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1. Introduction
This article discusses the Integrated, Coordinated, Open, Networked (ICON) principles in hydrology with respect 
to: field, experimental, remote sensing, and real-time data research and application (Section 2); Machine learn-
ing (ML) for multiscale hydrological modeling (Section  3); and Inclusive, equitable, and accessible science: 
Involvement, challenges, and support of early career, marginalized racial groups, women, Lesbian, gay, bisexual, 
transgender and queer or questioning (LGBTQ+), and/or disabled researchers (Section 4); The choice of the 

Abstract Hydrologic sciences depend on data monitoring, analyses, and simulations of hydrologic 
processes to ensure safe, sufficient, and equal water distribution. These hydrologic data come from but are not 
limited to primary (lab, plot, and field experiments) and secondary sources (remote sensing, UAVs, hydrologic 
models) that typically follow FAIR Principles (Findable, Accessible, Interoperable, and Reusable: (go-fair.
org)). Easy availability of FAIR data has become possible because the hydrology-oriented organizations 
have pushed the community to increase coordination of the protocols for generating data and sharing model 
platforms. In addition, networking at all levels has emerged with an invigorated effort to activate community 
science efforts that complement conventional data collection methods. However, it has become difficult to 
decipher various complex hydrologic processes with increasing data. Machine learning, a branch of artificial 
intelligence, provide more accurate and faster alternatives to better understand different hydrological processes. 
The Integrated, Coordinated, Open, Networked (ICON) framework provides a pathway for water users to 
include and respect diversity, equity, and inclusivity. In addition, ICONs support the integration of peoples 
with historically marginalized identities into this professional discipline of water sciences. This article 
comprises three independent commentaries about the state of ICON principles in hydrology and discusses the 
opportunities and challenges of adopting them.

Plain Language Summary The Integrated, Coordinated, Open, Networked (ICON) perspective in 
the discipline of hydrological sciences helps integrate remote sensing, numerical modeling, data science, and 
different digital concepts, including machine learning to understand simple to complex hydrological processes 
at diverse temporal and spatial scales. Other benefits of incorporating the ICON framework include but are 
not limited to open, shareable, and easy to interpret, accurate, and timely generated monitored/observed or/
and simulated water sciences information. Moreover, participation of the community and stakeholders help 
establish a network where research, education, and collaboration become easy and accessible. Besides, the 
ICON framework promotes innovation, equality, diversity, inclusion, and open access research in the discipline 
of hydrology that involves and supports early career, marginalized racial groups, women, lesbian, gay, bisexual, 
transgender and queer or questioning (LGBTQ+), and/or disabled researchers.
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three sections is based on a collection of commentaries spanning geoscience on the state and future of Integrated, 
Coordinated, Open, Networked (ICON) science (Goldman, Emani, Pérez-Angel, Rodríguez-Ramos, Stegen, and 
Fox, 2021, Goldman, Emani, Pérez-Angel, Rodríguez-Ramos, and Stegen, 2021).

2. Field, Experimental Remote Sensing, and Real-Time Data Research and 
Application 2021
Environmental observatory platforms such as the National Ecological Observatory Network (NEON), Long Term 
Ecological or Agricultural Research programs, Critical Zone Research Cluster Network, Science Focus Areas, 
and their international counterparts (iLTER, OZCAR, TERENO) in places such as Europe and China offer a 
coordinated (C) effort to measure most of the components of the water cycle and their response to changes in 
climate and the carbon cycles over time (Weintraub et al., 2019) at the watershed scale. Individually these sites 
offer local understanding, but when integrated (I), their power increases understanding of the hydrologic response 
to variability (Wlostowski et al., 2021) at regional and continental scales and, thus, aid our process-based under-
standing that is represented in hydrologic models (Baatz et al., 2018).

The data collected by these observatories include primary quantitative analysis from laboratory experiments, 
plot-scale, and field-sites monitoring, or secondary simulated outputs from watershed modeling. Once generated, 
these data are shared openly (O) due to funding agencies, publishers, and the public pushing for discoverable 
data. CUASHI's HydroShare is one example of an integrative platform where hydrology data, models, and code 
are shared.

Data sharing is critical (e.g., Li et al., 2021) and requires integrated (I), coordinated (C), open (O), and networked 
(N) efforts. With Integrated, Coordinated, Open, Networked (ICON)-driven hydrology studies, the field and 
lab-based measurements can be generated in real-time and help robustly parameterize models. One such exam-
ple is the evolution of mobile or field-based labs (e.g., River Lab; Floury et al., 2017); no longer confined to 
university infrastructure and thus laboratory data can now be generated in the field using instruments that employ 
colorimetry, chromatography, and spectroscopy techniques to provide high temporal resolution measurements of 
agrochemicals such as cations, anions, heavy metals, and nutrient concentrations allowing for rapid assessment 
of hydrological processes. Other examples include developing and applying sensors that can monitor biogeo-
chemical conditions (e.g., nitrate, phosphate, carbon dioxide concentrations), which has increased our power 
to understand real-time hydrologic data from plots and watershed scales. The recent progress in Unmanned 
Aerial Systems (UASs), also called drones, has shown that Unmanned Aerial Systems (UASs) are an effective 
tool to monitor real-time hydrological processes at a much bigger scale and finer resolution and facilitate water 
resources planning and management. Unmanned Aerial Systems (UASs) are a rapid and cost-effective technique 
to characterize, monitor, and model hydrological processes better than satellite-based remote sensing and in-situ 
measurements. The combination of sensor, lab, and remotely sensed data provide the coordinated platform for 
the watershed models simulations and generated secondary hydrologic data. However, uncertainty and bias must 
be accounted for in modeling outputs.

Besides primary and secondary data sources in hydrology, community science can complement traditional 
scientific data collection methods. Actively engaging communities with scientists not only empowers communi-
ties and their voice but establishes a network where research, education, and collaboration result in continuous 
developments in technology, data processing, and communication (Allen & Berghuijs, 2018; Chew et al., 2019; 
Maheshwari et al., 2014). Networking communities with experts are crucial, and open data is necessary, espe-
cially when sustainable water management and resources require effective and efficient hydrological monitoring 
(Buytaert et al., 2014; Njue et al., 2019) and input from stakeholders, leaders, and scientists.

Community science fills the gap between scientists and the public, facilitating data flow and knowledge, yet 
there are barriers to realizing ICON principles. By combining mobile applications and inexpensive equipment, 
communities are equipped to document and collect data (Allen & Berghuijs, 2018; Buytaert et al., 2014; Chew 
et al., 2019; Njue et al., 2019). These tools face funding and policy barriers. Examples of hydrology-oriented 
community science initiatives include American Geophysical Union (AGU) Thriving Earth Exchange and Crowd 
Hydrology. These examples are coordinated using similar structure models, where communities develop and 
drive projects. Through American Geophysical Union (AGU) Thriving Earth Exchange, communities are inte-
grated with scientists to form a network to build and complete a research project designed by the community. 
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Crowd Hydrology is community-led and driven, where they choose to monitor a particular water system and 
report data through the Crowd Hydrology website, resulting in a network of valid open data.

With public solicitation of water quality data to be incorporated in these reports, communities have the advan-
tage of monitoring their local water system. The limitation is the requirement to follow standards or universal 
methods (Buytaert et  al., 2014; Njue et  al., 2019). Other limitations include limited communication between 
scientists, political leaders, and communities (Allen & Berghuijs, 2018; Njue et al., 2019), given that community 
science emerges at the center of political activism and volunteering. There are also differences in motivation, 
with community involvement driven by hobbies, environmental concerns, curiosity, and/or livelihoods (Buytaert 
et al., 2014; Maheshwari et al., 2014; Njue et al., 2019). However, increasing opportunities for communities to 
be active participants in water studies acts as motivation, builds trust between scientists and policymakers, and 
expands data availability to hydrologists to incorporate in other research projects (Buytaert et al., 2014; Njue 
et al., 2019).

In conclusion, either primary or secondary, hydrologic data is required to unveil the hydrologic processes and 
promote water resources management. Indeed, their availability is increasing due to open, FAIR, and shared 
science principles (Cudennec et al., 2020). This has proven to be a boom for data-scarce regions like Kenya, 
Ghana, Uganda, and others (Oyebande, 2001). With increased interdisciplinary research programs and worldwide 
collaborative networks, different organizations across the globe are working together to collect, evaluate, and 
share the data via open-source cloud networking. Such actions will help study the impact of natural and anthropo-
genic factors, including climate change, floods, droughts, sea-level rise, saltwater intrusion, and dam construction 
and decommissioning. The gained data are essential to put in mitigation measures or help pre-preparedness to 
counteract any extreme climatic events and their impact on the community.

3. An ICON Perspective on Machine Learning for Multiscale Hydrological Modeling
Machine learning (ML) is a branch of artificial intelligence that identifies patterns and generates predictions 
without explicit programming (Yao & Liu,  2014). In hydrology, machine learning (ML) models have been 
used in rainfall-runoff modeling (Adnan et al., 2021; Chang & Chen, 2018), streamflow forecasting (Boucher 
et al., 2020), water quality assessment (Bui et al., 2020), flood forecasting (Mosavi et al., 2018), and soil moisture 
estimations (Ahmad et al., 2010; Senanayake et al., 2021). Here, we highlight the characteristics of ML models 
that make them well-suited for incorporating ICON principles.

ML typically requires large input datasets to train a model accurately (i.e., derive a surrogate model from 
input data). Many ML models leverage data from large, existing, open-access datasets such as the United 
States Geological Survey (USGS), National Water Information System (NWIS), the International Soil Mois-
ture Network (ISMN), the Catchment Attributes and Meteorological Large sample Studies (CAMELS), and the 
National Ecological Observatory Network (NEON). The ability to incorporate data from multiple sources, that 
is, “network of networks,” can significantly improve the accuracy of ML models, allowing them to be applica-
ble across a broader range of applications. Despite the rapid advancement of ML modeling in hydrology, some 
challenges persist. First, open-source datasets and observations in hydrology are often regionally and temporally 
imbalanced, hindering multiscale integration in hydrological research (Mehan et al., 2019; Shen et al., 2018). For 
instance, while river discharge observations are relatively dense in most of the United States and Europe, such 
data are sparse in many other parts of the world, especially in Africa and Latin America (e.g., Global Runoff Data 
Centre, GDRC - BfG - The GRDC (bafg.de)). Second, as hydrologic ML models represent different processes 
at different scales, they require the design of protocols for data and model sharing networks to provide universal 
accessibility without violating intellectual property rights and regulations.

Besides the hydrological observation data, other observation systems, such as FLUXNet (Jung et al., 2019; Near-
ing et al., 2018) and earth observation data generated by NASA (Kwon et al., 2019), provide integrated, coordi-
nated, open, and networkable observations that can also be useful in hydrologic machine learning models, albeit 
with reduced spatial and temporal resolution (Nearing et al., 2021).

Furthermore, cloud-based technologies have enhanced ML capabilities, with an easier way to share large data-
sets at remote sites for live ML applications (Mudunuru et al., 2021; Vesselinov et al., 2019). The advantage is 
easy access to cloud-based storage and computing services (Ahmad & Khan, 2015; Diaby & Rad, 2017; Haris 
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& Khan, 2018) for the public sharing of data and code resources and improves science in a coordinated and 
networked manner.

To further strengthen the incorporation of ICON principles in ML, a potential action would be to coordinate (C) 
an earth digital twin consortium with the ultimate mission of developing an integrated (I) virtual representation 
of the earth system through interconnected models and open (O) data-model communication protocols. Such a 
consortium could be established within the American Geophysical Union (AGU) network (N) and managed simi-
larly to an existing digital twin consortium for aerospace and natural resources (www.digitaltwinconsortium.org).

4. Inclusive, Equitable, and Accessible Science: Involvement, Challenges, and Support 
of Early Career, Marginalized Racial Groups, Women, LGBTQ+, and/or Disabled 
Researchers
This section briefly discusses challenges and opportunities within the ICON framework to advance hydrology 
justice, equity, diversity, and inclusion principles. The perspectives shared here are gleaned from our experiences 
and interactions with marginalized communities and do not intend to be comprehensive and may not suit every 
community and their unique needs.

Water is critical to communities' ecological and social well-being outside of “hydrologists.” We cannot serve 
equity or inclusivity without diversity. We must foster inclusion and justice in terms of outreach and integrating 
peoples with historically marginalized identities into this professional discipline and respect and support water 
users' local environmental knowledge.

A lack of diversity within hydrologic sciences and engineering has (a) led to serving communities inequitably 
and ignoring historical injustices. For example, environmental justice in pollution (Hajat et  al.,  2015; Robi-
son et al., 2018), disproportionate climate change/severe weather impacts to low-income minority communities 
(Adeola & Picou, 2017; Parvin et al., 2016), sexism in water resource management (CDC, 2021; UNICEF, 2016) 
and global south weather forecasts are underserved due to models being focused on Europe/United States, as 
well as a lack of ground data (Vaughan et al., 2019; World Bank, 2016). Moreover, (b) it leads to less innovation 
in science (Phillips, 2014; “Science benefits from diversity,” 2018). Increasing inclusiveness, equitability, and 
accessible science in hydrology will improve both scenarios. While increasing innovation in science is essential, 
impacting underserved communities is imperative and will radically change human health and well-being across 
the globe.

Over the past several years, the development of committees and reading lists in our field has become a typical 
first step to address inclusiveness, equitability, and accessible science (Byrnes et  al.,  2020; Garousi-Nejd & 
Byrnes, 2020). This step, while meaningful, is not enough: actionable steps must be taken, and culture must 
change throughout our hydrological community before policy changes can be effective.

4.1. Community-Led Science and Environmental Justice Practices

It is essential to build equitable social networks (N) and meaningfully engage marginalized communities (includ-
ing but not limited to interrelated dimensions of race, ethnicity, gender, gender expression, disability, sexual-
ity, nationality, and class) along with government agencies, industry, academia, and citizens (Kirkness & Barn-
hardt, 2001). These groups need to coordinate (C) and build mutual trust to develop innovative approaches to 
responding to the ICON framework's hydrological issues.

Open (O) data policy must, along with supporting data infrastructures, more comprehensively and consistently 
address the gaps in justice, equity, diversity, and inclusion principles regarding how information and knowl-
edge are distributed and acknowledged. For example, programs and strategies to decolonize science such as the 
Global Water Futures Program and indigenous community water research bring together researchers across all 
levels to enhance coordination and broaden impacts with the intent to accelerate a positive paradigm culture 
shift (GWF, 2018). Indigenous peoples must be responsibly engaged in the scientific processes at all stages, 
which includes ownership of data and knowledge and having a say in how/when it gets shared (Cohen & Living-
stone,  2020; Gardiner et  al.,  2011; Goucher et  al.,  2021; Lovett et  al.,  2019; Wong et  al.,  2020; Woodbury 
et  al.,  2019). Policies such as Ownership, Control, Access, and Possession, Collective Benefit, Authority to 
Control, Responsibility, and Ethics and Findability, Accessibility, Interoperability, and Reuse principles can help 

http://www.digitaltwinconsortium.org/
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hydrologists ethically develop protocols relating to the collection, use, and sharing of community data (Carroll 
et al., 2020; Maheshwari et al., 2014; Mecredy et al., 2018; Wilkinson et al., 2016).

4.2. Inclusive Workplaces

In addition to hydrologists developing more just practices when engaging with community scientists and non-sci-
entists, we must thoroughly self-evaluate our daily practices and structures to attain inclusiveness, equitability, 
and accessible science and ICON goals more effectively. Herein, we share ideas for transferrable best practices 
through several stages of hydrologist training.

Broad outreach in primary and secondary education (a) must be done to spur interest from diverse future hydrol-
ogists and (b) must emphasize at the beginning of interaction that these are professional careers with a vital 
component of service and societal relevance.

We must prioritize how water and the study of water relates to and integrates (I) with other disciplines and 
connects with society. Hydrologists can learn from and work collaboratively with people from different disci-
plines and walks of life to understand water and hydrologic systems more holistically. We must create a work-
place culture with ingrained inclusiveness, equitability, and accessible science values. Identity (e.g., race, gender, 
sexual orientation), work distribution (Domingo et al., 2020; Liu et al., 2019), and field safety must be critically 
viewed to accommodate needs and combat stereotypes (Demery & Pipkin, 2021; Viglione, 2020). Hydrologists 
should institute iterative action plans and policies based on more generalized recommendations (Ali et al., 2021; 
Chaudhary & Berhe, 2020). Leadership training and opportunities for career growth must be equitably distributed, 
considering historical biases that have permeated the disciplines (Leverage, 2017). We should aim for diverse and 
equitable representation at all levels to achieve the goal of justly serving our water-using communities.

Networked (N) hydrologic science must have justice, service, inclusiveness, equitability, accessible science, and 
social context, woven clearly and continuously throughout. Hydrologists must ask the following four questions 
in every step of the scientific process and contextualize these with follow-up questions to ensure that they are 
answered with transparent and actionable inclusiveness, equitability, and accessible science processes.

1.  “Who is doing the hydrology?”
 How will marginalized communities be involved? Will they have the same “power and privileges” as non-mar-
ginalized communities? Who will own the scholarly outputs (e.g., data, grant proposals)?

2.  “Who uses the water?”
 If marginalized communities are main water users, will they (or their communities) sustain or use the hydrol-
ogy knowledge research/work effectively (e.g., beyond the end of a project)?”

3.  “Who benefits from this activity?”
 Will marginalized communities get appropriate and meaningful attribution for their contribution? Will 
resources and infrastructure be available/sustained to marginalized communities after a project ends?

4.  “Why?”

 What is the purpose of this work, and how will marginalized communities benefit and be supported?

Data Availability Statement
This article is not based on any quantitative data but all the information and facts used to prepare the article are 
cited as per reference guidelines.
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