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Abstract 
 

 

What happens in our mind before we produce a word? It is known that naming a picture of a dog is 

faster than naming a picture of a couch. One possibility why this happens is because a picture of a dog 

will almost always be named as “dog”, whereas a picture of a couch may elicit the name “sofa” or 

even “settee”, indicating lower picture-name agreement. Picture name agreement is a measure of the 

proportion of speakers who independently produce a picture’s modal name when asked to name it. 

This measure of lexical availability for pictures is associated with robust effects in word production, 

which have been assumed to index the competition between lexical representations for selection. On 

this account, “couch” and “sofa” actively race for selection, delaying production speed, until the best 

option is ultimately chosen. But is such competition warranted? The research reported in the current 

thesis examined picture name agreement as a measure of lexical co-activation in word production in a 

bid to clarify whether selecting words for speech requires such an active competition between 

representations. By measuring speakers’ word choices, naming latencies and electrophysiological 

activity as they named pictures with high and low name agreement in a variety of simple tasks, I was 

able to show that these effects point to the co-activation of linguistic representations in their minds, 

but also index speakers’ unique idiosyncratic preferences for specific words. Overall, variations in 

picture name agreement fail to provide strong support for a competitive account of lexical selection, 

but instead favor a view in which co-activation of words in the mental lexicon appears to be effortful, 

but eventually leads to the successful production of the best candidate for each individual speaker. 
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1.1 On language and word production  

Language is, undeniably, the most complex communication system in the known universe and 

the act of speaking alone is an acquired mastery developed through years of neurobiological evolution 

from the earliest ancestors (Fisher, 2019). The average baby will articulate their first words at around 

10 months of age (Schneider, Yurovsky, & Frank, 2015), while the average monolingual adult says 

about 16 thousand words per day in their native language (Mehl, Vazire, Ramírez-Esparza, Slatcher & 

Pennebaker, 2007) speaking at a rate of 1 to 2 words per second (Yuan, Liberman & Cieri, 2006). 

Through decades of intensive research in cognitive science fields, speaking has extensively been 

investigated as both a unique and complex mastery of everyday communication and as a window into 

further understanding the human brain.  

Thirty-one years after Levelt’s (1989) seminal work “Speaking” was first published, the field 

of language production is still growing, while, at the same time, new findings provide invaluable 

insight into the core questions related to speaking. In order to broadly understand how communicative 

language production works, it is necessary to have a well-established model of how the brain processes 

the smallest, independent, semantically meaningful unit: words. The literature abounds with invaluable 

empirical insights about the cognitive processes that precede single word retrieval. For instance, it is 

generally agreed that even before selecting a word of their choice, speakers are processing the 

conceptual, semantic, lexical and phonological properties of the intended word and other similar words 

in their mental lexicons (Dell, 1986; Levelt, Roelofs & Meyer, 1999). However, several narrower 

theoretical questions remain either partially unanswered or hotly debated to this day: How does the 

human brain select one appropriate word, out of the tens of thousands that one knows, for articulation? 

Do speakers continuously monitor their speech in typical everyday production? What is the precise 

nature of the mechanism that is involved in word selection? The current work aims to contribute to a 

better understanding of the answers to these smaller, yet very important, questions. 
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A central area of interest in the current work is how the brain selects a single word for 

production. In order to produce the intended word, speakers must initially select it amongst numerous 

equally suitable alternatives from their mental lexicon, a process known as lexical selection, and then 

compute the articulatory movements of production based on its phonological properties (Levelt, 1991). 

Lexical selection is perhaps the most integral aspect of language production and, despite being a 

remarkably fast and automatic process, it can also become unexpectedly challenging, for instance for 

individuals with language disorders (e.g., Dell, Schwartz, Martin, Saffran & Gagnon, 1997). The 

nature and mechanisms that underlie lexical selection in typically developed adults have been 

extensively investigated and concurrently hotly debated in the field, with one prominent view 

suggesting that selection speed simply depends on the weight of the target word only, independent of 

other words in the mental lexicon (Dell, 1986; Mahon, Costa, Peterson, Vargas & Caramazza, 2007), 

and the alternative hypothesis arguing that selection is an actively competitive process that depends on 

the weight of other co-activated lexical representations (Levelt et al., 1999). The nature of the selection 

mechanism is usually investigated by examining retrieval speed in variations of picture naming tasks, 

like simple picture naming (Bose & Schafer, 2017), picture naming norms (Bates et al., 2003), picture 

word interference (Glase & Düngelhoff, 1984), blocked cyclic naming (Crowther & Martin, 2014) and 

continuous naming (Aristei, Zwitserlood & Abdel Rahman, 2012).  

In simple picture naming, researchers try to address the nature of lexical selection by evaluating 

the behavioral effects of word production in relation to the proportion of participants in a norming 

study who volunteer a picture’s modal name (i.e., the most frequent non-omission response), which is 

referred to as picture name agreement. Pictures with high name agreement (e.g., dog) clearly elicit a 

single dominant name in participants’ responses, while low name agreement pictures (e.g., couch) are 

named with a wider variety of, often, similarly appropriate words (e.g., sofa, settee or even armchair). 

Low name agreement is associated with robust behavioral and electrophysiological effects in naming 

and most studies interpret those as directly indexing within-speaker ambiguity in the form of 
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competition between possible names (e.g., Shao, Roelofs, Acheson, & Meyer, 2014; Bose & Schafer, 

2017). For instance, naming a picture of a dog presumably requires fewer cognitive resources than 

naming a picture of a couch, which can also be called a sofa or a settee, and significantly fewer 

compared to a picture with increased name uncertainty, like that of an electric can opener, for which 

individuals produce sixteen different names (Székely et al., 2003).Under the assumption that weaker 

dominant name agreement or higher numbers of alternatives imply stronger competition, the 

behavioral and neural effects of this increased variability are often claimed to reflect the ongoing, 

systematic competition between “couch”, “sofa” and “armchair” to be selected for articulation (e.g., 

Bates et al., 2003; Szekely et al., 2004; Alario et al., 2004; Kan & Thompson-Schill, 2004; Novick, 

Kan, Trueswell & Thompson-Schill, 2009; Rodríguez-Ferreiro, Menéndez, Ribacoba, & Cuetos, 2009; 

Bose & Schafer, 2017; Cheng, Schafer, & Akyürek, 2010; Shao et al., 2014). However, while the 

behavioral and neural costs of low picture name agreement are very robust, and the competition 

explanation of them seems prima facie cognitively plausible, the existing evidence does not 

specifically establish that the effects stem from active lexical competition, instead of merely reflecting 

the cost that comes with weak target activation and increased co-activation of alternative words.  

 

1.2 Overview of the thesis 

The current thesis aims to elucidate the psychological and neural bases of word production, by 

questioning and empirically assessing several key assumptions that underlie the common interpretation 

of name agreement effects as indexing a competitive lexical selection process. In Chapter 1, I review 

the current literature on word production and picture name agreement and discuss some of the 

important conceptual issues that drive the current experimental work. Chapter 2 presents a detailed 

overview of the behavioral, electrophysiological, and analytical techniques used in the following 

experimental chapters. A key issue towards understanding the impact of picture name agreement on 

word production processes is to initially assess whether name agreement is a reliable measure of lexical 
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co-activation within the individual speaker. Chapter 3 reports an investigation of whether such 

variations in name agreement directly index the options that each individual considers in each word 

retrieval or  instead reflect heterogeneity among individuals’ stable word preferences, i.e., their 

idiolects. Chapter 4 provides another important step towards understanding how lexical selection 

typically works, by evaluating whether the mechanisms that are associated with low name agreement 

(choosing ‘sofa’ over ‘couch’ in simple picture naming) resemble those that speakers engage to 

accomplish directed name changes (overriding an existing preference for ‘sofa’ in order to produce 

‘couch’ instead). Finally, Chapter 5 provides an exploratory baseline assessment of 

electrophysiological modulations associated with low name agreement, specifically focusing on cases 

of limited within-speaker lexical co-activation. By understanding how picture name agreement 

variations affect word production processes, the current thesis aims to further clarify the nature of the 

mechanism involved in lexical selection and at the same time bridge the gap between the cognitively 

plausible models of word production and the experimentally supported evidence for either one of them.  

 

1.3 Review of the literature on word production 

So how does the intention to communicate an idea become the act of articulating a single word? 

The most prominent models of language production agree on the existence of three necessary 

processing levels before producing a single word: conceptualisation, formulation and articulation 

(Caramazza, 1997; Dell, 1986; Dell et al., 1997; Levelt et al., 1999). During conceptualisation, the 

abstract concept of speech is determined, which can also be triggered by external perceptual visual or 

auditory stimuli (Levelt et al., 1999). Although it is yet inconclusive whether the conceptualizer 

involves any linguistic knowledge (Levinson, 1997) or not (Bierwisch & Schreuder, 1992), it is 

generally assumed that during conceptualization, the content (i.e., the what) of speaking is determined. 

Following, the abstract representation is further processed for lexical retrieval in formulation, where 

its word form is accessed (word or “lemma” selection), along with its phonological properties 
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(phonological encoding). Finally, during articulation, the lexical and phonological features of the 

intended word are executed into motor programmes, resulting in the actual act of speaking (Griffin & 

Ferreira, 2006). An additional optional process of self-monitoring is thought to be involved in word 

production, whereby speakers monitor their responses according to certain metrics or heuristics, either 

via the comprehension system (Levelt et al., 1999) or by a production-based process (Nozari, Dell, & 

Schwartz, 2011).  

 

1.3.1 Major differences between models of word production 

Although the literature generally agrees on the existence of these three essential processes 

involved in speech production, there are certain qualitative differences in both the interaction between 

these processing levels and in how knowledge is individually represented at each level. Discrete/serial 

models of word production (Levelt, 1989; Levelt et al., 1991; Levelt et al., 1999; Schriefers, Meyer, 

& Levelt, 1990), view conceptualization, formulation and articulation as modular processes (Fodor, 

1983) and argue that there is no feedback activation from lower levels to the higher levels of processing 

(feed-forward only processing). According to this view, only after the target lexical representation has 

been selected, it can pass on activation to its corresponding phonological nodes. For instance, only 

after the selection of “dog” has been completed, / /d/, /ɒ/, and ɡ/ can receive activation in phonological 

encoding. Cascaded and interactive models of lexical access (Caramazza, 1997; Costa, Caramazza, & 

Sebastian-Galles, 2000; Cutting & Ferreira, 1999; Dell, 1986; Dell et al., 1997; Dell & O'Seaghdha, 

1991; Morsella & Miozzo, 2002; Peterson & Savoy, 1998) on the other hand, are rooted on the idea of 

spreading activation within the system, wherein the processing levels are not discrete but 

interconnected and the activation can flow from the lowest points of sublexical levels to higher levels 

of processing (feedback processing). In these models, activation can proportionally flow from lexical 

representations to phonological nodes even before lexical selection has been completed, with the 

addition that it can also flow backwards: from phonological nodes to their corresponding lexical 
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representations. Following the example above, /d/, /ɒ/, and ɡ/ could have received activation even 

before the selection of “dog” has been completed, while they can also proportionally pass on their 

activation back to the level of lexical selection. In noisy production circumstances, false nodes may 

receive higher activation than the right nodes, resulting in a speech error, like erroneously producing 

the word “dag” instead. The nature of such mixed errors in normal and aphasic speech strengthens the 

possibility that activation at the phonological level may reflect back on activation at earlier processes 

(Dell 1986; Martin, 1996; Rapp & Goldrick, 2000), however serial models instead ascribe such error 

patterns to a post-lexical self-monitoring mechanism that is not part of the production system (Levelt 

et al., 1991;1999; Roelofs, 2004). 

Another major difference between these two classes of models lies in their view of how 

linguistic information is retrieved from the mental lexicon during the process of formulation. To this 

date, there is an inconclusive debate on the nature of the mechanism that determines lexical selection. 

A family of production models suggest that lexical selection is a competitive process (e.g., Levelt et 

al., 1999), while others view lexical selection as non-competitive (e.g., Mahon et al., 2007). But what 

exactly is lexical competition? It is generally agreed that the activated semantic nodes (e.g., four-

legged, pet, furry) pass on their proportional activation to their corresponding words or “lemmas” 

(e.g.,“dog”, “cat”) (Dell, 1986; Levelt et al., 1999). The competition hypothesis assumes that, in cases 

where more than one lexical node receives activation (e.g., dog and cat are both activated in the “lemma 

stratum”), the process of lexical selection is delayed (Levelt et al., 1999; Roelofs 1992; 1993; 1997; 

2018), meaning that the time required to select the target word is negatively affected by the relative 

activation of all other nontarget words in the mental lexicon. One possibility of how this happens in 

the production system is via lateral inhibition: concurrently activated nodes can pass on inhibitory 

activation -which is relative to their own activation levels- to other nodes and this process delays 

retrieval speed (Cutting & Ferreira, 1999; Howard, Nickels, Coltheart, & Cole-Virtue, 2006). An 

alternative way to model the principle of competition, in which co-activated nodes do not modulate 
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each other in real time, was proposed by Roelofs (1997) and extended by Levelt et al. (1999) and that 

is via a probabilistic selection process determined by the Luce choice ratio (Luce, 1959), which 

suggests that selection probability of a single word equals the ratio of its activation to that of all the 

other activated words in the system. This probability of a particular word to be selected at any given 

time is the most critical principle of competition in Levelt et al.’s (1999) model, because it suggests 

that competitive lexical selection should have profound chronometric effects (i.e., effects in response 

times). In this framework, the hypothesis of lexical competition was formulated with a focus on 

studying reaction time (RT) effects in “normal” word production and not by examining speech errors, 

which Levelt et al. (1999) considered as “infrequent derailments of the process” (p.2). 

Other accounts either view lexical selection as strictly non-competitive, or are agnostic in 

relation to the chronometric effects of lexical selection. In non-competitive theories, the activation of 

a certain lexical representation relative to that of any alternatives still affects its probability of selection 

via a winner-take-all function (e.g., the Luce Choice ratio), but its latency of selection depends on its 

activation alone, irrespective of the number of co-activated alternative words or the total activation of 

other candidates (e.g., Dell et al. 1997; Oppenheim, Dell & Schwartz, 2010). Thus, non-competitive 

models do not assume that formulation of the target lexical representation is slowed down by the 

temporary activation of other candidates in the lexicon and therefore suggest lexical selection is 

fundamentally a non-competitive process (Mahon et al. 2007). Several other word production theories 

do not directly address questions of timing, but they do not incorporate a competitive selection 

mechanism in the narrow sense of Levelt et al.’s (1999) theory either (e.g., Dell, 1986; Stemberger, 

1985; Caramazza, 1997; Rapp & Goldrick, 2000). However, even though non-competitive models do 

not implement competition in the lexical selection process they do not necessarily eliminate 

competition in the broader sense: some theories include competition-like features in other processing 

levels or forms, such as competitive learning (Oppenheim et al., 2010) or later-stage response 

interference (Mahon et al, 2007).  
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1.3.2 Lexical selection in word production: evidence for and against competition 

Since the main prediction of the lexical competition theory is that the naming latencies of the 

target word will increase as the levels of co-activation of similar lexical entries increase, the majority 

of the empirical evidence supporting competition derive from paradigms which attempt to manipulate 

the activation of nontarget words and in particular, the semantic interference effect observed in the 

picture-word interference tasks. In the picture-word interference paradigm, participants are asked to 

name a picture, which is usually a line drawing, as accurately and quickly as possible while ignoring 

a distractor word (either in written or auditory format) presented at the same time with the picture (see 

Bürki, Elbuy, Madec & Vasishth, 2020, for a recent review of the empirical findings in this paradigm). 

Because of the simultaneous processing this paradigm requires, it has been intensely debated whether 

it is a lexical-semantic Stroop task, with different theories attributing the locus of interference either 

at the perceptual encoding stage or during the response selection stage (see Dell’Acqua, Job, Peressotti 

& Pascali, 2007 vs van Maanen, van Rijn & Borst, 2009). The major finding of this task is that picture 

naming is generally faster without any present distractor words (de Zubicaray & McMahon, 2009), 

non-lexical distractors (such as rows of symbols) (Hirschfeld, Jansma, Bölte, & Zwitserlood, 2008), 

or pictorial distractors (Bloem, & La Heij, 2003). The core finding in picture-word interference studies 

is that the naming latency of the target picture (e.g., horse) increases in the presence of categorically 

semantically related distractor words (e.g., dog) compared to unrelated words (e.g., pencil) (e.g., 

Schriefers et al., 1990). In contrast, distractor words with phonological similarity (e.g., cap) are 

associated with faster target naming latencies (e.g., cat), as are semantically non-categorical 

relationships (e.g., part-whole in piano and keys) (Costa, Alario, & Caramazza, 2005) and associative 

relationships (e.g., bone-dog) (Alario, Segui & Ferrand, 2000; Abel et al., 2009; de Zubicaray, Hansen 

& McMahon, 2013).  

This interference caused by semantically related distractors has to this day been the most 

prominent finding in the literature of word production in favour of the lexical selection by competition 
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hypothesis. The main assumption is that semantically related visual distractors co-activate alternative 

lexical representations (i.e., their corresponding lexical nodes which are similar to the target word) 

causing retrieval delay for the target word or “lemma” in production (La Heij, 1988), because the 

selection mechanism is competitive (Levelt et al., 1999): response delay for the target word in picture-

word interference tasks is assumed to reflect the conflict at the level of  formulation and therefore this 

behavioral cost should be directly indicative of a selection mechanism that tries to decide between two 

equally appropriate lexical representations. This interpretation has been widely adopted in the literature 

(Schriefers, et al.,1990; Levelt et al., 1999; Roelofs, 1992; 1993; 2001; 2003), while the interference 

effect has been replicated in a number of different paradigms and tasks (Humphreys, Lloyd-Jones & 

Fias, 1995; Starreveld & La Heij, 1995; Vitkovitch, & Tyrrell, 1999; Damian, & Bowers, 2003; Bloem, 

van den Boogaard, & La Heij, 2004).  

As an alternative, non-competitive explanation of this effect, Mahon et al. (2007) argued that 

the interference previously reported does not arise at the lexical level and presented robust empirical 

evidence which indicates that increased co-activation does not reflect the increased competition during 

lexical selection that Levelt et al., (1999) have described. Mahon et al. (2007) showed that as distractor 

words (e.g., zebra) become more semantically similar to the target word (e.g., horse), naming latencies 

decrease significantly, compared to within-category semantically more distant distractors (e.g., whale). 

The finding that co-activated lexical representations that are semantically closer to the target words 

facilitate the production of the target, imposes an important limitation on the nature of the chronometric 

effects of the competition hypothesis and more specifically on plausibility of using the Luce choice 

rule to explain naming latencies. In line with cascaded models of word production, Mahon et al. (2007), 

claimed that the levels of activation of the non-target nodes do not affect the time required to select 

the target node (as in Dell, 1986) and additionally suggested an alternative explanation of the latency 

effects in picture-word interference tasks: the interference arises at a post-lexical, output level, possibly 

reflecting a decision mechanism that is sensitive to the response-relevant criteria of the paradigm, 
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rather than systematic competition due to increased endogenous co-activation (also known as the 

Response Exclusion Hypothesis). The Response Exclusion Hypothesis, though, is primarily supported 

by empirical findings of semantic facilitation and not semantic interference (see Abdel Rahman & 

Melinger, 2009 for a discussion), which-to date-remains the strongest ally of lexical competition.  

      While the majority of converging evidence in favour of competition mainly originates from 

picture-word interference findings, the alternative theory, that selection is a non-competitive process, 

gains ground from both the speech error literature and empirical findings in other picture naming 

paradigms. In traditionally non-competitive theories, which suggest that the time required to select the 

target word is not dependent on the levels of co-activation of non-target words in the system (e.g., 

Caramazza, 1997; Dell, 1986; Rapp & Goldrick, 2000; Oppenheim, et al.2010), instead of a Luce-

choice-inspired selection principle or lateral inhibition that determines selection latency, selection and 

naming latencies are successfully modeled with non-competitive criteria. A target word is selected for 

production when it reaches an absolute threshold (e.g., Dell et al., 1987; Oppenheim et al., 2010; 

Mahon et al., 2007), irrespective of the relative threshold of activation of other words in the system 

(Roelofs 1992; 1993; 1997; 2018; Levelt et al., 1999).  

Although non-competitive theories were not primarily modeled to account for the chronometric 

effects during lexical retrieval (e.g., Dell et al., 1987) in the way competition did, computational 

principles, like that of cascading activation, feedback processing, and interactivity have historically 

been more robust in explaining the majority of speech error patterns (e.g., Dell, 1986; Dell et al., 1997). 

Other non-competitive theories which do not implement interactivity, but rather suggest that the locus 

of response delay is outside the lexical level (e.g., Mahon et al. 2007) or that latency effects result from 

interference in the form of error-driven lexical learning, have also explained a range of behavioral 

observations by typically developed and clinical populations in word naming tasks without lexical-

level competition (e.g., Oppenheim et al., 2010; Oppenheim, Tainturier & Barr, 2016). Specifically, 

and although it seems rather impossible to directly estimate endogenous lexical-level co-activation 
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within the same trial, the hypothesis of a non-competitive lexical selection has also been tested by 

manipulating co-activation levels across naming instances, as in the blocked cyclic and continuous 

naming paradigms. 

 In picture naming, it is generally accepted that retrieving a particular word from the mental 

lexicon once, makes it easier, less error-prone and faster to retrieve the same word in subsequent trials 

during the same task (Mitchell & Brown, 1988). This is known as repetition priming, a mechanism 

associated with various other cognitive processes, such as lexical access (e.g., Forster & Davis, 1984) 

word identification (e.g., Bodner & Masson, 1997) face recognition (e.g., Ellis, Young, Flude & Hay, 

1987) and visual attention (e.g., Kristjánsson & Campana, 2010). In particular, even a single naming 

episode in picture naming tasks can have very long-lasting effects, facilitating retrieval speed up to 48 

weeks after initial exposure (e.g., Cave, 1997). However, this benefit of repetition in naming for the 

target word also comes with a cost for the ease of accessibility of the other non-selected words in the 

mental lexicon: retrieving a target word once (e.g., cat) delays the subsequent retrieval of other words 

from the same semantic category, which were co-activated but not eventually selected (e.g., dog or 

tiger) (Howard et al., 2006; Vigliocco, Vinson, Damian & Levelt, 2002; Wheeldon & Monsell, 1994; 

Oppenheim et al., 2010; Abdel Rahman & Melinger, 2007; Belke, 2008). This is another form of 

semantically-driven interference in continuous naming, in which naming latencies for within-semantic 

category items (i.e., animals) increase linearly over each ordinal position within that specific category 

(e.g., Howard et al.,2006; Belke, 2013; Costa, Strijkers, Martin, & Thierry, 2009). A typical extension 

of this paradigm is blocked cyclic naming, in which participants name items in separate cycles, either 

in homogeneous blocks consisting of items from the same semantic category (i.e., a block consisting 

only of pictures of animals) or in heterogeneous blocks, which consist of items from different 

categories (i.e., a block consisting of pictures of tools, animals, clothing etc.). Naming latencies in the 

semantically homogenous blocks are almost always longer than in the heterogenous blocks over 
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increased naming cycles (e. g., Belke et al., 2005; Harvey & Schnur, 2016; Schnur, Schwartz, Brecher, 

& Hodgson, 2006).  

In the literature, this effect has also been explained in terms of lexical competition, by assuming 

that semantically related words are slowing down the retrieval of the target, either by modulating the 

activation of the competitors during speech planning (Howard et al., 2006) or by assuming a conceptual 

bias which reverberates lexical activation before a competitive selection emerges (Roelofs, 2018). 

However, as with picture word interference, it has also been shown that a competitive lexical selection 

is not required to account for the interference in continuous and blocked cyclic naming. Instead, the 

interference can be explained by an incremental learning mechanism which, after each retrieval 

episode, readjusts the connections from semantic features into words, by strengthening those of the 

target word (e.g., cat) and weakening those of the unselected competitors (e.g., dog, tiger and horse) 

(Oppenheim et al,. 2010). In paradigms where interference accumulates, lexical selection is delayed in 

the same fashion: after each retrieval the competitor words become less and less accessible, so as their 

ordinal position increases (i.e., as more items from the same semantic category are named), they 

receive more inhibitory activation. This competitive learning and unlearning follow the delta rule, 

which is a core training algorithm in most connectionist models. It is, though, possible that the notion 

of continuous priming as error-based lexical learning based on the delta rule that Oppenheim et al. 

(2010) illustrated as a driving force of the cumulative semantic interference effect, may extended into 

other production tasks as well (see Oppenheim & Balatsou, 2019).  

In any case, while the chronometric effects observed in simpler paradigms, like in continuous 

naming and blocked cyclic naming, can be explained with and without a competitive lexical selection 

process, the majority of the empirical evidence in favour of lexical competition still derive from 

picture-word interference findings (Roelofs, 2018). There remains, thus, a need to address the nature 

of lexical selection either by developing new experimental approaches which can be provide strong 

support for either one of these hypotheses or by revisiting the debate and viewing lexical selection as 



Chapter 1 

 14 

a not necessarily dichotomous process (i.e., either strictly competitive or strictly non-competitive) 

(Nozari & Hepner, 2019; cf. Oppenheim & Balatsou, 2019). In an attempt to bridge the gap between 

strictly competitive and non-competitive theories and the empirical findings supporting them, Nozari 

and Hepner (2019) recently put forward the idea of a flexible criterion determining lexical selection. 

In this framework, the nature of lexical selection is determined by task goals (e.g., speed versus 

accuracy trade-off) and the general capacity of the production system to achieve them (i.e., the inherent 

features of lexical activation), highlighting the difference between the necessary process of co-

activation and a flexible lexical selection, which can emerge as situationally competitive according to 

task demands. When task demands introduce external conflict in the system, which can either be by a 

response trade-off in the task or the demand to name a picture while ignoring a competitor word, the 

criterion for selection is flexibly adjusted to incorporate this competition, while in cases where there 

is not a specific response demand, lexical selection is determined according to the inherent properties 

of the words. A crucial component of the flexible criterion theory is that the selection mechanism itself 

is naturally adjustable and capable of incorporating such constraints in the same level of processing 

and not at a separate, later post-hoc level, as predicted by other theories (e.g., Mahon et al., 2007). 

With these in mind, we (Oppenheim & Balatsou, 2019) have recently advocated for the need 

to distinguish between “studying language production as it is and modifying it to fit particular 

laboratory constraints that we think might highlight particular aspects of the process” (p. 3) and 

proposed that, a necessary step to resolve the debate is to evaluate the chronometric effects of selection 

in paradigms less prone to misinterpretations and more closely resembling communicative speech, 

such as simple picture naming. Simple picture naming, unlike picture-word interference and blocked-

cyclic studies, allows the observation of the behavioral effects associated solely with the ease of lexical 

selection by omitting experiment-specific and circumstantial confounds, like the interference and 

facilitation caused by repetition or by the simultaneous processing of pictures and words. In simple 

picture naming, researchers usually evaluate the behavioral patterns of each word retrieval and their 
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association to common variables of production difficulty, thus, allowing them to make more direct 

associations between the empirical findings in the lab and the nature of the encoding processes. 

 

1.4 Simple picture naming and traditional uses of name agreement  

Simple picture naming is one of the most widely used tasks in cognitive psychology and an 

elementary process of production closely related to the everyday use of language (Glazer, 1992). 

Picture naming is sometimes considered a semantic task, because it requires an obligatory access to 

the semantic system (e.g., Bookheimer, Zeffiro, Blaxton, Gaillard, & Theodore, 1995; Caramazza, 

Hillis, Rapp, & Romani, 1990). Naming a picture also requires object identification, name activation 

and response generation, which corresponds well to the necessary processing stages of word 

production: conceptualization, formulation and articulation (Johnson, Paivio & Clark, 1996). Although 

it is also not yet established whether these processes are serial (e.g., Alario et al., 2004) or cascaded 

(e.g., Humphreys, Riddoch & Quinlan, 1988) in picture naming, along with the general debate on the 

nature of these processes (Dell et al., 1986 vs Levelt et al., 1999), this task has been extensively used 

in word production literature to test hypotheses about the cognitive mechanisms associated with single 

word retrieval.  

Naming a picture was assumed to be an indicative measure to test mental processes from early 

on (e.g. Cattell, 1886; Fraisse, 1968; 1969). In psychological research, timed picture naming has been 

used to investigate language production in typically developed adults (Lachman, 1973; Lachman, 

Shaffer, & Hennrikus, 1974; Sanfeliu & Fernandez, 1996; Snodgrass & Vanderwart, 1980; Snodgrass 

& Yuditsky, 1996; 1999; Torrance et al., 2018), patients with brain injury (Kohn & Goodglass, 1985; 

Chen & Bates, 1998; Druks, 2002; Druks & Shallice, 2000; Goodglass, 1993; Murtha, Chertkow, 

Beauregard, & Evans, 1999; Nilipour, Bakhtiar, Momenian, & Weekes, 2017) as well as both typically 

developed children and children with language impairments (Cycowicz, Friedman, Rothstein, & 

Snodgrass, 1997; D’Amico, Devescovi, & Bates, 2001; Davidoff & Masterson, 1996; Dockrell, 
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Messer, & George, 2001; Nation, Marshall, & Snowling, 2001; Nilipour, Pourshahbaz, & Momenian, 

2017). In brain research, simple picture naming has been extensively used as a task in fMRI studies 

(e.g., Spitzer, Kwong, Kennedy, Rosen, & Belliveau, 1995; Damasio et al., 2001; Hernandez, Dapretto, 

Mazziotta, & Bookheimer, 2001; de Zubicaray, McMahon, Eastburn & Pringle; 2006; Saccuman et al, 

2006; de Zubicaray, & McMahon, 2009; Liljeström, Hultén, Parkkonen & Salmelin, 2009; Bose & 

Schafer, 2017) as well as in Event-Related Potentials (ERPs) studies (e.g., Barrett & Rugg, 1990; 

Schmitt, Münte, & Kutas, 2000; van Turennout, Hagoort, & Brown, 1997;1998;1999; Wicha, Bates, 

Moreno, & Kutas, 2000; Verhoef, Roelofs & Chwilla, 2009; Cheng et al., 2010; Laganaro, Python & 

Toepel, 2013; Shao et al., 2014).  

Timed picture naming is also methodologically useful in cognitive psychology in order to 

collect norms, a set of standardized pictures that can be later used by other researchers who wish to 

include valid stimuli when designing experiments (Snodgrass & Vanderwart, 1980; Snodgrass & 

Yuditsky, 1996; Bates et al., 2000; 2003; Szekely et al., 2003). Researchers typically select the better 

recognized pictures amongst the pool of norms, in order to use them as unbiased material to test a 

variety of cognitive processes in typical adults (e.g., Laganaro, Valente & Cyril, 2012; Valente & 

Laganaro, 2015) and clinical populations (Bormann, Kulke, Wallesch, & Blanken, 2008; Fieder, 

Nickels, Biedermann, & Best, 2014). In norms and in other simple timed picture naming studies, the 

variables that are associated with each pictorial stimulus and their corresponding lexical responses are 

usually assessed and evaluated in relation to naming latencies (e.g., Bates et al., 2003; Szekely et al., 

2003; Alario et al., 2004). Such variables can be classified as visual (e.g., visual complexity, image 

agreement), visual-to-semantic (e.g., concept familiarity), semantic (e.g., imageability), semantic-to-

lexical (e.g., name agreement), lexical (e.g., word frequency and age of acquisition) or phonological 

(e.g., number of phonemes and syllables of a word) (Alario et al., 2004). From early on in picture 

naming, age of acquisition (an estimate of the age in which a word has been learned) and lexical 

frequency (the degree of use of a word in a language) appeared to have strong effects on retrieval 
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speed, but name agreement soon appeared to have unique effects on naming latencies irrespective of 

these factors (Lachman, Shaffer, & Hennrikus, 1974; Vitkovitch & Tyrrell, 1995; Lachman, 1973; 

Lachman, Lachman, Thronesbery, & Sala, 1980).  

Picture name agreement, sometimes termed codability (Gilhooly & Gilhooly, 1979; Lachman, 

1973; Lachman et al, 1974; 1980) is the empirically-derived measure of the number of different names 

given to an image by the participants who are asked to name it. Stimuli categorically classified as 

pictures of high name agreement usually elicit a single target response from the entire linguistic 

population upon naming. For example, the International Picture Naming Project (IPNP) stimulus 

“obj128dog” is a high name agreement picture in UK English, because the vast majority - if not all - 

of the participants will respond with the word “dog” (pDominantName = 1) (Oppenheim, in prep.). Pictures 

of low name agreement usually elicit various responses amongst a linguistic community: the IPNP 

stimulus “obj472truck” has low name agreement (pDominantName= .59) because it can also be called a 

lorry (pSecondaryName= .37) (Oppenheim, in prep.). Sources of variability in naming can be due to the 

different lexical representations that exist within a community of speakers (i.e., a couch can also be 

called a sofa or a settee by UK-English speakers), the use of possible abbreviations in naming (i.e., 

plane instead of aeroplane) or because a picture may trigger irrelevant responses (i.e., naming a tomato 

as an apple) (Vitkovitch & Tyrrell, 1995).  

Pictures with high name agreement generally elicit faster responses than pictures with low 

name agreement (e.g., Gilhooly & Gilhooly, 1979; Lachman, 1973; Lachman et al., 1974; 1980; 

Vitkovitch & Tyrrell, 1995).  In a large scale normative study in the French language, Alario et al. 

(2004) found that picture name agreement was, independently of eight other statistical predictors 

associated with the conceptual factors in picture naming (image agreement, concept familiarity, visual 

complexity, imagability, age of acquisition, written frequency, number of phonemes, number of 

syllables), the strongest predictor of picture naming speed, validating name agreement as perhaps the 

most important variable to predict retrieval success and speed. Importantly, this strong association 
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between picture name agreement and naming latencies is cross-linguistic (Bates et al., 2003): it has 

been found in American and British English (Snodgrass and Yuditsky, 1996; Ellis and Morrison, 1998; 

Szekely et al., 2004), Spanish (Cuetos et al., 1999), French (Bonin et al., 2002; Kremin et al., 2000), 

Italian (Dell’Acqua et al., 2000), Greek (Dimitropoulou, Duñabeitia, Blitsas, & Carreiras, 2009), 

Japanese (Nishimoto, Ueda, Miyawaki, Une, & Takahashi, 2012) and Persian (Bakhtiar, Nilipour, & 

Weekes, 2013).  

This strong effect which was not language-sensitive elicited the assumption that name 

agreement, apart from a useful methodological variable, should also be a cognitively meaningful 

predictor of individuals’ internal states. Name agreement was initially used as a measure to evaluate 

performance in semantic memory tasks and presented a behavioral dissociation between semantic and 

episodic memory in typically-developed adults: pictures with low name agreement were named with 

longer naming latencies and were more prone to erroneous responses compared to high name 

agreement pictures, which was used to measure semantic memory performance, but they yielded better 

recall performance overall, which was used to measure episodic memory performance (Mitchell, 

1989). The opposite dissociation was observed when lexical frequency was used as a measure, since 

more frequent words were found to be easier to recall for memory (Mandler, Goodman, & Wilkes-

Gibbs,) and at the same time faster in naming (Carroll & White, 1973), indexing a functional difference 

in memory recall for the two most common variables associated with the retrieval of words from the 

mental lexicon (i.e., name agreement and lexical frequency). Other functional differences based on a 

picture’s codability have also been reported, such as the developmental dissociation between repetition 

priming and episodic memory in children and young adults, in which name agreement variations 

persist after repetition but not recall (Lorsbach & Morris, 1991; Mitchell & Brown, 1988).  

 

1.4.1 Picture Name Agreement as an index of lexical competition  
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In relation to theories of word production, the robust effects of picture name agreement have 

been interpreted as an index of the processes that occur within the individual speaker in the level of 

lexical selection. In line with Vitkovitch and Tyrell‘s (1995) sources of name disagreement, 

researchers began noticing that there is a distinction between the uncertainty of pictures and the 

existence of alternative names for the depicted objects, factors that both result in name disagreement. 

The former empirical measure was classified as image agreement and is identified as the match or 

mismatch between a picture and the canonical representation of its depicted object (Alario et al., 2004), 

which also predicts naming latencies (Barry et al., 1997) but is assumed to reflect difficulty at the 

earlier stages of visual and conceptual access and not during formulation of words (e.g., Bonin et al., 

2002). Name agreement variations, on the other hand, have not been found to affect object-decision 

(i.e., the ability to indicate whether the depicted picture is a real object or not) response times (e.g., 

Vitkovitch & Tyrell, 1995) and it is, thus, assumed that their independent influence begins only after 

visual identification has taken place (Johnson, Paivio & Clark, 1996). In cases where the sources of 

disagreement is due to the variability of available names for a picture (i.e., true name agreement) this 

variability in alternative names is thought to affect the conceptual and the lexical stages of word 

production, mostly linked to lexical co-activation and the subsequent level of lexical selection (Alario 

et al., 2004; Johnson et al., 1996) and less frequently attributed to carrying over of the word-form 

activation during phonological encoding (Valente et al. 2014). 

Low name agreement pictures evoke more potential candidates for the name of the depicted 

object than high name agreement pictures, and this induces more effortful processing for the speaker, 

an effect apparent in response times (e.g., Alario et al., 2004; LaGrone & Spieler, 2006). The default 

explanation of this chronometric effect is grounded in the hypothesis of lexical selection by 

competition: name agreement should measure the level of co-activation of alternative lexical nodes 

(i.e., sofa, settee), which creates ongoing conflict between the activated lexical representations, 

slowing target word selection due to increased co-activation (i.e., couch) (e.g., Levelt et al., 1999; 
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Roelofs, 1992; 2003). By assessing the performance difficulty and error patterns in populations with 

semantic and lexical deficits, as well as the neurophysiological effects of naming low name agreement 

pictures in healthy adults, researchers have, thus, created an “off-label” use of name agreement as a 

measure of lexical co-activation, where increased variability in names across subjects is used as a 

measure of the degree of lexical competition within subjects (e.g., Kan & Thompson-Schill, 2004; 

Novick et al., 2009; Rodríguez-Ferreiro et al., 2009; Bose & Schafer, 2017).  

In the neuropsychological literature, older compared to younger adults show larger effects of 

name agreement and this difference has been interpreted in the framework of lexical competition: 

aging decreases the ability to resolve the existing competition among the alternative names that lower 

name agreement pictures evoke (LaGrone & Spieler, 2006). In picture naming in aphasia, lower name 

agreement is associated with more error-prone word production (i.e., producing less appropriate 

responses) in some patients (Kremin et al., 2001; Laiacona et al., 2001; Cameron-Jones & Wilshire, 

2007) and presents different error patterns between patients and age-matched controls (Bose & 

Schafer, 2017). Bose and Shafer (2017), for instance, found that patients with aphasia were less prone 

to name variability in picture naming: typically-developed adults used significantly more alternative 

names than patients for both high and low name agreement pictures, while patients produced 

significantly more omissions and fewer visual errors than typically-developed adults in naming low 

name agreement pictures. This led to a claim that brain damage created an excessive competition in 

the lexical network, which in high conflict conditions (i.e., naming low name agreement pictures) 

significantly increased the patients’ chance of word retrieval failures. A similar pattern was observed 

in patients with dementia: name agreement is a strong predictor of overall naming accuracy (i.e., 

naming a picture with a reasonably appropriate word) in patients with Alzheimer’s disease (Harley & 

Grant, 2004), as they are much more likely to make semantic errors when naming low name agreement 

pictures and fostered the interpretation that the degradation of the semantic and lexical systems as a 
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result of cognitive aging increases the inability to resolve competition at the lexical level (Rodríguez-

Ferreiro et al., 2009).  

In neuroimaging, picture name agreement has been associated with increased left inferior 

frontal gyrus (LIFG) activity: high conflict trials (i.e., low name agreement pictures), elicited greater 

Blood-Oxygen-Level-Dependent (BOLD) activation in the LIFG area (Kan & Thompson-Schill, 

2004). LIFG is assumed to be involved in conflict resolution, when more than one semantic 

representations are competing for a response (Thompson-Schill, et al., 1997). This effect has been 

replicated with healthy individuals, with lower name agreement pictures eliciting increased activity in 

the left frontal operculum and propelling a lexical selection-by competition interpretation (e.g., Kan, 

Kable, Van Scoyoc, Chatterjee & Thompson-Schill, 2006). Complementary to that, Novick et al 

(2009) investigated name agreement variabilities in a patient with restricted damage in LIFG and found 

that they had performed significantly poorer when naming pictures with low name agreement 

compared to patients with lesions in other brain areas and healthy controls. These findings were also 

interpreted in terms of competition: regions of ventrolateral prefrontal cortex which are more active in 

naming low name agreement pictures have been assumed to index the resolution of the representational 

competition that arises when more than one candidate response is available in the production system 

(Novick et al., 2009). 

While high-spatial resolution methods, like fMRI, have allowed to identify the brain regions 

that are sensitive to name agreement variations, researchers have used time-sensitive techniques, like 

Event-Related Potentials , to more specifically attribute these effects to the process of lexical selection 

(e.g., Cheng et al., 2010; Shao et al., 2014). In associating observed effects with word production sub-

stages, most of the literature derives estimations of the temporal and spatial markers based on Indefrey 

and Levelt’s (2004) proposed timeline. After reviewing a large number of picture naming studies, they 

proposed an average timeline in which most word production processes take place, following the serial 

and discrete processing assumptions by Levelt et al.’s (1999) model. According to their proposal, word 
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production consists of a series of discrete stages and ERP effects directly index the onsets and 

conclusions of the stages that generate them: conceptual preparation takes place up to 175 ms post-

stimulus onset, lexical selection between 175 ms and 250 ms, phonological encoding between 250ms 

and 330ms, syllabification between 330 ms and 445 ms  and self-monitoring from 355 ms until after 

articulation (see also Indefrey, 2011 for an updated timeline). Indefrey and Levelt’s (2004) proposed 

timeline, thus, provides a commonly used framework for predicting and interpreting ERP effects of 

name agreement, but the results have not been very consistent: some studies report both earlier and 

later effects (e.g., Cheng et al., 2010), some attribute name agreement effects solely to the time window 

of lexical selection (e.g., Shao et al., 2014, see also Johnson et al., 1996; Alario et al., 2004 for the 

behavioral counterparts), while others find that name agreement modulates only later time windows 

(Valente et al., 2014). 

To my knowledge, Cheng et al. (2010) was the first study to describe the electrophysiological 

effects of picture name agreement, using ERPs. In their experiment, participants silently named 

pictures of objects with high and low name agreement, while the electrical activity of their brain was 

recorded and because of covert naming, it was not possible to record response times behaviorally. They 

observed differences in brain amplitude by varying name agreement starting as early as 100-150 ms 

post-stimulus onset (corresponding to the P1 ERP component), continuing in the 250-350 ms window 

(known as the N2 range). The N2 peaked at 290 ms post-stimulus onset and differences were also 

found in a later time window of (between 800-900 ms). In relation to the proposed timeline proposed 

by Indefrey and Levelt (2004), Cheng et al. (2010) suggested that the P1 differences reflect object 

recognition difficulty for low name agreement pictures, while the N2 effect relates to the window of 

phonological encoding. More specifically, they suggested that the competition between alternative 

lexical items for low name agreement pictures was not resolved during the window of lexical selection 

according to the assumed timeline and for this reason the effect was observed slightly later than 

expected, questioning the strict discreteness of Levelt et al.’s (1999) model.  
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A more explicit competition-based interpretation of name agreement effects in ERPs has 

claimed that lexical selection involves “selective inhibition” of alternative responses, as a specific 

mechanistic implementation of Levelt et al.’s (1999) selection process. Shao et al. (2014), investigated 

the electrophysiological effects of picture name agreement for both object and action naming in an 

overt picture naming task, in which they familiarized participants with the correct names of the pictures 

before the experiment, while they also recorded participants’ naming latencies. To understand how 

name agreement modulates lexical selection, they primarily focused their analysis on the 

corresponding time window in line with Indefrey and Levelt’s (2004) suggestions and the previously 

reported N2 component by Cheng et al (2010). They found that name agreement variations had effects 

both on naming latencies and ERPs: low name agreement pictures took significantly longer to name 

than pictures with high name agreement and had a more negative ERP amplitude in the N2 window 

(170-330 ms), with the N2 effect peaking at around 250 ms post-stimulus onset. Additionally, a 

negative correlation between participants’ naming latencies and N2 amplitude was found for action 

pictures, further strengthening their competition interpretation. Shao et al. (2014) suggested that 

differences in name agreement reflect differences in the recruitment of selective inhibition, a conflict 

resolution mechanism which is engaged to reduce competition before lexical selection. Selective 

inhibition is generally thought to reflect the suppression of alternative responses which are competing 

with the target in conflict resolution tasks (e.g., Forstmann et al., 2008), while in word production 

selective inhibition has been suggested to reflect the suppression of incorrect names that are co-

activated while speaking (e.g., Shao, Meyer, & Roelofs, 2013; Shao, Roelofs, Martin, & Meyer, 2015; 

Vromans & Jongman, 2018). Even though existing competitive models of word production had not 

explicitly specified an inhibitory mechanism (e.g., Levelt et al., 1999; Roelofs, 1992; 2003; 2018), 

Shao et al. (2014) suggested that such a mechanism can be easily incorporated into a competitive 

selection. In competitive models, naming pictures with multiple appropriate candidates makes the 

difference in activation levels between the target word and the competitors relatively small and 
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therefore the levels of competition higher (Levelt et al., 1999). In that case, a top-down inhibitory 

mechanism may be recruited to weaken the activation of the competitors, until successful selection 

takes place (Shao et al. 2013; 2014). In their interpretation, therefore, name agreement is considered 

not only a measure of lexical co-activation, but also a measure of the requirement of conflict resolution 

mechanisms that assist a successful selection.  

In a more exploratory investigation of the neural underpinnings of word production, which was 

not limited to analyzing a pre-designed temporal window in a precise topographic location, Valente et 

al. (2014) reported strong name agreement effects in later processing stages. The authors examined 

several variables associated with picture naming using a trial-by-trial multiple regression analysis of 

electrophysiological activity in the entire spectrum after picture onset until participants’ responses, 

while they also used a pre-experimental familiarization phase with the stimuli. Name agreement 

differences were found in the time window of phonological encoding: between 380-620 ms and 100 

ms before articulation. Age of acquisition also had a strong effect on ERPs in those time windows, 

possibly reflecting differences in retrieval of the word form for later acquired words (see also Laganaro 

and Perret, 2011; Laganaro et al., 2012). Valente et al. (2014) attributed the effects of name agreement 

to the variability of names existing for low name agreement pictures, however this variability did not 

seem to affect the earlier time window in ERPs that Indefrey and Levelt (2004) had associated with 

the process of lexical selection. Consequently, the authors suggested that the temporal overlap between 

name agreement and age of acquisition may suggest an interaction between the two at a later word 

planning stage, in line with cascaded models of word production (e.g., Dell, 1986) and picture naming 

(e.g., Humphreys, Riddoch, & Quinlan, 1988).  

Thus, despite the consistent behavioral associations between name agreement and naming 

latencies, the effects are much less consistent in ERP research. In interpreting the name agreement 

effects according to Indefrey & Levelt’s (2004) timeline for production processes, the inconsistency 

in the different time windows in which name agreement effects are reported (e.g., Shao et al., 2014 vs 



Chapter 1 

 25 

Cheng et al.. 2010 & Valente et al., 2014), does not allow to draw concrete conclusions about whether 

differences in name agreement reflect differences in competition during lexical selection, or processing 

difficulty during lexical co-activation or phonological encoding. 

 

1.5 Conceptual issues in current name agreement studies  

Given this prima facie use of name agreement as a measure of lexical competition as well as 

the inconsistencies in the name agreement ERP literature, there remains a need to re-evaluate whether 

and how picture name agreement affects word production processes by additionally addressing some 

of the conceptual and methodological issues in studies that have previously used name agreement as a 

cognitively meaningful predictor of individuals’ internal states.  

 

1.5.1 Population-level name agreement and individual-level competition  

Name agreement, both in picture naming norms and in word production studies, is a 

population-level measure, which derives from several independent word retrievals given by a 

particular pool of participants (Bates et al., 2003; Szekely et al., 2004). This “on-label” use of name 

agreement is particularly useful when attempting to predict aggregate group behavior in picture naming 

or replicate the population’s modal responses across different languages (e.g., Bates et al., 2003). In 

cognitive psychology, though, name agreement is also used as an “off-label” predictor of individual’s 

production systems (e.g., Alario et al., 2004; LaGrone & Spieler, 2006; Bose & Schafer, 2017), 

whereas there is the default assumption that all the available names for a picture (population-level 

name agreement) are also available within each participant in every word retrieval (individual-level 

name agreement).  

This interpretation of picture name agreement is mostly based on assuming a Luce choice-

inspired (Luce, 1959) selection principle guiding word selection and naming latencies: population 

name agreement for the dominant name in picture naming norms is assumed to index the probability 



Chapter 1 

 26 

that an individual speaker will use that word each time they name the same picture. For instance, for 

the IPNP “obj128dog” (pDominantName= 1) (Szekely et al., 2004), it is a priori assumed that each time a 

person will name that picture they should always use the word “dog”. But what is the theoretical 

explanation if a limited number of people from the same linguistic population will use the word 

“labrador” or “mutt” to name that picture? In the cases of pictures with higher name agreement, this 

assumption may be less problematic, because the probability of deviating from frequencies in norms 

is relatively low and the theoretical implications for psychological research are not as substantial. In 

cases, though, of pictures with lower name agreement, like the IPNP “obj472truck” (pDominantName= .59) 

which is also called lorry (pSecondaryName= .37)  (Oppenheim, in prep.), the main assumption in line with 

a stochastic selection is that each time a person names that picture they should have a 59% chance of 

calling it a “truck” and a 37% chance of calling it a “lorry”.  

However, this assumption has never actually been empirically tested: this variability between 

participants’ responses is not established to be indicative of the level of lexical conflict that exists 

within participants’ independent word retrievals. In other words, the stochastic axiom of lexical 

selection is assumed to guide both selection probability and at the same time explain the chronometric 

effects observed for pictures that activate multiple words across participants, allowing the assumption 

that variations in picture name agreement reflect the levels of activation of words within each 

participant for each independent word retrieval. The alternative explanation of this variability existing 

for low name agreement pictures is that it instead reflects the heterogeneity across individual speakers’ 

unique and stable word selections: 59% of speakers have an idiosyncratic preferences for the word 

“truck” and 37% for the word “lorry” and these are stable across naming episodes. In that case, instead 

of stochastic selection pattern based on name agreement variations, the probability of a particular word 

to be selected would only be reflective of the weight of this word within the production system of the 

individual speaker.  
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1.5.2 Dominant names only? The need to keep track of alternative responses 

In picture naming norms and word production studies, usually two measures of name 

agreement are assessed or reported: the percentage of subjects giving the most common name, and 

sometimes the information h-statistic (e.g., Bates et al., 2003; Szekely et al., 2004; Alario & Ferrand, 

1999; Alario et al., 2004). Percentage agreement captures the proportion of the participants who 

produced the modal name for a picture, while the h-statistic is intended to measure the dispersion of 

the responses provided. The h-statistic was originally adopted by Snodgrass & Vanderwart (1980), in 

an attempt to capture the distribution of names across participants. While percentage agreement 

increases with increased consensus, increasing h values indicate decreasing name agreement. For 

example, couch and truck both have 50% percentage agreement, but couch can be also named as 

“sofa”, “settee” or even “armchair” by some participants, while truck has only one other alternative 

name: “lorry”; both concepts will then have equal percentage agreement scores, but the second has a 

higher h value (i.e., less dispersion). Similarly, when the h-statistic has a value of 0 and a percentage 

agreement of 1, it indicates perfect name agreement. These two measures of name agreement are, thus, 

very highly correlated and often interchangeably used in experiments.  

The h-statistic is, therefore, an early attempt to account for the influence of alternative names, 

in addition to the proportion of individuals who select the modal response. Even though the statistic 

can be informative as an estimate in the population, because it is a population-level measure, it can 

become misleading for within-subjects name agreement in the same way as percentage name 

agreement (see 1.5.1). If unique individual differences are a reflection of modal name agreement 

(percentage agreement), then the distribution of alternative names (h-statistic) should vary within each 

individual accordingly. For instance, if a subject may never consider “sofa” or “settee”, then the within-

subject h-statistic should be 1, despite the .67 value of h in population-level norms (e.g., Bates et al., 

2003; Szekely et al., 2004). 
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An alternative way to account for these differences when using percentage name agreement 

would be to actually monitor secondary and tertiary name responses in norms (cf.Oppenheim, 2017). 

The majority of the name agreement literature has primarily focused on the dominant names, by using 

name agreement measures that specifically focus on dominant responses (e.g., percentage dominant 

name agreement combined with the h-statistic), and either restricting analyses of name agreement 

effects to dominant names or using pre-experiment corrective familiarization to train participants to 

use each picture’s dominant name (e.g., Alario et al., 2004; Shao et al., 2014; Valente et al., 2014). 

Tracking alternative responses can be useful in evaluating individual differences in name preferences, 

and at same time they can provide a valuable source of information to test the lexical competition 

hypothesis. In the same way that researchers use a picture’s modal name use (dominant name 

agreement) to estimate its strength, the use of the second most common name (secondary name 

agreement), provides a direct measure of the strongest competitor word in the production system, and 

can, therefore, be additionally evaluated in relation to behavioral (cf.Oppenheim, 2017) or 

electrophysiological effects.  

In the lexical competition hypothesis specifically, secondary name agreement should be a much 

more meaningful predictor of naming latencies than the h-statistic: the levels of activation of the 

second-best response should modulate response times, in an opposite fashion than that of the target 

response: i.e., when the levels of activation of the second best option (secondary name agreement) are 

increased, then lexical competition should also increase and this effect should be evident both 

behaviorally and electrophysiologically. For instance, a surprising recent finding regarding secondary 

name agreement came to challenge the basic empirical evidence in favour of competition. In a multiple 

regression analysis of a large picture naming study which calculated population-level secondary name 

agreement for the first time, Oppenheim (2017) replicated the dominant name agreement RT effect, 

but additionally showed that naming latencies for the dominant name (e.g., “couch”) were faster when 

the probability of the secondary name (e.g., “sofa”) increased, which contradicts the default 
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interpretations of name agreement variations as evidence of competitive selection. However, because 

that study relied on population-level measures of dominant and secondary name agreement, its 

interpretation is vulnerable to one of the same criticisms that I already noted for studies that interpret 

dominant name agreement effects as evidence for competition: if name agreement measures only index 

variability between speakers, instead of conflict within speakers, then lexical selection may not 

actually require deciding between two strong candidate responses. Thus, to interpret effects of 

dominant or secondary name agreement, it is essential to show that variability between speakers 

actually predicts variability (and hence conflict) within speakers.  

 

1.5.3 Pre-experimental familiarization is problematic  

In picture naming studies-even in studies which independently evaluate the effects of picture 

name agreement-it has become very common to include a pre-experiment procedure to visually 

familiarize the participants with the stimuli and/or assign the “correct” labels for each picture (e.g., 

Alario et al., 2004; Shao et al., 2014; Valente et al., 2014). The familiarization phase can either be a 

separate naming session, as in Alario et al. (2004), or an unrecorded pre-experimental phase, as in 

Shao et al. (2014) and Valente et al. (2014), and it is mostly intended to eliminate variability in naming 

latencies for subsequent data analysis or in early visual processing differences in ERP studies. While 

there appears to be consistency between the behavioral effects reported during the familiarization 

phase and the actual experiment (Alario et al., 2004), such familiarization also introduces an additional 

task demand that could change or confound subsequent investigations. In picture-word interference 

studies, for instance, it has been reported that the typical semantic interference effect appeared only 

after familiarization (Gauvin, Jonen, Choi, McMahon, & de Zubicaray, 2018) or that familiarization 

can even reverse the polarity of the interference effect to facilitation (Collina, Tabossi, & De Simone, 

2013). Although there is not sufficient evidence that familiarization significantly modulates the 

semantic interference effect in general, it is noteworthy that the vast majority of picture-word 
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interference studies include familiarization in their design (143 out of the 161 as reviewed in Bürki et 

al., 2020).  

However, the strong reasoning to argue against the use of a pre-experimental familiarization 

phase derives from its conventional use in picture name agreement studies, because familiarization can 

violently interfere with lexical preferences. For instance, the norming study of Alario et al. (2004) 

consisted of two phases: in Experiment 1 participants named each picture using a label of their choice 

and were later given the preferred label to be memorized for Experiment 2, which repeated the naming 

task with the instruction to only use the labels the experimenter assigned as correct responses. In 

addition, the two overt ERP name agreement studies, by Shao et al. (2014) and Valente et al. (2014), 

both used an unrecorded familiarization phase during which they introduced the correct names for the 

pictures. As with Alario et al., in Shao et al. (2014) familiarization was corrective: participants initially 

named the pictures with the label of their choice and were then immediately corrected by the 

experimenter in cases where they used non-dominant names. However, in line with the alternative 

hypothesis that population-level name agreement may also reflect stable individual preferences even 

for non-dominant names, it is reasonable to assume that any instruction to use specific names could 

potentially overwrite such preferences. In that case, it is unclear whether some of the reported effects 

in Shao et al. (2014) could stem from actual differences in competition levels for low and high name 

agreement items or an externally-induced experimental confound introduced during familiarization, 

which disproportionally affects non-dominant responses and induces an additional conflict for pictures 

of low name agreement.  

The discrepancy between the timeline in which name agreement effects are reported in Shao et 

al. (2014) and Valente et al. (2014) could also be explained by the different procedures they followed 

during the familiarization phase. Valente et al. (2014) did not include a production task during 

familiarization and the instruction to use the preferred names was given to participants via a booklet. 

In cases where participants produced the label of their choice offline and were immediately corrected 
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for them, (as in Shao et al., 2014) this could be considered an initial, separate naming session (similar 

to the repeated naming used in Alario et al., 2004). Since the behavioral and electrophysiological 

effects during the initial naming were not recorded in Shao et al. (2014), I could only remain 

speculative about the expected findings in free naming and their relation to those reported by Valente 

et al. (2014). Nevertheless, it is reasonable to assume at least some priming effects emerging from 

repetition and visual exposure to the stimuli (see Cave, 1997; Alario et al., 2004), as well as an 

additional level of conflict arising as a result of the task demands (see Nozari & Hepner, 2019), which 

should be carefully evaluated in relation to hypothesis testing. 

 

1.5.4 The lack of consistent electrophysiological markers of picture name agreement  

The majority of the behavioral studies which report name agreement effects assume that they 

reflect increased difficulty during lexical selection, which according to Indefrey and Levelt (2004) 

takes place between 175 ms and 250 ms post-picture onset. However, out of the three ERP naming 

studies, only Shao et al.’s effects (2014) were clearly fit within the expected time window for lexical 

selection: after scaling their estimated naming latencies according to the timeline, they claimed that 

lexical selection in their experiment took place 250–344 ms, while name agreement effects peaked at 

290 ms. Cheng et al. (2010) used covert naming and could not propose a temporal window of selection, 

while Valente et al. (2014) did not explicitly associate name agreement effects with lexical selection. 

It is, therefore, possible that either name agreement effects do not solely occur within the window of 

lexical selection in a traditionally serial framework, that the strict seriality of the timeline by Indefrey 

and Levelt (2004) cannot account for the variability observed in most production studies (Nozari & 

Pinet, 2020), or both.  

The discrepancies of consistent ERP effects could also stem from the inconsistency in the 

methodologies used: in traditional categorical (Cheng et al., 2010; Shao et al., 2014) uses of the 

variable, the effects are analyzed in respect to their peaks in a pre-specified time windows, while a 



Chapter 1 

 32 

continuous use of the measure is usually combined with state-of the art statistical methodologies in 

ERPs (Valente et al. 2014). While the traditional use of analysis of variance in ERPs is mostly used 

when attempting to associate observed effects with cognitive processes, the use of mixed effects 

modeling has allowed researchers to account for stimulus and participant effects, as well as analyze 

the entire temporal and spatial spectrum of the variance (see Bürki, Frossard & Renaud, 2018 for a 

review of the methodology in ERPs and 2.2.4 for a detailed statistical description of the approach), 

while at the same time evaluate parameter estimations as in regression, instead of simple p-values, 

which can become misleading and over-interpreted (Hubbard & Lindsay, 2008). Valente et al. (2014) 

adopted this approach by additionally analyzing both stimulus and response-locked ERPs and found 

name agreement effects arising at a later temporal window, not previously reported. However, despite 

the conservative and disciplined approach they adopted in their analysis, the inclusion of 

familiarization could have potentially unwillingly obscured some of the effects as discussed above (see 

1.5.3.). 

All things considered, it is clear that there is a lack of a stable electrophysiological pattern of 

name agreement effects, which could help guide interpretations in relation to within-subjects lexical 

co-activation or competition. Even though behavioral studies consistently show name agreement to be 

a strong predictor of naming latencies, it is also necessary to investigate how behavioral effects would 

change by omitting the process of familiarization or by adopting more naturalistic designs (e.g., 

Oppenheim, 2017; cf. Oppenheim & Balatsou, 2019), like collecting picture naming norms. 

Nevertheless, by distinguishing between what name agreement variations actually estimate and the 

attempts to particularly try to associate these effects with the lexical competition hypothesis, it is 

possible to rightfully use this measure as both an empirically validated variable in picture naming tasks 

and a cognitively meaningful predictor of individuals’ internal states. 

 

1.6 Thesis aims 
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The overall aim of the current dissertation is to evaluate the use of picture name agreement as 

a predictor of lexical co-activation in word production, while addressing the aforementioned 

conceptual issues and methodological inconsistencies in the previous literature. The broader scope of 

the present research is to understand how communicative language production works and present 

empirical findings that contribute to the debate on the nature of the lexical selection mechanism (i.e., 

competitive versus non-competitive hypotheses), using picture naming studies with behavioral and 

electrophysiological measurements. The experimental approach followed here is based on simple 

picture naming tasks, which I believe most closely resemble the processes that engage in typical word 

production. In an attempt to avoid using “infrequent derailments of the process”, which Levelt et al., 

(1999; p.2) used to characterize the speech errors literature, I instead suggest that the widely-used 

picture-word interference studies may be the “infrequent derailments” of word production and adopt a 

simplified and purified approach in my investigations. 

Two of the three empirical chapters in the current thesis (Chapters 4 & 5) combine traditional 

behavioral measures (i.e., analyzing responses and naming latencies) with ERPs. The main motivation 

for the use of ERPs in word production is to further understand the cognitive processes and 

mechanisms that take place before speakers articulate a single word. The temporal resolution of ERPs 

is very high, on a par with the time-course of neural firing rates in the brain and they can thus shed 

light onto phases of information processing from the onset of a stimulus all the way to response 

execution and even after that. ERP research is in general technically challenging and especially in the 

field of language production, due to the motor movements that introduce large artefacts, significantly 

limiting its use in the field compared to other disciplines in cognitive science, such as language 

comprehension. The current work aims to bridge this gap with the use of advanced methodological 

techniques, which are not limited to specific temporal windows or spatial localization of the effects 

(see Chapter 5) and at the same time address crucial theoretical questions in more naturalistic 

experimental designs.    
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In evaluating picture name agreement, I try to bridge the gap between what it actually measures 

(i.e., population-level responses) and how it is typically interpreted in the framework of a stochastic 

competitive lexical selection (i.e., as a measure of within-speaker lexical competition). The first 

objective of the current thesis is to resolve this discrepancy by assessing, for the first time, the 

psychological reality of picture name agreement within the individual speaker. By evaluating whether 

individuals’ choices in naming are more accurately predicted by their previous word selections (a 

tendency termed as idiolects), or by the word selections of other speakers in their linguistic 

communities, I wish to examine whether name agreement measures this co-activation of words. 

A secondary objective of the current work is to evaluate the flexibility of the lexical selection 

mechanism in handling exogenous and endogenous lexical conflict, in reference and contra to 

individuals’ idiolects. In an attempt to bridge strictly competitive and non-competitive models and 

driven by the hypothesis that lexical competition can situationally emerge as competitive according to 

task demands (Nozari & Hepner, 2019), I aim to study whether experimentally-induced competition 

directly impacts the integral part of the selection mechanism or instead affects ad hoc processing stages 

that are not inherent to selection. By studying the distinct effects of name agreement (endogenous 

lexical conflict) and name change (exogenous lexical conflict), I hope to distinguish between the 

processes that are integral to word production (like that of lexical co-activation) and those that are not 

obligatory (like that of response competition).  

A third objective of the experimental work is to explore the temporal and spatial distribution 

of name agreement effects in simple picture naming and the extent to which these variations are 

indexing increased co-activation or difficulty of selection. While previous work has reported name 

agreement effects in naturalistic designs (e.g., Valente et al., 2014), the extent to which variation of 

names affect selection of words has not been investigated in reference to response consistency. By 

investigating both dominant and secondary name agreement variations that emerge in repeated simple 

picture naming and how they are modulated by repetition priming for items with consistency in naming 
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(i.e., the same name was used in both sessions), I aim to evaluate how and when lexical co-activation 

is modulated by distinct properties of words in the mental lexicon, indexed by name agreement.  

In sum, the current thesis aims to contribute a substantial body of experimental work into one 

of the most widely used and yet often misinterpreted variables in word production research: picture 

name agreement. By evaluating the availability of responses that speakers have for production and 

consequently their influence during lexical selection, I aim to contribute to our understanding of the 

processes that underlie single word retrieval. 
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CHAPTER 2-Methodological Considerations

 

 



Chapter 2 

37 

In this thesis, I examine the behavioral and neural effects of name agreement in simple picture 

naming tasks, in which I measure the participants’ responses, naming latencies and 

electrophysiological activity. In this chapter, I describe the principal methods used in the following 

experiments, including techniques for measuring and analyzing responses, naming latencies and ERPs.  

 

2.1 Mixed-effects modeling in the analysis of behavioral measures 

In psycholinguistic experiments one of the most common dependent measures is response time: 

the interval between the onset of a stimulus and the onset of the participants’ response. The influence 

of the independent variables, which can either be a property of the experimental design (e.g., stimulus 

repetition, experimental condition, etc.), or the stimulus (e.g., a picture’s name agreement or visual 

complexity, etc.), is usually estimated by aggregating each participant’s mean response time per 

condition and conducting a statistical test (e.g., t-test, ANOVA, regression) to assess significance. By 

convention, significance permits researchers to generalize a result to a population of participants, but 

only considering the stimuli used in the study (F1 ANOVA). A complementary tactic is by-stimulus 

analysis, in which response times are aggregated over participants for each stimulus (F2 ANOVA), 

but although this allows generalization of the findings to the “population” of the kind of stimuli used 

in the study, it fails to simultaneously offer generalization to the population of participants (Clark, 

1973). 

This analytical approach is usually followed in experimental psychology because the group of 

stimuli and participants used are selected amongst many other alternative samples as a representative 

subset of a population of interested, i.e., some undergraduate students of the Psychology department 

are chosen as a subset of the entire population of undergraduate students of Psychology. By using 

statistical tests in which the response times are averaged either across participants or stimuli, it is 

uncertain whether the observed effects are attributed to the influence of the independent variables on 
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response times, or to the unique properties of the subsets of the participants (e.g., a subset of 

participants could be significantly slower than the larger population) or stimuli (e.g., a subset of stimuli 

could be significantly harder to process than others) used in experiments. Such uncertainties increase 

the likelihood to falsely reject the null hypothesis (Type I error) and can have wider implications when 

considering the general replicability crisis in psychology (e.g., Pashler & Harris, 2012). 

Although the use of ANOVAs has been the default statistical approach in psychological 

research, in recent years it has been widely advocated to replace it with simple and linear regressions. 

Some main advantages of regression over ANOVAS are: (1) they include parameter estimation in 

addition to p-values, (2) they can include continuous predictors instead of simple factors, (3) they are 

able to incorporate crossed random effects, 4) they can account for the statistical variance of binary 

variables as well (McCulloch, Searle, Neuhaus, 2008; Boisgontier & Cheval, 2016). Thus, a way to 

empirically distinguish between the influence of the properties of participants and stimuli and the 

actual influence of the dependent variables on response times is to use regression, and in particular 

mixed-effects models, in which participants and stimuli are treated as random effects, while the 

dependent variables are considered non-random, i.e., fixed effects. While fixed effects estimate how 

the mean of the independent variable is influenced by one or more dependent variables, with random 

effects it is possible to estimate how the statistical variability for both the dependent variable (random 

intercepts) and the independent variable (random slopes) affect the statistical result, by estimating the 

association of the repeated measures. This is particularly helpful for response time analyses, because 

as with every continuous measure, some participants tend to be faster than others and some stimuli in 

different conditions elicit faster responses than others. 

Treating stimuli or participants as random effects is widely used in response time analysis, 

because it allows the inclusion of the random slopes into the statistical model and increases the 

robustness of inference, even with missing data. In response times, researchers often exclude non-

correct responses or data above or below a threshold as not being realistically expected from the design. 
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Especially when missing data are not missing at random (i.e., some stimuli elicit faster processing 

time), fitting variables that predict the distribution of the data into the model increases the accuracy of 

its results (Baayen, Davidson, & Bates, 2008). An advantage of using mixed effects models in response 

time analysis is that, unlike with simple regression or ANCOVA, it is possible to additionally estimate 

the influence of covariates in the statistical result, which can either be stimulus or participant-

dependent, thus strengthening the predictability of the model. Apart from continuous data analysis 

(i.e., reaction times), it is also possible to fit random effects in the analysis of binary data (i.e. 

responses), by using mixed-effects logistic regression. 

In the current research, mixed effects-effects models are used to analyze both continuous and 

binary data. The analyses are performed in R Studio (R Studio Team, 2020) using the lme4 v.12 library 

(Bates, Maechler, Bolker, & Walker, 2016). In Chapter 3, I use generalized mixed-effects logistic 

regression to analyze participants’ responses (binary data) in a picture name experiment using the 

glmer::binomial function in lme4. In Chapters 4 & 5, mixed effects linear regressions are used to 

analyze the participants’ naming latencies in the respective picture naming experiments using the 

lmer::gaussian function in lme4. All confirmatory analyses (i.e., testing pre-planned hypotheses with 

significance estimations) include a maximal random effects structure for stimuli and participants in 

accordance with each experimental design, by additionally respecting the levels of predictor variables, 

such as experimental Session. Maximal random effects are used conservatively and with the awareness 

that the models may suffer minimal power loss, but eventually incorporated to generalize their results 

better (Barr, Levy, Scheepers & Tily, 2013).  

 

2.2 The Event-Related Potentials (ERPs) technique 

Electroencephalography (EEG) is a physiological method that records the electrical activity of 

the brain from a number of electrodes (usually 32, 64, or 128) placed on the scalp. The first human 

EEG was recorded by Hans Berger in 1924 and today this technique is widely used by clinicians, 
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mostly in epilepsy diagnosis (Tatum, 2014), and researchers, primarily in the form of Event-Related 

potentials (ERPs). EEG records the summation of the excitatory and inhibitory synchronous activity 

of groups of neurons that have a similar spatial orientation close to the cortical surface (Niedermeyer, 

& da Silva, 2005). For reasons to do with cancellation of currents oriented in the opposite direction 

and current diffusion through various layers of biological tissue such as dura, bone and skin, EEG has 

a poor spatial resolution compared to other techniques that measure indices of brain activity, such as 

fMRI. However, the temporal resolution of EEG is very high, allowing to track variations in current 

density at a sub-millisecond timescale.  

 

2.2.1 Principles of Electroencephalography (EEG) 

The electrodes used for EEG recording are usually set in an elastic cap and placed over the 

scalp according to the 10-20 convention (Sharbrough, 1991), an internationally recognized method of 

placement, in order to ensure standardized methods procedures. EEG electrodes can either be passive 

or active. In active systems, the electrodes contain a pre-amplification module which amplifies the 

signal between the skin and electrode. In passive systems, after placing a cap on the participant’s head, 

each electrode site is degreased using 70 degrees alcohol and conductive gel is applied to serve as a 

conductive bridge between the scalp and each electrode (impedance reduction procedure). An 

amplifying device records the difference in electrical potential between each electrode and the 

electrode of reference, which ideally should have zero potential and can either be a virtual (i.e., 

average) reference, deriving from the linearly combined signal of the recordings from all the 

electrodes, or real (i.e., mastoid) electrodes. The recording system includes an amplifier which is 

responsible for converting the analog signal (continuous over time) as recorded from the electrodes 

into a digital signal (discrete in time) that can be processed by a computer. Before it is processed 

further, the EEG signal needs to be filtered to attenuate artefacts  produced by biological movement 

and organs different from the brain (e.g., a heartbeat) and electrical artefacts from the environment of 
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testing. Filtering of the EEG signal can either be performed online or offline and the most common 

types include high pass (keeping high frequencies), low pass (keeping low frequencies), band pass 

(keeping frequencies within a certain range) and notch filtering (eliminating a particular frequency, 

such as 50Hz), which is generally not advised to use, because it can potentially severely distort the 

signal (e.g., Leske & Dalal, 2019). The EEG signal recorded does not only reflect brain activity, but 

also a number of other sources of bioelectrical current such as eye movements, muscle and heart 

activity, which have to be reduced or discarded. Such artefacts are usually corrected using the 

regression analysis (e.g., Di Flumeri, Aricó, Borghini, Colosimo & Babiloni, 2016) or the Independent 

Component Analysis (ICA; e.g., Jung et al.1998), or by completely removing the contaminated EEG 

epochs, either manually or automatically. 

 

2.2.2 From EEG to ERPs 

In the field of cognitive neuroscience, the raw EEG signal recorded form the scalp is not usually 

directly informative of cognitive processing. One of the most common ways in which EEG datasets 

are analyzed is through computation of Event-Related Potentials (ERPs) (see Figure 1). An ERP is the 

 

 

Figure 1. Schematic representation of a typical ERP recording setting. Reprinted from Beres (2017). Time is of the essence: 

A review of electroencephalography (EEG) and event-related brain potentials (ERPs) in language research. Applied 

psychophysiology and biofeedback, 42(4), 247-255) 
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average electrophysiological response of the brain in relation to a series of cognitively meaningful 

visual, auditory or tactile stimuli or in relation to a spontaneous response of the participants to it (Luck, 

2005). An advantage of ERPs is that, unlike behavioral measures that represent information processing 

at one point in time (that of response registration for instance), they allow us to observe brain activity 

variations accompanying the stream of cognitive operations that take place from the onset of stimulus 

exposure until even after a behavioral response is registered. Participants’ brain responses to a stimulus 

of interest are aggregated over multiple trials and waveforms corresponding to different conditions are 

computed and compared, consisting of peaks with specific latencies and shape. The necessary steps to 

transform a raw electrophysiological signal into an ERP include (not necessarily in linear order): 

• Time-locking: before any data processing, the presentation of each stimulus must be 

locked to particular markers in the EEG signal (stimulus-locked ERP). It is also possible to 

simultaneously or independently mark the behavioral response that is generated by the 

participant (response-locked ERP).  

• Filtering: The main goal of filtering the EEG data is to attenuate the deviant frequency 

of signal that is most likely due to external noise or artefact contamination. For instance, the 

meaningful frequencies in a typical ERP waveform are between 1 and 10 Hz, and by applying 

a low-pass filter to remove frequencies above 30 Hz it is ensured that most movement artefacts 

or line noise will not significantly contaminate the ERP waveform. In contrast, by filtering 

frequencies lower than approximately 0.1 Hz researchers ensure that most slow waves, due to  

static electricity in the participants’ body surface, will be removed. 

• Artefact detection, correction or rejection: Artefacts such as those caused by 

eyeblinks, eye movements, muscle activity and skin potentials can be either manually 

dismissed when examining single trials (artefact rejection) or automatically corrected in the 

entire raw EEG signal (artefact correction). The most common type of artefacts is that relating 

to eye blinks, which are usually monitored in the EEG recording by placing electrodes around 



Chapter 2 

  

 43 

the eye (above, below or to the side), can be automatically reduced with the use of a regression 

analysis. In regression analysis, ocular artefacts are modelled over a number of occurrences 

and when variation between events is low enough (SD < .005 at all electrode sites), the artefact 

is corrected using a propagation factor that is scaled according to the average electrical activity 

of the scalp (e.g., Hoffmann & Falkenstein, 2008). A different way to deal with ocular artefacts 

is to perform Independent Component Analysis (ICA), in which the pure eye activity in the 

signal is isolated following decomposition of the signal into independent components and 

discarded before recomposition (e.g., Vigário, 1997). 

• Epoching and baseline correction: The continuous data are segmented into single-trial 

EEG epochs, usually starting 200 ms before stimulus presentation. During baseline correction, 

the voltage measured in the pre-stimulus window (e.g., -200 to 0 ms for stimulus-locked ERPs) 

is subtracted from the ERP waveform, in order to ensure that the signal reflects the differential 

evoked potential elicited relative to the pre-stimulus activity of the brain. 

• Re-referencing: During re-referencing, the signal of the new reference is subtracted 

from each EEG channel recorded. Re-referencing can be done with respect to mastoid, average 

or nasal references. Although all different types of re-referencing should not theoretically 

impact the quality of the data, it has been shown that there are notable differences for each 

referencing strategy used (Lei & Liao, 2017), and therefore the re-referencing type should be 

chosen with caution and in relation to practices established in the literature. 

• Averaging: Single-trial EEG epochs with clean and preprocessed data are averaged 

together to create ERP waveforms for each subject in every experimental condition, which are 

later aggregated over the entire pool of participants to create grand averages in each condition. 

Difference waves can be computed between conditions of interest and peak amplitudes or peak 

latencies can be measured and statistically analyzed as in the case of other quantitative data.  
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ERP peaks indexing specific cognitive functions are often called ERP components and are 

defined by their polarity (positive or negative going voltage), timing, scalp distribution, and sensitivity 

to task manipulations. Some of the most common ERP components in language research include the 

N400 (Kutas and Hillyard, 1980), The N200 (Schmitt, Münte, & Kutas, 2000), the Error-related 

Negativity (Falkenstein Gehring et al., 2018), the P600 (Osterhout & Holcomb, 1992) and the Left 

Anterior Negativity (Friederici, Hahne, & Mecklinger, 1996). ERP components are assumed to index 

cognitive processes (Luck 2014), but their utilities and interpretation have been historically challenged 

(e.g., Donchin, Ritter & McCallum, 1978), since components observed at the group-level not do not 

always hold at individual subject or trial levels (e.g., Gaspar, Rousselet, & Pernet, 2011; Rousselet et 

al., 2011; Luck, 2014). ERP peaks can be easily over-interpreted as components, so it is advised to be 

conservative when describing and interpreting components, unless the experimental task is explicitly 

manipulating a cognitive function which has been previously associated with a component in the 

literature (e.g., as with the N400 in semantic violations). Current research questions the conventional 

focus on ERP components and instead advocates the use of more advanced methodologies in order to 

link electrophysiological responses with cognitive functions (Bridwell et al., 2018). 

 

2.2.3 Independent Component Analysis (ICA) of ERPs 

Because ERPs are extremely sensitive to motor artefacts relating to speech (Luck, 2005) the 

literature on word production does not abound with ERP studies investigating the cognitive processes 

immediately preceding articulation. Most studies usually involve indirect measures, such as naming 

latencies, to understand the processes that take place before articulation, because experimental work 

that combines ERPs with speaking needs to correct or reject the most common artefacts in ERPs (such 

as eye blinks and line noise) in addition to those induced by motor movements related to speech.  

In order to successfully isolate and remove complex artefacts, recent EEG studies tend to rely 

on Independent Component Analysis (ICA; Makeig et al., 1999; Jung et al., 1998; 2000) instead of the 
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traditional regression methods (e.g., Gratton, Coles & Donchin, 1983), because the latter can only hope 

to reduce artefacts that manifest in a repetitive fashion (such as eyeblinks, jaw movements or 

electrocardiogram). ICA is a computational method that separates the subcomponents of a multivariate 

signal and can reconstruct it after excluding some of them (Hyvärinen, 2013). ICA results in a set of 

independent components (ICs) which contain qualitatively similar activity to EEG, but which are 

separated based on their idiosyncratic frequency properties. Once deconstructed into ICs, components 

relating to artefacts or unrelated to brain activity can be identified and removed before the signal is re-

constructed into electrode-array data (see Figure 2).  

 

  

Figure 2. Illustration of the Independent Component Analysis (ICA). Figure reprinted from 

https://sccn.ucsd.edu/~jung/Site/EEG_artifact_removal.html. The left side of the figure represents the raw EEG recording 

data and the right side of the figure the ICs corresponding to ocular and noise artefacts (IC 1 & 4 respectively) and the 

actual electrophysiological activity of the brain (IC 2 & 3). 

 

The analysis follows the principles of linear decomposition and could be characterized as a 

rotated Principle Component Analysis (PCA) (Wold, Esbensen & Geladi, 1987) that maximizes the 

statistical independence of the components instead of detecting them according to their maximal 

variance. ICA is based on the assumptions that (1) the temporal activity recorded consists of 

independent sources, (2) the propagation delays of the sources are negligible, (3) the summation of the 

signal from different sources is linear at all electrodes, and (4) the number of independent signal 
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sources is the same as the number of electrodes (i.e., if the signal is recorded from 64 electrodes, then 

the Independent Components should also be 64; Makeig, Bell, Jung & Sejnowski, 1996; see Figure 

3.). Because the data are decomposed into spatially fixed and temporally distinct information sources, 

the ICs projected on scalp maps indicate the synchronous activity of both the brain and the artefacts as 

participants perform a cognitive task. In ERP studies, therefore, the components most likely resemble 

the neural activities in the areas where they are generated (Ku et al., 2007).  

 

 

Figure 3. Illustration of the Independent Component Analysis (ICA). Figure reprinted from 

https://sccn.ucsd.edu/~jung/Site/EEG_artifact_removal.html. On the left side of the figure the ICs corresponding to ocular 

artefacts and noisy data are removed and the signal is reconstructed without them in the artifact-corrected EEG (right side). 

 

2.2.4 Mass univariate analysis of ERPs 

Given the nature of ERPs (i.e., averaged EEG epochs over trials by participant per condition), 

the traditional approach for statistical analysis is to select peaks or ERP mean amplitudes across trials 

and perform an analysis of variance or a t-test in the different conditions of interest (e.g., Barkley, 

Kluender, & Kutas, 2015; Strijkers, Costa, & Thierry, 2010). This widely used approach, though, has 

three important limitations: (1) it limits ERP analyses across temporal and spatial dimensions that are 

usually focused on a given component of interest, and determining such dimensions appropriately can 

be challenging (e.g., Alonso-Prieto et al., 2015), (2) as with classic ANOVA-type analysis of 

behavioral data (see 2.1.) this approach fails to take both stimulus and participant variances into 
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account, since the analysis is performed on averaged data (Bürki et al., 2018), and (3) an additional 

challenge in electrophysiological data analysis is that it involves multi-dimensional data (i.e., a large 

number of electrodes each providing a large number of individual measurements per unit of time, in 

the range of 1000 per second across many trials) and therefore researchers are more likely to face 

statistical issues in relation to false positives and the multiple comparisons problem (Miller, 1981). 

These issues, apart from eliciting or raising significant challenges in the statistical analysis of ERP 

studies, may additionally contribute to the replicability crisis in science (Open Science Collaboration, 

2015), due to the already complex nature of ERP data analysis (Bürki et al., 2018).  

These issues can partially be addressed by implementing a more sophisticated statistical 

approach that does not primarily rely on the evaluation of average trends. Pernet, Chauveau, Gaspar, 

ans Rousselet (2011) proposed a two-level mass univariate analysis approach with cluster mass 

permutation tests, implemented in their LIMO EEG toolbox. In a first level analysis in LIMO, each 

individual dataset is independently analyzed using a general linear model approach across all time and 

space dimensions of the EEG signal, producing a beta coefficient. In a second level analysis, the 

estimated parameters are compared across participants using robust statistical tests (i.e., t-test, 

ANOVA, regression) and significance is estimated with the cluster mass method (see Figure 4.) 

Cluster-based analysis in ERPs is a nonparametric statistical test which is performed by grouping 

together the neighboring variables (t or F values of electrodes for instance) into clusters (see Maris & 

Oostenveld, 2007 for a detailed description of this approach). Although LIMO does not directly model 

stimulus and participants as independent random effects (i.e., stimuli remain nested under 

participants), it is a powerful statistical tool which emphasizes effect size whilst correcting for multiple 

comparisons. Some of the robust statistical tests in LIMO in the second level of analysis are the 

following: 
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Figure 4. Illustration of the LIMO analysis of ERPs. Reprinted from Pernet, Latinus, Nichols & Rousselet, 2015. Cluster-

based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study. 

Journal of neuroscience methods, 250, 85-9.  

 

 

 

• One sample t-test, which examines the covariation of single-trial ERPs with the use 

of the bootstrap-t approach, in which participants are selected randomly with replacement. 
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Using cluster statistics, the data is centered, and participants are resampled, while each t value 

provides an approximation of the t distribution under the null hypothesis and is used to estimate 

the quantiles. The p values are calculated according to the average times the t values fall below 

or above the quantiles. 

• Paired t-tests in LIMO are performed based on a percentile bootstrap in which subjects 

from each group are sampled with replacement, to maintain within-subject variance. Contrasts 

are tested under the alternative hypothesis and the p value is the smallest value obtained by 

averaged times the difference between groups is above zero or one minus this average.  

• Repeated measures ANOVAs are estimated from F-values for all conditions which 

are centered independently, and the F distribution is estimated under the null hypothesis. 

Correction for multiple comparisons is performed using cluster mass statistics with the use of 

bootstrapped F values. P values are obtained by observing how many times the observed F 

values are above the F statistic.  

 

 

2.2.5 ERPs and language production 

Due to the technical challenges associated with motor artefacts induced by speaking, ERPs are 

not as widely used in the study of language production as in other areas of neurolinguistics, such as 

language comprehension. However, an advantage to use ERPs in production is that, unlike 

comprehension, the effects can be further evaluated in relation to the quality and quantity of the 

speakers’ linguistic output: instead of associating components and cognitive functions based on 

participants’ performance in passive tasks (i.e. button-pressing responses in sentence processing), 

language production ERP research allows to relate the observed electrophysiological patterns with the 

actual linguistic response generated by speakers. Despite the relatively smaller amount 

electrophysiological studies in the field, the ERP language production literature has provided 

significant insights into the architectures and mechanisms that underlie human speech. For instance, 
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ERPs in production have revealed the ultra-fast processing of the brain before articulation: the most 

common variables in typical word production studies (e.g., visual complexity, object familiarity, name 

agreement, lexical frequency) have been found to affect electrophysiological activity as early as 100 

ms post picture onset and until 100 ms before articulation (Valente et al., 2014). Similarly, variance in 

non-linguistic cues (e.g., pictures) affects the earliest time windows in picture naming tasks, indexed 

by the P1/N1 component modulations (e.g., Abdel Rahman & Sommer, 2008; Cheng et al., 2010), as 

in any other task that recruits the visual system (e.g., Luck et al., 1994). 

Most ERP studies in word production involve a picture naming task with experimental 

manipulations targeting various cognitive processes, such as lexical selection or phonological 

encoding. Some of the most frequently mentioned ERP components affected by such manipulations in 

word production studies are (but are not limited to): the N200 (e.g., Costa et al., 2009; Shao et al., 

2014), the P200 (e.g., Aristei et al., 2011; Strijkers et al., 2010; Python, Fargier & Laganaro, 2018), 

the P300 (e.g., Costa et al., 2009), the N400 (Blackford, Holcomb, Grainger & Kuperberg, 2012; 

Shitova, Roelofs, Schriefers, Bastiaansen, & Schoffelen, 2017; Piai, Roelofs & van der Meij, 2012), 

and later effects closer to the time range of articulation (Rose & Abdel Rahman, 2017; Rose, Aristei, 

Melinger & Abdel Rahman, 2019; Janssen, Hernández-Cabrera, van der Meij & Barber, 2015; Valente 

et al., 2014; for a recent review on lexical selection see Nozari & Pinet, 2020).  

In terms of the mechanisms underlying semantic-to-lexical access, phonological form retrieval, 

or articulatory preparation, most ERP studies of picture naming have manipulated naming difficulty 

and reported modulations in time windows ranging from 200 ms post stimulus onset until later stages 

of pre-articulation period (e.g., Costa et al., 2009; Valente et al., 2014). For instance, increased 

semantic interference in the cumulative interference task has been shown to produce increased ERP 

amplitudes in the window of the P300 component preceded by a decrease in N200 amplitude (Costa 

et al., 2009) or an increase in P200 amplitude (Python et al., 2018) followed by decreased positivity in 

later time windows (Janssen et al., 2015). Other semantic manipulations, such as those in picture-word 
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interference studies, generally elicit increased N400 amplitude (Piai et al., 2012; Shitova et al., 2017; 

Blackford et al.,2012; Dell’Acqua et al., 2010; Rose et al., 2019; Wong et al., 2017), as well as later 

modulations in the time window immediately preceding articulation (e.g., Dhooge, De Baene & 

Hartsuiker, 2013; Rose et al., 2019). These effects have often been interpreted in the framework of 

Indefrey and Levelt’s (2004) proposed timeline of word production processes and particularly tied to 

naming difficulty associated with increased competition, however the timeline and its normative use 

as a framework for interpretation have since been questioned in the literature (e.g., Nozari & Pinet, 

2020; Munding et al., 2016 ).   

 

 

Figure 5. Illustration of Typical ERP peaks: P1, N2, P2, N2. Reprinted from Luck, 2005. An Introduction to the 

Event-related Potential Technique. MIT Press. 

 

The field is less clear for the electrophysiological components reported in picture name 

agreement studies, since the number of published studies is limited and the methodological and 

conceptual inconsistencies between studies have rendered the identification of a stable ERP marker of 

simple production processes quite challenging (see 1.5.4). An additional challenge is that some studies 

have attempted to identify and label specific components (Cheng et al., 2010; Shao et al., 2014), while 

others have analyzed effects over a continuous time-window without specifically indexing components 

(Valente et al., 2014). Studies investigating differences elicited by high and low picture name 

agreement often report both early and late effects (Cheng et al., 2010; Valente et al., 2014), but the 
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majority of ERP modulations are observed in windows associated with semantic-to-lexical mapping 

processes according to the estimates of Indefrey and Levelt (2004): lower name agreement pictures 

are associated with increased N200 amplitude between 250 and 350 ms (Cheng et al., 2010; Shao et 

al., 2014), or later effects starting at around 400 ms post picture onset and lasting until the pre-

articulation period (Valente et al., 2014).  

 

2.2.6 A brief overview of the N200 component 

The N200 is a negative ERP component usually salient between 200 and 350 ms post-stimulus 

onset over anterior regions of the scalp (see Figure 5.), which has been associated with the recruitment 

of cognitive control mechanisms (Luck, 2005). The N200 was first reported by Sutton, Braren, and 

Zubin (1965) in a stimulus uncertainty task, where it was followed by an enhanced P300 for cues with 

reduced sensory modality in a visual processing (i.e., switching of paired cues with either clicks or 

light flashes). The N200 component is generally enhanced for infrequent trials or deviant trials and, as 

an early peak, it is thought to be indicative of the stimulus categorization process (Luck, 2005). The 

N200 is commonly reported in tasks that involve response inhibition or inhibitory control, like the 

Eriksen flanker task, in which participants are asked to suppress an incongruent response (Heil, Osman, 

Wiegelmann, Rolke & Henninghausen, 2000), or the go/no-go task, in which participants are asked to 

abort response activity for specific trials, even after response initiation. In those tasks, increased N200 

amplitude for the deviant conditions is assumed to index the inhibition of a response. 

In neurolinguistics, N200 modulations have been reported in the case of language switching 

(e.g., Jackson et al, 2004; Verhoef, Roelofs & Chwilla, 2009), object naming (e.g., Schmitt, Münte & 

Kutas, 2000; Abdel Rahman, van Turennout & Levelt, 2003; Shao et al., 2014; Cheng et al., 2010) and 

selective access to language representations in bilinguals (e.g., Rodriguez-Fornells et al., 2002; 2005; 

2006; Balaguer, Sebastián-Gallés, & Rodríguez-Fornells, 2005), most of which have also been 

attributed to suppression of a response. In language production specifically, the N200 has been 

reported both in simple overt picture naming (Abdel Rahman et al., 2003; Costa et al., 2009; Shao et 
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al., 2014) and silent picture naming (Schmitt et al., 2000; Cheng et al., 2010). With the exception of 

Costa et al. (2009) who found that increased semantic interference led to less negative N200 amplitude 

in cumulative semantic interference, in simple picture naming, interpretations of the N200 have also 

been associated with naming difficulty due to inhibition of non-target responses (e.g., Schmitt et al., 

2000; Abdel Rahman et al., 2003; Cheng et al., 2010; Shao et al., 2013; 2014; 2015; Vromans & 

Jongman, 2018). Although simple production should not require any explicit need to suppress a 

response, in the ERP name agreement literature, increased N200 amplitudes for lower name agreement 

pictures were suggested to index increased competition between the existing labels before the 

production of the target word (Cheng et al., 2010; Shao et al., 2014).  

 

2.2.7 A brief overview of the N400 component 

One of the most widely studied ERP components in language research is the N400, a negative-

going deflection that peaks at around 400 ms post-stimulus onset and is widely regarded as an index 

of semantic violation or semantic processing depth (Kutas & Federmeier, 2011). The N400 was first 

reported by Kutas and Hillyard (1980) in the processing of semantically incongruent sentences, 

eliciting more enhanced negativity for sentences like: “He took a sip from the transmitter” compared 

to “He took a sip from the waterfall”. Since then, the N400 has become a mainstream semantic index 

in neurolinguistic studies, as well as in studies investigating semantic memory (e.g., Holcomb et al., 

1999), recognition memory (e.g., Smith & Guster, 1993), and attention (e.g., Deacon & Shelley-

Tremblay 2000, for a review see Kutas & Federmeier, 2011). The N400 has also been found to be 

sensitive to the lexical properties of single words, since it is increased for the processing of 

pseudowords (e.g., Friedrich, Eulitz & Lahiri 2006), low-frequency words (e.g., Barber et al., 2004) 

and words with a smaller orthographic neighborhood (e.g., Holcomb, Grainger, & O'rourke, 2002). 

In language production in general, the N400 is seldom explicitly reported, possibly superseded 

or masked by large potential deflection elicited by articulatory preparation, while in word production 
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specifically, it has mainly been reported in studies of picture-word interference (Blackford et al.2012; 

Piai et al., 2012; Shitova et al., 2017). In the cumulative semantic interference study of Costa et al. 

(2009), who also reported N200 modulations, there was a significant effect in the N400 window 

associated with increased semantic similarity, but the effect was not cumulative as it was for the N200 

(i.e., the N400 did not increase with increased ordinal position within each block, as the N200 did). In 

picture word interference studies, semantically related distractors elicit enhanced N400 amplitude 

compared to unrelated distractors, which has been interpreted either as increased lexical co-activation 

and consequently as evidence for the competition hypothesis (Piai et al., 2012; Shitova et al., 2017) or 

merely as increased lexical co-activation (Nozari & Pinet, 2020). In contrast, in word-target picture 

naming, the N400 has been reduced for pictures preceded by semantically related versus unrelated 

words, while this priming effect was dissociated with the behavioral interference effect (Blackford et 

al., 2012). A possible explanation is that the N400 reflects spreading activation between two different 

sources of information, that is pictures and words, and therefore facilitates the production based on 

semantic similarity. Although these effects likely originate from semantic-level processes, it remains 

uncertain whether the N400 in language production is the counterpart of the N400 observed in 

language comprehension (Nozari & Pinet, 2020), due to the relatively small presence of the component 

in the relevant literature.  
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CHAPTER 3- The psychological reality of picture name agreement 

 

This chapter investigates the psychological validity of picture name agreement within the individual 

speaker. Using repeated naming, this is the first study to date to evaluate response consistency within 

individuals in relation to their previous word choices and name switching according to population-

level norms for the dominant and secondary responses. We demonstrate the validity of picture name 

agreement as a cognitively meaningful predictor of individuals’ states, but additionally show that 

speakers’ previous selections also guide their future word preferences. 

  

  

This chapter is accepted under revision for publication from: Balatsou, E., Fischer Baum, S., & 

Oppenheim, G. M. (in revision). The psychological reality of picture name agreement. Cognition. 
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Abstract 

Picture name agreement is one of the most commonly used measures in language production. Beyond 

measuring population-level tendencies, researchers often assume that name agreement also indexes 

cognitive processes that occur within individuals. For instance, if picture naming norms show that 50% 

of speakers name a picture as couch, then each time a person tries to name the picture, they should 

have a 50% chance of selecting couch. An alternative, however, is that name agreement may simply 

reflect population-level sampling of more stable individual preferences, developed through experience 

(i.e., 50% of speakers prefer the name couch). One way to distinguish between these possibilities – 

and assess the psychological reality of name agreement – is simply to re-norm pictures with the same 

individuals. In this study, we therefore collected timed naming norms for a large set of line drawings 

from the same 25 native British English speakers twice, 1-2 weeks apart. Results show participants’ 

name choices in Session 2 are jointly predicted by population-level name agreement, from our previous 

norms, and individuals’ own productions in Session 1. This is the first direct demonstration that picture 

name agreement has some psychological validity, but also reveals that it does not directly index within-

subject lexical competition as previously assumed. 

 

Keywords: name agreement, picture naming, word production, lexical competition, idiolects 
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3. 1 Introduction 

Picture naming is one for the simplest and most commonly used tasks in the study of language 

production, and one of the strongest and most consistent predictors of picture naming speed and 

success is a picture’s name agreement (e.g., Lachman et al., 1974; Vitkovitch & Tyrell, 1995; Alario 

et al., 2004). Name agreement is an empirically derived measure of the proportion of speakers who 

independently produce the picture’s modal name when asked to name it. When most participants in a 

norming study give the same name for a picture, it is said to have high name agreement; when few 

produce even the most common name, it is said to have low name agreement. Thus, name agreement 

estimates from picture naming norms naturally extend to predicting how new participants from the 

same population should name the same stimuli: if 50 out of 50 participants named a picture as “dog” 

in previous norms, then the picture will most likely elicit “dog” responses from the next 50 participants. 

When selecting materials for new experiments, responsible researchers therefore consult norms to 

ensure that most participants will generate their desired names of their own volition; this is the classic 

‘on-label’ use of name agreement. 

 

3.2. Name agreement as a predictor of individual-level cognitive processes 

However, in recent decades, an “off-label” use of name agreement has also become quite 

common. From early on, researchers noted that pictures with high name agreement tended to be named 

faster than those with low agreement, independent of other word-level attributes, such as word 

frequency or image familiarity (Lachman et al., 1974; Lachman & Lachman, 1980; Vitkovitch & 

Tyrell, 1995; Alario et al., 2004). Early studies of picture naming latencies reported robust effects of 

age of acquisition and lexical frequency (e.g., Butterfield & Butterfield, 1977, Carroll & White, 1973; 

Oldfield & Wingfield, 1965), but population-level name agreement, sometimes described as 

codability, soon proved an even stronger predictor (Gilhooly & Gilhooly, 1979; Lachman, 1973; 

Lachman & Lachman, 1980; Lachman, Shaffer, & Hennrikus, 1974). This basic chronometric effect 
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has been replicated in many languages (Bates et al., 2003), including American and British English 

(Snodgrass and Yuditsky, 1996; Ellis and Morrison, 1998; Szekely et al., 2004), Spanish (Cuetos et 

al., 1999), French (Bonin et al., 2002), Italian (Dell’Acqua et al., 2000), Greek (Dimitropoulou et al., 

2009), Japanese (Nishimoto et al., 2012) and Persian (Bakhtiar et al., 2013), inviting speculation about 

cognitive processes that might underlie it. The most common explanation is that low name agreement 

pictures induce some form of challenge within the individual speaker, since they must decide which 

of the available names to use for that picture, with this indeterminacy resulting in longer naming 

latencies (Barry et al., 1997; Bates et al., 2003; Lachman et al., 1974; Paivio et al., 1989; Snodgrass & 

Yuditsky, 1996; Vitkovitch & Tyrrell, 1995; Weekes et al., 2007). Such speculation marks a subtle but 

important shift from the “on-label” use of name agreement to predict aggregate group behavior to an 

“off-label” use of predicting within-individual cognitive processes. 

Perhaps inspired by such robust effects in norms, researchers have stopped merely controlling 

for name agreement and instead begun specifically manipulating it as a way to investigate a range of 

cognitive functions, directly related to language production or not. For instance, picture name 

agreement has been associated with dissociations between semantic and episodic memory performance 

(Lachman & Lachman, 1980; Mitchell 1989), phonological encoding (LaGrone & Spieler, 2006) and 

repetition priming in picture naming tasks in both children and adults (Lorsbach & Morris, 1991; 

Mitchell & Brown, 1988). Similarly, studies that manipulated picture name agreement in clinical 

populations have associated higher name agreement with greater naming accuracy. For instance, 

studies with Alzheimer’s disease patients have found that name agreement is one of the strongest 

predictors in their naming performance (Harley & Grant, 2004; Rodríguez-Ferreiro et al., 2009), and 

patients with aphasia appear especially error-prone when naming low name agreement pictures, 

compared to matched controls, prompting an interpretation that they have greater difficulty selecting 

among alternatives (Laiacona et al., 2001; Kremin et al., 2001; Cameron-Jones & Wilshire, 2007; Bose 

& Schafer, 2017). 
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Name agreement manipulations have also been used assess the cognitive processes and neural 

substrates of word production (e.g., Indefrey and Levelt, 2004; Indefrey, 2011). For example, greater 

Left Inferior Frontal Gyrus (LIFG) activity when naming low compared to high name agreement 

pictures has been interpreted as evidence that LIFG mediates selection among competing alternatives 

in production (Kan & Thompson-Schill, 2004; Thompson-Schill, et al., 1997). Similarly, 

electrophysiological differences between high and low name agreement pictures in the N200 range 

have been interpreted as reflecting the recruitment of response inhibition, as a mechanism to suppress 

the competing alternative names for low name agreement pictures (Cheng et al., 2010; Shao et al., 

2014). 

The main theoretical premise behind such interpretations is that name agreement is specifically 

tied to lexical selection, reflecting the extent to which individual speakers consider alternative lexical 

responses before selecting a word (e.g., Indefrey & Levelt, 2004; LaGrone & Spieler, 2006; Bose & 

Schafer, 2017). Competition in production refers to the idea that the co-activation of alternative words 

(i.e., sofa) slows the selection of a target word (i.e., couch) as a result of ongoing conflict between the 

activated lexical representations (Levelt et al.,1999; Roelofs, 1992; 2003; Howard et al., 2006). 

Although the effects of name agreement in word production appear robust, there remains active debate 

about whether many effects cited as support for lexical competitive actually require a competitive 

mechanism for lexical selection1. 

Thus, researchers typically interpret name agreement as evidence for competitive lexical 

selection specifically, and more generally assume that a picture’s name agreement describes the 

distribution of options available to each individual when attempting to name a picture. Therefore, 

effects of name agreement are assumed to directly reflect the processes that occur within each 

 
1 Non-competitive models of word production argue that empirical evidence for lexical competition can be explained in 

other ways, such as postlexically at a prearticulatory response buffer stage (Mahon et al., 2007), or as ‘competitive’ 

incremental learning (Oppenheim et al., 2010). 
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individual (e.g., Bates et al., 2003). According to the competition narrative, for instance, naming a 

picture of a dog imposes no difficulty, because no other names exist or compete for selection. In 

contrast, naming a picture of a couch, which can also be named as sofa or settee, is assumed to impose 

great difficulty, because each individual should consider the additional names identified by picture 

naming norms from other members of their linguistic community. The basic problem with this 

narrative, which the current study aims to address, is that name agreement is an empirical measure of 

group-level tendencies, prima facie unsuited for use as a predictor of individual-level cognitive 

processes. Thus, such uses and interpretations of name agreement make four major assumptions about 

the nature of individual-level lexical selections: 

1. An individual’s likelihood of choosing any word is a stochastic function of its activation in 

their mind when they try to choose. As illustrated in the Luce Choice rule (Luce, 1959), the probability 

of selecting a word is assumed to be determined by the ratio of its activation to that of any alternatives 

(e.g., Levelt et al., 1999). Such a stochastic word selection function is common to most models of 

production (e.g., Oppenheim et al., 2010), and in competitive production models it is further used to 

explain the time required to select a word as a function of the level of its activation and that of its 

competitors (Levelt et al., 1999; Roelofs, 1992; 2003; Roelofs & Piai, 2015). 

2. Each individual considers the range of possible responses observed in their larger linguistic 

community. If picture naming norms show that speakers use both ‘couch’ and ‘sofa’ to name a picture 

of an upholstered multi-person seating object, then each time an individual speaker tries to name the 

picture, they should sample from these responses. Similarly, if norms indicate a range of 15 possible 

responses to a picture of an electric can opener, then a competitive interpretation of this ’number of 

names’ effect (e.g., Szekely et al., 2003) must assume that each speaker considers the full range of 

observed responses, or at least a representative subset. 

3. Group-level norms index the relative activation, and therefore retrieval probability, of each 

option within each individual. Population-level norms identify not only the range of options that each 
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individual will consider but also the probability of an individual selecting each option. If relevant 

norms indicate that half of all participants named a given picture as ‘couch’, then Speaker A should 

have a 50% probability of selecting ‘couch’, Speaker B should have a 50% probability of selecting 

‘couch’, and so on. 

4. Each retrieval is independent of previous retrievals. Although not obvious, this point follows 

from the assumption that group-level norms predict individual-level cognitive processes, especially 

when assessing name agreement effects in repeated naming paradigms or those where researchers pre-

train participants to use particular names (Mitchell & Brown, 1988; Alario et al., 2004; Valente et al., 

2014; Piai & Roelofs, 2013). Moreover, relaxing this assumption quickly erodes the assumed links 

between population-derived norms and individuals’ cognitive processes. 

While most of these assumptions seem quite plausible, it is worth asking what other factors or 

cognitive processes might give rise to name agreement measures and thus name agreement effects. 

Returning to the actual method of estimating name agreement – asking n individuals to name the same 

picture – one possibility is that name agreement measures simply reflect a process of sampling stable 

individual preferences. In the couch/sofa example, it is easy to imagine how an individual speaker 

might develop a persistent bias to choose one option, never actually considering the alternative. For 

instance, researchers have detected repetition priming in picture naming up to 48 weeks after initial 

exposure (Cave,1997), shown that repetition priming is stronger for lower name agreement pictures 

(Park & Gabrieli, 1995), and confirmed that word-specific aspects of such priming persist for at least 

one week (Francis & Sáenz, 2007; see Francis, 2014, for a review). Although such persistent priming 

has typically been assessed in terms of decreases in naming latencies, rather than increases in the 

likelihood of selecting a particular name, a recent model of word production argues that both outcomes 

can result from continual, experience-driven adjustments in semantic-to-lexical mappings (Oppenheim 

et al., 2010): each time a speaker retrieves a word for production, an incremental learning process 

adjusts that mapping, increasing the ease and likelihood of retrieving the target again and decreasing 
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the ease and likelihood of retrieving activated alternatives, thus providing momentum to select and 

reinforce the same target in the future. All else equal, such adjustments should accumulate into 

speaker-specific tendencies to use particular words: idiolects. Low name agreement in picture naming 

norms, then, may simply reflect heterogeneity in individual speakers’ word preferences or idiolects, 

not the extent to which individuals consider alternatives. Under this alternative proposal, the best 

predictor of whether an individual will choose “couch” or “sofa” should not be name agreement 

estimates from population-level norms, but instead their own past behavior. 

 

3.3 The current study 

Thus, it is not obvious that name agreement should predict individual level competition, because it 

actually measures between-subjects linguistic variation. More generally, as a (between subjects) 

population-level measure, it is unclear whether name agreement is even a psychologically valid 

predictor of (within subjects) cognitive processes associated with name uncertainty. Although it is 

possible that the between-subjects variation that is measured by picture naming norms does indeed 

reflect the range and relative strengths of the names that each individual considers (we term this “the 

Luce choice account”), it is also possible that the between-subjects variation that is measured by picture 

naming norms simply reflects between-subjects variation (we term this “the idiolect account”).  

Because traditional norming studies ask individuals to name a set of pictures just once, they 

cannot distinguish between these possibilities.2 We can however distinguish between them -and finally 

assess the psychological reality of name agreement- by simply examining individuals’ name selection 

consistency across two naming sessions. If population-level name agreement effectively predicts the 

options available to each individual, in line with our Luce choice account and the way that the 

researchers typically use name agreement, then whether a person uses a particular name to describe a 

 
2 Although Alario et al. (2004) reported a broadly similar two-session norming task, they did not and could not examine 

within-speaker name consistency because they followed each Session 1 response with a desired name for participants to 

use in Session 2.  
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picture (i.e., couch) in the second session should depend on its population-level contingent probability, 

regardless of their selection in the previous session. In the couch and sofa example, a speaker should 

have a 50% chance to select couch each time they name the picture, regardless of whether they 

previously selected sofa. However, if name agreement instead reflects more stable between-subject 

variation, in line with our alternative ‘idiolect’ account, then a person should simply repeat their initial 

word selection when renaming a picture, regardless of its contingent probability in the population-

level norms. 

 

3.4. Methods 

3.4.1 Summary 

The basic methodology followed the standard IPNP norming procedures (Szekely et al., 2003), 

except that each participant named the full picture set twice, one to two weeks apart (Mean: 8.6 days, 

SD = 3.3). 

 

3.4.2 Participants 

Twenty-five Bangor University students (18 female, Mean age : 21.3 years, SD = 5.1) 

participated in exchange for course credit. One participant was replaced due to technical problems. All 

reported British English as their native language, normal or corrected-to-normal vision and hearing, 

and no known language disorders. None had participated in Oppenheim’s (in prep.) previous norming 

study. The study was approved by Bangor University Ethics Committee and participants received 

course credit or cash compensation. 

 

3.4.3 Materials, apparatus and procedure 

Pictures for the naming task were the 525 black-and-white line drawings of common objects 

from the International Picture Naming Project (Bates et al.,2003). As in previous applications, these 
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were grouped into 5 blocks of 105 pictures each, including one filler at the beginning of each block, 

followed by 104 experimental items. Twenty-five unique sequences approximately counterbalanced 

stimulus orders across sessions and subjects. Pictures were presented via PsychoPy2 (v1.83.01) on a 

17” CRT in a soundproof testing booth at the Bangor Language Production Laboratory. Responses 

were recorded via a headmounted microphone, feeding into both a digital recorder and a custom-built 

delayed- threshold voicekey. In each approximately 30-minute session, the participant was seated in 

front of the computer monitor and asked to quickly and accurately name each picture as it appeared. 

Each trial began with a small black fixation cross at the center of the screen for 50 ms. Next, a picture 

(422 x 422 pixels) appeared at the center of the screen for 3000 ms or until the voicekey triggered. 

Short self-paced rests followed each 105-trial block. One to two weeks later, the participant returned 

to repeat the full procedure. 

 

3.4.4 Analytical approach 

Responses were initially transcribed on-line, and later confirmed via audio recordings. 

Oppenheim’s (in prep.) recent norms from the same population provided dominant and secondary 

names for each picture. Following those norms, responses that deviated from an expected name only 

in plurality or the addition of an article (e.g., “toe”/“toes”, “boat”/“a boat”) were accepted as tokens of 

that name; possible abbreviated forms (e.g., plane and aeroplane), however, were considered distinct 

responses. In cases where a participant produced two or more codable responses in a single trial (e.g., 

“dog... cat”), we analyzed the first. 

Statistical analyses apply confirmatory logistic mixed effects regression, via the 

glmer::binomial function in the lme4 v1.12 library (Bates, Maechler, Bolker, & Walker, 2016) in R 

v5.5.1 (R Development Core Team, 2016). All fixed effects are centered and contrast coded. All 

models also include maximal random effects structures (Barr, Levy, Scheepers, & Tily, 2013) for 
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participants and items, omitting correlations between random effects to facilitate convergence. P-value 

estimations use the Wald approximation method. 

 

3.5. Results 

Excluding 899 trials (3.4%) in which a voicekey error ended the trial early (< 300ms post stimulus 

onset) leaves 25351 total picture naming attempts for our analyses (12644 in the first session and 12707 

in the second session), summarized in Table 1. 

Table 1: Response frequencies and mean naming latencies for each session. Note that naming latencies are calculated after 

excluding any trials with audible hesitations for the dominant and secondary responses. Mean RTs dominant and secondary 

names are provided, for comparison with Oppenheim’s (in prep.) recent norms. 

 

 Current Experiment                Oppenheim’s (in prep) norms 

 Responses                Latencies Responses Latencies 

 Session 1  Session 2 Session 1 Session 2     

 Mean N Mean N Mean  SD Mean SD Mean N Mean SD 

Dominant .81 10249 .82 10443 988 354 961 328 .78 - 978 217 

Secondary .10 1293 .10 1273 1165 433 1149 421 .10 - 1125 399 

Other .08 1018 .07 950 - - - - - - - - 

Omissions .006 84 .003 41 - - - - - - - - 

Total 12644  12707  1045 404 1012 376     

 

3.5.1 Population-level name agreement 

Population-level name agreement for this experiment was directly compared to that of 

Oppenheim’s (in prep.) To set the stage, we can consider correspondence between the frequencies of 

dominant names in the current experiment and those reported in recent norms from the same population 

(Oppenheim, in prep). By-item response frequencies in Session 1 corresponded well to recent estimates 

of both their dominant name agreement (by-item Pearson’s correlation between dominant name 

frequency in Oppenheim, in prep, and Session 1 of the current experiment: r= .90, p < .001) and 

secondary name agreement (excluding 65 items without a secondary name: r= .86; p < .001). Such by-

item correspondences also remained in Session 2, for both the dominant name (r= .88, p < .001) and 

the secondary name (r= .83, p < .001). By-item response frequencies also correlated well between 
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Session 1 and 2 within this experiment, for both dominant (r= .90, p < .001) and secondary (r= .86, p 

< .001) name agreement. Thus, considered at the population level, name selections were consistent 

with previous norms and appear relatively stable across sessions. 

 

3.5.2 Individual-level name agreement 

But we can also ask whether the same individuals tended to use the same names across sessions. 

For instance, Table 1 indicates that 81% of participants named items using their dominant names in 

Session 1. If this proportion simply reflects a sampling of individuals and their preferred names -81% 

of our participants happened to prefer these pictures’ dominant names, as described in our “idiolect” 

account -then we would expect that the same 81% should use these dominant names in the second 

session. Thus, the probability of a person using the dominant name in both sessions would be, simply, 

.81. On the other hand, if they were stochastically selecting among responses each time, as described 

in our ‘Luce choice’ account, then only 81% of the original 81% should use the dominant name in both 

sessions. Thus, the probability of a person using the dominant name in both sessions would be 

.81ˆ2=.66.  

 

Figure 1: logistic mixed effects regressions modeling the likelihood of participants using the same dominant name 1b) and 

secondary name (1b) in both sessions. The y axis represents the proportion of subjects who used the dominant (1a) and 
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secondary name (1b) twice and the x axis represents the population-level name agreement for the dominant (1a) and 

secondary names (1b) from Oppenheim’s (in prep.) Bangor ipnp norms. 

 

As described in the Methods section, we used maximal logistic mixed effects regression, to 

predict participants’ likelihood of producing a picture’s dominant name in Session 2 as a function of 

(1) its population-level name agreement from Oppenheim’s (in prep) recent Bangor norming study (a 

continuous measure from 0:1, centered); and (2) whether the individual participant produced the 

dominant name in Session 1 (a binary measure {0,1}, centered). To estimate random slopes within 

items, we excluded the 117 items for which every participant produced the dominant name in Session 

1, leaving 408 items and 9806 trials for this analysis. 

First considering our Luce choice account, if between-subjects measures of dominant name 

agreement predict the within-subjects strength of a dominant response, as researchers typically assume, 

then participants should be more likely to produce the dominant name for a picture with higher name 

agreement, compared to one with lower name agreement, independent of their prior behavior. 

Confirming this prediction, participants in our experiment were significantly more likely to use the 

dominant name in Session 2 for high name agreement pictures than for low name agreement pictures, 

regardless of whether they themselves had produced that name previously (odds ratio: 68.75:1, 

βDominantNameAgreement= 4.23 , SE= .21 , p < .001). 

Now considering our alternative idiolect account, if participants develop and maintain 

persistent name preferences, then their likelihood of producing the dominant name for a picture should 

specifically depend on their having chosen the dominant name in the past. Confirming this prediction, 

participants here were also significantly more likely to name a picture in Session 2 using its dominant 

name if they had previously done so in Session 1 than if they had previously given another name 

instead (odds ratio: 10.84:1 , βUsedDominantInSession1= 2.38, SE= .11, p < .001). Thus, we find support for 

both for the traditional Luce choice account of name agreement measures, and also for our novel 
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idiolect account: population-level name agreement and individual’s previous word selections jointly 

predict their likelihood of selecting a dominant name in the second session (see Figure 1a). 

Until now, our narrative has focused on name stability, but a stronger test of the idea that name 

agreement predicts within-speaker response conflict may come from specifically examining cases 

where a speaker switched responses across sessions. Assuming that a picture can elicit multiple 

acceptable responses, the Luce Choice account predicts that speakers should be more likely to switch 

to a stronger dominant name than to a weaker dominant name. Confirming this prediction, fitting the 

above model to a relevant subset of the data showed that participants were significantly more likely to 

switch from a secondary name in Session 1 to a dominant name in Session 2 for pictures with high 

name agreement than for those with lower name agreement (odds ratio: 41.35:1 , βDominantNameAgreement= 

3.72, SE = .44, p < .001). 

According to both accounts, these effects should also hold for non-dominant names.  If the 

distribution of responses across the population predicts the strength of these options within each 

individual, then speakers should be also more likely to select stronger secondary names. Similarly, if 

speakers develop preferences even for non-dominant names in the first naming session are they more 

likely to select the same secondary responses when naming again later? To address this question, we 

repeated the previous logistic regression analysis but instead focused on secondary names, thus 

estimating the likelihood a participant producing a picture’s secondary name in Session 2 as a function 

of (1) its population-level secondary name agreement from Oppenheim’s (in prep) recent Bangor 

norming study (a continuous measure from 0:1, centered); and (2) whether the individual participant 

produced the secondary name in Session 1. To estimate effects within items, we further excluded 216 

items that no participant had named using the secondary name in Session 1; this leaves 309 items and 

7435 trials for the current analysis. Replicating our results for dominant name use, whether participants 

selected the secondary name during the Session 2 was predicted by both the population’s frequency of 

using the secondary name from our previous norms (odds ratio: 645:1, βSecondaryNameAgreement= 2.38 , 



Chapter 3 

  

 69 

SE= .15, p < .001) and participants’ own productions in Session 1 (odds ratio: 10:1 , 

βUsedSecondaryInSession1= 6.46, SE= .48 p < .001). Thus, we can broaden the scope of our previous 

conclusion: speakers are also more likely to produce more commonly used secondary names and 

secondary names that they themselves have chosen in the past (see Figure 1b). 

As considered previously, the Luce Choice account makes particularly strong predictions about 

the likelihood of name switches. If a population’s use of a secondary name predicts its strength within 

the individual speaker, then individuals should be more likely to switch from a dominant to a stronger 

secondary response in the second session. This is a particularly important prediction to test with 

secondary names because one interpretation of the pattern in switches to dominant names is simply 

that speakers gradually switch to more appropriate or ‘correct’ responses. Confirming this prediction, 

participants were also significantly more likely to switch from a dominant name in Session 1 to a 

stronger than a weaker secondary name in Session 2 (odds ratio: 8.22:1, βSecondaryNameAgreement= 9.01, 

SE= .62, p < .001). Thus, this finding strengthens our claim that population-level name agreement can 

predict response conflict within individuals, even in cases where people switch away from dominant 

names. 

 

3.5.3 Monte Carlo analysis of name consistency across sessions 

The analyses so far consider only the two most common names for each picture. Although 

these account for 87% of all responses in the experiment, it is worth considering whether the name 

stability trend that we have observed might extend to other responses as well. For instance, in recent 

norms, “stove” accounted for 14% of all responses to a picture of an oven (“oven”: 43%; “cooker”: 

34%; “stove”: 14%; Oppenheim, in prep). If such minority name selections reflect robust individual 

differences, rather than transient noise, then we should expect participants to repeat such names at rates 

above chance. Thus, to more generally assess how well participants’ names corresponded across the 

two sessions, we also ran a Monte Carlo simulation to incorporate all codable responses. 
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For this analysis, we assessed how often participants’ names corresponded between Session 1 

and Session 2 and compared that proportion to what would be expected by chance, that is, under the 

assumptions of the Luce Choice account. We focused this analysis on trials in which a codable 

response was produced in both Session 1 and Session 2, for a total of 12.524 trials across all 

participants. Of these trials, we found that that participants in the current experiment produced an 

identical response in Session 1 and Session 2 10.593 times . 

We then used Monte Carlo techniques to simulate the production of a codable response in 

Session 2, using the norms from Oppenheim (in prep), that is, from an independent sample of 

participants. For example, for a picture of an oven, the Monte Carlo procedure randomly selected a 

Session 2 response from among the codable responses produced in Oppenheim (in prep), 43% of the 

time selecting the word “oven”, 34% of the time selecting the word “cooker” and 14% of the time 

selecting word “stove.” In a single run of the Monte Carlo analysis, this random selection of a Session 

2 response was carried out for all 12.524 trials, and the randomly selected Session 2 response was 

compared to the actual Session 1 response, to estimate the proportion of trials in which the name would 

be expected to correspond by chance. This Monte Carlo procedure was carried out 1.000 times, to 

provide a distribution of chance values that could be compared to the observed name consistency 

between Session 1 and Session 2. The results of this analysis are shown in Figure 2.  

 

 

Figure 2: Results of the Monte Carlo analysis comparing the observed proportion of trials in which the name in Session 2 

corresponded to name produced in Session 1 (black bar), compared to a distribution of the results of the Monte Carlo 

analysis that estimated the proportion expected by chance (white bars). 
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On average, our analysis estimated that only 71.7% of Session 2 responses would be expected 

to correspond to the Session 1 name by chance. The distribution of these chance values was narrow, 

with 95% of the runs of the Monte Carlo analysis falling between 71.1% and 72.7%. None of these 

values came near the observed proportion of the 84.6%, indicating that participants were repeating the 

same responses more often than would be expected by chance (p < .001). Note that although many of 

these repetitions were cases in which the response in both Session 1 and Session 2 was the dominant 

name (e.g., “zebra”-“zebra”), the sample also includes cases in which the response in both Session 1 

and Session 2 was less probable (e.g., saying “zeppelin” for a picture of a blimp twice, despite the fact 

that only 11% of the independent sample produced that response to that picture). These results provide 

further evidence against a strong version of the Luce Choice account, as they suggest that participants 

are more likely to produce the same idiosyncratic responses across sessions than would be expected 

by chance. 

 

3.6 Discussion 

Picture name agreement has long been associated with robust behavioral, neuroimaging, and 

electrophysiological effects in word production tasks. Current literature generally assumes that 

measures of picture name agreement reflect the distributions of possible names that are active and 

available to each individual speaker each time they attempt to name a picture. However, this 

interpretation is primarily based on untested speculations about the processes that underlie word 

production tasks, rather than direct empirical evidence. In this study we used a repeated picture naming 

task to assess the within-subjects psychological reality of picture name agreement, specifically 

examining whether population-derived norms predict naming behavior beyond what one would expect 

from a sampling of idiolects. 

A first point is that our group-level correlations support the validity of picture name agreement 

for its on-label use, i.e., predicting variance in item names for a population as a whole. The frequencies 
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of the most commonly and the second most commonly used names in both Session 1 and Session 2 

corresponded well with those reported in recent norms with the same population (Oppenheim, in 

prep.), and with each other. Thus, norms have a predictive power for estimating the distribution of 

names with different subjects of the same linguistic community, which supports their use in selecting 

materials for other experiments. 

However, the main purpose of our investigation was to assess picture name consistency within 

individuals, and its relationship with norms from their larger linguistic community. To our knowledge, 

this is the first systematic investigation of picture name consistency in typical adults. There has been 

recent interest in response stability in the neuropsychological literature (van Scherpenberg et al., 2019), 

but without comparison to neurally intact populations. The current study thus provides a useful 

baseline. 

 

3.6.1 Population-level norms predict within-speaker variability 

By providing the first examination of consistency over repeated naming of the same stimuli in 

the same task, our results both support and extend the robust effects of picture name agreement 

reported in previous studies. Logistic regressions of within-subjects name consistency demonstrated 

that individual’s word selections in Session 2 were jointly predicted by the distribution of names in 

their linguistic community and their own previous responses in Session 1, both for dominant and 

secondary name use. This suggests that individuals consider the linguistic tendencies observed in a 

wider population, but they also maintain their stable word preferences across naming episodes. 

Logistic regressions of within-subjects name switching also demonstrate that population- level name 

agreement can predict the conflict within the individual, or at least the availability of multiple names, 

predicting both switches from secondary to dominant names and, more remarkably, from dominant to 

secondary names. This switching behavior is important for two reasons. First, in line with the Luce 

choice-inspired stochastic selection account (i.e., that name agreement reflects the availability of all 
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names within the individual), it confirms that individuals tend to switch to the names that other 

speakers use more frequently to describe the same stimuli. Secondly, population-level norms also 

predict speakers’ likelihood of spontaneously switching to non-dominant names, thus demonstrating 

that switching behavior cannot simply be explained as an inevitable move toward more normative 

responses (i.e., modal names).  

Our stability and switching measures indicate that picture name distributions from norms at 

least predict co-availability of responses within individual speakers, which is a crucial precondition 

for the interpretation of name agreement effects as reflecting response competition. They cannot 

directly show that speakers necessarily coactivate multiple labels within the same trial, but that is an 

assumption that is common to both competitive (Howard et al, 2006; Roelofs, 2018) and 

noncompetitive (Oppenheim et al, 2010) accounts of word production effects. On the assumption that 

switching across trials implies coactivation within trials, our results therefore provide necessary 

preconditions for competition- or conflict-based effects to emerge (as assumed by, e.g., Indefrey & 

Levelt, 2004; LaGrone & Spieler, 2006; Bose & Schafer, 2017). 

If speakers do in fact consider multiple names for the same picture, then recent empirical 

findings seem to challenge the idea that these names are competing for selection (in the sense of, e.g., 

Levelt, et al., 1999). For instance, in picture naming norms, after accounting for dominant name 

agreement, pictures with stronger secondary names appear to be named faster than those with only 

weaker alternatives (Oppenheim, 2017; in prep). Under a strict competition model, the opposite pattern 

should emerge. One possible resolution would be to suggest that competitive selection only comes 

online when a particular task demands it (Nozari and Hepner, 2019), such as an instruction to name a 

picture while ignoring a superimposed word (picture-word interference; but see e.g., Dylman & Barry, 

2018). In that case, however the question arises as to whether online competition is a necessary feature 

of word production, as opposed to an accommodation to particular experimental tasks (e.g., 

Oppenheim & Balatsou, 2019). 
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3.6.2 Population-level norms overestimate within-speaker variability 

Although our results provide strong support for a core prediction of the Luce choice account, 

they also demonstrate that name agreement estimates from norms systematically overestimate within-

speaker variability. Within-subjects regressions and within-items Monte Carlo analyses demonstrate 

that individuals maintain word preferences that are more stable than population-level norms would 

suggest. These robust individual differences imply that population-level name agreement also reflects 

individuals’ stable word preferences that are likely formed through previous experience. Of course, 

we cannot rule out the possibility that this apparent stability may have resulted from some kind of 

long-lasting priming from Session 1 to Session 2. In fact, such persistent priming forms the basis of 

our alternative idiolect account (cf. Oppenheim, et al., 2010). If it is persistent enough to affect word 

selection one week later, then it is also plausible to assume that it should affect word selection a week 

after that and a week after that (e.g., the power law of forgetting: Wixted & Ebbesen, 1991). Thus, 

even if speaker initially settles on couch by chance, a simple rich-get-richer effect should increase their 

likelihood of choosing it again in the future, resulting in the development of individual linguistic 

tendencies over time. Incrementally approximating a one-concept-one-word rule should limit lexical 

coactivation, and therefore activation error and competition, making production faster and more 

efficient. 

However, any such idiolect account must also address the question of why speakers clearly do 

maintain synonyms in their productive vocabularies. As our participants’ switching behavior 

demonstrates, speakers who choose couch can also choose sofa, implying that they have not 

completely eliminated the latter from their vocabularies. One possible explanation for this maintained 

flexibility comes from the needs of interacting with a larger linguistic community that includes other 

speakers with different word preferences. In comprehension, it is thus beneficial to maintain many-to-

one word-to-concept mappings, and listeners, much like speakers, appear to continually update them 

for efficient communication (Rodd et al., 2013). There is also direct evidence for lexical alignment 
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between interlocutors (Garrod & Anderson, 1987) -a tendency for conversation partners to adopt a 

one-concept-one-word rule for their shared communication- providing a basis for assuming transfer 

between the comprehension and production systems. Although it may be efficient for a speaker to 

maintain a single word for a concept, in terms of their own production needs, communication requires 

and provides flexibility. 

 

3.7 Conclusion 

This study provides the first demonstration that picture name agreement has a psychological 

reality within individual speakers, comparing predictions from a stochastic account of the phenomenon 

to those from an idiolect-based account. There is some evidence that name agreement, as measured in 

the traditional way, relates to within-individual lexical co-activation, and by extension possible lexical 

competition. Norms from a speaker’s linguistic community do predict their likelihood of using 

particular names, and even their likelihood of switching to alternative names when retested, suggesting 

that speakers consider the range of names observed in their larger linguistic community. But we also 

have evidence for more stable differences between individuals’ semantic-to-lexical mappings: 

speakers are far more consistent in their naming preferences than would be expected by chance alone. 

It is unclear from the current study whether that consistency reflects within-experiment priming 

effects, in line with an incremental word learning framework (Oppenheim et al., 2010), or pre-existing 

differences in how speakers map from concepts to words. Given this heterogeneity among speakers, it 

is remarkable that name agreement measures do such a good job of predicting naming performance 

and show such consistent neurophysiological effects. This efficacy is somewhat surprising, but not too 

surprising, because it is still probably the case that pictures that have multiple names have more lexical 

co-activation, even if population measures of name agreement are not the perfect way to measure that 

co-activation. 
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In general, there are certain challenges when assuming static properties of a processing system, 

such as language, that continually changes through experience; we cannot assess current performance 

without affecting future performance. Thus, in language production, as elsewhere, population-level 

norms usefully supplement the data that we can collect from individuals. But we need to exercise 

caution when assuming that things that are true on a population level must also be true within an 

individual. This concern is emblematic of a wider concern that we see elsewhere, such as in the debate 

between group-level and case-study approaches in the neuropsychological literature: although trends 

may hold when collapsing across individuals, accurate psychological interpretation of a pattern 

crucially depends on sufficiently powered evidence from within individuals. 
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CHAPTER 4- Endogenous conflict and exogenous competition in word 

production: an ERP study of name agreement in overt picture naming 

 

 
In this chapter, I report how we investigated the flexibility of the lexical selection mechanism by 

evaluating behavioral and electrophysiological name agreement effects in picture naming before and 

after corrective familiarization. The inherent conflict that originates from picture name agreement 

variations is later replaced by the demand to switch to undesired responses for production. This 

suggests that the selection mechanism handles differently endogenous lexical co-activation and 

exogenous response competition. 

  

  

This chapter is submitted for publication as an article: Balatsou, E., Thierry, G., & Oppenheim, G. 

M. (submitted). Endogenous conflict and exogenous competition in word production: an ERP study 

of name agreement in overt picture naming. Cognitive Neuropsychology. 
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Abstract 

How many mechanisms do we use for word selection in language production? Differences in picture 

name agreement—an empirical measure of how often people produce a picture’s modal name—are 

associated with robust behavioral and electrophysiological correlates that researchers often interpret 

as evidence that a competitive lexical selection process is part of normal language production. 

Complicating this interpretation, previous electrophysiological studies of name agreement have 

typically begun with an unrecorded ‘familiarization’ procedure, specifying the precise words that 

participants should use to name each picture and thus requiring them to suppress their preferred names 

when they conflict. Here, our theoretical question is whether such task demands merely amplify 

conflict within a core lexical selection mechanism, or instead engage adjunct, task-induced control 

processes. We measured naming latencies and electrophysiological activity as participants named 

high- and low-agreement pictures before and after a corrective familiarization procedure. Critically, 

our familiarization procedure introduced name changes for high and low agreement pictures equally 

often. Naming latency analyses indicate that the name agreement effects that emerged before 

corrective familiarization (that is, when participants were simply asked to name pictures, as in timed 

norming studies) were supplanted by name change effects after familiarization. Prior to corrective 

familiarization, event-related brain potentials linked name agreement to modulations in the N200 and 

N400 time windows. After corrective familiarization, weak forms of those effects were accompanied 

by two new effects of directed name change: an independent modulation in the N200 window and a 

later anterior positivity. Taken together, these results suggest that, although speakers can successfully 

exert deliberate control over the endpoint of word production, doing so primarily involves processes 

distinct from those that typically support lexical selection in language production.  

 

 

Keywords: name agreement; picture naming; event-related potentials; selective inhibition; lexical 

competition 
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4.1. Introduction 

How do speakers select a word for speech? Most models broadly agree on two major levels of 

representation that underlie single word production: a semantic level and a form-based level (Dell, 

1986; Levelt et al., 1999). As a stimulus (e.g., the picture of a cat) triggers the activation of several 

corresponding semantic features (e.g., [PET], [FOUR-LEGGED], [FURRY]), these activate 

representations of both the target word (e.g., “cat”) and other words that correspond to similar 

meanings (e.g., “dog”). One of these lexical representations can then be selected for further form-based 

processing, eventually culminating in its overt articulation. While models agree on the existence of 

these levels, they continue to debate the functional properties of the lexical selection process that 

bridges them. The selection process must implement some kind of winner-take-all function, but a key 

question is how a mechanism could correctly select a desired word without already knowing which 

word it desires. One general approach is to assume that the system gradually accumulates evidence (or 

activation), selecting the first word whose evidence exceeds some simple threshold or decision 

criterion (e.g., Mahon et al., 2007; Oppenheim et al., 2010, Simulation 6; cf. Anders, Ries, van Maanen, 

& Alario, 2015). For instance, the system would select cat if cat reached the threshold first, and dog if 

dog reached the threshold first, but because cat’s progress toward its threshold is independent of dog’s, 

this kind of selection process is typically described as “non-competitive”. By contrast, “competitive” 

accounts posit that lexical selection necessarily considers the relative evidence for one candidate over 

any others, thus selecting the first word whose evidence exceeds a relative threshold (Levelt, Roelofs, 

& Meyer, 1999; Nozari & Hepner, 2019; cf. Roelofs, 1992). For instance, if cat and dog were strongly 

co-activated while a speaker attempted to retrieve cat, this co-activation would make cat’s selection 

not only less likely (as in the non-competitive account) but also more effortful and time-consuming. 

Thus, the core theoretical distinction between the accounts is whether the lexical selection process that 

bridges the semantic and form-based levels considers evidence for alternatives as evidence against a 
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target, and therefore makes target selection more difficult (not merely less likely) when one has a 

strong alternative. 

 

4.1.1 Evidence for exogenous lexical competition  

The majority of evidence in favor of a competitive account of this lexical selection process 

derives from a task called picture-word interference (e.g., Schriefers, Meyer, & Levelt, 1990). In 

picture-word interference experiments, participants are generally instructed to name a picture (e.g., a 

picture of a cat), while attempting to ignore the simultaneous visual or auditory presentation of a 

‘distractor’ word (e.g., the word “dog”). Naming latencies are typically greater when the distractor 

word is semantically related to the target (e.g., “cat”) than when it is unrelated (e.g., “couch”; for a 

recent review, see Bürki et al., 2020). Although the competition in this task comes from obvious 

sources outside the production system—a superimposed distractor and an explicit task demand to 

suppress responses to it—proponents of the competitive selection account (e.g., Levelt et al., 1999; 

Roelofs, 2018) typically assume that (1) these sources increase competition within the core lexical 

selection process of the production system, and (2) to resolve this competition, speakers engage the 

same core mechanisms that they would normally use to select words in communicative language 

production. That is, researchers characterize this exogenous manipulation as amplifying endogenous 

competition, and therefore interpret the associated naming latency effect as revealing competitive 

endogenous mechanisms for lexical selection. But alternative accounts of picture-word interference 

argue that the empirical results do not actually provide compelling evidence for a competitive model 

of lexical selection (see Oppenheim & Balatsou, 2019, for recent discussion). For instance, the 

Response Exclusion Hypothesis posits that speakers suppress distractors post-lexically, at a later pre-

articulatory or response-buffer stage, thereby obviating the need for competition in the earlier lexical 

selection process (Mahon et al., 2007; Janssen, Schirm, Mahon & Caramazza. 2008; Dhooge et al., 

2013; Dhooge & Hartsuiker, 2010; 2011). Thus, although the effects of semantic manipulations in 
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picture-word interference tasks are empirically robust, interpretations differ as to whether it is assumed 

that speakers integrate the task demands into their earlier lexical selection process or address them by 

recruiting additional mechanisms, such as later, post-lexical monitoring.  

In paradigms with less obvious task demands, the evidence that has been claimed to support 

competition can also be explained without it. For instance, in blocked cyclic picture naming studies, 

where participants repeatedly name a small set of pictures, stimuli in semantically related blocks (e.g., 

cat, dog, and horse in a single block) elicit longer naming latencies than stimuli in semantically 

unrelated blocks (e.g., cat, flower, and couch; e.g., Vigliocco, Vinson, Damian, & Levelt, 2002). 

Similarly, when speakers name pictures in semantically heterogenous sequences, their naming 

latencies increase as a function of the target picture’s ordinal position within its semantic category 

(Howard et al., 2006). Like semantic picture-word interference, both manifestations of cumulative 

semantic interference are empirically robust and were long claimed to support the competitive lexical 

selection account (e.g., Howard, Nickels, Coltheart, & Cole-Virtue, 2006; Vigliocco et al., 2002; 

Wheeldon & Monsell, 1994), for instance under the assumption that lateral inhibition between 

activated candidate words (e.g., Harley, 1993; Howard et al., 2006; Stemberger, 1985) implements a 

relative decision criterion (e.g., Levelt et al., 1999). However, a more recent model of word production 

demonstrated that persistent, experience-driven adjustments of semantic-to-lexical mappings are 

sufficient to explain the effects, obviating the need for competition in the selection mechanism itself 

(Oppenheim et al., 2010): Each time a speaker retrieves a word for production, an incremental learning 

process adjusts the mapping, both increasing the ease and likelihood of retrieving the target again (e.g., 

“dog”) and decreasing the ease and likelihood of retrieving co-activated alternatives (e.g., “cat”; see 

also, e.g., Damian & Als, 2005; Navarrete, Del Prato, Peressotti, & Mahon, 2014). Although many 

researchers still use the assumption of competitive lexical selection to describe such cumulative 

semantic interference effects, they now generally acknowledge that the effects alone do not compel 

that interpretation (e.g., Nozari & Hepner, 2019). Moreover, even though these paradigms present 
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subtler task demands than picture-word interference, there remains concern about factors such as 

strategic response preparation in the blocked cyclic naming paradigm (e.g., Belke, 2017; cf. Schnur, 

2014) and distinguishing their possible contributions from the more typical functioning of the language 

production system. 

 

4.1.2 Evidence against endogenous lexical competition  

One way to reduce the contribution of task demands is to consider the competition that is 

naturally present in the production system (as suggested by Oppenheim and Balatsou, 2019). Even 

when presented on their own, in norming studies, pictures vary in how reliably they elicit particular 

names, a property called picture name agreement. By definition, pictures with higher name agreement 

elicit their dominant (i.e., modal) names more reliably than those with lower name agreement, and this 

characterization holds for individual speakers as well as their linguistic communities (Balatsou, 

Fischer-Baum, & Oppenheim, in revision). Speakers are also quicker to name pictures that have higher 

name agreement (e.g., “cat”) than those with lower name agreement (e.g., “couch”, which is also 

commonly named as “sofa” in American English; e.g., Lachman, 1973; Gilhooly & Gilhooly, 1979; 

Vitkovitch & Tyrell, 1995; Bates et al., 2003; Alario et al., 2004). In brain imaging studies, naming 

pictures with lower name agreement is associated with greater activation of the left inferior frontal 

gyrus, claimed to resolve or ‘bias’ the assumed competition (Kan & Thompson-Schill, 2004). In 

electrophysiological studies, naming pictures with lower name agreement has been claimed to increase 

amplitudes in a stimulus-locked N200 time window (Shao et al., 2014: 170-330 ms; Cheng et al., 2010: 

250-350 ms, but cf. Valente et al., 2014) that associated Indefrey & Levelt’s (2004) 200-350ms claim 

for the process of  “lemma” retrieval. Such name agreement effects are typically interpreted as 

evidence for endogenous competition during lexical selection: if norms reveal the range and strength 

of names that individual speakers consider each time they name a picture, then pictures with lower 
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name agreement should require more control to suppress the co-activation of alternative names and 

thereby choose the very best. 

But we have recently argued that this competitive interpretation of name agreement effects may 

be circumstantial (Balatsou, Fischer-Baum, & Oppenheim, in revision; Oppenheim, 2017; in prep). 

Target accessibility is sufficient to link response speed with response likelihood without recourse to 

competitive selection, so a more specific test of the competitive account should instead consider the 

strength of the strongest alternative (cf. Oppenheim et al., 2010). Ceteris paribus, a name that faces 

focused competition from a single strong alternative should be harder to select than one that faces 

distributed competition from an array of weak alternatives. Remarkably, our norms that quantified 

competition in this manner demonstrated that, all else being equal, speakers were actually quicker to 

produce the dominant names for pictures (e.g., “couch”) that have strong alternatives (e.g., “sofa”) 

than those without. That is, the study replicated the classic RT facilitation effect of “dominant” name 

agreement, but further showed that production in these “high-conflict” situations (with a strong 

“secondary” name) was actually faster rather than slower, a result that is more consistent with a non-

competitive model where speakers simply choose whichever word reaches threshold first. 

 

4.1.3 Reconciling the accounts: how many mechanisms can speakers use for lexical selection?  

We see two possible ways to reconcile the apparent evidence for exogenous competition from 

tasks like picture-word interference with the evidence against endogenous competition from tasks like 

picture naming norms. The first way, which we call a multi-factor account, is to assume that 

manipulations of exogenous competition engage selection mechanisms that are distinct from those that 

resolve endogenous conflict. For instance, if a speaker is given the goal of naming a picture instead of 

a distractor, or otherwise wishes to use or avoid certain words, they might implement ad hoc constraints 

via a generate-then-test procedure (cf. Barsalou, 1983), choosing responses and then evaluating, 

disrupting, and correcting them as necessary. Mahon and colleagues’ (2007) Response Exclusion 
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Hypothesis is one example of such an account, as is Nozari and colleagues’ (2016) distinction between 

selection control and post-monitoring control, but Levelt’s (1983) perceptual loop hypothesis fits 

equally well; the key attribute is that a multi-factor account separates the ‘smart’ imposition of ad hoc 

constraints from a more limited process of initial lexical selection (cf. Fodor, 1983). 

The second way, which we call a single-factor account, is to assume that the core process for 

lexical selection directly incorporates such ad hoc constraints. The most compelling example of a 

single-factor account is Nozari and Hepner’s (2019) recent proposal for a flexible selection criterion 

that scales a relative threshold according to task goals. According to their model, speakers always use 

the same competitive process to select their words, but when task demands require them to name a 

target instead of a distractor, or use a particular ‘best’ word to name a picture instead of a reasonable 

alternative (e.g., “couch” instead of “sofa”), they increase their selection criterion, implementing a 

speed-accuracy trade-off that exaggerates competitive effects. When a task allows any reasonable 

response—more typical of picture naming norms—speakers reduce this criterion, so response times 

depend more on the time course of lexical activation than the time course of lexical selection, and, 

consequently, lexical selection may appear non-competitive. Similar core assumptions—though 

without the ability to reconcile contradictory findings—underlie the long-time use of picture-word 

interference as the basis for models of typical language production (e.g., Levelt et al, 1999), as well as 

the assumption that name agreement effects are robust to corrective familiarization (e.g., Alario et al., 

2004; Shao et al, 2014; Valente et al., 2014; more on this below), most clearly illustrated in Roelofs 

(1992) claim that the lexical selection process in picture-word interference directly incorporates a 

response-set constraint. According to recent versions of such accounts (e.g., Shao et al., 2015), the 

core process underlying all competitive selection effects (name agreement, cumulative semantic 

interference, and semantic picture-word interference) is “selective inhibition”: even without explicit 

distractors, naming a picture as “couch” involves specifically, effortfully, suppressing the alternative, 

“sofa”. Although such single-factor accounts should, in principle, be compatible with the same 
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secondary monitoring processes that we described for multi-factor accounts, their crucial 

distinguishing feature is that they allow task goals to directly modulate the selection process, 

effectively reaching inside the selection module, and argue that any late monitoring or adjunct control 

processes are merely incidental to observed “competitive” effects.  

 

4.1.4 Using electrophysiology to compare correlates of endogenous and exogenous lexical conflict  

In light of these two ways of incorporating task goals, it is worth considering the role of 

corrective familiarization in picture naming experiments. For the purely practical goal of avoiding data 

loss, researchers often3 precede picture naming experiments by introducing participants to each of the 

stimuli and providing the specific names that they should subsequently use to name them. For instance, 

before Valente and colleagues (2014) assessed ERP correlates of picture name agreement, their 

participants first read a booklet that introduced each picture and its ‘correct’ name; Shao and 

colleagues’ (2014) followed their initial booklet-based training phase with a second training phase 

where participants attempted to produce the specified names in response to the specified images, 

receiving corrective feedback whenever their responses deviated. Such corrective “familiarization” 

would seem reasonable if one assumed that each picture had exactly one correct name, and participants 

just needed to be pointed to it. In fact, in a recent two-session norming study Balatsou, Fischer-Baum, 

& Oppenheim (in revision) showed that speakers were more likely to spontaneously switch from non-

dominant names to dominant names that were more commonly used by other members of their 

linguistic community (i.e., across-subject name agreement predicted within-subject voluntary name 

change), a pattern that seems consistent with the idea that dominant names are generally “more correct” 

than alternatives. But we also found evidence that speakers often consider their alternative names to 

be correct as well: those who used non-dominant names in the first session were more likely to re-use 

 
3 For instance, Bürki et al (2020) note that 143 of the 161 picture-word interference experiments in their meta-analysis 

began with such a familiarization phase, precipitating recent debate about its possible role in establishing picture-word 

interference effects (e.g., Collina, Tabossi, & De Simone, 2013; Gauvin, Jonen, Choi, McMahon, & de Zubicaray, 2018). 
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them later than one would expect by chance. If speakers do maintain stable preferences for alternatives 

despite their subordinate status, then corrective familiarization seems more problematic: directing 

speakers to use particular names—even dominant names—may actually introduce a novel task demand 

to override own preferences, suppressing one name to recall another instead, thus creating a form of 

exogenous competition (cf. Nozari et al., 2016). Though long-term incremental learning processes 

(e.g., Oppenheim et al., 2010) may produce some quick adaptation to such corrective feedback, we 

assume that maintaining the specific task goal and name target should depend more on adjunct memory 

and control processes4. The key theoretical question is whether the language production system 

incorporates this task goal into the same (early) process that it employs to resolve endogenous lexical 

conflict (e.g., Nozari & Hepner, 2019) or instead applies ad hoc executive control processes (e.g., 

Oppenheim & Balatsou, 2019).  

In this paper, we use event-related potentials to adjudicate between the single- and multi-factor 

accounts, by assessing whether endogenous conflict and exogenous competition affect the same 

aspects of the picture naming process. In doing so, we also provide the first ERP-based assessment of 

picture name agreement effects in overt speech that is not confounded by corrective familiarization. 

This study takes the form of a single-session, three-phase, overt picture naming task that integrates the 

free-response approach that researchers have typically used to assess behavioral correlates of picture 

name agreement (e.g., Bates et al., 2003; but cf. Alario et al., 2004) with the corrective-familiarization 

approach that researchers have typically used to assess electrophysiological correlates of name 

agreement (e.g., Shao et al, 2014; Valente et al, 2014; but cf. Cheng et al, 2010). In Phase 1, we 

recorded response times and electrophysiological activity as participants named 68 high name 

agreement and 68 low name agreement pictures, randomly interleaved; this provides measures of pre-

familiarization correlates of name agreement, and thus selection from among acceptable alternatives. 

 
4 Working with a patient with encephalitis-based left hippocampal damage, we have previously noticed typical implicit 

learning combined with particular difficulty incorporating corrective familiarization (Oppenheim, Tainturier, & Barr, 

2015; Oppenheim, Barr, & Tainturier, 2016). 
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Note that we selected low-agreement pictures that had at least one strong alternative name and avoided 

those that had low agreement due to low-level visual or conceptual problems (e.g., Cheng et al., 2010; 

Vitkovitch & Tyrell, 1995). In Phase 2 we provided corrective familiarization, changing or confirming 

the names for high- and low-agreement pictures with equal likelihood (i.e., 50% in each case; e.g., frog 

→ toad, truck → lorry); we did not collect data during this phase, both because we lacked relevant 

predictions and because presenting multiple stimuli in each trial (i.e., the picture and its desired name) 

is problematic for ERP methods. In Phase 3, we recorded response times and electrophysiological 

signals as participants named the pictures again, this time using the specified names, thus providing 

the first direct measure of the effects of ‘correction’ in corrective familiarization and allowing us to 

empirically assess whether it modulates the same ERP components associated with simple name 

agreement. We can thus ask 1) when and how name agreement effects manifest in the initial free-

naming phase, 2) when and how a task goal to use a particular name affects the naming process, and 

3) whether the two sources of lexical conflict interact.  

We can identify several predictions for the effects of name agreement in Phase 1, before 

corrective familiarization. From many previous behavioral studies (e.g., Bates et al., 2003), we expect 

lower name agreement to be associated with longer naming latencies. But a major question for our 

electrophysiological investigation is whether name agreement modulates N200 amplitudes without 

prior corrective familiarization. Recent reviews argue that lexical access in picture naming typically 

begins within 200ms of stimulus onset (Strijkers & Costa, 2011; Indefrey, 2011). Though Shao et al.’s 

(2014) report of a 170-330 ms right-anterior N2 modulation fits well within this window, the 

plausibility of their claim that it indexes selective inhibition—and thus that name agreement effects in 

general index lexical competition—seems to hinge on their prior use of corrective familiarization. 

Evidence for such name agreement-based N200 modulations in other studies is less convincing. 

Although Cheng et al. (2010) did report a name agreement-based ‘N2’ modulation in a task without 

prior corrective familiarization, their use of covert naming, their later time window (250-350 ms), and 
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the left parietal distribution of their effect raise some doubt as to whether their modulation actually 

indexed the same processes. And Valente et al’s (2014) post-familiarization study did not report any 

significant name agreement-based modulations until much later, 380 ms after stimulus onset5. Thus, 

detecting a name agreement-based modulation in the N200 range would generally increase our 

confidence that name agreement specifically affects early lexical access processes. And specifically 

detecting a right-anterior N200 modulation without prior corrective familiarization would cast doubt 

on its characterization as indexing selective inhibition, as opposed to mere lexical co-activation or 

selection processes more broadly. Moreover, if N200 and RT name agreement effects both specifically 

index lexical selection as opposed to mere (co)activation, then we might expect the magnitudes of 

those effects to correlate. Considering the reports of later name agreement-based modulations, and the 

uncharacteristic topography of Cheng et al.’s N2, it also seems plausible that agreement could 

modulate amplitudes in the N400 range, typically measured over central electrodes, which has been 

associated with increased naming difficulty in other tasks (e.g., Schendan & Kutas, 2007; Costa et al, 

2009; Schendan & Maher, 2009).  

We consider the influence of more constrained production goals and task-mandated lexical 

control in Phase 3, when participants attempt to name the pictures using our corrected or confirmed 

names. Because this will be the third time participants have seen these pictures (as in Shao et al., 2014) 

and the second time they have named them (as in Shao et al., 2014, and Alario et al., 2004), one would 

typically expect memory and implicit learning to produce some overall reduction in both naming 

latencies and ERP amplitudes, but an increase in response caution may counteract that trend. If name 

agreement effects are robust to the imposition of task-mandated lexical control (Alario et al., 2004; 

Shao et al., 2014; Valente et al., 2014) then we should see the same name agreement effects as in Phase 

1. In addition, if the goal of choosing a particular word merely amplifies the endogenous competition 

 
5 The unfortunate practice of omitting statistics for non-significant contrasts prevents any further attempt at reconciling 

the results. 
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that normally underlies name agreement effects (per the single-factor account), then we would expect 

corrective familiarization to exaggerate any name agreement effects that were already present in Phase 

1 (i.e., producing superadditive Phase X Name Agreement interactions for both naming latencies and 

relevant ERP effects).  

There is also the more specific question of how speakers implement a task demand to override 

a preferred name, recalling and producing a less-preferred name instead. Behaviorally, implementing 

such a change should generally increase naming latencies. If speakers incorporate such task demands 

into the early lexical activation and selection process-whether by selectively suppressing a preferred 

name (Shao et al., 2014), suppressing responses in general (e.g., by increasing a simple or relative 

selection threshold), and/or incorporating short-term memory as a secondary source of lexical 

activation (e.g., simply increasing the activation of the task-mandated option)-then the name change 

manipulation should affect the same early processes as name agreement. Most accounts would also 

predict a particularly large name change cost for high-agreement items, on the assumption that it would 

be especially difficult to suppress the preferred name for high-agreement stimulus (but cf. Mahon et 

al., 2007), and/or that it would be especially difficult to activate an otherwise-weaker specified 

alternative. Observing such an interaction in naming latencies would do little to distinguish between 

accounts, but for ERPs the single-factor account would specifically require an interaction in the early 

(N200) time window. On the other hand, if speakers simply recruit additional mechanisms to fit their 

naming behavior to specific task goals, then we would broadly expect little or no convergence between 

the ERP modulations associated with name agreement and name change predictors, and the emergence 

of distinct components that were not present during the initial picture naming task. For instance, if 

targeted production engages a select-but-verify approach, where speakers initially select a preferred 

name as usual, and then monitor and repair it to fit the new task goal (e.g., Nozari et al, 2016; cf. 

Mahon et al, 2007), then we might expect normal early name agreement effects to be followed by later, 

additional modulations, independently associated with the name change manipulation, though the 
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variety of possible mechanisms (Postma, 2000) prevents a more precise prediction. While a single-

mechanism account would not necessarily be incompatible with such additional differences, it would 

predict that the most important components would be common to both free naming and targeted 

selection tasks. 

 

4.2. Materials and Methods 

4.2.1 Participants 

Twenty-six healthy Bangor University students (16 females; Mean Age =20.9 years, SD = 

3.20; twenty-two right-handed and 4 left-handed) were recruited from a participant panel and took part 

in a three-phase picture naming task in a single session. Data from nine participants were discarded 

because they failed to produce at least 30 valid, artefact-free trials per condition: two failed to switch 

to the desired names on more than 30% of the trials, and seven had excessive alpha contamination or 

electrode drifts. Therefore, the current analysis is restricted to 17 datasets (13 females, 4 males; 14 

right-handed, 3 left-handed; Mean Age = 19.6 years, SD = 1.96). All participants were native English 

speakers and had normal or corrected-to-normal vision, no neurological impairment and no self-

reported symptoms of developmental dyslexia. Participants that signed-up for the experiment were 

given an information sheet and informed consent which they signed before taking part in the study. 

The study was approved by Bangor University Ethics Committee and participants received course 

credit or cash compensation for their participation. 

 

4.2.2 Stimuli and Design  

As stimuli for the naming task, we selected 176 black-and-white line drawings of common 

objects (68 High agreement, 68 Low agreement; see Table 1) from the International Picture Naming 

Project (Bates et al., 2003). To identify their local names and name agreement, we used Oppenheim’s 

(in prep.) recent picture naming norms, gathered from 100 different individuals from the same 
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population. When selecting the low name agreement stimuli, we ensured that the pictures had at least 

one strong alternative name rather than having just low identifiability. Given other constraints, we also 

attempted to match word lengths (High agreement = 5.26 letters; Low agreement = 5.65 letters) and 

frequency (in Zipf values from SUBTLEX-UK: van Heuven, Mandera, Keuleers, & Brysbaert, 2014). 

 

 Table 1. Mean Name agreement (Oppenheim, in prep) and Lexical Frequency (van Heuven et al, 2014) Zipf values for the 

stimuli. Standard deviations are included in the parentheses. 

 

Name Agreement  Name  

Lexical Frequency  

Mean (SD)  

Name use proportion  

Mean (SD)  

High (N = 68)  
Dominant  4.39 (0.54)  0.93 (0.12)  

Secondary  3.73 (0.98)  0.05 (0.09)  

Low (N = 68) 
Dominant  3.81 (1.10)  0.59 (0.12)  

Secondary  3.88 (1.06)  0.23 (0.11)  

 

Because the experimental task required participants to change between dominant and ‘secondary’ 

alternative names in both the high and low name agreement conditions, we took care to identify 

plausible alternatives. For both high and low agreement pictures, we therefore selected as the 

alternative the second most commonly used name from Oppenheim’s (in prep.) norming study. Thus, 

all of these alternatives emerged from the same norming process as the dominant names. In the few 

cases where the norms provided no alternative names-images with perfect name agreement-we chose 

alternative names from the WordNet online database (Princeton University, 2010). Whenever we could 

choose between similarly plausible alternative names, we also attempted to match the lexical frequency 

of dominant and alternative names, F(1, 134) = 2.893, p = .09 (Table 1). 

The experimental task consisted of a three-phase design that participants completed in a single 

session on the same day (Figure 1): (1) an initial overt picture naming task (free naming), (2) corrective 

familiarization, and (3) a final overt picture naming (post-correction target naming). During Phase 1 

(free naming), participants freely named each picture and we coded their responses online as matching 

the expected dominant name, secondary name, or neither. Based on the names that each participant 

produced in this block, an algorithm quickly selected their target names for use in Phase 2 
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(familiarization), changing the targets for 50% of all dominant- and secondary-named items; other 

responses were randomly changed to either name with equal frequency, but excluded from subsequent 

analyses.  

 

Figure 1. Familiarization design and experimental conditions 

This Name Change manipulation similarly affected all items, counterbalanced across 

participants, and all conditions within each participant (i.e., providing approximately the same number 

of valid trials in the Name Agreement x Name Change conditions for each subject), so any difference 

between the ERPs elicited in the different conditions should not be due to any uncontrolled differences 

between the stimuli or the familiarization process.  

 

4.2.3 Experimental Procedure 

Prior to the experiment, each participant degreased their scalp by washing with baby shampoo 

and water. Then, they were seated in a comfortable chair, within a soundproofed room with dimmed 

lights, 100 cm away from a 19-inch computer monitor. A cap with 64 electrodes was fitted to their 

head. Small amounts of alcohol were used to further degrease their scalp before small amounts of gel 
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(consisting of electrolytes, sand and water) were deposited at each electrode site to increase electrical 

conductivity between scalp and electrodes. 

Participants were instructed to relax and refrain from blinking or moving unnecessarily, and to 

name each picture as accurately and fast as possible, in a clear and loud voice. Pictures were presented 

via E-Prime 1.2 (v. 1.2.1.847) on a 17” CRT. Responses and naming latencies were recorded via a 

‘shotgun’ small diaphragm condenser microphone, placed approximately 15 cm away from the 

participants’ mouth, feeding into both a digital recorder and a delayed-threshold voicekey. An 

experimenter in an adjoining monitoring room manually recorded the participants’ productions. Each 

block in each phase began with a set of five high name agreement filler pictures (name agreement: 

M=0.87, SD = .14; frequency: M= 4.47, SD = .57) followed by a block of 68 experimental trials. Short 

self-paced breaks followed each 68-trial block and each phase. 

During Phase 1 (“free naming”), participants were simply instructed to name each picture as 

quickly and accurately as they could, while refraining from making any other noises (i.e., producing 

any appropriate name, per standard norming instructions). Each trial began with a small black fixation 

cross at the center of the screen which appeared for 150 ms, followed by a picture (567 x 567 pixels) 

appearing at the center of the screen for 3000 ms or until the participant’s response triggered the 

voicekey. In Phase 2 (corrective familiarization), participants were instructed not to name each picture 

until the correct name appeared atop it, because they would need to use that correct name later in the 

experiment. Each trial began with a small black fixation cross appearing for 700 ms, then the picture 

appeared alone for 1000 ms and then the desired name was superimposed on the picture for an 

additional 2000 ms, or until the participant’s voice triggered the voicekey. Each trial therefore lasted 

~1500 ms after the onset of the picture display. Phase 3 (post-correction target naming) followed the 

same procedure as Phase 1, except that participants were instead instructed to name each picture using 

the words that we had provided in Phase 2. 
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4.2.5 Electrophysiological recording and data analyses.  

Electrophysiological data were recorded in reference to Cz at a rate of 1 kHz from 64 Ag/AgCl 

electrodes placed according to the 10-20 convention (Jasper,1958). Impedances were kept below 5 kΩ. 

Ocular artefacts were monitored using vertical electro-oculogram channels (VEOG) set above and 

below the left eye. All pre-processing steps and analyses were performed using the EEGLAB Toolbox 

(version 14.1.2b; Delorme & Makeig, 2004) in MATLAB (version R2018a, Mathworks Inc.) and 

Neuroscan (Scan 4.5, Compumedics). EEG data were filtered bandpass using zero-phrase shift digital 

filtering (0.1 Hz, 24 dB/oct – 20 Hz, 48 dB/oct). All data were visually inspected for abnormalities and 

sections of continuous data containing major muscle artefacts or recordings taken during pauses were 

dismissed. 

Ocular artefacts were mathematically corrected using independent component analysis (ICA) 

in EEGLAB. Independent components (ICs) were inspected by plotting component activations as well 

as component spectra and maps to see which ICs contributed the most at 5 Hz and 20 Hz frequencies. 

ICs containing ocular and muscle artefacts as well as electrode pops were removed. Prior to accepting 

ICA correction, we plotted the EEG data before and after ICA correction to make sure that rejecting 

ICs led to ocular artefact correction rather than spurious data changes. On average, 2.52 ICs (SD = 

.71; min = 1, max = 3) were rejected per participant. EEG files were then visually inspected for 

remaining artefacts and EEG periods contaminated by remaining artefacts were manually excluded. 

Continuous recordings were cut into epochs starting 200 ms before and ending 1000 ms after picture 

onset. Baseline correction was performed in reference to pre-stimulus activity (-200–0 ms) for 

stimulus-locked analyses. Individual averages were digitally re-referenced to the global average 

reference and Individual ERPs were then averaged together in each condition to obtain grand averages. 

ERP components were defined based on inflection points in the mean global field power (MGFP) 

measured across the scalp, which summarizes the contribution of all electrodes in the form of a single 

vector norm. 
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4.2.6 Analytical Approach  

Responses were initially transcribed on-line and were recorded and manually checked offline 

for accuracy. To ensure that we were only comparing valid trials, we excluded 621 (13%) trials where 

a speaker failed to produce either the dominant or secondary name in the Phase 1 or failed to switch to 

the desired name in Phase 3. This left 4160 picture naming attempts for our analyses in total: 2055 in 

Phase 1 and 1938 in Phase 3. We also excluded 78 trials with recorded naming latencies shorter than 

400 ms from both the behavioral and ERP analyses, on the assumption that such quick responses could 

not be valid in this paradigm, thus restricting the current dataset to 3925 trials in total, 2026 in Phase 

1 and 1899 in Phase 3. 

Inverse-transformed naming latencies (-10000/RT) were analyzed with confirmatory linear 

mixed effects regression, via the lmer function in the lme4 v1.12 library (Bates et al.,2016) in R (v5.5.1, 

R Development Core Team, 2016). All fixed effects were sum-coded (centered around their condition-

weighted midpoint), and all models included maximal random effects structures (Barr et al., 2013) for 

participants and items, omitting correlations between random effects to facilitate convergence. P-value 

estimations use the Satterthwaite approximation.  

The aim of the ERP analyses was to determine whether the same effects would emerge for 

name agreement in simple picture naming and in naming with explicit task demands to switch names. 

For this reason, we compared mean ERP amplitudes in time windows that we had selected based on 

previous reports of picture name agreement effects in Phase 1 (i.e., Shao et al., 2014; Cheng et al., 

2010; Valente et al., 2014), and also compared the change and no change conditions in these same 

time windows in Phase 3.  

ERP analyses used linear mixed effects regression of mean amplitudes for each condition for 

each participant, for each specified electrode within the specified time windows, including per-

participant maximal random effects structures, as above, and per-item random intercepts; the main 
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advantage of this approach over traditional ANOVA for ERPs is its ability to directly provide 

meaningful, directional effect estimates in the form of β-values and standard errors for each contrast. 

All predictors are sum-coded binomials (Name Agreement: {Low = -0.5, High = 0.5}; Name Change: 

{No Change = -0.5, Change = 0.5}), and p-value estimations use the Satterthwaite approximation. 

Phase 1 analyses assessed name agreement effects in the N200 and N400 ranges separately. Phase 3 

analyses assessed name agreement, name change, and their interaction in the N200 and N400 ranges 

separately. Phase 3 analyses also assess name change effects for a later (450-600 ms) positive 

modulation observed in the current study, but since this effect was not specifically predicted nor 

previously empirically reported, our analysis and interpretation are more speculative.  

 

4.3 Results 

4.3.1 Behavioral results  

Our 17 participants provide 4624 total trials for our analyses (2312 in Phase 1 and 2312 in 

Phase 3). We restrict our analyses to the 3925 (84%, summarized in Table 1), to focus on trials where 

participants produced either the dominant or secondary name in Phase 1 and successfully switched to 

the targeted dominant and secondary name in Phase 3. Out of the 2312 total trials in Phase 1, we focus 

our analyses on the 2026 (88%) where participants’ responses corresponded to either the picture’s 

dominant name (1669 trials, 72% of all Phase 1 trials) or its secondary name (357, 15%); tertiary names 

or other responses consisted of 286 (12%) trials in Phase 1 and were excluded from the analysis. These 

name frequencies and their associated naming latencies in Phase 1 correspond well to Oppenheim’s 

(in prep.) norms for the same items’ dominant (Frequency = 76%, Mean RT = 900 ms, SD = 186 ms) 

and secondary (Frequency = 14%, Mean RT =1046 ms, SD = 318 ms) names, and by-item response 

frequencies correlate well between Phase 1 of the current experiment and Oppenheim’s recent norms 

for both dominant (r = .75, p < .01) and secondary (r = .60, p < .001) name agreement (see Appendix 

A), thus validating our use of these norms in the design of this study.  
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From the 2312 total trials in Phase 3, we focus our analyses to the 1899 (82%, also summarized 

in Table 2) trials where, after having used either the dominant or secondary name in Phase 1, 

participants successfully named pictures using the dominant (974 trials, 42% of all Phase 3 trials) or 

secondary (925, 40%) name that we specified during Phase 2. We excluded 413 (17%) of the trials 

from the analysis that did not meet these criteria: 58 (3%) trials in the high Name Agreement-No 

Change condition, 97 (5%) trials in the high Name Agreement-Change condition, 116 (6%) trials in 

the low Name Agreement-No Change condition and 142 (7%) trials in the low Name Agreement-

Change condition. These restrictions allow us to assess the effects of our corrective familiarization 

procedure. The relatively similar frequencies of the dominant and secondary responses in Phase 3 

(mean difference in Phase 3: .029, t(16) = 0.90, p = .38), contrasting with the corresponding 

frequencies from Phase 1 (mean difference in Phase 1: .77, t(16) = 22.76, p < .001; mean difference 

between Phase 1 and 3 differences: t(16) = 18.87, p < .001), indicate that participants were generally 

successful in overriding their preferred names to use the names that we had specified in Phase 2.  

 

Table 2. Mean picture naming latencies (ms) in Phases 1 and 3. Standard deviations are included in the parenthesis. Subject-

weighted mean Ex-Gaussian component estimates follow. To allow direct comparison between Change and No Change 

conditions, items depicted in Phase 1 are back-sorted according to their Phase 3 status (Change-No change). 

 

 

Name 

Agreement 

Phase 1 (Free naming) 

 

Phase 2 

(Familiarization 

Feedback) 

 

Phase 3 (Post-correction 

target naming) 

 

N Mean 

RT 

(SD) ms 

μ σ τ N Mean RT 

(SD) 

ms 

μ σ τ 

High  529  902 

(223)  

733 99 171 No Change  520  932  

(204)  

778 77 152 

549  913 

(249)  

712 85 202 Change  481  1095 

(285)  

904 145 205 

Low 484  1111 

(352) 

850 185 265 No Change  462  1003 

(293)  

768 124 240 

464  1084 

(349) 

819 149 275 Change  436  1118 

(331)  

849 127 277 
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  To assess how name agreement effects on response time are modulated by corrective 

familiarization, we used linear mixed effects regression (Table 3) to predict inverse-transformed 

naming latencies as a function of three centered predictors and their interactions: (1) Phase (i.e., 

naming phase) (a binomial predictor, {Phase 1 = -0.5, Phase 3 = 0.5}), (2) Name Agreement from 

Oppenheim’s (in prep) recent Bangor norming study (a continuous predictor, {0:1}, centered at 0.76, 

its mean value for all items in the study) and (3) Name Change (a binomial predictor, {No change = -

0.5, Change = 0.5}). Collinearity was not an issue here because the experimental conditions were not 

correlated. We also report two sub-models, restricted to the data from Phase 1 and Phase 3 respectively 

(see Table 3). 

 

Table 3. Summary of LMM analyses of inverse-transformed naming latencies.  

Both Phases          

  β SE  t  p  

Intercept  -10.43 0.23 -45.32 <.001 

Phase  0.49 0.27 1.84 .082 

Name Agreement  -2.62 0.35 -7.44 <.001 

Name Change  0.65 0.09 6.95 <.001 

Phase*Name Agreement  3.57 0.51 6.98 <.001 

Phase*Name Change  1.39 0.16 8.75 <.001 

Name Agreement*Name Change  0.94 0.38 2.46 .022 

Phase*Name Agreement* Name Change  0.31 0.66 0.48 .64 

          

Phase 1 only          

  β SE  t  p  

Intercept  -10.67 0.27 -40.28 <.001 

Name Agreement  -4.42 0.52 -8.50 <.001 

Name Change  -0.03 0.10 -0.35 .73 

Name Agreement* Name Change  0.74 0.48 1.55 .12 

          

Phase 3 only          

  β SE  t  p  

Intercept  -10.19 0.27 -38.20 <.001 

Name Agreement  -0.82 0.33 -2.52 .015 

Name Change  1.34 0.15 8.95 <.001 

Name Agreement* Name Change  1.16 0.50 2.30 .023 

 

As detailed in Table 3 and illustrated in Figure 2, significant main effects of Name Agreement 

and Name Change indicate that speakers were in general faster to name pictures with higher name 

agreement (βNameAgreement = -2.62, SE = 0.35, p < .001) and pictures with confirmed rather than 
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corrected names (βNameChange = -0.65, SE = 0.09, p < .001). A marginally significant main effect of 

experimental Phase suggests that speakers were, overall, somewhat slower after the corrective 

familiarization procedure than before (βPhase = 0.49, SE = 0.27, p = .082). A significant interaction 

between Name Change and experimental Phase (βPhase*NameChange = 1.39, SE = 0.16 p < .001) confirms 

that the slowing associated with the Name Change predictor specifically emerged after the corrective 

familiarization procedure (Phase 1: βNameChange = -0.03, SE = 0.10, p = .73; Phase 3: βNameChange = 1.34, 

SE = 0.15, p < .015). In contrast, a significant interaction between Name Agreement and experimental 

Phase (βPhase*NameAgreement = 3.57, SE = 0.51, p < .001) indicates that Name Agreement effects were 

much stronger before corrective familiarization (Phase 1: βNameAgreement = -4.42, SE = 0.52, p < .01) 

than after (Phase 3: βNameAgreement= -0.82, SE = 0.33, p = .015). Although a significant two-way 

interaction between Name Agreement and Name Change (βNameAgreement*NameChange = -0.94, SE = 0.38, 

p = .022) would be consistent with the idea that the Name Change instruction caused greater slowing 

for pictures with higher name agreement than those with lower name agreement, the corresponding 

three-way interaction between Phase, Name Agreement, and Name Change—which provides a more 

specific test of that claim—did not approach significance (βPhase*NameAgreement*NameChange = 0.31, SE = 

0.66, p = .64), thus hindering that interpretation.  

To consider the sources of the patterns in further detail, we estimated ex-Gaussian components 

for each subject in each condition (Table 2.), and then submitted the resulting components to linear 

mixed regressions that were analogous to those above but with the random effects structure 

appropriately simplified to include only per-subject random intercepts (full results are provided in 

Appendix B). Instead of transforming the RT data to approximate a normal distribution, an ex-

Gaussian analysis attempts to describe an RT distribution as a convolution of a normal (i.e., Gaussian) 

distribution and an exponential distribution. It thus estimates, for each set of observations, a μ and σ, 

describing the mean and standard deviations, respectively, of the normal distribution, and a τ, 

describing the contribution of the exponential distribution. Factors that affect most trials in the same  
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Figure 2. Density plots of naming latencies for high and low Name Agreement (categorical) pictures in free naming (Phase 

1) and post-correction target naming (Phase 3) (vertical) and Name Change and No Change (horizontal). To allow direct 

comparison between Change and No Change conditions, items depicted in Phase 1 are back-sorted according to their Phase 

3 status (Change-No Change).  

 

 

way-and are thus most crucial for most theories of typical processing-can be expected to affect the μ 

component. Results of the analyses for the μ component (Table B1) largely concur with the results 

from the inverse-transformed method, except that in the Phase 3 sub-analysis only the Name Change 

predictor reaches significance (βNameChange = 103.80, SE = 21.41, p < .001) and the Name Agreement 

predictor trends in the direction of faster responses for low-agreement pictures (βNameAgreement = 83.00, 

SE = 54.30, p = .13; other ps > .30). A Phase 3 Name Agreement x Name Change interaction reached 

significance only for the σ component (Table B2; βNameAgreement*NameChange = 166.69, SE = 59.77, p = 

.008; other ps > .30), though still without the relevant three-way interaction in the overall analysis 

(βPhase*NameAgreement*NameChange = 113.46, SE = 108.59, p = .30), while a Phase 3 main effect of Name 

Agreement reached significance in the expected direction only for the τ component (Table B3; 

βNameAgreement = -201.73, SE = 48.35, p < .001; other ps > .20). 
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In sum, the response time data suggest that, after corrective familiarization, the initially robust 

effect of picture name agreement is largely replaced by a name change cost, with only limited support 

for the hypothesis that suppressing a high-agreement name should be especially difficult.  

 

4.3.2 ERP results  

ERP analyses used linear mixed effects regressions to predict, for the same trials as the naming 

latency analyses, the mean amplitudes in specified time windows, per participant, per condition, as a 

function of the centered binomial predictors and interactions of Name Agreement {Low = -0.5, High 

= 0.5}, Name Change {No Change = -0.5, Change = 0.5}, and Phase {Phase 1 = -0.5, Phase 3 = 0.5}. 

This approach follows traditional ANOVA ERP analyses but provides meaningful estimates of the 

magnitude of each effect. 

 

4.3.2.1 Free Naming (Phase 1) 

ERPs elicited by pictures in the initial “free naming” phase (Figure 3) showed a P1-N1-P2 

complex that is typical of responses to visual stimuli. This included a P1 that peaked at 100 ms 

followed by an N1 peaking at 150 ms, and a P2 peaking at 200 ms over parieto-occipital areas of the 

scalp. This P1-N1-P2 complex was followed by an N400 peaking at around 400 ms over somewhat 

more central areas of the scalp. As expected, the posterior P2 was reversed in polarity over 

frontocentral regions of the scalp, manifesting as an N200, which peaked at around 210 ms.  

In the N200 range, over a set of frontocentral electrodes that have previously been shown 

sensitive to this factor (FCZ, FC2, FC4, FZ, F4; Figure 3), linear mixed effect effects regressions 

confirmed that pictures with low Name Agreement evoked significantly more negative mean N200 

amplitudes than those with high Name Agreement (βNameAgreement in Phase 1 = 0.61 μV, SE = 0.23, p = 

.016; see Appendix C for full regression tables). Similarly, in the N400 range, pictures with low Name 

Agreement evoked significantly more negative ERP amplitudes than those with high Name Agreement 
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(βNameAgreement in Phase 1 = 0.94 μV, SE = 0.20, p < .001), assessed over 6 frontocentral electrodes that 

are the typical foci of N400 effects in the literature (FCZ, CZ, FC1, C1, FC2, C2; Figure 3). The 

modulations in these ranges appeared to have similar scalp distributions (Figure 3) and the magnitudes 

of participants’ effects were strongly correlated (r = .68, p = .003). 

 

 

Figure 3. Event-related brain potentials elicited by high and low Name Agreement pictures in Phase 1 (Free Naming), 

including linear derivation of the electrodes FCZ, FC2, FC4, FZ, F4 for the N200 and linear derivation of electrodes FCZ, 

CZ, FC1, C1, FC2, C2 in the N400 range. Shaded areas highlight the time windows of analysis for the N200 and ERP 

amplitudes in the N400 range, respectively. Topographies show the scalp distribution of differences in potential between 

low and high Name Agreement conditions. 

 

 

4.3.2.2 Post-correction target naming (Phase 3) 

Following corrective familiarization, name agreement-related differences in Phase 3 appeared 

to persist in the N200 and N400 time windows, though compared to those in Phase 1 both effects were 

numerically weaker and associated with different, more frontal topography (Figure 4). The main effect 
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of Name Agreement on mean N200 amplitude trended in the same direction as in the previous ‘free 

naming’ phase, over the same frontocentral electrodes, but did not reach significance (βNameAgreement in 

Phase 3 = 0.41 μV, SE = 0.25, p = .12). A model comparing the N200-window effects in the two 

phases suggested a nonsignificant reduction (βNameAgreement * Phase = -0.20 μV, SE = 0.34, p = .56).  

 

 

Figure 4 - Event-related brain potentials elicited by high and low Name Agreement pictures in Phase 3 (post-correction 

target naming), including linear derivation of the electrodes FC1, FCZ, FC2, C1, CZ, C2. Shaded areas highlight the time 

windows of analysis for the N200, the N400 and the later positive wave, respectively. Dark grey areas highlight the time 

window were differences between conditions were statistically significant. Topographies show the scalp distribution of 

differences in potential between low and high Name Agreement conditions in Phase 3. 

  

 

 

The Name Agreement effect in the N400 window also trended in the same direction as in Phase 1, and 

though the effect was also numerically weaker than that in Phase 1 it did reach significance in Phase 

3 (βNameAgreement in Phase 3 = 0.54 μV, SE = 0.24, p = .035; Figure 4); a model comparing the N400-

window effects in the two phases suggested a nonsignificant reduction (βNameAgreement * Phase = -0.39 μV, 

SE = 0.29, p = .17). Unlike in Phase 1,the magnitudes of participants’ Phase 3 effects in these ranges 

were not significantly correlated (r = -.05, p = .84). 
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Figure 5 - Event-related brain potentials elicited by Name Change in Phase 3 (post-correction target naming). Top: linear 

derivation of the electrodes FCZ, FC2, FC4, FZ, F4. Bottom: linear derivation of electrodes FC1, FCZ, FC2, C1, CZ, C2. 

Shaded areas highlight the time windows of analysis for the N200 and N400 and the later positive wave, respectively. Note 

that dark grey areas highlight the time window were differences between conditions were statistically significant. 

Topographies show scalp distributions of differences in potential between Change and No Change conditions in Phase 3. 

 

The Phase 3 ERP analysis also identified a marginally significant effect of Name Change in 

the N200 time window, assessed over the same frontocentral electrodes as the N200 Name Agreement 

effect, such that the process of retrieving a coerced name evoked more negativity than that of retrieving 

a previously volunteered name (βNameChange in Phase 3 = -0.44 μV, SE = 0.22, p = .061; Figure 5). 

Compared to the N200 Name Agreement effect in Phase 1 and trend in Phase 3, the topography of this 

Name Change effect appeared to be more frontal and more lateralized to the right. Name Change did 

not appear to modulate activity in the N400 window (βNameChange in Phase 3 = -0.02 μV, SE = 0.27, p 

= .93; Figure 5), nor did we detect significant interactions between Name Agreement and Name 

Change in either the N200 range (βNameChange*NameAgreement in Phase 3 = -0.30 μV, SE = 0.54, p = .58) or 

the N400 range,(βNameChange*NameAgreement in Phase 3 = 0.54 μV, SE = 0.39, p = .19).  
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We did, however, identify a later positive modulation associated with Name Change, assessed over 

the same electrodes as for ERP modulations in the N400 window, from 450-600 ms post picture onset 

(βNameChange = 1.01 μV, SE = 0.41, p = .027; Figure 5). The amplitude of this later positive modulation 

was strongly positively correlated with those in both the N200 (r = -.66, p = .004) and N400 windows 

(r = .77, p < .001)—such that stronger negative modulations in the earlier peaks were associated with 

attenuation of the later positive modulation—but notably those earlier modulations were not strongly 

correlated themselves (r = .34, p = .18). 

In sum, before corrective familiarization, Name Agreement was associated with significant and 

correlated modulations in the N200 and N400 windows. There was some indication that these Name 

Agreement effects persisted after corrective familiarization, though numerically weaker, no longer 

correlated, and associated with a different topography than they were earlier. Name Change did not 

significantly interact with Name Agreement in either window, but was instead associated with an 

independent, marginally significant modulation in the N200 window and a later frontocentral positive 

effect.  

 

4.3.2.3 Association between behavioral and electrophysiological effects 

In Phase 1, the magnitudes of participants’ Name Agreement effects for naming latencies (low 

minus high) did not significantly correlate with the corresponding differences in either their N200 

effects (r = -.18, p = .49) nor their N400 effects. (r = -.28, p = .27). In Phase 3, only the correlation 

between the magnitude of the naming latency effect for Name Agreement and that of the corresponding 

N200 effect approached significance (r = -.48, p = .054); the analogous correlation for Name Change 

was not significant (r = -.03, p = .91). No correlation between naming latency effects and either N400 

modulations or the late positive approached significance (all |r| < .3, all p > .25). 
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4.4. Discussion  

When and how do lexically specific goals modulate the word production process? Do they 

affect early processes associated with a word’s initial activation and selection, or later processes such 

as re-evaluation and post-retrieval monitoring? Previous studies have associated differences in name 

agreement, an empirical measure of response variability in picture naming, with robust differences in 

naming latencies and ERP effects, suggesting that they index endogenous lexical-level competition 

(e.g., Alario et al., 2004; Shao et al., 2014; Valente et al., 2014), that is, the same kinds of conflict and 

decision processes that underlie word selection in typical communicative speech. However, many 

recent studies with name agreement manipulations have included a pre-experiment familiarization 

phase, instructing participants to use norm-assessed dominant names before naming each picture 

(ibid), introducing a confound by contradicting speakers’ previously established preferences for low-

agreement items (Balatsou et al., in revision). Thus, instructing participants to use particular names for 

each picture likely introduces a form of exogenous competition that is not inherent to lexical selection 

per se.  

Here, we have sought to determine how the word production system handles such exogenous 

competition: Do speakers engage an additional mechanism, separate from that of lexical selection, to 

comply with such task-induced demands (multi-factor account) or do they resolve both endogenous 

lexical conflict and exogenous lexical competition via a single flexible mechanism (single-factor 

account)?  

 

4.4.1 Behavioral and electrophysiological effects of endogenous conflict in picture naming  

Phase 1 of this experiment assessed the behavioral and electrophysiological effects of name 

agreement in a simple picture naming task without feedback or prior familiarization; every response 

was implicitly accepted as correct, thus avoiding any exogenous interference with speakers’ pre-

established word preferences. A regression analysis of the resulting naming latencies replicated the 
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classic behavioral observation that speakers name pictures with high name agreement faster than those 

with low name agreement (e.g., Bates et al., 2003; Snodgrass and Yuditsky, 1996; Ellis and Morrison, 

1998). Such name agreement RT effects have often been claimed as evidence for endogenous lexical 

competition (e.g., Alario et al., 2004), on the assumption that the co-activation of alternative names 

for pictures with low name agreement (e.g., “sofa”, “settee”) would delay the retrieval of the target 

(e.g., “couch”). This competitive account has been empirically challenged, however, by studies 

focusing on secondary name agreement. Oppenheim (in prep.), for instance, replicated the classic 

dominant name agreement effect on naming latencies but further demonstrated a facilitation rather 

than an inhibition of dominant name retrieval latencies for pictures with higher secondary name 

agreement—that is those with stronger ‘competitors’. In any case, we can assume that any name 

agreement effects in this first phase reflect a simple baseline use of the production system, with any 

conflict attributed to endogenous rather than exogenous sources.  

In this baseline setting, our ERP data showed larger amplitudes in the in the N200 and N400 

windows when participants named pictures with low name agreement than pictures with high name 

agreement. Though the modulation in the N400 range was less expected, N200 effects of name 

agreement have been reported previously in a simple covert picture naming task (Cheng et al., 2010) 

and in an overt picture naming study that included prior familiarization (Shao et al., 2014; but cf. 

Valente et al, 2014). N200 effects are commonly associated with lexical activation and selection in 

word production (e.g., Indefrey & Levelt, 2004), and have been argued to reflect conflict monitoring 

in general, regardless of whether this involves selecting or suppressing a particular response 

(Nieuwenhuis et al., 2003; Donkers & van Boxtel, 2004). In experiments where naming follows 

corrective familiarization, stronger claims about N200 effects specifically indexing inhibitory 

processes—either general (e.g., withholding response in a go/go no task, Sanoudaki and Thierry, 2015) 

or selective (e.g., attempting to retrieve “couch” instead of “sofa”, Shao et al. 2014)-might seem 

plausible: experimenters have demanded that participants avoid using certain words. But without 
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corrective familiarization (i.e., in Phase 1 of the current study), there is little reason to expect that 

speakers would need to inhibit specific responses (why would a speaker specifically need to retrieve 

‘couch’ instead of ‘sofa’?). It therefore seems more plausible that this N200 modulation in simple 

picture naming more broadly reflects early differences in the process of lexical access—such as simple 

co-activation, selection processes (competitive or noncompetitive), or conflict detection—an 

interpretation that is consistent with other ERP studies of picture naming that have pointed to lexical 

access as starting approximately 200 ms after picture onset (Strijkers et al., 2010; Costa et al., 2009). 

We also detected a name agreement-based difference in the N400 range. While its correlation 

with and topographical similarity to the earlier N200 modulation suggest some caution in its 

interpretation, its numerically greater magnitude suggests a distinct but tightly linked process that it is 

not reducible to spillover from the earlier effect. To our knowledge, this would be the first report of 

N400 amplitude modulation by name agreement (but cf. Valente et al., 2014, discussed below). One 

might be skeptical that name agreement should modulate N400 amplitude, given the traditional 

interpretation of the associated component as reflecting difficulty in resolving semantic incongruities 

between a word and its presentation context (Kutas and Hillyard, 1980). In line with broader 

characterization of the N400 component (Kutas and Federmeier, 2011), however, we interpret this 

difference as reflecting an automatic spreading of lexical-semantic activation, under the assumption 

that pictures that elicit a variety of names (and therefore presumably have more semantic-lexical 

associations) should lead to greater activation spreading in the semantic system than pictures that 

reliably elicit a single name. This interpretation is consistent with N400 modulations that have been 

reported when naming difficulty increases as a consequence of deeper semantic processing in other 

word production tasks (Schendan & Kutas, 2007; Schendan & Maher, 2009) and in picture-word 

interference studies (Blackford et al., 2012; Piai et al., 2012; Shitova et al., 2017; Wong et al., 2017; 

Python et al. 2018).  
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In sum, in our baseline “endogenous conflict” condition, lower name agreement was associated 

with longer naming latencies, and correlated modulations in N200 and N400 windows, in the absence 

of significant correlations between ERP amplitude modulations and difference in naming latencies 

between conditions. 

 

4.4.2 Exogenous competition and its possible interactions with endogenous conflict  

So how does the production system cope with the imposed goal to produce a specific word, 

and to what extent does this additional demand affect the endogenous processes of lexical co-activation 

and selection? We predicted that, with an integrated lexical selection mechanism responsible for 

resolving both endogenous and exogenous lexical co-activation (single-factor account), the new task 

goal should modulate and even amplify similar behavioral and ERP patterns after corrective 

familiarization, whereas the recruitment of a secondary mechanism to resolve a task-induced conflict 

(multi-factor account) should primarily engage distinct processes, possibly including later control 

mechanisms. 

Following corrective familiarization, the naming latency effects of name agreement were 

largely replaced by those of name change. A significant Phase x Name Agreement interaction for 

naming latencies indicates that the effects of name agreement were substantially diminished after 

corrective familiarization (cf. Mitchell, 1989): High name agreement pictures were still named faster 

than low name agreement pictures on average, but analyses of response time distributions suggest that 

this effect was linked to differences in the tail (τ) while the contrast in modal response times (µ) trended 

in the reverse direction (cf. Roelofs & Piai, 2017; Scaltritti, Navarrete, & Peressotti, 2015). At the 

same time, speakers were slower to name pictures using ‘coerced’ names (per the name change 

manipulation) than names that followed their pre-existing preferences. Although the apparent Name 

Agreement x Name Change interaction that emerged in Phase 3 would seem consistent with the idea 

that shifting towards a more dominant name is easier and less time consuming for speakers than using 
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an undesired non-dominant competitor (cf. Balatsou, Fischer-Baum, & Oppenheim; in revision)-

potentially supporting the Single-factor account via additive factors logic-the lack of a crucial Phase x 

Name Agreement x Name Change interaction cautions against such a strong interpretation. Thus, in 

Phase 3, the exogenous competition imposed by name change dominated participants’ behavioral 

patterns and essentially replaced (or overshadowed) the effects of the existing endogenous lexical 

conflict, clearly contrasting with the previous claim that name agreement effects are robust to any 

effects of corrective familiarization (Alario et al, 2004). More theoretically, if the same lexical 

selection mechanism were responsible for both resolving endogenous co-activation and ensuring the 

selection of a task-appropriate word, then we would expect name agreement effects to be stronger in 

Phase 3 than in Phase 1 (following Nozari & Hepner’s claim that task goals amplify name agreement 

effects), but instead a Phase x Name Agreement interaction showed that they were significantly 

weaker. Thus, we suggest that the naming latency results are more compatible with the view that 

speakers adapt to such task goals by adopting an ad hoc strategy of re-evaluating and possibly 

correcting their responses after at least a substantial chunk of lexical selection has already occurred.  

After corrective familiarization, electrophysiological correlates of name agreement differences 

appeared somewhat weaker, with more frontal topographies, but did not disappear. Reduced N200 

amplitude modulation could be attributed to differential repetition priming and error proportional 

learning, which may also explain the apparent absence of name agreement effects in this range in 

Valente et al’s (2014) post-familiarization study. Also, note that we did detect a marginally significant 

association between the per-subject magnitudes of the N200 name agreement effect and the 

corresponding naming latency effect, with stronger N200 modulations associated with stronger naming 

latency effects. A tighter link between processing in the N200 window and observable behavior, in 

response to changing task demands, would seem consistent with the spirit of Nozari & Hepner’s (2019) 

specific single-factor proposal (viz, that an increased decision criterion strengthens the link between 

internal lexical conflict and observable behavioral effects).  
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The N400 modulation by name agreement that we had observed before corrective 

familiarization remained thereafter, albeit weaker in magnitude and no longer correlated with the 

preceding N200 modulation. Assuming a common locus for the Phase 1 and Phase 3 effects, observing 

this modulation in both phases implies that it was not resolved by the introduction of coerced names, 

so it is surprising that previous ERP studies of name agreement have not reported similar effects. 

Considering the paucity of ERP studies of the phenomenon, and the numerous differences between 

both their tasks and analyses (e.g., Shao et al., 2014; Cheng et al., 2010) , it is possible that their N400-

like modulations were either masked by other reported effects or simply not assessed. For instance, 

Shao et al.’s (2014, Figure 3a) waveform plot for object naming suggests a second modulation 

beginning around 300ms post-stimulus onset. It is also worth noting that Cheng et al.’s (2010) used a 

rather late window for their N2 analyses (250-350ms), so it seems possible that their study may have 

included the N400 in their N2 analysis; supporting this claim, we note that Cheng et al.’s described 

their N2 as maximal in a left parietal cluster, which would be more typical of an N400. Note also that 

Valente et al. (2014), using a different analytical approach involving spatiotemporal map 

segmentation, did identify a negativity associated with picture name agreement beginning at around 

380 ms after picture onset that may relate to modulations in the N400 range. 

Finally, the requirement to change names modulated ERPs independently from name 

agreement in Phase 3, such that N200 amplitudes were significantly more negative for coerced names 

and amplitudes of a late anterior positivity were significantly more positive. We assume that 

suppressing one’s preferred name to produce an alternative—as corrective familiarization demands—

should strongly engage the selective inhibition processes that some have suggested underlie name 

agreement effects, so the N200 peak should reflect the involvement of this process. The lack of a 

significant interaction between Name Change and Name Agreement predictors in this window, 

however, suggests that their N200-range modulations index distinct processes. For directed name 

change, this early modulation was followed by and correlated with a late anterior positive modulation. 
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That correlation is notable because it emerged in the absence of a strong correlation between the 

modulations in the N200 and subsequent N400 range, suggesting that the late effect indexes a linked 

but separate process. Such late anterior effects are often associated with stimulus re-evaluation (e.g., 

P600), cued recall, domain-general conflict monitoring (error-related negativity or positivity e.g., 

Nozari, Dell, & Schwartz, 2011), or other applications of executive control. We suggest that such re-

evaluation reflects the recruitment of adjunct cognitive resources and response monitoring or 

correction processes, which may be central to many laboratory tasks but less relevant for normal 

communicative word production. 

 

4.4.3 Summary evaluation of the single factor and multifactor accounts  

Decades of research have assumed that the challenges that task-driven exogenous competition 

imposes on the production system can reveal aspects of its generic properties. This view assumes that 

that core aspects of lexical selection can be directly adjusted to incorporate task demands, such as 

using a particular word instead of its synonym or naming a picture instead of a superimposed distractor, 

essentially assuming cognitive penetration of the core (early) lexical selection mechanism (single-

factor account). Despite the usefulness of such proposals, the consistent dissociations between 

endogenous conflict and exogenous competition in this study (i.e., the direct name change 

manipulation largely replaced name agreement RT effects and simply added separate early and late 

ERP modulations) seem more consistent with the idea that imposing such task-driven constraints 

requires the contributions of at least two distinct early processes, in addition to a later re-evaluation or 

monitoring process (multi-factor account). 

The strongest evidence for the single-factor account comes from the fact that both endogenous 

conflict and exogenous competition modulated early processes, manifesting through N200 differences, 

though they did so quite independently. That is, the predictors did not significantly interact to predict 

early modulations, and contra a specific prediction from Nozari & Hepner (2019) imposing a task goal 
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of producing a specific word, via corrective familiarization, quashed the name agreement response 

time effect instead of exaggerating it. It may however be possible to explain away some of these results. 

For instance, although it contradicts an explicit prediction, one might expect some decrease in name 

agreement effects after corrective familiarization as a simple consequence of differential repetition 

priming (e.g., Mitchell, 1989) and error-proportional learning (e.g., Oppenheim et al., 2010), as well 

as a general attenuation of N200 amplitude (Llorens et al, 2014). Additionally, the fact that a 

correlation between per-subject N200 and naming latency effects of name agreement approached 

significance only after corrective familiarization-and perhaps even the reduction in these effects-could 

be taken as circumstantial evidence for some connection between processes involved in resolving 

exogenous and endogenous lexical conflict. Moreover, single-factor accounts typically embrace the 

inclusion of monitoring and even repair mechanisms in the production process, but simply argue that 

they are not the primary locus of competitive effects. In Nozari et al.’s (2011) production-internal 

monitoring proposal, for instance, a late error-related negativity is argued to reflect conflict detection, 

but the source conflict is assumed to originate earlier, and may serve as a signal for a further repair 

process (e.g., Nozari et al, 2016).  

Conversely, the strongest evidence supporting the multi-factor account is the broad dissociation 

and lack of interaction between endogenous conflict and exogenous competition in early ERP 

modulations and summative response time measures. These dissociations suggest that introducing an 

undesired competitor engaged an additional mechanism, qualitatively different from that involved in 

typical lexical selection to resolve the ongoing conflict. Although both name agreement and name 

change were associated with modulations in the N200 time window, without interactions it is difficult 

to claim that the associated early cognitive processes of lexical activation and selection and selective 

inhibition or competitive re-thresholding were directly integrated. As discussed above, the later 

anterior component that emerged for name change after corrective familiarization can broadly be 

characterized as indexing a late control process-whether or not it plays an essential role in this task-
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and under a multifactor account we might associate it more specifically with the process of ensuring 

the application of ad hoc constraints. Such monitoring could be accomplished by a conflict detection 

mechanism or may even take the form of a “watchful little homunculus” (Levelt, 1989) or a post-

monitoring pre-articulatory control mechanism that is functionally distinct from typical lexical 

selection (Finkbeiner & Caramazza, 2006, Mahon et al., 2007; Nozari et al, 2016). A key question then 

is what role, if any, this monitoring or correction process plays in typical communicative speech (e.g., 

Oppenheim & Balatsou, 2019). Considering the distinction between the response profiles of simple 

and targeted picture naming, we suggest that, while everyday communication potentially incorporates 

multiple constraints, exogenous experimental manipulations that strongly engage adjunct control 

processes are less likely to be informative about the core processes involved in typical word 

production.  

Before concluding, we should address a possible objection to our presentation of these results 

as a test of single factor accounts, namely that our name-change manipulation changes the goal of the 

Phase 3 picture naming task. That is, orthogonally manipulating name agreement and name change 

means that, in the case of high-NA pictures, one might worry that our task forced participants to use 

sub-optimal names, fundamentally changing the task compared to an experiment where familiarization 

always provides the ‘best’ name in the form of each picture’s dominant name. If the goal therefore 

became to use the specified name instead of the best name, one might argue that this experiment is not 

strictly relevant to core theoretical claims of single-factor accounts. In fact, we fully agree that our 

corrective familiarization changed the goal of the Phase 3 naming task, but maintain that the criticism 

equally applies to the ‘dominant name familiarization’ studies that Nozari & Hepner’s (2019) flexible 

criterion proposal explicitly embraced as evidence of competitive selection (as well as other paradigms 

with clearly arbitrary goals, e.g., picture-word interference). From that perspective, this study can be 

seen as identifying appropriate limits for the scope of the proposal. Because speakers maintain stable 

preferences even for non-dominant names (Balatsou et al., under review), requiring participants to 
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change to a dominant name will nonetheless impose a cost (particularly for low-agreement items), 

meaning that naming following corrective familiarization is already a ‘choose the specified word’ task 

instead of a ‘choose the best word’ task. And we have previously identified similar within-item 

corrective familiarization-based name change costs in a behavioral task where we used all dominant 

names and merely tracked these costs rather than manipulating them (Oppenheim, 2014). The 

difference is only that, without orthogonally manipulating name change, one cannot measure the name 

change cost for high-agreement items and may therefore mistake exogeneous competition for 

endogenous conflict. More generally, a major theme in this article is that seemingly innocuous, 

pragmatically motivated practices, like pre-experiment corrective familiarization can deeply affect the 

way a participant approaches a laboratory task, rendering the resulting data less relevant to the theories 

that researchers wish to build or test. 

 

4.5 Conclusion 

So, how do speakers select an appropriate word for production? The answer may depend on 

the precise nature of the task. Speakers can accurately, and often quickly, adjust their observable 

behavior. The inherent needs of communication clearly require broad adjustments like applying pre-

lexical semantic control to craft an appropriate message, incorporating language and word class 

constraints to select syntagmatically appropriate words, and imposing speed/accuracy trade-offs to 

maintain fluency (whether these affect sensitivity to coactivation or merely evidence accumulation). 

However, when tasks require participants to impose ad hoc constraints, like using a specified word 

instead of a synonym or naming a picture instead of a superimposed distractor, they may do so by 

engaging adjunct mechanisms that are less critical to production in the wild. Our evidence indicates 

that speakers employ distinct mechanisms to address such ad hoc constraints via both early and late 

processes. We suggest that key evidence for the competition-based account of lexical selection instead 

reflects the contribution of these adjunct mechanisms. Remaining questions include what if any role 
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such mechanisms play in typical communicative language production and how precisely they might 

integrate with the core system. 

   

 



Chapter 5 

 117 

 

 

 

 

 

 

 

 

 

CHAPTER 5- Robust effects of picture name agreement for stable word 

preferences 

 
This chapter investigates the electrophysiological and behavioral effects of picture name agreement in 

consistent responses across speakers. In a repeated naming task, I report robust effects of name 

agreement for both naming latencies and ERPs in respect to individuals’ idiolects, which include both 

the dominant (e.g., “couch”) and secondary (e.g., “sofa”) names. These modulations indicate that 

picture name agreement is a valid measure of lexical co-activation but do not suggest response 

competition. The results are also discussed in respect to theories of word production.  
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5.1. Introduction 

While models of word production generally agree that a series of necessary processes have to 

take place before speaking (i.e., conceptualization, formulation and articulation) (e.g., Levelt, et al., 

1999; Dell, 1986), their major difference lies in the nature of the mechanism that determines how one 

of the appropriate co-activated candidate words will be eventually selected. Competitive models of 

lexical selection suggest that the activation of other candidates will slow down the selection of the 

target word, which will eventually be chosen after it passes a relative threshold (Levelt et al. 1999; 

Roelofs, 1992), while non-competitive accounts instead argue that the target word will be selected 

when it reaches an absolute threshold, irrespective the relative activation of the other words in the 

mental lexicon (Mahon et al., 2007). A second point of debate lies in the dynamics of these encoding 

processes: one view is that the processing levels are discrete and serial and the activation from one 

level to the other is only feed-forward (Levelt et al., 1999), while an alternative, cascading interactivity 

hypothesis states that activation cascades within the system, also in the form of feedback processing 

(Dell, 1986).  

While historically the computational principles of seriality and competition have dominated 

interpretations in the literature, nowadays it is inarguably accepted that at least some cascading 

activation or interactivity are inherent to the production system (see Dell, Nozari, & Oppenheim, 2014, 

for a review of the evidence in favor of interactivity), while the competition debate is also subject to 

re-examinations (e.g., Nozari & Hepner, 2019). To date the major evidence in favor of the lexical 

competition hypothesis derives from the behavioral effects in picture word interference tasks, in which 

participants are slower to produce the target word for the picture (e.g., “cat”) in the context of 

semantically related visual or auditory distractors (e.g., “dog”) compared to those that have no 

semantic relationship with the target (e.g., “pencil”) (e.g., La Heij, 1988; Schriefers et al., 1990). By 

increasing the levels of co-activation in this simultaneous processing, it is assumed that the levels of 

lexical competition in production increase in a similar fashion, as indicated by naming latency analyses 
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(Belke et al., 2005; Bloem & La Heij, 2003; Bloem et al, 2004). This interpretation, grounded on the 

notion of a time-dependent selection mechanism, and not on the cost of increased perceptual or 

semantically-driven lexical co-activation which is externally-induced, has been severely challenged 

by the finding that as distractor words become more semantically close to the target (e.g., “zebra” to 

“horse”) production latencies become faster (Mahon et al., 2007), meaning that as “competition” 

becomes stronger, the production speed is instead facilitated. 

Driven by this observation and by the fact that competitive effects in other naming tasks have 

been successfully modeled with non-competitive criteria (e.g., Howard et al.2006 vs Oppenheim et al., 

2010, for lexical competition in cumulative semantic interference), it is worth considering whether 

competition during selection, as the one reported in picture-word interference, is inherent to simple 

word selection or merely reflects task-oriented production (Nozari & Hepner, 2019). We have recently 

argued that it is also crucial to distinguish between laboratory-reported effects and the extent to which 

they account for the processes that are inherent to communicative word production and re-evaluate the 

competition hypothesis through empirical findings in simple production tasks, instead of manipulating 

competition levels in psychologically challenging experimental designs (Oppenheim & Balatsou, 

2019). One such approach is collecting picture naming norms within and across languages, which 

involves simple picture naming (e.g., Bates et al. 2003; Szekely et al., 2004). In norms, researchers 

note the primary names given for each picture by the participants and then analyze the variables 

associated with those names in relation to theoretical predictions about word production processes. 

One of the most widely examined variables is picture name agreement, the empirically derived 

measure of the proportion of speakers who produce the same name for a picture. Name agreement 

variations produce robust effects in retrieval success and speed (Alario et al., 2004) cross linguistically 

(Bates et al., 2003; Snodgrass and Yuditsky, 1996; Ellis and Morrison, 1998; Szekely et al., 2004; 

Cuetos et al., 1999; Bonin et al., 2002; Dell’Acqua et al., 2000; Dimitropoulou et al., 2009; Nishimoto 
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et al., 2012; Bakhtiar et al., 2013) and are observed independently of other linguistic variables, like 

lexical frequency (Alario et al., 2004).  

Apart from being perhaps the most widely used norming measure, name agreement variations 

in simple naming have been directly interpreted as evidence of endogenous lexical competition during 

word production (e.g., LaGrone & Spieler, 2006; Shao et al., 2014; Bose & Schafer, 2017). Because 

pictures with high agreement (e.g., “dog”) are generally faster and easier to name compared to those 

with low name agreement (e.g., “couch”), it is assumed that this lower consensus induces a challenge 

for the individual speaker during lexical selection, specifically in the level of semantic-to-lexical 

processing in cases of pictures with multiple alternative words (Alario et al., 2004; see Figure 1.): the 

robust naming latency effects for pictures with multiple appropriate names has been suggested to index 

the ongoing conflict between the co-activated lexical representations, which eventually increases the 

relative threshold of activation, delaying lexical selection and eventually retrieval speed (Levelt et al., 

1999). This is the most commonly adopted interpretation of the strong behavioral effects of name 

agreement, however it is mostly a priori grounded on the assumption of lexical competition in which 

word selection and corresponding production latency is guided by a stochastic function: the probability 

of selecting a particular word is determined by the ratio of the activation of that word to that of co-

activated alternatives (e.g., Luce, 1959) and when that relative ratio is decreased, as in pictures with 

multiple or strong competitor words, selection time for the target word increases in the same fashion 

(Levelt et al., 1999; Roelofs, 1992; 2003; Roelofs & Piai, 2015). 

These competition-based interpretations of name agreement behavioral effects have also been 

used as basis of evaluation of the robust neuroimaging and electrophysiological findings in the 

literature. Pictures with lower consensus induce greater left inferior frontal gyrus (LIFG) activity 

before naming, leading towards the interpretation that Broca’s area, as a language-sensitive region, 

mediates the selection among competing lexical representations during production (Kan & Thompson-

Schill, 2004; Thompson-Schill, et al., 1997). In ERP research name agreement effects are less  
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Figure 1). Picture naming models reprinted from a) Valente, A., Bürki, A., & Laganaro, M. (2014). ERP correlates of word 

production predictors in picture naming: a trial by trial multiple regression analysis from stimulus onset to response. 

Frontiers in neuroscience, 8, 390. and b) Alario, F. X., Ferrand, L., Laganaro, M., New, B., Frauenfelder, U. H., & Segui, 

J. (2004). Predictors of picture naming speed. Behavior Research Methods, Instruments, & Computers, 36(1), 140-155., 

indicating the most common psycholinguistic factors which affect each specific encoding substage of word production. 

 

 

consistent: pictures with lower name agreement produce effects in both early time windows and 

modulations at the P1 and N2 components (see Chapter 4; Cheng et al., 2010; Shao et al., 2014) as 

well as later differences arising approximately after 400 ms post picture onset, mostly associated with 

later processing stages, like phonological encoding (Valente et al., 2014; see Figure 1.). Most 

interpretations are based on Indefrey and Levelt’s (2004) assumed timeline of word production 

processes according to which lexical selection takes place between 175 ms and 250 ms post-stimulus-

onset, lexical phonological code retrieval between 250 ms and 330 ms post-stimulus-onset and 

syllabification between 330 ms and 455 ms post-stimulus-onset. Early ERP effects, those reported in 

the P1 range, have been interpreted as indexes of visual-to-conceptual ambiguity before any lexical-

level processing has taken place (Cheng et al., 2010), which in the competition framework reflects 

increased shared co-activation between conceptually related representations leading to the automatic 

co-activation of semantically similar lexical entries (e.g., Belke, 2013). The N2 range effects, in 
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particular, have been specifically tied to the time window of lexical selection according to Indefrey 

and Levelt’s (2004) timeline and in similar fashion to the fMRI findings, researchers have attributed 

these differences to a mechanism responsible for conflict resolution. Pictures with lower name 

agreement (e.g., “couch”) are assumed to require the recruitment of response inhibition, a mechanism 

that suppresses the activated competitor words (e.g., “sofa”, “settee”), in order to resolve the ongoing 

lexical competition and eventually allow the selection the target word (Shao et al., 2014). Although 

competitive word production models do not explicitly incorporate a response inhibition mechanism 

(e.g., Levelt et al., 1999; Piai et al., 2014; Roelofs, 1992, 2003, 2008), Shao et al. (2014) have argued 

that inhibition could complement a stochastic lexical selection process in order to resolve the small 

differences between the co-activated competitor words and eventually achieve target word selection 

instead of resulting in an omission. 

However, as the empirical finding that increased lexical co-activation facilitates production in 

picture-word interference tasks (Mahon et al., 2007), the recent finding that increased secondary name 

agreement (i.e., the measure for the strongest alternative name for each picture) also facilitates 

production speed (Oppenheim, 2017; in prep.) challenges the core assumption of the competition 

hypothesis: when the core feature of competition, that is the impact of the strength of lexical co-

activation, is independently found to make retrieval speed faster in both more complex and simple 

naming tasks, then it is reasonable to assume that either word production is not strictly competitive as 

non-competitive/chronometrically agnostic accounts generally argue (e.g., Mahon et al., 2007; 

Oppenheim et al., 2010; Dell, 1986), that picture name agreement measures do not directly index 

variations in levels of lexical competition as generally assumed, or both. Complementary to the latter, 

comes the recent empirical observation that population-level name agreement, apart from directly 

reflecting the options that speakers consider during lexical selection, also indexes individual speakers’ 

stable word preferences, which include non-dominant responses (Balatsou, Fischer Baum, & 

Oppenheim; in revision). For instance, in repeated naming, I found that speakers select the same name 
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(e.g., “couch”) in two consecutive naming sessions much more frequently than it is predicted by a 

strictly stochastic selection and despite the equally high probability that the competitor word (e.g., 

“sofa”) has in population-level norms. Importantly, this tendency to reproduce specific words also 

holds for non-dominant responses: apart from reproducing strong alternative names (e.g., “sofa”), 

speakers are also likely to reproduce alternative names that they themselves have previously chosen 

(e.g., “settee”). We suggested that this is compatible with idiolects and demonstrated that name 

agreement also reflects the heterogeneity in individual speakers’ word preferences.  

 Because speakers’ idiolects have not been previously considered nor extensively studied in 

experimental work, it is, thus, worth re-evaluating how this heterogeneity in responses could have 

modulated some of the previously reported name agreement effects and their competitive 

interpretations. For instance, the use of a familiarization, which aims is to reduce variance and at the 

same time increase the power of the analyses, has been previously found to strongly modulate the 

behavioral effects in picture-word interference studies (Collina et al.,2013; Gauvin et al., 2018). In 

Chapter 4, I have shown that its use in studies that investigate the effects of picture name agreement 

as a psychologically meaningful predictor of individuals’ states is problematic: when speakers have 

preferences for alternative names (e.g., “sofa”), the instruction to use only the norm-assessed dominant 

names (e.g., “couch”) creates an additional task demand to switch to dispreferred labels, which 

severely distorts the name agreement effects in simple selection. In contrast, when subsequent 

production was consistent with speakers’ idiolects, the cost of repetition priming created by overt-

naming familiarization (as in Shao et al., 2014) is also another point of consideration, because as also 

demonstrated in Chapter 4, repeating a previously selected picture name has robust priming effects in 

both naming latencies and in ERP amplitudes.  

Such methodological inconsistencies and conceptual misuses can, thus, explain the lack of 

consistency in the electrophysiological effects reported in the literature and the subsequent differences 

in the interpretations of name agreement effects. A point of consideration is whether picture name 
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agreement variations index the effects of endogenous competition during lexical selection (e.g., Alario 

et al., 2004; Cheng et al., 2010; Shao et al., 2014) or the dynamics of the production system related to 

other necessary subprocesses, such as lexical co-activation and/or phonological encoding (e.g., Valente 

et al., 2014), which, can also be explained without competition. In particular cases where name 

agreement effects have been directly linked to competitive lexical selection, either as indexing 

“lemma-level” competition (Cheng et al., 2010) or response inhibition (Shao et al., 2014), investigating 

these variations in respect to individual speakers’ idiolects provides a better measure to assess inherent 

effects of co-activation in normal production. Concurrently, by accepting as idiolect-appropriate the 

non-dominant names that speakers consistently produce (i.e., including secondary responses from 

norms), it is possible to incorporate the measures of relative activation of all lexical representations in 

the population (population-level name agreement for the dominant and secondary names) into 

speakers’ own consistent word choices which have reached the absolute activation for selection in 

their mental lexicons (individual-level name selections for the dominant and secondary names). Using 

this approach, I believe that it is possible to report name agreement behavioral and electrophysiological 

effects in a simple and straightforward production task and be able to directly associate them with 

different encoding processes during word production, without necessarily basing the interpretations of 

the electrophysiological effects on Levelt and Indefrey’s (2004) timeline, which is mostly unsupported 

by ERP data.  

In the present study I, thus, aim to: (1) establish whether and when electrophysiological name 

agreement effects emerge in simple picture naming, without restricting them to particular components 

or time windows, (2) observe how these effects differ with repetition, in order to be able to estimate 

individuals’ stable word preferences and at the same time be consistent with previous practices that 

have included repeated naming (3) evaluate whether the previously reported electrophysiological and 

behavioral differences between low and high name agreement pictures still emerge in a reduced 

competition scenario, like that of name consistency. By examining name agreement effects for picture 
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names which have not previously reached the selection threshold, the accessibility of the “competitor” 

word is automatically reduced. If the previously reported robust name agreement effects during 

formulation dissipate, then it is reasonable to assume that the previously reported variations are related 

to lexical-level response competition. If, however, name agreement effects previously associated with 

lexical selection, still persist for name consistency, then they likely reflect the cost linked to other 

encoding processes, like increased target and non-target semantic-to-lexical activation (e.g., Alario et 

al., 2014) or increased activation of phonological nodes (e.g., Valente et al., 2014).  

 

5.2. Methods 

5.2.1 Participants 

Twenty-three Bangor University students (16 females; Mean age: 20.6 years, SD= 3.3; eighteen 

right-handed) participated in a two-session picture naming study. All participants were native English 

speakers and had normal or corrected-to-normal vision, no neurological impairment and no self-

reported symptoms of any language disorders. The study was approved by Bangor University Ethics 

Committee, and participants gave informed consent and received course credit or cash compensation.  

 

5.2.2 Materials 

Pictures for the naming task were the 525 black-and-white line drawings of common objects 

from the International Picture Naming Project (Bates et al., 2003). Standard methods were adapted 

from Bates et al. (2003). The stimuli were grouped into 5 blocks of 105 pictures each, including one 

filler at the beginning of each block, followed by 104 experimental items (520 experimental items in 

total).  

 

5.2.3 Apparatus 
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Stimuli were presented via E-Prime (v. 1.2.1.847) on a 17” CRT in a soundproof testing booth 

at Bangor University’s Language and Electrophysiology Team (BULET) laboratory. Responses and 

naming latencies were recorded via a small diaphragm condenser microphone that was positioned 

approximately 15cm from the participants’ mouth, feeding into both a digital recorder and a delayed-

threshold voicekey.  

 

5.2.4 Design and Procedure 

The experimental design consisted of twenty-three unique sequences of approximately 

counterbalanced stimulus orders across Sessions and participants. Session 2 of the study took place 

one to-two weeks apart from Session 1. The experimenter in the testing booth manually recorded the 

participants’ naming accuracy (i.e., whether participants selected the dominant or secondary name for 

each picture or gave any other response). Each trial began with a small black fixation cross at the center 

of the screen which appeared for 150 ms. Next, a picture (317 x 317 pixels) appeared at the center of 

the screen for 3000 ms or until the voicekey was triggered by the participant’s voice. Participants were 

asked to name each picture as quickly and accurately as they could, while refraining from making any 

other noises. The interstimulus interval time was set at 500 ms. Short self-paced rests followed each 

105-trial block. One to two weeks later, each participant returned to repeat the full procedure. 

 

5.2.5 Electrophysiological recording and pre-processing 

5.2.5.1 Recording  

Electrophysiological data were recorded in reference to Cz at a rate of 1 kHz from 64 Ag/AgC1 

electrodes placed according to the 10-20 convention (Jasper, 1958). Impedances were kept below 5 

kΩ. Ocular artefacts were monitored using vertical electro-oculogram channels (VEOG) set above and 

below the left eye. All pre-processing steps and analyses were performed using EEGLAB Toolbox 
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(version 14.1.2b; Delorme & Makeig, 2004) in MATLAB (v. R2019a, Mathworks Inc.) and Neuroscan 

(Scan 4.5, Compumedics).  

 

 

5.2.5.2 Preprocessing 

EEG data were filtered bandpass using zero-phrase shift digital filtering (0.1 Hz, 24 dB/oct- 20 

Hz, 48 dB/oct) in Neuroscan. Ocular artefacts were mathematically corrected using independent 

component analysis (ICA) in EEGLAB. The independent components (ICs) were inspected by plotting 

component activations as well as component spectra and maps to see which ICs contributed the most 

at 5 Hz and 20 Hz frequencies. ICs containing ocular artefacts were removed. Prior to accepting ICA 

correction, I plotted the EEG data before and after ICA correction to make sure that rejecting ICs did 

not impact the data in an adverse way. In total, a mean number of 1.89 ICs (SD = .67; min = 1, max = 3) 

was rejected per participant. The eye channels were then removed from the signal and a visual 

inspection on the channels was carried out, in order to select the electrodes for interpolation. In total a 

mean number of 1.09 channels (SD = 1.54; min = 0, max = 5) was interpolated per participant. 

Individual averages were then digitally re-referenced to the global average reference. Continuous 

recordings were cut into epochs starting 200 ms before picture onset and ending 600 ms after for 

stimulus-locked ERP analyses. Baseline correction was performed in reference to pre-stimulus activity 

(-200 to 0 ms) for stimulus-locked analyses. Further visual inspection of individual epochs was carried 

out and epochs exceeding -100 to 100 μV were automatically rejected from each dataset in a total mean 

number of 3.47 per dataset (SD = 4.93, min = 0, max = 24). Epochs containing contaminated signal 

were also manually dismissed from each data set (Mean = 20.52, SD = 7.43, min = 6, max = 36) and 

an average number of 3.21 channels (SD = 1.86, min = 0, max = 8) were re-interpolated, in order to 

achieve the best maximum quality of the data. 
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5.2.6 Analytical Approach 

The main analytical approach used followed that of Chapter 3, with the exception that I only 

considered consistent responses for the behavioral and ERP analysis. Responses were initially 

transcribed on-line, later confirmed via audio recordings and were also manually checked offline for 

accuracy. Oppenheim’s (in prep.) recent norms from the same population provided dominant and 

secondary names for each picture. Following the Oppenheim (in prep.) norms, responses that deviated 

from an expected name only in plurality or the addition of an article (e.g., “toe”/“toes”, “boat”/“a 

boat”) were accepted as tokens of that name; possible abbreviated forms (e.g., plane and aeroplane), 

however, were considered as distinct responses. In cases where a participant produced two or more 

codable responses in a single trial (e.g., “dog. . . cat”), I analyzed the first. Because a main purpose of 

the current study was to assess the electrophysiological effects of picture Name Agreement in repeated 

picture naming, while trying to control for the covariate of voluntary name switching between Session 

1 & 2, I only accepted consistent responses across the two Sessions, i.e., trials in which the same (either 

dominant or secondary) name was selected in both naming instances by each participant.  

 

5.2.6.1 Behavioral 

Naming latencies were analyzed with confirmatory mixed effects regression, via the lmer 

function in the lme4 v1.12 library (Bates et al., 2016) in R (v5.5.1, R Development Core Team, 2016). 

Naming latencies were inverse transformed, in order to reduce the variability of the data (Whelan, 

2008), the fixed effects were centered and contrast-coded, while the model included a maximal random 

effects structures (Barr et al., 2013) for participants and items, omitting correlations between random 

effects to facilitate convergence. P-value estimations used the Satterthwaite approximation method. 

 

5.2.6.2 Electrophysiological   
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The aim of the mass multivariate analysis was to determine the time course and nature of 

picture Name Agreement and experimental Session effects on ERPs. I used picture Name Agreement6 

as a continuous predictor and Session as a categorical predictor for the analyses. 

These analyses were conducted using the LIMO toolbox (Pernet et al., 2011) in MATLAB. In 

LIMO, the data were analyzed using a hierarchical general linear model (GLM), following a two-step 

procedure. At a first level of analysis, the data of each participant (individual trials) were analyzed 

independently to estimate the parameters of the GLM based on electrophysiological activity at each 

time point and electrode. The first-level analysis delivered beta coefficients (i.e., the strength of the 

effect of the dependent variable) for each experimental condition and each individual dataset. The 

second level analysis used these parameters to test for statistical significance across participants, by 

performing robust statistics. Note that the GLM approach implemented in LIMO can be seen as a 

mixed effects model, but this model differs from traditional mixed effects models used with behavioral 

psycholinguistic data, because LIMO does not allow to use many predictors at a time (see 2.2.4 for a 

detailed description of the LIMO analysis). 

I initially investigated the main effects of picture Name Agreement (continuous predictor) and 

Session (categorical predictor) on the signal and a potential interaction between the two. I assessed the 

main effect for the continuous variable using a one sample t-test  and a paired t-test for the categorical 

variable. The interaction between Name Agreement and Session was investigated using a repeated 

measures ANOVA, with picture Name Agreement and Session as repeated measures for the analysis. 

The analysis was performed using 1000 bootstraps, to control for multiple comparisons. Corrections 

for multiple comparisons were applied using spatio-temporal clustering (Maris & Oostenveld, 2007, 

see also Pernet et al., 2011). In the present analysis, I applied a spatiotemporal clustering with alpha 

set to 0.05 and neighboring distance at .44 (approx. 5 electrodes per cluster). 

 
6 I had also intended to assess the ERP correlates of secondary Name Agreement in this study, but a coding error early in 

the analysis pipeline prevents the inclusion of that analysis at present. In a more exploratory approach, I also additionally 

assessed the ERP correlates of Lexical Frequency, though, and have included them in the Appendix D. 
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5.3 Results 

Within the 23920 experimental trials recorded, I first excluded 550 trials (2.2%) with naming 

latencies shorter than 500ms; without repetition within a Session, such short naming latencies typically 

indicate voice key errors, due to audible hesitations or other task-irrelevant sounds. To specifically 

focus on items for which each participant appeared to have a strongly preferred name, I also excluded 

from each participant’s dataset any item for which they gave different names across Sessions (1786 

trials, 7.4%) or trials with omissions (992 trials, 4.1%). Finally, for the ERP analyses I also excluded 

an additional 983 (4%) trials due to contaminated EEG signal. Thus, the current ERP analysis was 

restricted to 19609 (81%) of the originally recorded trials, 9704 in Session 1 and 9907 in Session 2, 

and the current behavioral analysis was restricted to 20592 (86%) of the originally recorded trials, 

10186 in Session 1 and 10406 in the Session 2.  

 

5.3.1 Naming latencies 

Participants’ responses and mean naming latencies across the two sessions are summarized in 

Table 1. Response patterns across the two naming Sessions for the dominant and secondary names and 

corresponding mean naming latencies are summarized in Table 2.  

 

Table 1. Response frequencies and mean naming latencies (in ms) for each Session. 

 Responses Naming Latencies 

 Session 1 Session 2 Session 1 Session 2 

 Mean  N Mean N Mean SD Mean  SD 

Dominant .75 9280 .79 9531 1050 382 1022 354 

Secondary .09 1191 .07 1140 1154 472 1128 459 

Other .07 931 .09 855 - - - - 

Omissions .04 558 .03 434 - - - - 

Total  11960  11960 1039 463 1021 424 

 

By-item response frequencies correlated well between Session 1 and 2 within this experiment, 

for both dominant (r= .91, p < .001) and secondary (r= .83, p < .001) Name Agreement separately. In 
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reference to Oppenheim’s (in prep.) observed frequencies for the dominant (p = .78, MeanRT = 978, 

SD = 217) and secondary (p = .10,MeanRT =1125, SD = 399) name, by-item response frequencies 

corresponded well to these estimates for both the dominant (r= .93, p < .001) and secondary name (r= 

.83, p < .001) in Session 1 and for the dominant (r= .92, p < .001) and secondary name (r= .83, p < 

.001) in Session 2. These frequencies also corresponded well between the current experiment and the 

frequencies observed in Chapter 3 for both the dominant (r= .88, p < .001) and secondary name (r= 

.79, p < .001) in Session 1 and the dominant (r= .89, p < .001) and secondary name (r= .78, p < .001) 

in Session 2.  

 

Table 2. Response patterns across the two Sessions for the dominant and secondary names and mean naming latencies 

(ms). 

 Responses Naming Latencies 

 Mean  N Mean  SD 

Dominant Name in both Sessions .71 17054 1024 351 

Secondary Name in both Sessions .05 1224 1156 445 

Switched from Dominant to Secondary Name .03 780 1102 427 

Switched from Secondary to Dominant Name .03 918 1102 420 

Other Responses patterns .18 3944 1021 424 

Total  23920 1030 444 

 

As described in the Methods section, I used maximal linear mixed effects regression, to predict 

participants’ naming latencies as a function of (1) Session (an ordinal measure from 1:2, centered), (2) 

picture Name Agreement from Oppenheim’s (in prep) recent Bangor norming study (a continuous 

measure from 0:1, centered). Collinearity was not an issue in the current study, because the 

experimental conditions were not correlated. I also report two restricted models, with Session 1 and 

Session 2 naming latencies respectively (see Table 3). 

 

Table 3. Summary of LMM analyses of inverse-transformed naming latencies.  

Both Sessions 

 β SE  t p 

Intercept 10.012 0.253  39.47 <.001*** 
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Session -.263 .119  -2.218 <.001*** 

Name Agreement -5.113 .297  -17.206 <.001*** 

Session*Name Agreement .354 .164  2.154 .04* 

 

 

Session 1 only          

  β  SE  t  p  

Intercept  -9.885  .240  -41.12  <.001**  

Name Agreement  -5.325  .325  -16.34 <.001***  

     

  

Session 2 only          

  β  SE  t  p  

Intercept  -10.139  .278 -36.41  <.001**  

Name Agreement  -4.908  .239 -16.67 <.001***  

     

 

Mixed effects analyses revealed significant effects of Session and picture Name Agreement on 

naming latency data. Speakers were generally faster to name pictures with higher Name Agreement 

(βNameAgreement = -5.11, SE = .29, p < .001), while naming latencies in total decreased significantly in 

Session 2 (βSession = -.26, SE = .11, p < .001). A significant interaction between Session and Name 

Agreement emerged (βSession*NameAgreement = .35, SE = .16, p < .04), suggesting that the Name Agreement 

effect in naming latencies was much stronger in Session 1. Restricted models further demonstrated the 

robust effects of picture Name Agreement independently during the first (βNameAgreement = -5.32, SE = 

.32, p < .001) and the second naming Session (βNameAgreement = -4.90, SE = .22, p < .001). 

 

5.3.2 ERPs 

Because the aim of the current study is to assess the inherent effects of picture Name Agreement 

without any a priori restriction over time or spatial localization of these effects, the ERP analyses 

followed an exploratory approach to observe effects across the whole scalp throughout the response 

period. Stimulus-locked (from picture onset to 600 ms) single trial ERPs were analyzed across all 

space and time dimensions using a hierarchical general linear model in LIMO (Pernet et al., 2011). 

After estimating beta coefficients for each participant (1st level analysis), I used these parameters to 

identify effects that were consistent across participants (2nd level analysis).  
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Figure 2.(a) Grand-average ERP waveforms elicited by high and low Name Agreement pictures across the two Sessions. 

ERPs were computed for a visual illustration, based on a mean split on the dataset, resulting in 269 items being classed as 

low name agreement (MeanNA <.86) and 256 items being classed as high Name Agreement (MeanNA >.86). (b) Results of 

the robust one sample t-test (representation of significant t-values) for the main effect of Name Agreement across the two 

Sessions after correction for multiple comparisons at all electrodes and timepoints, with the colors representing electrodes 

with higher (red) and lower (blue) amplitudes for trials with Name Agreement; each line is an electrode. 

 

Session 
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After correcting for multiple comparisons, no main effect of Session on ERP amplitudes 

exceeded the significance threshold for any electrode at any timepoint (all p > .05).  

 

Name Agreement 

As Figure 2b demonstrates, ERP amplitudes differed significantly (p < .05) as a function of 

picture Name Agreement in several time windows. The earliest differences are observed after 150 ms 

post picture onset at mostly posterior areas of the scalp, in which decreasing Name Agreement resulted 

in increased electrophysiological negativity. The second robust difference emerged at 280 ms post 

picture onset and lasted throughout the entire temporal window of analysis up until 600 ms, in which 

I observed increased positivity in posterior areas for trials with higher Name Agreement and increased 

negativity in anterior areas for trials with lower Name Agreement. These differences between trials 

with high and low Name Agreement produced robust effects in separate sub-windows, with decreasing 

Name Agreement resulting in lower ERP amplitudes in anterior areas of the scalp bilaterally from 290 

until 440 ms and increasing Name Agreement producing more positive electrophysiological activity 

in posterior areas of the scalp from 290 ms until 600 ms post-picture onset. 

 

Session * Name Agreement Interaction 

After examining the main effects separately, I performed a repeated measures ANOVA in 

LIMO (using Session and Name Agreement as repeated measures), in order to investigate for a 

potential interaction. However, once I corrected for multiple comparisons, no significant interaction 

between  Session and Name Agreement exceeded the significance threshold on ERPs (p > .05).  

 

Post-hoc t tests on Name Agreement  

Driven by the main effects of Name Agreement and by the significant interaction between 

Session and Name Agreement in naming latencies, I computed post-hoc comparisons between high 
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and low Name Agreement in each of the two Sessions. One sample t-tests of Name Agreement failed 

to reach statistical significance in the first Session (p > .05) but came as significant in the second 

naming Session (p < .05).  

 

5.4. Discussion 

Naming pictures with multiple appropriate names is associated with robust behavioral effects, 

widely reported in the literature and some ERP modulations which are less consistent. The majority of 

these name agreement effects have been interpreted as evidence in favor of the lexical competition 

hypothesis and primarily assume to reflect the cost that arises during selection: naming a picture of a 

couch takes longer time than naming a picture of a dog and modulates ERP peaks because, during 

formulation of the linguistic concepts, the selection of “couch” is proportionally delayed by the 

activation of its alternative names (e.g., “sofa”, “settee”) (e.g., Levelt et al., 1999; Roelofs, 1992; 

2003). Such picture name agreement variations are thought to index the struggle of the production 

system to systematically select the most appropriate word according to the populations’ tendencies 

amongst different equally suitable alternatives. This default conceptual use of picture name agreement 

is challenged by the recent finding that speakers develop stable word preferences in naming (Balatsou, 

Fischer Baum & Oppenheim; in revision), even for non-dominant responses, suggesting that low name 

agreement does not necessarily imply that individual speakers have actively competing alternative 

words in their production systems, or at least not to the extent previously assumed. This demonstration 

consistent with idiolects, which is disproportionally greater for low name agreement pictures, 

challenges the default use of a population-level measure as directly indexing relative activation 

thresholds for each speaker, and therefore, the basis of interpretation of name agreement modulations. 

In the present study, I aimed to assess for the first time, the electrophysiological effects of picture name 

agreement for individuals’ most accessible word forms, and the extent to which they can account for 

endogenous lexical competition within the production system by evaluating the behavioral and 
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electrophysiological effects of name agreement in response consistency. In a repeated naming task 

with minimal endogenous or exogenous conflict, I hypothesized that if the previously reported effects 

of name agreement (e.g., Cheng et al., 2010; Shao et al., 2014) dissipated, then they were most likely 

previously indexing the endogenous lexical competition the response competition created by task-

demands. If, though, picture name agreement still produced robust behavioral and electrophysiological 

modulations, then I predicted that these effects are likely associated with increased activation in the 

system during other necessary sub-stages, such as lexical activation and/or phonological encoding 

(e.g., Valente et al., 2014).  

 The findings of the current study demonstrate that name agreement produces robust behavioral 

and electrophysiological effects, even after controlling for the heterogeneity in speakers’ idiolects. A 

regression analysis of the naming latencies replicated the widely reported effect of picture name 

agreement on retrieval speed (e.g., Alario et al., 2004; Bates et al., 2003). The longer naming latencies 

for pictures with lower name agreement in the first naming session, thus, reflect the endogenous 

conflict of the production system in simple naming, as in norms (Bates et al., 2003; Szekely et al., 

2004). Such conflict has been previously interpreted as evidence for endogenous lexical competition 

driven by the notion of stochastic word selection (e.g., Alario et al., 2004), however, in the case of 

idiolects, there is no theoretical basis to assume that lexical competition is the driving force of this 

effect, since Session 2 retrievals suggested that none of the alternative word choices has reached the 

relative selection threshold inside speakers’ mental lexicons, per Levelt et al.’s (1999) Luce choice-

inspired account of selection probability.  

The behavioral name agreement effect was also robust during the second naming session: 

speakers were faster to name a picture of a dog compared to a picture of a couch, despite the reduced 

conflict of response consistency after reproducing “dog” and “couch”. This finding replicates the effect 

observed in the first session, while it is surprisingly compatible with the previously reported name 

agreement modulations on naming latencies in studies that have used repeated naming in the process 
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of familiarization (e.g., Alario et al., 2004; Shao et al., 2014), despite they could have possibly 

misidentified some of speakers’ word preferences. The significant interaction between Name 

Agreement and experimental Session on naming latencies suggested that, even though speakers were 

slower to name pictures with multiple appropriate names in both sessions, this effect was slightly 

weaker in Session 2. This replicates the widely reported repetition priming in picture naming (e.g., 

Cave, 1997), which can eventually be the basis for formulation of stable word preferences. For 

instance, in the error-based learning model of cumulative semantic interference, each word retrieval 

results in the strengthening of the connection between the semantic-to-lexical mappings, making the 

target words more accessible for future selections (Oppenheim et al., 2010; 2007). If we assume that 

such competitive learning can also emerge as long-lasting, then it is possible that speakers’ 

vocabularies are formed through the strengthening of the associations between the intent and the 

linguistic output. However, because these effects are reported in a two-session naming task, I can only 

remain speculative as to how speakers’ response profiles would change with additional naming and 

whether this tendency to repeat ones’ previous selections persists or not. In any case, the name 

agreement effects reported in the current study indicate that, at least some kind of conflict is also 

endogenous in speakers’ stable word preferences, even with reduced lexical co-activation. 

 Concerning the electrophysiological analysis, the results indicate that name agreement 

variations modulated ERP amplitudes in several time windows related to both early and later processes 

of word production. These results are compatible with both the suggestion that name agreement affects 

the substage of semantic-to-lexical mappings (Alario et al., 2004) and suggestion that effects arise 

during phonological encoding (Valente et al., 2014). However, in the current study I also observed 

modulations in earlier time windows, before lexical processing. Even though an exploratory mass-

univariate analysis cannot directly be related to traditional “component” analyses, some of the earliest 

differences observed (150ms to 240ms post picture onset) in parietal areas of the scalp are compatible 

with the differences in the P1 component that Cheng et al. (2010) previously reported. The differences 
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in this early time window most likely indicate differences in the earliest perceptual levels between 

pictures that elicit multiple alternative words instead of pictures corresponding to one lexical 

candidate: for instance, “dog” may require less visual or perceptual processing than “can opener”, 

which has increased lexical and visual ambiguity and, in an interactivity-based interpretation, could 

pass on increased activation to the earliest perceptual levels of processing. In the next time window 

(280 ms-600 ms post picture onset), the observed effects can be associated with both the N200 

component previously reported (see Chapter 5; Shao et al., 2014) and other language-sensitive peaks, 

like the N400 (see Chapter 5; cf. Valente et al., 2014), which has been previously linked to increased 

semantic-to-lexical processing during production (e.g., Costa et al., 2009). Finally, the later effects are 

partly compatible with Valente et al.’s (2014) observations, who were also not temporally or spatially 

restricted and reported name agreement differences arising at a continuous time window of around 

380ms post picture onset until before articulation. This time window of name agreement differences 

is partly compatible with Indefrey and Levelt’s (2004) timeline, which suggests that this is when 

phonological encoding takes place, however the continuity, overlap and duration of the ERP effect 

suggests that activation cascades throughout the response period. Increased activation for lower name 

agreement pictures seems to cascade from the earliest stages of semantic-to-lexical processing, 

continuing during phonological encoding, a finding that serves as an additional empirical observation 

to question the seriality and discreteness of the timeline (also see Strijkers et al., 2010; Munding et al., 

2016, Nozari & Pinet 2020). 

Even though the interaction between Name Agreement and experimental Session did not 

emerge as significant in ERPs, post-hoc comparisons revealed that the electrophysiological differences 

in name agreement variations were not independently significant in the first naming Session, but 

emerged as significant in Session 2. Unlike the behavioral effects of name agreement which were 

significant in both naming Sessions, the robust ERP effect emerging during the second session could 

be explained as improved efficiency in word learning, indexed by enhanced neural synchronization: 
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the same kind of increased brain-to-stimulus synchronization underlying associative learning tasks and 

speech processing (e.g., Gotts, Chow & Martin, 2012; Assaneo et al. 2019), which increases the 

differences in the semantic-to-lexical mappings between the condition that is harder (i.e., low name 

agreement pictures) and the condition that is easier to learn (i.e., high name agreement pictures). 

Nonetheless, the electrophysiological differences elicited by name agreement variations indicates that 

repeated naming robustly modulates ERPs, but the absence of a significant Name Agreement x Session 

interaction cannot explicitly indicate whether these differences observed after subsequent naming are 

inherent to the production system (e.g., Nozari & Hepner, 2019; Oppenheim & Balatsou, 2019), or 

reflect the dynamics of a system that is continuously learning by tuning its semantic-to-lexical 

mappings (Oppenheim et al., 2010).  

By investigating reduced competition scenarios (i.e., speakers’ idiolects) in repeated naming, I 

examined whether the previously reported modulations of Name Agreement, which were interpreted 

as indexes of lexical competition, still emerged. Using a more theoretically constraining task than 

previous ERP name agreement studies (e.g., Cheng et al., 2010; Shao et al, 2014), and a robust 

exploratory analytical method, I identified differences in electrodes and time windows which would 

have otherwise been attributed to the lexical selection by competition hypothesis. The benefit that 

comes with controlling for speakers’ lexical consistency, though, reduces the basic interpretive 

framework for attributing these effects to lexical competition: robust modulations were reported contra 

to the stochastic selection that Levelt et al. (1999) proposed and with the absence of a strong 

“competing” word in speakers’ mental lexicons. These robust ERP effects of name agreement, that 

remained after eliminating relative activation thresholds, demonstrated the differences in processing 

for pictures that activate multiple words, which cascades within the production system from the earliest 

towards the later stages of production and not differences in selection of words, as previously assumed. 

 

5.5. Conclusion 
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In this simple naming task, I have, thus, identified several behavioral and electrophysiological 

effects of high and low name agreement pictures, even after taking steps to minimize within-speaker 

lexical “competition”. Previous research has predominantly interpreted similar robust effects as 

directly indexing lexical-level competition, that is, the cost associated with the need to suppress 

alternative lexical representations which race for selection (e.g. Shao et al., 2014). This interpretation 

is mostly based on the default assumption that “couch” and “sofa” are actively competing for selection 

at any given time (e.g., Levelt et al., 1999; Roelofs, 1992). Here, I showed that these “couch”-only and 

“sofa”-only speakers, which I identified in Chapter 3,  still appear recruit more cognitive recourses in 

naming pictures with lower name agreement, while I surprisingly replicated some of the robust effects 

that previous literature reported with only “couch-sofa” speakers in mind. By challenging this core 

assumption of selection probability, I further showed that several robust effects associated with the 

encoding processes during production emerge in more naturalistic designs, like simple picture naming. 

I, therefore, suggest that such effects are much more indicative of the nature of the encoding processes 

and the challenges associated with selecting a word with multiple co-activated lexical alternatives. 

More generally, a major theme in the current research is that identifying and respecting individual 

differences in relation to population-derived predictors in cognitive psychology provides a more valid 

basis to associate the empirical findings with the hypotheses that researchers aim to examine.
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6.1 Overview of the thesis 

So, how do speakers select one appropriate word for production? It is reasonable to assume 

that the process of finding the appropriate word for a concept is straightforward when there is only a 

single candidate linguistic unit in one’s mental lexicon. However, that is not how language production 

normally works: Speakers’ vocabularies consist of tens of thousands of words in their native language, 

with multiple units usually corresponding to the same, or approximately the same, meaning (Levelt, 

1989). The question of how speakers select the appropriate word out of multiple similarly suitable 

alternatives has dominated the field of psycholinguistics for decades, while the nature of the encoding 

processes involved in speech production are hotly debated to this day. There is controversy as to 

whether the mechanism guiding lexical selection is chronometrically dependent (e.g., Levelt et al., 

1999) or independent (e.g., Mahon et al., 2007) upon the availability of responses which are determined 

during the previous step, namely lexical co-activation. By measuring the effect of the availability of 

alternative candidate words, which in simple naming tasks is indexed by picture name agreement, 

empirical observations are usually interpreted in favor of lexical competition. But, until now, the field 

has lacked a critical evaluation of picture name agreement as a psychologically meaningful predictor 

of individuals’ internal states, necessary for its subsequent evaluation with respect to the nature of 

lexical selection. By observing how variations in picture name agreement affect individuals’ 

behavioral and electrophysiological profiles in simple naming tasks, this thesis aimed to elucidate the 

nature of the lexical selection mechanism and, at the same time, provide a new empirical basis for 

future research to use picture name agreement as a measure of lexical co-activation.  

 Chapter 1 introduced the relevant literature and critically evaluated the empirical findings in 

favor of the lexical selection by competition hypothesis and the alternative account that selection is a 

non-competitive process. I identified conceptual misuses and overinterpretations of the relevant effects 

in favor of competition and targeted new research questions to demonstrate the genuine effects of name 

agreement and their relation to competition. In Chapter 2, I detailed the methodological and technical 
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approach used in the current work and justified its relevance for answering my research questions. 

Chapter 3 investigated within-speaker stability of name choices across multiple sessions, showing that 

picture name agreement is a valid measure of lexical co-activation within individual speakers. 

Importantly, it further demonstrated that it also indexes heterogeneity between individuals’ stable word 

preferences, that is, their idiolects. In Chapter 4, I reported how we tested the hypothesis that directing 

production against speakers’ idiolects would largely increase the existing competition in the system. 

Instead, I found that the inherent conflict reflected in name agreement effects is naturally distinct from 

the exogenous competition in task-oriented word production. In Chapter 5, I showed that consistent 

responses also produce robust electrophysiological and behavioral effects and demonstrated that in 

this minimal conflict scenario, picture name agreement is a valid measure of lexical co-activation for 

dominant and secondary responses, but not of response competition. The key contributions of the 

current work are that (1) it provides the first empirical evaluation of picture name agreement showing 

that it is a reliable measure of co-activation in word production, but not necessarily of competition, (2) 

it assesses for the first time the heterogeneity in individuals speakers’ lexical preferences, which we 

termed as idiolects, and (3) it demonstrates that the selection mechanism in simple word production is 

qualitatively different from the mechanism involved in production with response competition. By 

examining this measure in simple designs, I aimed to mirror how language production normally works 

and wished to provide reproducible effects, which can be extended in new and useful directions in the 

field. 

 

6.2 Empirical evaluation of picture name agreement 

Picture name agreement is often the measure of interest in norming studies (Bates et al., 2003; 

Szekely et al., 2004) and a widely used predictor in cognitive science research. Its robust effects are 

most often associated with the process of lexical selection according to the competition hypothesis 

(Alario et al., 2004; Kan & Thompson-Schill, 2004; Valente et al., 2014; Bose & Schafer, 2017). 
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Perhaps because this default explanation of name agreement effects seemed so cognitively plausible, 

it has generally escaped critical empirical assessment. A main goal of the current work was to provide 

a body of evidence to assess and evaluate the theoretical basis of these interpretations for the first time. 

 

6.2.1 Luce Choice-inspired selection is partially verified 

Levelt et al.’s (1999) production theory was undeniably influential in the field of language 

production. The core computational principles of their model have guided most interpretations on the 

robust name agreement effects researchers have observed in production tasks. One of the most critical 

components of their theory, the Luce Choice-inspired (Luce, 1959) ratio is the computationally explicit 

formulation of the lexical competition hypothesis, which determines both the probability that the target 

word will be selected and the time it will take to be selected according to the relative activation of 

other words in the system. The notion that selection probability and latency is guided by the stochastic 

function of the Luce choice rule has been the basis of explanations of name agreement effects, but to 

my knowledge, has never been explicitly tested before. 

In Chapter 3, I showed that the Luce Choice ratio guides the probability of selection in 

individual speakers. By examining name-selection consistency, I observed that population-level 

norms, which index the distributions of possible responses across speakers, predict within-speaker 

variability in word selections for both stronger and less modal responses (i.e., secondary names). The 

demonstration that the Luce Choice-inspired ratio guides individuals’ probability of re-selecting either 

“couch” or “sofa” provides strong empirical justification for the use of picture name agreement 

variations as cognitively meaningful predictors in word production studies. The demonstration that 

within-speakers’ selection probability is guided by lexical co-activation across speakers makes it, 

therefore, possible to partially justify a relative activation threshold in selection. However, this is a 

between-trial empirical observation of response consistency and not a within-trial estimate of the co-

activation of those options, which researchers generally assume affects the production of the target 
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word in both simple naming tasks (e.g., Alario et al., 2004) and in picture-word interference studies 

(e.g., Bloem & La Heij, 2003; Roelofs, 2003; Vigliocco et al., 2004). Although the basis for 

interpreting the competition effects of picture name agreement is the increased naming latencies for 

items with multiple candidate words, in the current research I have not been able to evaluate naming 

latency effects for voluntary stochastic selections, since speakers are less likely to switch between 

names for subsequent productions. The major contribution of these findings is, therefore, in relation to 

response consistency and not latency which, to date, remains the strongest principle of competition 

(Levelt et al., 1999).  

 

6.2.2 Picture name agreement also reflects variation in idiolects 

The demonstration that variability in name agreement also reflects the heterogeneity between 

speakers’ independent word preferences, which I termed as idiolects, at the same time questions some 

of the normative uses of this measure (Alario et al., 2004; Shao et al., 2014; Valente et al., 2014) and 

the strictly competition-based interpretations of its effects (Alario et al., 2004; Cheng et al., 2010; Shao 

et al., 2014; Bose & Schafer, 2017). In Chapter 3, we showed that speakers develop stable preferences 

in repeated naming for both dominant and secondary responses and, in Chapter 5, I reported some of 

the widely observed effects of name agreement in naming latencies and ERPs emerging for consistent 

responses. In the strictly non-competitive framework, according to which a word is chosen after it 

passes an absolute threshold (e.g., Dell, 1986), idiolects should reflect the minimal conflict scenario 

within the system, reflecting the strengthened one-to-one mappings between concepts and intended 

words. Similarly, within the competitive framework, and given that picture name agreement is tied to 

selection difficulty, idiolects should reflect a significantly reduced competition scenario in comparison 

to stochastic selections. More specifically, the relative threshold of activation of the competitor words 

should be minimal, if not non-existent, since they do not reach the point of selection as predicted by a 

stochastic axiom. Despite these predictions, I found that the main effects in naming latencies and ERPs 
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persist even for individuals’ consistent responses: speakers are significantly slower in re-naming 

pictures with lower name agreement (e.g., “couch” or “sofa”) than pictures with higher name 

agreement (e.g., “dog”), while the nature of the electrophysiological effects indicates increased co-

activation in multiple processing stages for pictures with numerous names.  

The observation of such strong name agreement effects for repeated name selections is 

surprisingly compatible with the previously reported effects in the name agreement literature in studies 

in which individuals’ word preferences were not explicitly taken into consideration in the experimental 

design (Alario et al., 2004; Cheng et al., 2010; Shao et al., 2014; Valente et al., 2014). This is 

significantly more paradoxical, when considering the effects that involuntary name switches can 

produce, as shown in Chapter 4: by respecting and contradicting speakers’ idiolects, we demonstrated 

the difference between the inherent conflict of the system during typical lexical selection (name 

agreement in line with speakers’ idiolects) and the conflict resulting from task-induced competition 

(name agreement contra to speakers’ idiolects). The most probable reason why name agreement effects 

are still evident in the most minimal conflict scenario, is that it they indeed measure within-subjects 

lexical co-activation: even though “sofa” will not be reaching a selection threshold within the “couch” 

speaker, it still appears to be an active option, which makes production more effortful. It is, yet, still 

unknown whether the majority of the effects previously reported are in line with individuals’ word 

preferences (e.g., Alario et al., 2004; Valente et al., 2014; Shao et al., 2014), so the nature of those 

effects in reference to name consistency or voluntary switching remains a point of speculation. 

Nonetheless, this heterogeneity in individuals’ responses provides the first empirical 

observation that there are individual differences in name selections, a finding useful to evaluate in 

relation to the nature of the encoding processes in other naming tasks, as well. By accepting words that 

deviate from the dominant group-level norms as appropriate responses, it is possible to re-examine the 

previously reported effects of within-trial co-activation (e.g., Vigliocco et al., 2004) or within-block 

co-activation (e.g., Howard et al., 2006) in respect to speakers’ own absolute activation thresholds. If, 
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for instance, semantically similar entries in respect to speakers’ idiolects significantly delay production 

speed in interference tasks, then it is reasonable to associate these effects with conflict during lexical 

selection. An additional benefit of keeping track of such preferences, is that researchers can include 

response consistency as a predictor both in studies which directly or indirectly manipulate the levels 

of lexical co-activation. 

 

6.2.3 Name agreement is sensitive to name change 

Findings from the current study replicated the widely documented effect of name agreement 

on naming latencies (Snodgrass & Yuditsky, 1996; Ellis & Morrison, 1998; Bates et al., 2003; Szekely 

et al., 2004; Alario et al., 2004; Shao et al., 2014; Bose & Schafer, 2017) and partially extended this 

effect in situations of both low and high-conflict production demands. In Phase 1 of Chapter 4, I 

reported significant differences in naming latencies for low (e.g., “couch”) and high (e.g., “dog”) name 

agreement pictures. In Phase 2 of Chapter 4, I further showed that name agreement effects still emerge 

for the dominant responses, when they are following speakers’ preferences in repeated naming: 

retrieving “couch” twice is slower than retrieving “dog” twice despite previous findings that repetition 

priming is stronger for lower name agreement pictures (e.g. Park & Gabrieli, 1995). The naming 

latency effect in response consistency was extended in Chapter 5, by demonstrating that naming low 

name agreement pictures significantly delays production both for dominant and secondary responses 

together: selecting either “couch” or “sofa” twice is still slower than producing “dog” twice. 

Production delay for secondary naming preferences broadens the interpretation of picture name 

agreement as both a measure of retrieval difficulty and as an index of lexical co-activation,  because it 

demonstrates that the alternative word, irrespective of whether it is the modal response, has not reached 

the criterion for selection within-speakers, but still modulates semantic-to-lexical processing.  

However, this modulation is not as systematic as the competition hypothesis would predict 

(Levelt et al., 1999; Roelofs 1992; 2003; 2018), because, when within-speaker lexical co-activation 
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was artificially exceeding the criterion for selection, we observed that competition did not increase in 

the same fashion. In Phase 2 of Chapter 4, the differences between low and high name agreement 

effects largely dissipated when the task coerced alternative names for both conditions (i.e., switching 

responses between “couch and “sofa” became surprisingly similar to switching between “dog” and the 

less modal “mutt”). By inducing exogenous activation in the production system and creating an 

artificial environment to test the axiom of selection, we have shown that name agreement effects are 

sensitive to name change.  

However, we were also able to provide some indirect measures of “competition” in the narrow 

sense of Levelt et al. (1999) and in the adjustable framework of Nozari and Hepner (2019). It is worth 

highlighting that the latency effects in non-voluntary name switches are partially compatible with the 

core principle of a stochastic selection, in which the activation of the competitor words delays target 

word retrieval (Levelt et al., 1999; Belke et al., 2005; Bloem & La Heij, 2003; Bloem et al., 2004). 

Instead, though, of the traditional competitive explanation of this effect, I suggest that delayed 

production in this high conflict scenario most closely resembles the exogenously-driven competition 

observed in picture word interference studies (e.g., Schriefers et al., 1990), and appears to be an actual 

“infrequent derailment” of producing speech. One possible explanation for this is characterization is 

that name switches in the current research, and elsewhere in the literature, resulted from explicit task 

manipulations and not from speakers’ own voluntary need to use alternative labels. Nevertheless, the 

finding that picture name agreement produced robust effects even in such high conflict production 

situations provides new evidence that it is related to the automatic, top-down process of lexical co-

activation, which increases the likelihood that its effects are replicable. 

 

6.2.4 New electrophysiological modulations of picture name agreement 

Because the ERP name agreement literature is limited and the effects reported are inconsistent, 

a main goal of the current work was to be able to evaluate electrophysiological effects in relation to 
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the encoding processes. Previous literature has identified name agreement modulations in the P100 

range (Cheng et al., 2010), the N200 range (Cheng et al., 2010; Shao et al., 2014), and in a later 

processing window starting at ~380 ms post stimulus onset and 100 ms before articulation (Valente et 

al., 2014). These effects have been associated with lexical selection and phonological encoding, 

respectively, mostly based in Indefrey and Levelt’s (2004) widely questioned timeline. In the current 

experimental work, we found name agreement differences in the N200 (Chapter 4), observed a novel 

N400 modulation (Chapter 4), and identified additional differences arising 290–600 ms after stimulus 

onset (Chapter 5). These observations served as additional evidence that picture name variability 

indeed indexes lexical co-activation, while the temporal and spatial distribution of these effects, are 

compatible with cascading interactivity in the production system.  

 

N200 

The N200 effect was explicitly observed in the current work when we examined picture name 

agreement as a categorical variable in simple naming which omitted the previously used practice of 

familiarization (Chapter 4). Previous observations of name agreement effects in the N200 time window 

were interpreted as indexing response inhibition following familiarization (Shao et al., 2014) and 

“lemma”-level competitive selection in overt naming without familiarization (Cheng et al., 2010). 

Naming a picture with multiple words was assumed to require additional resources at the level of 

lexical selection or required the suppression of the active competitors in order to achieve target word 

retrieval. Both interpretations, though, were based on the competition hypothesis and its respective 

timeline. These two effects were also spatiotemporally district, which makes it probable that they also 

related to different cognitive processes.  

These competition interpretations would predict the opposite behavior of an inhibitory 

component, compared to the effects reported here. That is, the need to recruit additional inhibition or 

increase the existing competition within the system, when the task imposes a response as correct-only 
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and thus the levels of co-activation are artificially increased. Contra to this hypothesis, the N200 was 

found to decrease with increasing “competition”, which made us attribute it to differences in the 

earliest points of lexical access, driven by similar findings in the literature which associated increased 

N200 magnitude with increased ordinal position in cumulative semantic interference tasks (as in Costa 

et al., 2009; see also Strijkers & Costa, 2011). 

 In simple naming, effort in lexical access should disproportionally increase by increased 

semantic-to-lexical activation, reflected in pictures with multiple words. This effort appears to later be 

resolved with repetition priming resulting from subsequent naming, even in high conflict production 

demand, such as violating one’s preferences. This interpretation was broadened with the 

electrophysiological analysis of consistent responses in Chapter 5. Even though the analytical approach 

of ERPs followed in Chapter 5 cannot generally reveal distinct component modulations, I found 

increased bilateral negativity associated with lower name agreement in several time windows with 

distinct topographies, which can relate to both the N200 effect observed in Chapter 4, the anterior 

N200 that Shao et al. (2014) reported and the posterior negativity that Cheng et al. (2010) interpreted 

as an N200. The N200 in the current studies is, thus, associated with picture name agreement variations 

in the earliest processing levels, but does not appear to reflect response competition or selective 

inhibition.  

 

N400 

An additional contribution of the current work is that it identified novel N400 modulations for 

lower name agreement pictures in simple and coerced naming (Chapter 4) and electrophysiological 

effects compatible with an N400, when speakers produced their consistent responses (Chapter 5). I did 

not explicitly predict such effect, largely because it has not been previously reported in the name 

agreement literature. Another reason is that naming pictures with multiple alternative names does 

trivially relate to semantic manipulation, which is usually driving the N400 (Kutas & Federmeier, 
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2011). N400 modulations have been found in other language production tasks, such as primed picture 

naming (Ganushchak & Schiller, 2008; Koester & Schiller, 2008), picture word interference studies 

(Blackford et al., 2012; Piai et al., 2012; Shitova et al., 2017), and lexical decision tasks (Rabovsky, 

Sommer & Abdel Rahman, 2012). While some previous interpretations have linked N400 effects to 

lexical competition (e.g., Piai et al., 2012; Rabovsky et al., 2012; Shitova et al., 2017), in speech 

production it is generally associated with semantic-to-lexical mappings during the formulation of 

words. In the current research, I have interpreted the N400 effect as evidence for cascading interactivity 

within the production system (Dell, 1986) and, at the same time, an empirical demonstration that lower 

picture name agreement is indeed more resource-intensive for the production system. This is without 

necessarily indexing resources that are revealing active race between words.  

If we follow Indefrey and Levelt’s (2004) temporal stages of word production, the N400 effect 

falls into the syllabification window, which they place between 330 ms and 455 ms post-stimulus-

onset. In a strictly serial and discrete model of language production (Levelt et al, 1999), it is difficult 

to explain why the N400-an established meaning-related index-would reflect such lower-level 

processing, or why semantic effects would follow lexical selection (175 ms and 250 ms post stimulus 

onset according to the timeline). Compatible with previous literature in both language production and 

comprehension (see Kutas & Federmeier, 2011, for an extensive discussion), I suggested that the N400 

in the current research is indeed indexing semantic-to-lexical processing difficulty for pictures with 

multiple words. At the same time, this interpretation of the N400 is compatible with accounts that 

question the reliability of the proposed timeline (see Strijkers & Costa, 2011; Nozari & Hepner, 2019, 

Munding et al., 2016 for similar discussions). 

The fact that the observed N400 effect persisted in both high and low production demands and 

was not reduced by repetition priming suggests that it is sensitive to this inherent conflict. The 

enhanced N400 for lower name agreement pictures could be explained by their increased semantic co-

activation and increased semantic density compared to higher name agreement pictures (Rabovsky et 
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al., 2012). For example, “couch”, “sofa” and “settee” taken together should elicit more semantic 

processing than “dog”, because “couch”, “sofa” and “settee” have highly intercorrelated, yet partially 

distinct, semantic features. This interpretation, though, makes us speculate why such N400 

modulations have not been previously reported in the ERP name agreement literature (Cheng et al., 

2010; Shao et al., 2014; Valente et al., 2014). Although Valente et al.’s (2014) exploratory analysis 

did not report a distinct N400 either, differences associated with picture name agreement were reported 

in the N400 window, which resemble the findings of Chapter 5. In previous studies that used a 

predictive component-based approach, it is possible that the N400 was not a component of interest or 

not particularly evoked by stimulus-specific properties.. Another point of consideration is that pre-

experimental familiarization in the current research was largely omitted, and the experimental 

manipulations were reduced, possibly allowing for previously masked differences to be enhanced. 

Nevertheless, I showed that even in low conflict situations, such as repeating one’s previously used 

names, robust effects in the N400 are reported for low name agreement pictures. The N400 in the 

current research, therefore, serves as additional evidence that name agreement is a measure of co-

activation in the production system, yet not as concrete evidence to associate this increased co-

activation with increased lexical competition.  

 

Later effects 

The current research also identified ERP name agreement effects in a later window coinciding 

with response initiation. In Chapter 5, I observed a continuous name agreement modulation for 

consistent responses towards later stages of processing, compatible with some previously reported 

effects (Cheng et al., 2010; Valente et al., 2014). Such effects are thought to be associated with post-

lexical phonological processing differences for pictures with multiple alternative words (Valente et al., 

2014) and are compatible with theories which argue that conflict arises in post-lexical, response buffer 

stages of processing (Mahon et al., 2007). In the context of the Response Exclusion Hypothesis, the 
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robustness of name agreement effects towards the endpoint of production is compatible with the idea 

that some lexical information, that must be cleared before the articulation of the target, word remains 

in the output buffer, and this why pictures with multiple co-activated words demand more resources 

in that time-window (Mahon et al., 2007; 2012). This interpretation, of course, is opposed to traditional 

competitive explanations of name agreement effects, which assume that conflict arises during lexical 

selection (e.g., Shao et al., 2014; Bose & Schafer, 2017). In addition, even if I consider scaling the 

timeline of Indefrey and Levelt (2004) to longer naming latencies, these later effects still continue into 

the window of phonological encoding, which is past formulation, in a strictly discrete model. In any 

case, the differences in such later processing stages demonstrates that the increased challenge in 

producing a word with multiple alternatives persists, even when high conflict is reduced in the system.   

 

6.3 A stance on lexical competition 

Apart from providing the first empirical evaluation of picture name agreement in the literature, 

the major theoretical motivation of the current work was to provide additional insight into the nature 

of the lexical selection mechanism by observing how variations in name agreement affects naming 

latencies and ERP amplitudes in simple naming. The behavioral and electrophysiological name 

agreement effects across the three experimental chapters indicate that the production system indeed 

puts more effort into processing words with strong alternatives. However, I argue that this effort does 

not provide strong support for the systematic competition that Levelt et al. (1999) have described.  

 

6.3.1 Evidence in favor of lexical co-activation but against systematic competition  

In the current work, I have demonstrated that name agreement variations are associated with 

production difficulty. For example, naming a picture of a couch, that can also be called a “sofa” or a 

“settee” (low name agreement), is more neurally effortful and more time consuming than naming a 

picture of a dog (high name agreement), regardless of speaker-specific preferences. We have also 
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empirically supported the assumption of a stochastic response selection. In other words, “sofa” and 

“settee” are both active within individuals (Chapter 3) and there is sufficient behavioral and 

electrophysiological evidence to suggest that they are also active within “couch” individuals (Chapters 

3 & 5). Following the general trend in the literature, some would immediately argue that these 

observations are sufficient evidence in favor of the lexical selection-by-competition hypothesis (Levelt 

et al., 1999; Roelofs, 1992; 2003), or merely proof that selection is minimally competitive (Nozari & 

Hepner, 2019).  

But is this kind of conflict reflecting the systematic racing of words for selection? When we 

introduced an actual competitor word into this race, not only the inherent lexical conflict in the system 

largely dissipated, but the entire selection process turned to task-dependent production, as seen in 

naming latencies and ERP modulations of picture name agreement (Chapter 4). This distinction 

between simple and targeted naming could, therefore, mirror the distinction between typical and 

competitive lexical selection, which seems to concern two distinct processes. The former is task-

independent and most closely related to the actual mechanism that governs communicative speech, 

while the latter can emerge under extreme laboratory manipulations, such as picture naming with a 

distractor word or directing ones’ speech (cf. Oppenheim & Balatsou, 2019). However, this kind of 

competition is qualitatively different from the within-trial systematic lexical competition that Levelt 

et al.’s (1999) theory proposed. 

Of course, these findings and their interpretations do not aim to dismiss the possibility and 

plausibility of a competitive mechanism, nor do they disregard the contribution of Levelt et al.’s (1999) 

theory in understanding how word production works. It is one thing to demonstrate that conflict exists 

during lexical processing and another to show that it reflects the active race between words to reach 

the selection threshold. Findings from the current work have undoubtedly provided sufficient evidence 

for the former, while future focused research can inform the latter. One useful way to revisit the 

competition hypothesis, as I partially aimed to do, is to extensively investigate empirical findings and 
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build theories which integrate both the effects of lexical co-activation and effects of subsequent lexical 

selection, as Nozari & Hepner (2019) recently did. In the current research, I have provided substantial 

evidence to suggest that lower name agreement reflects increased lexical co-activation, which produces 

robust effects during production. However, these effects are qualitatively and quantitatively different 

from those of response competition. I, therefore, suggest that in order to contribute to the conclusion 

of the debate, future research should be carefully looking for competition where it actually exists or in 

the form it exists in the production system. 

 

6.3.2 Idiolects in speakers’ vocabularies and competitive lexical learning 

A final point of discussion driven by the present findings is whether an element of competitive 

learning might exist within the production system. We have  introduced speakers’ idiolects (Chapter 

3), findings which suggest that these word preferences are also subject to more effortful retrieval in 

simple production (Chapter 5), and demonstrated that keeping track of individuals’ tendencies is a 

necessary procedure in understanding how typical lexical selection works (Chapter 4). The observation 

and evaluation of idiolects is in line with the notion that speakers become better at retrieving words 

they have recently produced, which is compatible with theories of error-based learning in word 

production (Oppenheim et al., 2010). In empirical research, incremental vocabulary re-optimization 

has been used to explain findings in other word production tasks, as the effects of cumulative semantic 

interference in typical and atypical adults (Oppenheim et al., 2007; 2010, Oppenheim, Tainturier & 

Barr, 2016; Irons, Oppenheim & Fischer-Baum, 2017) and in novel word production (Oppenheim, 

2018). This theory can be easily extended to account for typical word selection, as well. If we imagine 

that each time an individual retrieves “couch” from their mental lexicon, the semantic-to-lexical 

mappings for the word “couch” are strengthened and the mappings for the unselected activated words 

(i.e., “sofa” and “settee”) are weakened, then this continuous relearning and unlearning of words can 

be the basis for the formulation of idiosyncrasies. Of course, this type of lexical learning also takes 
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into consideration the dispersity of available names given by other speakers in the same linguistic 

community, otherwise I would only observe “couch” speakers, “sofa” speakers, and “settee” speakers 

who would not be able to communicate their intents with one another. Perhaps this is resolved by the 

stochastic axiom of lexical selection, which keeps the “sofa” and “settee” options active within 

“couch” individuals and, thus, the variability of the linguistic population within the speaker. Although 

investigating lexical learning in the production system was beyond the scope of the current work, the 

observation of these idiosyncrasies is compatible with the dynamics of communicative everyday 

speech, because in the majority of cases speakers continuously reuse, and thus re-optimize, words 

within their vocabularies.   

 

6.4 Limitations and future directions 

Although the degree of consistency of the behavioral and electrophysiological data across the 

three empirical chapters, as well as their compatibility with the effects in the literature is encouraging, 

I would like to acknowledge a number of limitations and propose new research directions.  

A general limitation of the current research is that it was largely based on observations of 

between-item comparisons. Although between-item comparisons were the most optimal way to assess 

the effects of stimulus name agreement, it is also possible that increased variability in uncontrolled 

variables, such as lexical frequency, image agreement, and concept familiarity, could potentially 

obscure some observations. We aim to assess those effects and their interactions with picture name 

agreement in future research. In an attempt to evaluate the effects of picture name agreement in simple 

designs by speakers, I also used repeated naming in native speakers of British English, which by 

definition cannot directly generalize to the wider population. It is, thus, useful for future studies to 

replicate these effects in other populations of the same language and, ultimately, cross-linguistically. 

Some more specified areas for future research driven by the limitations and the scope of the current 

work are discussed below.  
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6.4.1 Secondary name agreement as a window into lexical co-activation  

Driven by the finding that speakers can develop stable word preferences even for non-dominant 

names (Chapter 3), I suggest that secondary responses in the population should be further investigated 

in both norming studies and in word production tasks that include name agreement as a measure of 

selection difficulty. For instance, it has been shown behaviorally that both dominant and secondary 

name agreement affect production latencies in the same fashion. Despite the widely replicated 

dominant RT effect (i.e., “dog” is faster to name than “couch”), it was additionally found that low 

name agreement pictures with strong alternative names are, at the same, time faster to name than low 

name agreement pictures with weak alternative names. For example, “couch” is faster to retrieve than 

“stroller”, even though “sofa” is a stronger response than “pram” in the population (Oppenheim, 2017). 

This finding poses a major threat to competition-based interpretations of name agreement, as it 

contradicts the assumption that increased co-activation should increase competition (Levelt et al., 

1999). I suggest that future research should investigate individual and population-level secondary 

name agreement, both behaviorally and with the use of more time-sensitive techniques, like ERPs, to 

understand where and how it affects target word retrieval. If stronger name agreement produces 

qualitatively similar effects to dominant name agreement, that is, the previously reported N200 (as 

reported in Chapter 2; Cheng et al., 2010; Shao et al., 2014) or N400 modulations (as reported in 

Chapter 4), then it is reasonable to assume that the target and competitor word have a common source 

of lexical conflict. By, therefore, measuring secondary naming preferences and separately evaluating 

them in relation to the production of the target word, future research can gain invaluable insight into 

the nature of co-activation and selection. 

 

6.4.2 How is stochastic selection different from consistency? 
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In the current work, I have been able to partially support the response pattern predicted by a 

Luce choice-inspired lexical selection by observing participants’ name switches in repeated naming 

(e.g., speakers initially selecting “couch” and then choosing “sofa” or vice versa; Chapter 3). The 

overall naming latency and ERP analyses across the empirical chapters were, however, performed in 

consistent responses (Chapter 5 & Chapter 4, Phase 1) or non-voluntary switching (Chapter 4; Phase 

3). This is because voluntary name switches had a relatively low distribution within the data (~15% of 

the experimental trials in both Chapters 3 & 5), reducing the power of analysis critically, especially in 

the case of ERPs, which are more sensitive to power loss (e.g., Boudewyn et al., 2018). I have, thus, 

not been able to report name agreement behavioral and ERP effects in voluntary “couch-sofa”  name 

switches in repeated naming and evaluate how these differ from “couch-couch” or “sofa-sofa” 

responses. 

 Because the chronometric and electrophysiological effects of stochastic responses are the 

centerpiece of the competition hypothesis, I suggest that future research should evaluate these effects 

in great detail, The naming latency and N200/N400 name agreement modulations reported here were 

observed for those trials in which the same response has reached the selection threshold twice, while, 

surprisingly their effects are still compatible with previous observations that did not control this name 

consistency (e.g., Alario et al., 2004; Shao et al., 2014). One area for future research would be to 

investigate whether “couch-sofa” would modulate ERPs and behavior in the same fashion that “couch-

couch” or “sofa-sofa” did and evaluate whether the cumulative semantic-to-lexical activation of words 

in former scenario, increases the effort in production (Levelt et al., 1999; Roelofs 2002; 2003). If, on 

the other hand, name consistency and stochastic selection ultimately produce similar effects, then this 

could be in line with system flexibility that Nozari and Hepner (2019) proposed. 

 

6.4.3 Less is more  
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A final scope for future research is to explore the temporal and spatial markers of word 

production processes in simple language production tasks, which I consider as a necessary approach 

to increase the replicability of effects and consequently the number of published studies in the field. 

This can ultimately elevate language production research to the same standards that we observe in 

other research fields, such as language comprehension. In the present study, I have aimed to understand 

how single word selection works by observing effects in simple tasks with minimal experimental 

manipulations, which is not the default practice in ERP and behavioral production studies. 

Nonetheless, robust effects were still observed, by additional securing that extreme experimental 

manipulations, such as the process of familiarization, were eliminated. Of course, re-engineering a 

system, by observing deviants of typical behavior such as speech errors or evaluating how it operates 

under extreme situations, as in “infrequent derailments”, is also useful in understanding the features 

and mechanisms that constitute it. But, since language production research ultimately aims to 

understand how humans communicate linguistic knowledge throughout their lives, future studies 

should incorporate experimental designs which observe effects in the simplest cases of language 

retrieval and develop theories that are both cognitively plausible and empirically verified by those 

examples. 

 

6.5 Conclusion 

Speakers generally select the appropriate word to denote their intents, according to both their 

idiosyncratic preferences and influenced by the words other speakers in their linguistic communities 

use. Here, I have shown that this linguistic variability in names indexes the co-activation of those 

entries in individuals’ systems, evident in speakers’ increased behavioral and neural effort, but not 

necessarily the systematic struggle to select the best word amongst numerous equally suitable 

alternatives. 
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Appendix A- Chapter 4 

 
Table A1. Stimuli used in this study, and their dominant and secondary name frequencies of use in our norms (Oppenheim, 

in prep) and Phase 1 free naming (i.e., before corrective feedback).  

  

  Dominant Name    Secondary Name  

IPNP  

Object ID  Name  

Freq. in 

norms  

Freq. in 

Phase 1  

  

Name  

Freq. in 

norms  

Freq. in 

Phase 1  

obj002acorn  acorn  0.79  0.82    nut  0.13  0.06  

obj004alligator  crocodile  0.86  0.18    alligator  0.12  0.82  

obj006ant  ant  0.84  0.82    bug  0.07  0.06  

obj007antlers  antlers  0.74  0.94    horns  0.20  0.06  

obj017baby  baby  0.98  0.88    child  0.02  0.06  

obj021badge  badge  0.46  0.06    medal  0.26  0.88  

obj031basket  basket  0.98  0.82    hamper  0.02  0.06  

obj037bed  bed  1.00  1.00    -  -  -  

obj038bee  bee  0.51  0.82    wasp  0.22  0.06  

obj041belt  belt  0.90  0.71    collar  0.05  0.12  

obj045bird  bird  0.93  0.88    sparrow  0.04   -   

obj047wood  wood  0.45  0.59    plank  0.33  0.35  

obj049bomb  bomb  0.97  1.00    dynamite  0.01   -   

obj051book  book  1.00  0.94    -  -  -  

obj056box  box  0.97  0.94    cardboard box  0.02  0.06  

obj059bra  bra  0.97  0.94    underwear  0.01   -   

obj060bread  bread  0.94  1.00    toast  0.02   -   

obj063broom  broom  0.50  0.65    brush  0.38  0.29  

obj067butterfly  butterfly  0.95  1.00    moth  0.04   -   

obj070cage  cage  0.95  0.82    cell  0.01  0.06  

obj074can  can  0.63  0.53    tin  0.32  0.35  

obj076cane  walking stick  0.43  0.47    cane  0.42  0.35  

obj078canoe  boat  0.46  0.71    canoe  0.46  0.29  

obj080hat  hat  0.51  0.24    cap  0.41  0.65  

obj081car  car  0.99  0.82    -  -   -  

obj082carousel  carousel  0.43  0.65    merry go round  0.43  0.06  

obj083carrot  carrot  0.99  0.88    turnip  0.01   -   

obj084tape  tape  0.58  0.47    cassette  0.28  0.35  

obj095church  church  0.96  1.00    house  0.02   -   

obj097city  city  0.48  0.41    town  0.33  0.41  

obj099clock  clock  0.96  0.94    time  0.03  0.06  

obj103coat  coat  0.64  0.76    jacket  0.28   -   

obj105pillar  pillar  0.49  0.53    column  0.21  0.29  

obj106comb  comb  0.96  0.76    brush  0.03  0.12  

obj107cookie  biscuit  0.58  0.53    oreo  0.26  0.18  

obj108cork  cork  0.62  0.35    can  0.05  0.06  

obj111cow  cow  0.97  0.71    goat  0.01  0.12  
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obj114crackers  crackers  0.62  0.71    biscuits  0.25  0.12  

obj115crib  cot  0.49  0.71    bed  0.37   -   

obj123desert  cactus  0.56  0.71    desert  0.41  0.24  

obj128dog  dog  1.00  1.00    -  -  -  

obj133dragon  dragon  0.99  0.94    dinosaur  0.01   -   

obj137drill  drill  0.59  0.65    screwdriver  0.13  0.12  

obj138drum  drum  1.00  1.00          

obj141eagle  eagle  0.49  0.35    bird  0.31  0.35  

obj153finger  finger  0.98  1.00    fingernail  0.01   -   

obj156firetruck  fire engine  0.51  0.53    firetruck  0.34  0.24  

obj157fish  fish  1.00  1.00          

obj162floor  floor  0.57  0.47    tiles  0.17  0.24  

obj163flower  flower  0.95  0.88    sunflower  0.01  0.06  

obj167football  rugby ball  0.45  0.53    football  0.25  0.24  

obj171frog  frog  0.95  0.94    toad  0.05  0.06  

obj173trash  rubbish  0.65  0.76    junk  0.10  0.06  

obj177ghost  ghost  1.00  0.94          

obj179girl  girl  0.84  0.65    child  0.08  0.06  

obj180glass  glass  0.67  0.53    cup  0.31  0.41  

obj182globe  globe  0.91  0.94    world  0.03  0.06  

obj184goat  goat  0.98  0.94    animal  0.01   -   

obj189gun  gun  0.93  0.82    revolver  0.06   -   

obj205highchair  highchair  0.61  0.65    chair  0.15  0.35  

obj211horse  horse  0.98  1.00    pony  0.02   -   

obj222puzzle  jigsaw  0.59  0.47    puzzle  0.36  0.47  

obj226king  king  0.98  0.94    crown  0.01   -   

obj228knife  knife  0.97  0.88    butterknife  0.02  0.12  

obj232ladle  ladle  0.61  0.65    spoon  0.31  0.18  

obj239leopard  leopard  0.55  0.35    cheetah  0.27  0.53  

obj241lettuce  lettuce  0.56  0.76    cabbage  0.35  0.18  

obj258mask  mask  1.00  0.82          

obj265priest  monk  0.52  0.24    priest  0.27  0.53  

obj272mountain  mountain  0.96  0.88    volcano  0.02  0.06  

obj277nail  nail  0.54  0.76    screw  0.36  0.24  

obj278neck  neck  0.67  0.53    chin  0.25  0.41  

obj279necklace  necklace  0.96  0.65    necklace of pearls  0.01   -   

obj280needle  needle  0.58  0.41    sewing needle  0.06  0.59  

obj281nest  nest  0.47  0.47    eggs  0.45  0.29  

obj291package  parcel  0.62  0.47    package  0.24  0.41  

obj292bucket  bucket  0.98  0.94    pail  0.01  0.06  

obj294paint  paint  0.43  0.71    palette  0.17  0.18  

obj304peach  peach  0.59  0.53    plum  0.12  0.12  

obj321pinecone  pine cone  0.53  0.65    acorn  0.21  0.12  

obj323pirate  pirate  0.95  0.94    captain  0.02   -   
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obj334porcupine  porcupine  0.53  0.53    animal  0.12   -   

obj335pot  pot  0.46  0.41    pan  0.22  0.18  

obj338priest  priest  0.59  0.71    vicar  0.29  0.12  

obj341pyramid  pyramid  0.99  0.94    temple  0.01   -   

obj342queen  queen  0.95  0.88    princess  0.01  0.06  

obj343rabbit  rabbit  0.96  0.94    bunny  0.02  0.06  

obj354gun  gun  0.73  0.82    rifle  0.20  0.06  

obj355ring  ring  1.00  1.00    -  -  -  

obj364rooster  chicken  0.64  0.65    cockerel  0.13   -   

obj367rug  rug  0.58  0.82    carpet  0.23  0.12  

obj375sandwich  sandwich  0.97  0.94    bread  0.03   -   

obj391boat  boat  0.50  0.76    ship  0.36  0.24  

obj393shoe  shoe  0.98  1.00    -  -   -  

obj394shoulder  shoulder  0.68  0.88    arm  0.28  0.12  

obj395shovel  spade  0.51  0.59    shovel  0.42  0.41  

obj399skeleton  skeleton  1.00  0.82    -  -  -  

obj403sled  sledge  0.54  0.35    sled  0.20  0.29  

obj405slingshot  slingshot  0.58  0.71    catapult  0.14  0.06  

obj407smoke  smoke  0.57  0.35    chimney  0.37  0.47  

obj409snake  snake  1.00  0.82    -  -  -  

obj412couch  sofa  0.75  0.47    couch  0.12  0.35  

obj414spaghetti  spaghetti  0.92  0.76    pasta  0.04  0.18  

obj415spatula  spatula  0.41  0.18    shovel  0.22  0.53  

obj416spider  spider  0.99  0.94    spider web  0.01   -   

obj418spoon  spoon  1.00  0.94    -  -  -  

obj424stocking  tights  0.64  0.53    stocking  0.23   -   

obj426stove  oven  0.43  0.12    cooker  0.34  0.71  

obj428stroller  pram  0.62  0.71    pushchair  0.20  0.06  

obj433sweater  jumper  0.87  0.12    sweater  0.05  0.76  

obj435sword  sword  0.97  0.88    sabre  0.02  0.06  

obj437table  table  0.99  1.00    desk  0.01   -   

obj442tear  tear  0.64  0.53    crying  0.28  0.35  

obj443teepee  tent  0.60  0.65    teepee  0.30  0.18  

obj449tent  tent  1.00  0.88    -  -  -  

obj452thumb  thumb  0.97  0.82    fingernail  0.01  0.06  

obj458toilet  toilet  0.99  0.88    -  -   -  

obj459tomato  tomato  0.96  0.82    apple  0.03   -   

obj467train  train  0.96  0.94    lorry  0.02   -   

obj469tree  tree  1.00  0.94    -  -  -  

obj470tripod  tripod  0.53  0.71    stand  0.15   -   

obj471trophy  trophy  0.58  0.53    cup  0.32  0.35  

obj472truck  truck  0.59  0.41    lorry  0.37  0.53  

obj473trumpet  trumpet  0.94  0.82    trombone  0.02  0.06  

obj474chest  chest  0.50  0.41    box  0.31  0.35  
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obj476turtle  turtle  0.54  0.53    tortoise  0.46  0.41  

obj477tweezers  tweezers  0.87  0.82    clippers  0.03   -   

obj482vacuum  hoover  0.75  0.59    vacuum  0.18  0.29  

obj484vest  waistcoat  0.63  0.65    vest  0.19  0.29  

obj485violin  violin  0.91  1.00    guitar  0.06   -   

obj486volcano  volcano  0.97  0.94    volcano eruption  0.02  0.06  

obj496watch  watch  0.99  0.94    -  -   -  

obj504wheelbarrow  wheelbarrow  0.95  1.00    wagon  0.01   -   

obj508wig  wig  0.76  0.82    hair  0.22  0.18  

obj512wing  wing  0.93  0.94    feathers  0.02  0.06  

obj517wrench  spanner  0.53  0.71    wrench  0.19  0.06  
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Appendix B-Chapter 4 

Results from the linear mixed effects regressions of ex-Gaussian components, estimated for each 

subject in each condition, including by-subject random intercepts. For the purpose of these analyses, 

the Name Agreement predictor was coded as a centered binomial contrast, but to match the main RT 

analyses the levels of the Name Agreement are set at their condition means {high=.96, low=.56}.  

  
Table B1. LMM analyses for the ex-Gaussian  (mu) component, from the naming latency data.  

  

Both Phases          

  β  SE  t  p  

Intercept  801.73  17.21  46.58  <.001  

Phase  46.51  17.24  2.70  .008  

Name Agreement  -101.28  43.72  -2.32  .021  

Name Change  38.98  17.24  2.26  .024  

Phase*Name Agreement  368.56  87.43  4.22  <.001  

Phase*Name Change  129.64  34.47  3.76  <.001  

Name Agreement*Name Change  69.30  87.43  0.79  .43  

Phase*Name Agreement* Name Change  88.31  174.86  0.51  .61  

          

Phase 1 only          

  β  SE  t  p  

Intercept  778.48  23.76  32.77  <.001  

Name Agreement  -285.56  52.83  -5.41  <.001  

Name Change  -25.84  20.83  -1.24  .22  

Name Agreement* Name Change  25.15  105.66  0.24  .81  

          

Phase 3 only          

  β  SE  t  p  

Intercept  824.98  19.97  41.32  <.001  

Name Agreement  83.00  54.30  1.53  .13  

Name Change  103.79  21.41  4.85  <.001  

Name Agreement* Name Change  113.45  108.59  1.04  .30  

  

Table B2. LMM analyses for the ex-Gaussian  (sigma) component, from the naming latency data.  

  

Both Phases          

  β  SE  t  p  

Intercept  124.02  7.37  16.83  <.001  

Phase  -11.36  9.71  -1.17  .24  

Name Agreement  -113.07  24.62  -4.59  <.001  

Name Change  5.16  9.71  0.53  .60  

Phase*Name Agreement  155.11  49.24  3.15  .002  

Phase*Name Change  60.51  19.41  3.12  .002  

Name Agreement*Name Change  111.95  49.24  2.27  .025  

Phase*Name Agreement* Name Change  109.48  98.48  1.11  .27  

          

Phase 1 only          

  β  SE  t  p  

Intercept  129.70  10.00  12.97  <.001  

Name Agreement  -190.62  34.09  -5.59  <.001  

Name Change  -25.10  13.44  -1.87  .068  

Name Agreement* Name Change  57.21  68.17  0.84  .41  

          

Phase 3 only          

  β  SE  t  p  

Intercept  118.34  9.94  11.91  <.001  
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Name Agreement  -35.51  29.88  -1.19  .23  

Name Change  35.41  11.78  3.01  .004  

Name Agreement* Name Change  166.69  59.77  2.79  .008  

  

Table B3. LMM analyses for the ex-Gaussian (tau) component, from the naming latency data.  

  

Both Phases          

  β  SE  t  p  

Intercept  223.35  11.19  19.96  <.001  

Phase  -9.94  14.25  -0.70  .49  

Name Agreement  -206.59  36.14  -5.72  <.001  

Name Change  32.60  14.25  2.29  .024  

Phase*Name Agreement  9.72  72.27  0.13  .89  

Phase*Name Change  24.05  28.49  0.84  .40  

Name Agreement*Name Change  46.78  72.27  0.65  .52  

Phase*Name Agreement* Name Change  -13.97  144.54  -0.10  .92  

          

Phase 1 only          

  β  SE  t  p  

Intercept  228.32  12.75  17.90  <.001  

Name Agreement  -211.45  51.80  -4.08  <.001  

Name Change  20.57  20.42  1.01  .32  

Name Agreement* Name Change  53.77  103.60  0.52  .61  

          

Phase 3 only          

  β  SE  t  p  

Intercept  218.38  14.59  14.97  <.001  

Name Agreement  -201.73  48.35  -4.17  <.001  

Name Change  44.63  19.06  2.34  .023  

Name Agreement* Name Change  39.80  96.70  0.41  .68  
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Appendix C-Chapter 4 

Results from the linear mixed effects regressions of ERP amplitudes, estimated for each subject in 

each condition, including by-subject random slopes and intercepts, and by-electrode random 

intercepts. The Name Agreement predictor was coded as a centered binomial contrast {High, Low}, 

as was the Name Change predictor {No Change, Change}.  

  
Table C1. LMM analyses for the N200 window.  

  

Both Phases          

  β  SE  t  p  

(Intercept)  -0.65  0.64  -1.01  .33  

Phase  1.07  0.32  3.36  .004  

NameAgreement  0.48  0.18  2.65  .018  

Phase x NameAgreement  -0.20  0.34  -0.59  .56  

          

Phase 1 only          

  β  SE  t  p  

(Intercept)  -1.36  0.67  -2.02  .058  

NameAgreement  0.61  0.23  2.68  .016  

          

Phase 3 only          

  β  SE  t  p  

(Intercept)  -0.29  0.65  -0.44  .66  

NameChange  -0.44  0.22  -2.02  .061  

NameAgreement  0.41  0.25  1.65  .12  

NameChange x NameAgreement  -0.30  0.54  -0.56  .58  

  

Table C2. LMM analyses for the N400 window.  

  

Both Phases          

  β  SE  t  p  

(Intercept)  -0.79  0.55  -1.42  .17  

Phase  0.66  0.33  2.02  .06  

NameAgreement  0.67  0.18  3.67  .002  

Phase x NameAgreement  -0.39  0.29  -1.38  .17  

          

Phase 1 only          

  β  SE  t  p  

(Intercept)  -1.23  0.58  -2.11  .049  

NameAgreement  0.94  0.20  4.63  <.001  

          

Phase 3 only          

  β  SE  t  p  

(Intercept)  -0.56  0.56  -1.00  .33  

NameChange  -0.02  0.27  -0.08  .93  

NameAgreement  0.54  0.24  2.31  .035  

NameChange x NameAgreement  0.54  0.39  1.37  .19  

 

Table C3. LMM analyses for the late anterior positive modulation.  

  

Phase 3 only          

  β  SE  t  p  

(Intercept)  0.78  0.46  1.71  0.1  

NameChange  1.01  0.41  2.44  0.027  

  

 



  Appendices 

  

 168 

 

Appendix D-Chapter 5 

 

Including Lexical Frequency as a predictor of naming latency analysis and ERP analysis  

 

1. Naming Latencies 

 

Lexical frequency values were obtained from the SUBTLEX-UK database (Van Heuven, 

Mandera, Keuleers, & Brysbaert, 2014). The mixed effects model predicted naming latencies as a 

function of (1) Session (an ordinal measure from 1:2, centered), (2) dominant name agreement from 

Oppenheim’s (in prep) recent Bangor norming study (a continuous measure from 0:1, centered), (3) 

secondary name agreement from Oppenheim’s (in prep.) recent Bangor norming study (a continuous 

measure from 0:.48, centered) and (4) lexical frequency from SUBLTEX, UK (Zipf7 values from 

0:6.56, centered). 

 

Table 2. Summary of LMM analyses of inverse-transformed naming latencies.  

Both Sessions 

 β SE t p 

Intercept -9.996 .253 -39.470 <.001*** 

Session -.278 .118 -2.347 <.001*** 

Dominant Name Agreement -7.827 .418 -18.691 <.001*** 

Secondary Name Agreement -5.884 .634 -9.271 <.001*** 

Lexical Frequency -.239 .047 -5.104 <.001*** 

Session*Dominant Name Agreement 1.298 .323 4.017 .010 

Session*Secondary Name Agreement 1.904 .483     3.942 <.001*** 

Session*Lexical Frequency .138 .029 4.620 <.001*** 

Dominant Name Agreement*Lexical Frequency -1.165 .242 -4.810 <.001*** 

Secondary Name Agreement*Lexical Frequency -.607 .422 -1.439 <.001*** 

Session*Dominant Name Agreement*Lexical Frequency .482 .209 2.303 .142 

Session*Secondary Name Agreement*Lexical Frequency .566 .319 1.773 .074 

 

 

Session 1 only          

  β  SE  t  p  

Intercept  -9.871  .240  -41.113  <.001**  

Dominant Name Agreement  -8.674  .478  -18.126 <.001***  

Secondary Name Agreement  -7.066 .717  -9.848 .009** 

Lexical Frequency -0.309  .054  -5.674 <.001*** 

Dominant Name Agreement*Lexical Frequency -1.477 .285 -.5.175 <.001 

Secondary Name Agreement*Lexical Frequency -.991 .482 -.2.073 <.001 

     

  
Session 2 only          

 
7 The Zipf scale (Van Heuven, Mandera, Keuleers, & Brysbaert, 2014) is a standardized measure of lexical frequency. A 

Zipf value of 1 corresponds to words with frequencies of 1 per 100 million words, a Zipf value of 2 corresponds to words 

with frequencies of 1 per 10 million words, and so on. For example, the word “dog” which is considered a highly 

frequent word in British English has a Zipf value of 5.17, while a less frequent word, such as “eskimo” has a Zipf value 

of 2.84. 
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  β  SE  t  p  

Intercept  -10.11  .278 -36.311  <.001**  

Dominant Name Agreement  -7.438  .431 -17.233 <.001***  

Secondary Name Agreement  -5.258  .642  -8.183  .001**  

Lexical Frequency 1.164  .043  -3.741  <.001**  

Dominant Name Agreement*Lexical Frequency -.979 .244 -4.009 <.001**  

Secondary Name Agreement*Lexical Frequency -.397 .426 -.938 .024* 

     

 

2. ERPS 

 

In LIMO analysis, I used Lexical Frequency as a continuous predictor and Session as a 

categorical predictor for the analyses. The interaction between Lexical Frequency and Session were 

investigated using two repeated measures ANOVAs, with Frequency and Session as repeated measures 

for each analysis. 

 

Lexical Frequency 

The main effect of Lexical Frequency was also examined using a one-sample t test. However, 

the main effect of Lexical Frequency did not reach statistical significance (p > .01), when I corrected 

for multiple comparisons.  

 

Session * Lexical Frequency Interaction 

An interaction between Lexical Frequency and Session, also failed to provide a significant 

result (p > .01), once corrected for multiple comparisons (p >.01).  

 

Post-hoc t tests on Lexical Frequency 

In an exploratory analysis and even though the main effect of Lexical Frequency did not reach 

statistical significance, the one sample t-tests in the two sessions revealed that in the first Session the 

effect of Lexical Frequency on ERPs was not statistically significant, but in the second Session the 

effect reached statistical significance (see Figure 1) (p < .01). Lexical frequency modulated ERP 

amplitudes as early as 100 ms post picture onset at parietal and occipital electrodes (P1), continuing at 

200ms with the same topographic distribution (P2) and further modulating the ERP signal from 250-

420 onwards and 500-600 ms post-stimulus onset. Notably, the effects of dominant name agreement 

with lexical frequency have a slight temporal and spatial overlap, however, their polarity (see t value 

in Figures 2b Chapter 5, 1b & 2b here) is reverse, with effects of Lexical Frequency arising at frontal 

and fronto-central areas of the scalp in the right hemisphere and lexical frequency affecting parietal 

and occipital areas mostly in the left scalp.  
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Figure1.(a) Grand-average ERP waveforms elicited high and low frequency pictures in the second naming session. ERPs 

were computed for a visual illustration, based on a mean split on the dataset, resulting in 245 items of low lexical 

frequency (MeanFreq < 4.11) and 280 items of high lexical frequency (MeanFreq > 4.11). (b) Results of the robust one 

sample t-test (representation of significant t-values) for lexical frequency after correction for multiple comparisons at all 

electrodes and timepoints; with the colors representing electrodes with higher (red) and lower (blue) amplitudes for trials 

with lexical frequency; each line is an electrode.
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