la2:i:)) 03 c1 u 

0 g C 1 U 
= ((cllj,lalx) 02 (clij,la2:i:)) 

O gu C 1 U 
= (clv,lalx) 02 (clv,la2:i:) 

O 1 0 1 
"11A2 = "11(c283"11::t 03 "12c1a2y.) = lj,lc2a3v,lx 03 "11"12c18 2Y. 

0 1 0 1 
= cla3ij,1::t 03 "11c1"1182Y- = cllj,183::t 03 c1"1182Y.' 

by (2.5.6) , (2.5.6)(11) 

1 o - c , > ct ao ,,. a 1 - , since a
1
c

1
"1

1
a3 - c1 ec an 1c 1~1 2y. - c1d u, then by 3.4. 1 

O 1 0 d'u ec' 1 
LHS = c1"1183::t 03 c1"'182Y- = (cllj,la3::t) 02 (c1"'182Y.) 

by ( 2. 5. 3 ) ( ii ) 

1 1 0 1 1 0 1 1 
c1a1A2 = clal(c2a31j,lx 03 "12c1a2y.) = clalc2a3v,1::t 0 3 c18 1"12c18 2Y. 

1 0 1 1 
= c1c18 1"'18 3::t 0 3 c1"118 1c18 2Y. 

2 0 0 1 0 1 
= c1(828 3::t 0 1 8 183::t) 03 c1"118 2Y-

2 = c ec' 
1 

AII-2 

by ( 1. 2. 1 )( 1) 

by ( 1. 1. 1 )( ii 1) 

by ( 2. 5. 2 ) ( ii 1) 



1 1 0 0 1 0 0 1 
8 182A4 = 8 182(c2a3cla2x 0 3 ~2~1i) = cla2c2a3cla2x 0 3 c182~2~1i 

by ( 1 . 2. 1 ) ( i ) 

by ( 1. 1. 1 ) (i ii ) and ( 2 . 5 . 2 ) Ci 1 i ) 

2 0 0 0 1 1 
= c1a2a2x o3 c1(~1a3i o2 c1a1a1i) 

by ( 1 . 1 . 1 ) ( 111 ) and ( 2. 5. 2 ) ( i ) 

0 0 1 1 0 0 1 1 
c1a2A1 = c1a2(~2~1x 0 3 c2a3cla2i) = c182~2~1x 0 3 c1a2c2a3c1a2i 

by ( 1. 2. 1 ) ( i ) 

by (2.S.2)(ii) 

0 0 0 1 0 0 0 1 
cla1A3 = cla1(~2cla2x 0 3 c2a3~1~) = c18 1~2c1a2x 0 3 clalc2a3~1i 

by (1.2.l)(i) 

by ( 2. 5. 2 ) ( 1 ) and ( 1 . 1 . 1 ) ( 1 1 1 ) 

0 2 0 1 1 1 
= c1~182~ 0 3 c1C8 183~ 0 1 8283~> by ( 2. 5. 2 )( 1 i) 
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by ( 2. 5. 3) (i i ) 

0 1 0 1 
~1A3 = ~1<~2c1a2x 03 c2a3~1~) = ~1~2cla2x 03 ~lc2a3~1~ by <2- 5- 6 ) 

0 1 0 1 
= ~lcl~la2x 03 cl~la3~ = cl~la2x 03 cl~la3~ • 

since a!c
1
~

1
a~x = c1(ea') and a~c1~1a;~ = b'u, then by 3.4. 1 

o 1 0 b'u ea' 1 
LHS = cl~la2x 03 cl~la3~ = (cl~la2x) 02 (cl~la3~) 

1 1 0 0 1 0 0 1 
clalA4 = c1a1<c2a3cla2x o3 ~2~1~> = clalc2a3cla2x o3 c1a1~2~1~ 

by ( 1. 2. 1 )( i) 

1 0 0 1 . 
= clclalcla2a2x 03 cl~lal~l~ by ( 1. 1. 1 ) ( ii i) 

2 0 0 0 1 
= c1a2a2x o3 cl~l (a2~ ol al~) 

by ( 1 . 1. 1 ) ( iii ) and ( 2. 5. 2 ) ( i i i ) 

We now come back to our original equation 

and compute the entries as follows 
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0 g C 1 0 d' u ( l{lx) u l = [ ( (clljJlalx) o2 (clljJla2x) o2 ( C 1 VJ 1 a 3X) ) 0 1 0 
2 

ec' 1 ec' 1 
[ c c 1 t/11 a 211- > 01 Cc 1 t/11 a211-> J 

0 g C 1 0 d' (l{lx) l u = [((c11/J181x) 02 (clljJla2::c) 02 (cl t/11 a3::c) ) 01 02 

ec' 1 
(cl 1/11 a211-> 

u ec' 1 
= (l{l::c) 0 2 (cl "'182!f) 

and 

0 b'u O b'u 
= [(c11/J1a2::c) 0 1 (clv,la2::c) J 02 

e e a' 1 0 b" s 1 
[ ( "'11- > 0 1 ( c ( c 1t/11 a 311- > 0 2 ( c 1t/11 a 211- > 0 2 ( c 1t/11 a 1 If » 1 0 2 

0 b'u e 
= (c

1
1/1

1
a

2
::c) 0

2 
('l'!f) , by the folded face formula of ('ll!f) . 

Thus the final evaluation of our equation is 

u ec' 1 e O d" 
= [ c i::c > 0 2 c c 11/11 a 211- > 0 2 c c 1 v, 1 a 311- > 1 0 1 

a 1 u O b'u e 
[ c v, 1 a 3::c) 0 2 cc 11/11 a 2::c > 0 2 c tu,> 1 · 

For the other cases we will not mention the laws since they ar~ 

the same as those used in (i) 

AII-5 



(ii) for i = 2, we have 

~(x o2 1) = ~1~2~l(x o2 1) 

0 
= W1W2[(clalx o2 "111) ol 

1 
<"'1x o2 c1a11)J 

0 
= "11["12<c1a1x 02 "11r> 01 "'2<"'1x 02 

1 
c1a11>J 

0 1 0 0 
= ~l{[(I/J2clalx 03 c283"11f) 02 (c2a3clalx 03 "12"111)] 01 

1 1 0 1 
[("'2"'1x o3 c2a3clali) o2 (c2a3"11x o3 "12c1a11ll} 

To simplify the situation we write 

0 1 0 0 
Al= (I/J2clalx o3 c2a3~lf) • A2 = (c2a3clalx o3 "'2"'1r> • 

1 1 0 1 
A3 = (I/J2"11x o3 ci3clal1) and A4 = (c2831/Jlx o3 "12c181f) • so our 

equation becomes 

~(x o2 1) = 1/Jl{[Al o2 A2] ol [A3 o2 A4]} 

1 
= (1/Jl[Al 02 A2] 02 cla2[A3 02 A4l) 01 

0 
(cla2[Al 02 A21 02 "'1[A3 02 A4ll 

0 1 1 
= {((clalAl 02 "'1A2) 01 (1/JlAl 02 cla1A2)J 02 cla2A4} 01 

{cla~Al 02 [(cla~A3 02 "11A4) 01 ("'1A3 02 c1a!A4)l} • 

we calculate each entry alone, so we have 

O O O 1 0 0 0 1 
c1a1A1 = c1a1<"12c1a1x o3 c2a3"11r> = c1a1"12c1a1x o3 c1a1c2a3"11r 

0 0 0 1 
= c1"'1alclalx o3 c1c1a1~1a31 

0 2 0 1 1 1 
= c1"1181x o3 c1<a1a31 ol a2a31> 

O 2 O rg' 
= c

1
"1

1
a

1
x o

3 
c 1(rg') = (c1"11a 1x) 
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0 0 = c1c1az8 1x 03 >111-

2 
03 >111-= c1c 

= c(t1-) 
' 

0 1 0 1 
~1A1 = ~1(~2clalx 0 3 c2a3~11-> = ~1~2c1a1x 03 ~1cza3~11-

o 1 
= ~lcl~lalx 03 cla3~11 

0 1 
= cl~lalx 03 c1~1a3f 

0 1 
= cl~lalx 03 c1~1a31-' 

1 0 0 1 since a 1c 1~1a 1x = cd and a 1c1~1a3i then by 3.4. 1 

0 rg' cd 1 
LHS = (cl~lalx) 02 (c1~1a31-> 

1 1 0 0 1 0 0 1 
c1a1A2 = clal(c2a3clalx 0 3 ~2~11-> = clalc2a3clalx 0 3 c181~2~1f 

1 0 0 1 
= clclala3clalx 03 c1~181~11 

2 1 0 0 0 1 
= c1a1c1a2a1x 03 c1~1<a21- 01 a11-> 

2 0 1 1 0 0 1 
= c2c 03 c1[<~1821 02 c1a2a11-> 01 <c1a2821 0 2 ~181f)l 

2 0 1 1 2 0 0 1 
= c2c 03 [(c1~1a21 03 c1c1a2a11> 02 (c1a2a21- 03 c1~1a11->l 

2 [ ( 0 2 I ) ( 2f ,/, a 1 ) ] 
= c2c 03 ~1c1a21 °3 clr 0 2 cl 03 ~lcl 11 

_ cc ,,. ao 2 , l c ( 2r ,,. a 1 ) 
- cl~l 21 0 3 clr 0 2 cl 0 3 cl~l 11 

c O r' cf 1 c O r' cf 1 
= (c1~1a21-> ) 02 ( (c1~1a11->) = (c1~1a21 > 0 2 (c1~1a11-> 

1 1 0 1 1 0 1 1 
cla2A4 = cla2(c2a3~1x 03 ~2c1a11) = cla2c2a3~1x 03 c1a2~2c1a1f 

0 1 1 
= cl~la3x 03 c1a2c1~1a11-
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0 1 1 
= cllj,183x o3 c1c1811/1181f 

0 2 0 1 1 1 
= cll/Jl83x o3 cl (82811 ol 81811> 

O O O 1 0 0 0 1 
c182Al = c182(1/J2c181x o3 c2831/111> = c1821/12c181x o3 c182c2831P11 

O O 1 0 1 
= c1(82cl8lx o2 83c18lx) o3 c1831P11 

0 0 1 0 1 
= cl(c18181x o2 c18281x> o3 c11/11831 

2 0 0 1 0 1 
= c1(8181x ol 8281x> o3 c11/11831 

2 1 
= cl(a ol b) o3 cllj,1831 

ab 1 ) 
= (cllj,1831 

O O 1 1 _ 0 0 1 1 
c181A3 = c181(1/121/11X o3 c283c1811> - c1811/121/11x o3 c181c283c1811 

0 0 1 1 
= c11/11811/11X o3 c1c181c182a11 

0 1 2 1 1 
= c11/11 (81x ol 82x> o3 c1a2811 

0 1 1 0 0 1 2 = c
1 

[(IJ,
1
8

1
x o

2 
c

1
8

2
82x) 0

1 (c182a 1x o2 1J,1a2x)] o3 c 1r' 

0 2 2 1 2 
= [(cllj,lalx o3 clg) o2 (clc o3 cllj,la2x)] o3 ctr' 

0 g C 1 r' 
= [ (c11/1181x) ) o2 (cllj,la2x) l 

0 1 0 1 
1/11A4 = 1/11(c2831P1X 0 3 I/J2c18 11 ) = 1/11c2a3¢1x 0 3 1/111/12c18 11 

0 1 
= cllj,1a3x 0 3 IP1C1IP18 11 

0 1 0 1 
= c11P183x 0 3 £11/118 11 = £11P183x 0 3 c11/118 11 
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· a1
,u a0 - ' d a0

,u a1 - d' ' th 3 4 since 1'f' 1c 1 3~ - ec an 1'f' 1c 1 1
1 - r , en by .. 1 

1 1 1 1 
t/11A3 = t/11 (t/121/11~ 0 3 c283c1811 > = t/111/121/11~ 0 3 t/J1c283c1811 

1 1 1 1 
= ~~ o3 c183c1811 = ~~ o3 c1c182a11 

1 1 0 1 1 0 1 1 
c18 1A4 = c181 (c283t/J1~ 0 3 t/12£1811 > = c181c283t/J1~ 0 3 c18 1t/J2c18 11 

1 0 1 1 
= c1c18 1t/J183~ 0 3 c1t/J18 1c1811 

2 0 0 1 0 1 
= cl (8283~ 0 1 8183~> 0 3 c1t/J1811 

We come back to our original equation 

0 1 1 
t(~ 0 2 1 > = {[(clalAl 0 2 t/11A2) 0 1 (t/J1Al 0 2 c18 1A2)l 0 2 c182A4} 0 1 

0 0 1 
{c182A1 °2 [(c18 1A3 °2 t/11A4) 0 1 (t/JlAJ 0 2 c181A4)l} • 

and compute the entries as follows 

0 1 
[(clalAl 0 2 t/11A2) 0 1 (t/JlAl 0 2 c18 1A2)] = 

0 rg' c O rg' cd 1 
[(c1t/J18 1~) 0 2 (tJ)] 0 1 [(c1t/J18 1x) 0 2 (c1t/J183f) 

c O r' cf 1 
(c1t/J1821 ) 0 2 (c1t/J18 1f)] 

0 rg' C 
= (c 1t/J1a 1~) 0

2 (ti) , by the folded face formula of ~1 

and 
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0 g C 1 0 d' r' r' 
= [((clwlalx) o2 (clwla2x) o2 (c1w1a3x) ) 01 ('l'x) ] o

2 

ec' 1 
C Cw1c1a11l ol 

ec' 1 
cw1c1a11)] 

0 g C 1 ) 0 d' r' ('l'x)]r' = [((clwlalx) o2 (clwla2x 02 (c1w1 a3
x) ) 01 02 

Thus the final evaluation of our equation ls 

0 1 1 
'l'(x o2 1) = {[(c181A1 o2 W1A2) ol (WlAl o2 c181A2)] o2 c182A4} ol 

0 0 1 
{c182Al o2 [(c181A3 o2 W1A4) ol (W1A3 o2 c181A4)]}' 

0 rg' C O p'q' 
= [ ( C 1 w 1 a 1 X) 0 2 ( '111) 0 2 ( C 1 w 1 a 3x) ] 0 1 

ab 1 r' ec' 1 
[ (c1W1a31) o2 ('l'x) o2 Cwlclal1)J 

(ill) for 1 = 3, we have 

'l'Cx o
3 

t) = w1w2w1Cx 0
3 t) 

0 1 
W1W2(W1X 03 wlt) = W1 [(c2a2wlx 03 W2W1t) 02 (W2W1X 03 c2a2wlt)] 
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0 0 0 0 1 1 
= ((clclalclalalx 03 c1t/1181t/11-t) 02 C"'x 03 clclalal-t)l 01 

0 0 1 1 1 1 
[(clclalalx 03 "'-t) 02 (c1t/J181t/11x 03 clclalclalal-t)J 

= ((cfa 0
3 

c
1
{(w

1
a~-t 02 c 1g") 0

1 (c
1

b 0
2 

w
1
a~-t)}) 0

2 
("'x)w'] 0

1 

((a("'-t) 0
2 

c
1

{(t/11a~x 02 c 1b') 0
1 (c 1e 0

2 
w

1
a~xl}l 0

3 
cfw'll 

= [(cfa 03 {(clt/118~-t 03 cfg") 02 ccfb 03 Clt/1181-t)}) 02 ("'x)w' l 01 

a O 2b') ( 2 1 2 
[( ("'-t) 02 {(clt/J182a; 03 cl 02 cle 03 clt/1181x)}) 03 c1w' )] 

a O 2 w' 2 1 w' [ ("'-t) 0
2 

(c
1

t/1
1
a

2
x 0

3 
c

1
b') 0

2 (c 1e 0
3 c 1t/J1a

1
x) ] 

a O g" ab 1 ) w' 
= [ ((clt/118 1-t) ) 02 ( (c1t/118 2t,) 0 2 ("1a;) l 0 1 
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