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Abstract: The linear relationship of the original gray model does not consider the time lag effect 

of the current input parameters on the output parameters. In order to solve the problem, this paper 

takes an interval gray number sequence as the modeling sequence of the model. The nonlinear 

parameter γ and the time lag parameter τ are introduced into the variable gray prediction color 

model, and a nonlinear time lag multi-variable gray prediction model (MGM(1,m|τ, γ)) for 

interval gray numbers is constructed. In view of the uncertain characteristics of the smog index 

data, this paper applies the improved model to the simulation and prediction of the smog index 

data. Compared with the original model, the results show that the prediction effect of the model 

proposed in this paper is superior to the original model in terms of its effectiveness and feasibility. 
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1 Introduction 

Smog comes from a large amount of fine particulate emissions, calm weather and other 

factors. They have an adverse effect on the ecological environment and human physical and 

mental health in the world [1-2]. Many scholars have carried out relevant research on smog. 

Scholars usually use sampling analysis, factor analysis, regression analysis and other methods to 

predict the content of PM10 and PM2.5 related to smog in the air, and then combine meteorological 

elements to analyze and predict smog [3-6]. 
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These studies have made a certain contribution to the prediction of smog. However, these 

studies have not considered the uncertainty and hysteresis of the smog index data, and their 

prediction still has low accuracy. In view of uncertainty, hysteresis and non-linearity of the 

indicator data, the non-linear time-lag multi-variable gray forecasting model proposed in this 

paper can simulate and predict it more accurately. 

The gray prediction model has been applied in many fields such as economy, production, and 

life. The gray prediction model theory has found the internal development law of the system by 

means of differential equations [7-11]. Among them, the GM (1, n) model can simulate data well. 

Many scholars have conducted in-depth research and improvement on the traditional model GM 

(1, n) model. These studies have demonstrated significant impacts in the related fields [12-14]. 

Among many research results of these scholars, the GM (1, m) model converts the "single 

variable model" to "multiple associated variable models". Relevant scholars have proposed 

MGM(1,m) model and verified that it can solve the issue of gray dynamic systems modeling with 

multiple interrelated factors [15]. The GM (1, m) is characterized by extending the gray prediction 

model that is only applicable to a single point to multi-point prediction. It has a wider range of 

applications. Other scholars have also confirmed through a sequence of examples that the 

accuracy of the GM (1, m) model is higher than that of the GM(1,1) alone [16]. Due to the high 

accuracy of the simulation and prediction of the GM (1, m), it has a wide range of applications and 

many scholars have performed further studies and improvements on their characteristics and 

optimization of background values [17-20]. These studies have driven the development of the 

traditional MGM(1,m), and laid a solid foundation for further innovation and improvement of the 

model. This paper will also study and improve the model. 

Because the simulation and prediction of the smog index data sequence is the main content of 

the smog prediction, it is of great significance to the prevention and control of the smog. This 

paper will combine the characteristics of the smog index data sequence to improve the model. The 

process of forecasting the smog index data needs to consider three problems. Firstly, in actual 

application, the smog data and related prediction systems have a time lag. Secondly, the indicator 

data is nonlinear. Thirdly, the original model is suitable for ordinary real numbers. However, in 

many cases, the smog data involves gray numbers with uncertainty rather than simple real 

numbers. 

In summary, this paper will make the following improvements to the original MGM(1,m): 

for the time lag issue of the indicator data, this paper introduces the time lag parameter τ; for the 

original model with linear function relationship, this paper introduces the nonlinear parameter γ. 

With respect to the uncertainty, this paper will build a model based on interval gray numbers, so 

that the model can be applied to simulate and predict such uncertain data more efficiently. As a 
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result, this paper constitutes a new model for interval gray numbers:  a non-linear time lag 

multi-variable gray prediction model MGM(1,m|τ, γ). Subsequently, this paper applies the new 

model to the simulation and prediction of the smog indicator AQI and PM2.5, and compares its 

results with the original model to verify the simulation and prediction accuracy of the new model. 

 

2 Basic concepts of interval gray numbers 

Definition 1 [7] The gray number with both lower bound 𝑎𝑘and upper bound 𝑏𝑘 is called the 

interval gray number and is written as ⊗ (𝑘) ∈ [𝑎𝑘 , 𝑏𝑘], where, if 𝑎𝑘 = 𝑏𝑘, the gray number ⊗

(𝑘) degenerates to a real number 𝑎𝑘. 

There is no perfect calculation rule for the interval gray number, so the kernel and degree of 

greyness are defined so that the real number algorithm can be used for related calculations. There 

are different definitions proposed. This paper uses the definition suitable for continuous interval 

gray numbers, taking the mean of the upper and lower bound as the kernel. The ratio of a gray 

number measurement to its universe is defined as its degree of greyness, as follows. 

Definition 2 [7] Suppose continuous gray number⊗ (𝑘) ∈ [𝑎𝑘 , 𝑏𝑘]，𝑎𝑘 ≤ 𝑏𝑘, in the absence 

of the distribution information of ⊗ (𝑘), ⊗̃ (𝑘) =
𝑎𝑘+𝑏𝑘

2
 is called the kernel of gray number ⊗

(𝑘). 

Definition 3 [7]. Let the background of theorem Ωk be generated by the gray number ⊗

(𝑘) , μ(⊗k) is the measure of number domain of the gray number ⊗ (k),then 𝑔∘(⊗𝑘) =

𝜇(⊗𝑘)

𝜇(𝛺𝑘)
 is the degree of greyness of the gray number ⊗ (𝑘). 

Definition 4 [7] The sequence composed of interval gray numbers is called 𝑋(⊗) =

{⊗ (1),⊗ (2),⋯ ,⊗ (𝑛)} , where ⊗ (𝑘) ∈ [𝑎𝑘 , 𝑏𝑘]，𝑎𝑘 ≤ 𝑏𝑘，𝑘 = 1,2,⋯𝑛 . The sequence 

composed of the kernels and the sequence for the degree of greyness of all elements in the interval 

gray number sequence 𝑋(⊗) are called the kernel sequence 𝑋(⊗̃) and degree of greyness 

sequence 𝐺∘(⊗) of 𝑋(⊗) respectively,which can be written as 

X(⊗̃) = {⊗̃ (1),⊗̃ (2),⋯ ,⊗̃ (𝑛)}，G∘(⊗) = {g∘(⊗1), g
∘(⊗2),⋯ , g

∘(⊗n)} 

3 Construction of a nonlinear multi-variable gray prediction model with time lag 

3.1 Modeling mechanism of non-linear time lag multi-variable gray prediction model 

The gray prediction model will encounter many problems in actual applications. The input 

value of the index data at a certain moment not only affects the simulated forecast output value of 
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the index data at that moment, but also influences the output value after that moment. That is, it 

has a time lag. Considering that the time lag phenomenon is common in practical applications, this 

paper improves the original multi-variable gray prediction model by introducing the time lag 

parameter τ . To deal with the nonlinear relationship of the index data for the original 

multi-variable gray prediction model, a nonlinear parameter γ is also introduced to construct a 

nonlinear time lag prediction model. 

Definition 5 Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 represent a set of variables obtaining their observation values 

at time −𝑙,⋯ ,−1,0,1,2,⋯ , 𝑛 . Here, 𝑙, 𝑛   are positive integers, and 𝑋𝑗
(0)
(𝑘) =

{𝑥𝑗
(0)
(1), 𝑥𝑗

(0)
(2),⋯ , 𝑥𝑗

(0)
(𝑛)} is the sequence of observations at positive time, that is, 𝑋𝑗

(0)
(𝑘) is 

the observation sequence of the j-th variable at 𝑘 = 1,2,⋯ , 𝑛. 

𝑋𝑗
(0)
(𝑘 − 𝜏) = {𝑥𝑗

(0)
(1 − 𝜏), 𝑥𝑗

(0)
(2 − 𝜏),⋯ , 𝑥𝑗

(0)
(𝑛 − 𝜏)}  is the τ-phase lag sequence of 

sequence 𝑋𝑗
(0)
(𝑘). That is, 𝑋𝑗

(0)
(𝑘 − 𝜏) is the sequence of observations of the variable at = 1 −

𝜏, 2 − 𝜏,⋯ , 𝑛 − 𝜏 , where 0 < 𝜏 ≤ 𝑙 + 1. 

𝑋𝑗
(1)
(𝑘 − 𝜏) = {𝑥𝑗

(1)
(1 − 𝜏), 𝑥𝑗

(1)
(2 − 𝜏),⋯ , 𝑥𝑗

(1)
(𝑛 − 𝜏)}  is the sequence of first-order 

accumulation of sequence 𝑋𝑗
(0)
(𝑘 − 𝜏), where 𝑥𝑗

(1)
(𝑘 − 𝜏) = ∑ 𝑥𝑗

(0)
(𝑖 − 𝜏)𝑘

𝑖=1 ，𝑘 = 1,2,⋯ , 𝑛 

The 𝑍𝑗
(1)
(𝑘 − 𝜏) = {𝑧𝑗

(1)
(1 − 𝜏), 𝑧𝑗

(1)
(2 − 𝜏),⋯ , 𝑧𝑗

(1)
(𝑛 − 𝜏)}  is a sequence for the 

immediate mean of sequence 𝑋𝑗
(1)
(𝑘 − 𝜏), where𝑧𝑗

(1)
(𝑘 − 𝜏) = 0.5(𝑥𝑗

(1)
(𝑘 − 𝜏 − 1) + 𝑥𝑗

(1)
(𝑘 −

𝜏))，𝑘 = 2,3,⋯ , 𝑛. Then a multivariate time lag nonlinear discrete MGM(1,m|τ, γ) model can be 

obtained: 

{
 
 

 
 𝑥1

(0)
(𝑘) = 𝑎11(𝑧1

(1)
(𝑘 − 𝜏))𝛾1 + 𝑎12(𝑧2

(1)
(𝑘 − 𝜏))𝛾2 +⋯+ 𝑎1𝑚(𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚 + 𝑏1

𝑥2
(0)
(𝑘) = 𝑎21(𝑧1

(1)
(𝑘 − 𝜏))𝛾1 + 𝑎22(𝑧2

(1)
(𝑘 − 𝜏))𝛾2 +⋯+ 𝑎2𝑚(𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚 + 𝑏2

⋮

𝑥𝑚
(0)
(𝑘) = 𝑎𝑚1(𝑧1

(1)
(𝑘 − 𝜏))𝛾1 + 𝑎𝑚2(𝑧2

(1)
(𝑘 − 𝜏))𝛾2 +⋯+ 𝑎𝑚𝑚(𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚 + 𝑏𝑚

 

Among them, the power exponent is 𝛾𝑗（𝑗 = 1,2,⋯𝑚）, the lag parameter is 𝜏, and the 

number of lag periods is 𝑘 = 2,3,⋯ , 𝑛 ; when the multi-variable time lag nonlinear gray 

prediction model is used in the actual simulation prediction, the system development coefficient 

𝑎𝑖𝑗 and the gray effect 𝑏𝑗 are required.Where 𝒂̂𝑗 = (𝑎̂𝑗1, 𝑎̂𝑗2, ⋯ , 𝑎̂𝑗𝑚, 𝑏̂𝑗)
𝑇
，𝑖, 𝑗 = 1,2,⋯ ,𝑚. 
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Obviously, when 𝜏 = 0，𝛾𝑗 = 1（𝑗 = 1,2,⋯𝑚）, the multivariate time lag nonlinear discrete 

model MGM(1,m|τ, γ)  is the classic discrete model MGM(1,m) . Therefore, the time lag 

nonlinear discrete model MGM(1,m|τ, γ) is a further extension of the model MGM(1,m). 

 

Theorem 1 Suppose that at time −𝑙,⋯ ,−1,0,1,2,⋯ , 𝑛, the observation values obtained by 

the variable 𝑥1, 𝑥2, ⋯ 𝑥𝑚  are non-negative data, and the sequence 𝑋𝑗
(0)
(𝑘)，𝑋𝑗

(0)
(𝑘 − 𝜏)，

𝑍𝑗
(1)(𝑘 − 𝜏) are as described in Definition 5, 𝑗 = 1,2,⋯ ,𝑚，𝑘 = 1,2,⋯ , 𝑛, then, the minimum 

quadratic estimation of m parameter vectors of the multivariate nonlinear discrete-time model 

MGM(1,m|τ, γ) is 

𝒂̂𝑗 = (𝑎̂𝑗1, 𝑎̂𝑗2, ⋯ , 𝑎̂𝑗𝑚, 𝑏̂𝑗)
𝑇
= (𝑃𝑇𝑃)−1𝑃𝑇𝑌𝑗                   （2） 

Where 𝑃 =

[
 
 
 
 (𝑧1

(1)
(2 − 𝜏))𝛾1 (𝑧2

(1)
(2 − 𝜏))𝛾2 ⋯ (𝑧𝑚

(1)
(2 − 𝜏))𝛾𝑚 1

(𝑧1
(1)
(3 − 𝜏))𝛾1 (𝑧2

(1)
(3 − 𝜏))𝛾2 ⋯ (𝑧𝑚

(1)
(3 − 𝜏))𝛾𝑚 1

⋮ ⋮ ⋱ ⋮ ⋮

(𝑧1
(1)
(𝑛 − 𝜏))𝛾1 (𝑧2

(1)
(𝑛 − 𝜏))𝛾2 ⋯ (𝑧𝑚

(1)
(𝑛 − 𝜏))𝛾𝑚 1]

 
 
 
 

，𝑌𝑗 =

[
 
 
 
 𝑥𝑗
(0)
(2)

𝑥𝑗
(0)
(3)

⋮

𝑥𝑗
(0)
(𝑛)]

 
 
 
 

，thus 

The identification value 𝐴̂ = (𝑎̂𝑖𝑗)𝑚×𝑚，𝐵̂ = (𝑏̂1, 𝑏̂2, ⋯ , 𝑏̂𝑚)
𝑇of the parameter matrix A and 

B are  

Proof : Substitute 𝑋𝑗
(0)
(𝑘)、𝑍𝑗

(1)
(𝑘 − 𝜏) into (1), that is 𝑥𝑗

(0)
(𝑘) = 𝑎𝑗1(𝑧1

(1)
(𝑘 − 𝜏))𝛾1 +

𝑎𝑗2(𝑧2
(1)
(𝑘 − 𝜏))𝛾2 +⋯+ 𝑎𝑗𝑚(𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚 + 𝑏𝑗，𝑗 = 1,2,⋯ ,𝑚 

{
 
 

 
 𝑥𝑗

(0)
(2) = 𝑎𝑗1(𝑧1

(1)
(2 − 𝜏))𝛾1 + 𝑎𝑗2(𝑧2

(1)
(2 − 𝜏))𝛾2 +⋯+ 𝑎𝑗𝑚(𝑧𝑚

(1)
(2 − 𝜏))𝛾𝑚 + 𝑏𝑗

𝑥𝑗
(0)
(3) = 𝑎𝑗1(𝑧1

(1)
(3 − 𝜏))𝛾1 + 𝑎𝑗2(𝑧2

(1)
(3 − 𝜏))𝛾2 +⋯+ 𝑎𝑗𝑚(𝑧𝑚

(1)
(3 − 𝜏))𝛾𝑚 + 𝑏𝑗

⋮

𝑥𝑗
(0)
(𝑛) = 𝑎𝑗1(𝑧1

(1)
(𝑛 − 𝜏))𝛾1 + 𝑎𝑗2(𝑧2

(1)
(𝑛 − 𝜏))𝛾2 +⋯+ 𝑎𝑗𝑚(𝑧𝑚

(1)
(𝑛 − 𝜏))𝛾𝑚 + 𝑏𝑗

 

That is, 𝑌𝑗 = 𝑃𝒂𝑗 ， 𝒂𝑗 = (𝑎𝑗1, 𝑎𝑗2, ⋯ , 𝑎𝑗𝑚, 𝑏𝑗)
𝑇

, for the set of estimated values of 

𝑎̂𝑗1, 𝑎̂𝑗2, ⋯ , 𝑎̂𝑗𝑚, 𝑏̂𝑗 , 𝑎̂𝑗1(𝑧1
(1)
(𝑘 − 𝜏))𝛾1 + 𝑎̂𝑗2(𝑧2

(1)
(𝑘 − 𝜏))𝛾2 +⋯+ 𝑎̂𝑗𝑚(𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚 + 𝑏̂𝑗  is 

used instead of 𝑥𝑗
(0)
(𝑘), so that the error sequence 𝜀𝑗 = 𝑌𝑗 − 𝑃𝒂̂𝑗  can be obtained; if 𝑠𝑗 =

𝜀𝑗
𝑇𝜀𝑗 = (𝑌𝑗 − 𝑃𝒂̂𝑗)

𝑇(𝑌𝑗 − 𝑃𝒂̂𝑗) = [𝑥𝑗
(0)
(𝑘) − ∑ 𝑎̂𝑗𝑙(𝑧𝑙

(1)
(𝑘 − 𝜏))𝛾𝑙 − 𝑏̂𝑗

𝑚
𝑙=1 ]

2
 is set, the 
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𝑎̂𝑗1, 𝑎̂𝑗2, ⋯ , 𝑎̂𝑗𝑚, 𝑏̂𝑗 that minimizes 𝑠𝑗 should satisfy 

{
 
 
 
 
 
 

 
 
 
 
 
 𝜕𝑠𝑗

𝜕𝑎̂𝑗1
= 2 [𝑏̂𝑗 − 𝑥𝑗

(0)
(𝑘) +∑𝑎̂𝑗𝑙(𝑧𝑙

(1)
(𝑘 − 𝜏))𝛾𝑙

𝑚

𝑙=1

] (𝑧1
(1)
(𝑘 − 𝜏))𝛾1 = 0

𝜕𝑠𝑗

𝜕𝑎̂𝑗2
= 2 [𝑏̂𝑗 − 𝑥𝑗

(0)
(𝑘) +∑𝑎̂𝑗𝑙(𝑧𝑙

(1)
(𝑘 − 𝜏))𝛾𝑙

𝑚

𝑙=1

] (𝑧2
(1)
(𝑘 − 𝜏))𝛾2 = 0

⋮

𝜕𝑠𝑗
𝜕𝑎̂𝑗𝑚

= 2 [𝑏̂𝑗 − 𝑥𝑗
(0)
(𝑘) +∑𝑎̂𝑗𝑙(𝑧𝑙

(1)
(𝑘 − 𝜏))𝛾𝑙

𝑚

𝑙=1

] (𝑧𝑚
(1)
(𝑘 − 𝜏))𝛾𝑚 = 0

𝜕𝑠𝑗

𝜕𝑏̂𝑗
= 2 [𝑏̂𝑗 − 𝑥𝑗

(0)
(𝑘) +∑𝑎̂𝑗𝑙(𝑧𝑙

(1)
(𝑘 − 𝜏))𝛾𝑙

𝑚

𝑙=1

] = 0

 

𝒂̂𝑗 = (𝑎̂𝑗1, 𝑎̂𝑗2, ⋯ , 𝑎̂𝑗𝑚, 𝑏̂𝑗)
𝑇
= (𝑃𝑗

𝑇𝑃𝑗)
−1𝑃𝑗

𝑇𝑌𝑗; thus the identification value of parameter matrix A 

and parameter vector B can be obtained, as 𝐴̂ = (𝑎̂𝑖𝑗)𝑚×𝑚，𝐵̂ = (𝑏̂1, 𝑏̂2, ⋯ , 𝑏̂𝑚) . 

  Theorem 2 Suppose the estimated value of the structural parameters of the multi-variable time 

lag nonlinear MGM(1,m|τ, γ) discrete model is shown in Theorem 1. Take 𝑥̂𝑗
(0)
(1) = 𝑥𝑗

(0)
(1)，

𝑗 = 1,2,⋯ ,𝑚, and when 𝑘 ≥ 2, the discrete solution of the model is 

𝑋̂(0)(𝑘) = 𝐴̂𝑍(1)
𝛾
(𝑘 − 𝜏) + 𝐵̂                   （3） 

Where 𝑋̂(0)(𝑘) =

[
 
 
 
 𝑥̂1
(0)
(𝑘)

𝑥̂2
(0)
(𝑘)

⋮

𝑥̂𝑚
(0)
(𝑘)]

 
 
 
 

，𝑍(1)
𝛾
(𝑘 − 𝜏) =

[
 
 
 
 (𝑧1

(1)
(𝑘 − 𝜏))𝛾1

(𝑧2
(1)
(𝑘 − 𝜏))𝛾2

⋮

(𝑧𝑚
(1)
(𝑘 − 𝜏))𝛾𝑚]

 
 
 
 

  

   Proof : When 𝑘 = 1, take 𝑥̂𝑗
(0)
(1) = 𝑥𝑗

(0)
(1)，𝑗 = 1,2,⋯ ,𝑚； 

     When 𝑘 ≥ 2 , the {(𝑧1
(1)
(𝑘 − 𝜏))𝛾1 , (𝑧2

(1)
(𝑘 − 𝜏))𝛾2 , ⋯ , (𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚}

𝑇
 is known, and 

substitute it to solve the identification values of the parameter matrix A and the parameter vector B, 

as 𝐴̂ = (𝑎̂𝑖𝑗)𝑚×𝑚，𝐵 = (𝑏̂1, 𝑏̂2, ⋯ , 𝑏̂𝑚)
𝑇, and directly simulate and predict the multi-variable 

{
 
 

 
 𝑥̂1

(0)
(𝑘) = 𝑎̂11(𝑧1

(1)
(𝑘 − 𝜏))𝛾1 + 𝑎̂12(𝑧2

(1)
(𝑘 − 𝜏))𝛾2 +⋯+ 𝑎̂1𝑚(𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚 + 𝑏̂1

𝑥̂2
(0)
(𝑘) = 𝑎̂21(𝑧1

(1)
(𝑘 − 𝜏))𝛾1 + 𝑎̂22(𝑧2

(1)
(𝑘 − 𝜏))𝛾2 +⋯+ 𝑎̂2𝑚(𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚 + 𝑏̂2

⋮

𝑥̂𝑚
(0)
(𝑘) = 𝑎̂𝑚1(𝑧1

(1)
(𝑘 − 𝜏))𝛾1 + 𝑎̂𝑚2(𝑧2

(1)
(𝑘 − 𝜏))𝛾2 +⋯+ 𝑎̂𝑚𝑚(𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚 + 𝑏̂𝑚

 

When 𝑘 = 2,3,⋯ , 𝑛, we can get the analog value of the observation sequence of positive time, 

when 𝑘 ≥ 𝑛 + 1, we can get the prediction value of the observation sequence of positive time;  
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𝑋̂(0)(𝑘) =

[
 
 
 
 𝑥̂1
(0)
(𝑘)

𝑥̂2
(0)
(𝑘)

⋮

𝑥̂𝑚
(0)
(𝑘)]

 
 
 
 

，𝑍(1)
𝛾
(𝑘 − 𝜏) =

[
 
 
 
 (𝑧1

(1)
(𝑘 − 𝜏))𝛾1

(𝑧2
(1)
(𝑘 − 𝜏))𝛾2

⋮

(𝑧𝑚
(1)
(𝑘 − 𝜏))𝛾𝑚]

 
 
 
 

, then the matrix form of the above 

multivariate nonlinear equations is 𝑋̂(0)(𝑘) = 𝐴̂𝑍(1)
𝛾
(𝑘 − 𝜏) + 𝐵̂ t, as shown in formula (3). 

3.2 Determination of time lag parameters 

This section determines the time lag parameters of the nonlinear time lag multi-variable gray 

prediction model. 

Definition 6 Suppose the variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑚  obtain their observation values at the 

−𝑙,⋯ ,−1,0,1,2,⋯ , 𝑛 , let the current system characteristic sequence 𝑋𝑗
(0)
(𝑘) =

{𝑥𝑗
(0)
(1), 𝑥𝑗

(0)
(2),⋯ , 𝑥𝑗

(0)
(𝑛)} , that is the positive time observation value sequence, be the 

reference time sequence, and the 𝜏 period lag sequence 𝑋𝑖
(0)
(𝑘 − 𝜏) = {𝑥𝑖

(0)
(1 − 𝜏), 𝑥𝑖

(0)
(2 −

𝜏),⋯ , 𝑥𝑖
(0)
(𝑛 − 𝜏)} corresponding to the variable itself or another variable is the comparative 

time sequence, 𝑖, 𝑗 = 1,2,⋯ ,𝑚 . Sequences 𝑋′𝑖
(0)
(𝑘 − 𝜏) = {𝑥′𝑖

(0)
(1 − 𝜏), 𝑥′𝑖

(0)
(2 −

𝜏),⋯ , 𝑥′𝑖
(0)
(𝑛 − 𝜏)}

and 
𝑋′𝑗

(0)
(𝑘) = {𝑥′𝑗

(0)
(1), 𝑥′𝑗

(0)
(2),⋯ , 𝑥′𝑗

(0)
(𝑛)} are the zero-zero image of 

sequence 𝑋𝑖
(0)
(𝑘 − 𝜏) and 𝑋𝑗

(0)
(𝑘) , respectively, where𝑥′𝑖

(0)
(𝑘 − 𝜏) = 𝑥𝑖

(0)
(𝑘 − 𝜏) − 𝑥𝑖

(0)
(1 −

𝜏)，𝑥′𝑗
(0)
(𝑘) = 𝑥𝑗

(0)
(𝑘) − 𝑥𝑗

(0)
(1)，𝑘 = 1,2,⋯ , 𝑛 .  Then, time lag gray absolute correlation 

between the sequence 𝑋𝑗
(0)
(𝑘) and 𝑋𝑖

(0)
(𝑘 − 𝜏) is: 

 𝜀𝑗𝑖 =
1+|𝑠𝑖|+|𝑠𝑗|

1+|𝑠𝑖|+|𝑠𝑗|+|𝑠𝑖−𝑠𝑗|
                           (4) 

The method determining the time lag parameter 𝜏: when the number of lag periods 𝜏 of the 

sequence 𝑋𝑖
(0)
(𝑘 − 𝜏) takes different values, the value of the gray absolute correlation 𝜀𝑗𝑖 of the 

time lag is different. The gray absolute correlation 𝜀𝑗𝑖  of 𝑋𝑖
(0)
(𝑘 − 𝜏) corresponding to the 

maximum 𝜀𝑗𝑖 is the time lag t between the sequence 𝑋𝑖
(0)
(𝑘 − 𝜏) compared with 𝑋𝑗

(0)
(𝑘) . That 

is [23]: 

𝜏𝑗𝑖 = 𝜏𝑚𝑎𝑥 𝜀𝑗𝑖                                 (5) 
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𝜏𝑗𝑖 is also called the number of time lag of the variable 𝑥𝑖 relative to the variable 𝑥𝑗. Note 

that when the sequence of positive observations selected is 𝑋𝑖
(0)
(𝑘) and the lag sequence is 

𝑋𝑗
(0)
(𝑘 − 𝜏)（𝑖 ≠ 𝑗）, the time lag gray absolute correlation 𝜀𝑖𝑗 between the sequence 𝑋𝑖

(0)
(𝑘) 

and 𝑋𝑗
(0)(𝑘 − 𝜏) is different from that between 𝑋𝑗

(0)
(𝑘) and 𝑋𝑖

(0)
(𝑘 − 𝜏).  Therefore 𝜏𝑗𝑖 ≠

𝜏𝑖𝑗 , the time lag number of the variable 𝑥𝑖 relative to the variable 𝑥𝑗 is different from that of 

the variable 𝑥𝑗 relative to the variable 𝑥𝑖. 

The arithmetic mean value of the time lag corresponding to all variables is determined as the 

final time lag parameter of the model,  

𝜏 =
1

𝑛2
∑ ∑ 𝜏𝑗𝑖

𝑛
𝑖=1

𝑛
𝑗=1                            (6) 

This paper does not consider the case when the time lag parameter is a non-integer, and in 

which case it can be approximated with an integer value. That is, 𝜏 ∈ 𝑁+. 

3.3 Determination of nonlinear parameters 

The system variables in real life often have complex nonlinear relationships. The power 

exponent 𝛾𝑗（𝑗 = 1,2,⋯𝑚） introduced by the time lag nonlinear discrete MGM(1,m|τ, γ)) 

reflects the nonlinear effect of the j-th lag variable on the current system variable. In the modeling 

process After the time-lag parameter 𝜏 is determined, the parameter 𝛾𝑗 , which reflects the 

nonlinear relationship between the variables, is unknown. The specific value of the nonlinear 

parameter 𝛾𝑗 must be determined in advance to estimate the structural parameters, and then to 

solve the discrete solution of the model. In order to improve the accuracy of the model, the 

nonlinear parameter 𝛾𝑗  can be solved by constructing a nonlinear optimization model that 

minimizes the average relative error and constrains the relationship between model parameters: 

𝑚𝑖𝑛
𝛾𝑗
𝑎𝑣𝑔(𝑒(𝑘)) =

1

𝑚(𝑛−1)
∑ ∑ |

𝑥𝑗
(0)
(𝑘)−𝑥̂𝑗

(0)
(𝑘)

𝑥𝑗
(0)
(𝑘)

|𝑛
𝑘=2

𝑚
𝑗=1 , 𝑗 = 1,2,⋯ ,𝑚         (7) 

𝑠. 𝑡. {
𝑥̂𝑗
(0)
(𝑘) = 𝑎̂𝑗1(𝑧1

(1)
(𝑘 − 𝜏))𝛾1 +⋯+ 𝑎̂𝑗𝑚(𝑧𝑚

(1)
(𝑘 − 𝜏))𝛾𝑚 + 𝑏̂𝑗

𝒂̂𝑗 = (𝑎̂𝑗1, 𝑎̂𝑗2, ⋯ , 𝑎̂𝑗𝑚, 𝑏̂𝑗)
𝑇

 

𝑘 = 2,3,⋯ , 𝑛，𝑗 = 1,2,⋯ ,𝑚.

 
It can be seen that 𝛾𝑗 determines the size of the average relative error 𝑎𝑣𝑔(𝑒(𝑘)). In order 

to enable the model to predict the index data more accurately, 𝑎𝑣𝑔(𝑒(𝑘)) needs to be minimized. 

The minimum value of 𝛾𝑗（𝑗 = 1,2,⋯𝑚）can be selected to determine the model, so that the 
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model can be used to simulate the actual index data for  predictions. 

4 Construction of a non-linear time lag multi-variable gray prediction model for interval 

gray numbers 

4.1 Calculation of kernel sequence and degree of greyness sequence of multivariate interval 

gray number sequence 

For multi-variable gray number sequence 𝑋𝑗
(0)
(⊗) = {⊗𝑗

(0)
(1),⊗𝑗

(0)
(2),⋯ ,⊗𝑗

(0)
(𝑛)} , 

according to definition 2 and definition 3, this paper calculates the kernel sequence 𝑋𝑗
(0)(⊗̃) =

{⊗̃𝑗
(0)
(1),⊗̃𝑗

(0)
(2),⋯ ,⊗̃𝑗

(0)
(𝑛)}  and gray level sequence 𝐺°(0)(⊗) =

{𝑔𝑗
°(0)
(⊗1), 𝑔𝑗

°(0)
(⊗2),⋯ , 𝑔𝑗

°(0)
(⊗𝑛)} of the interval gray number sequence corresponding to m 

variables, where 

{
⊗̃𝑗

(0)
(𝑘) =

𝑎𝑗𝑘+𝑏𝑗𝑘

2

𝑔𝑗
°(0)
(⊗𝑘) =

𝑏𝑗𝑘−𝑎𝑗𝑘

𝜇(𝛺𝑗𝑘)

                         (8) 

4.2 The establishment of a non-linear gray prediction model of kernel sequence 

The model of multi-variable gray number kernel sequence Xj
(0)(⊗̃) =

{⊗̃j
(0)
(1),⊗̃j

(0)
(2),⋯ ,⊗̃j

(0)
(n)}(j = 1,2,⋯ ,m) is MGM(1,m|τ, γ) 

{
 
 

 
 ⊗̃1

(0) (k) = a11(z1
(1)(⊗̃)(k − τ))γ1 + a12(z2

(1)
(⊗̃)(k − τ))γ2 +⋯+ a1m(zm

(1)
(⊗̃)(k − τ))γm + b1

⊗̃2
(0) (k) = a21(z1

(1)
(⊗̃)(k − τ))γ1 + a22(z2

(1)
(⊗̃)(k − τ))γ2 +⋯+ a2m(zm

(1)
(⊗̃)(k − τ))γm + b2

⋮

⊗̃m
(0) (k) = am1(z1

(1)
(⊗̃)(k − τ))γ1 + am2(z2

(1)
(⊗̃)(k − τ))γ2 +⋯+ amm(zm

(1)
(⊗̃)(k − τ))γm + bm

 

Where 𝑘 = 2,3,⋯ , 𝑛, 𝛕 is the lag parameters of the system, reflecting the number of lag periods 

of the variables that affect the current system variables. .𝛾𝑗（𝑗 = 1,2,⋯𝑚） is the power index of 

the lag system, which can reflect the nonlinear effect of the j-th lag variable on the current system. 

𝑋𝑗
(1)
(⊗̃) = {⊗̃𝑗

(1)
(1),⊗̃𝑗

(1)
(2),⋯ ,⊗̃𝑗

(1)
(𝑛)} is the first-order accumulation sequence of kernel 

sequence 𝑋𝑗
(0)
(⊗̃). ⊗̃𝑗

(1)
(𝑘) = ∑ ⊗̃𝑗

(0)
(𝑙)𝑘

𝑙=1 ，𝑗 = 1,2,⋯ ,𝑚，𝑘 = 1,2,⋯ , 𝑛. 

The estimated parameter value of the model obtained by the least square method is 

(𝒂̂1, 𝒂̂2, ⋯ , 𝒂̂𝑚) = (𝑃
𝑇𝑃)−1𝑃𝑇(𝑄1, 𝑄2, ⋯ , 𝑄𝑚) 
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Where 𝒂̂𝑖 =

[
 
 
 
 
𝑎̂𝑖1
𝑎̂𝑖2
⋮
𝑎̂𝑖𝑚
𝑏̂𝑖 ]
 
 
 
 

，𝑃 =

[
 
 
 
 𝑧1
(1)
(⊗̃2) 𝑧2

(1)
(⊗̃2) ⋯ 𝑧𝑚

(1)
(⊗̃2) 1

𝑧1
(1)
(⊗̃3) 𝑧2

(1)
(⊗̃3) ⋯ 𝑧𝑚

(1)
(⊗̃3) 1

⋮ ⋮ ⋱ ⋮ ⋮

𝑧1
(1)
(⊗̃𝑛) 𝑧2

(1)
(⊗̃𝑛) ⋯ 𝑧𝑚

(1)
(⊗̃𝑛) 1]

 
 
 
 

，𝑄𝑖 =

[
 
 
 
 ⊗̃𝑖

(0)
(2)

⊗̃𝑖
(0)
(3)

⋮

⊗̃𝑖
(0)
(𝑛)]

 
 
 
 

，

𝑖 = 1,2,⋯ ,𝑚. 𝑍𝑗
(1)
(⊗̃) = {𝑧𝑗

(1)
(⊗̃2), 𝑧𝑗

(1)
(⊗̃3),⋯ , 𝑧𝑗

(1)
(⊗̃𝑛)}  is is the sequence of the 

immediate mean of 𝑋𝑗
(1)
(⊗̃), 𝑧𝑗

(1)
(⊗̃𝑘) = 0.5(⊗̃𝑗

(1)
(𝑘 − 1) +⊗̃𝑗

(1)
(𝑘))，𝑗 = 1,2,⋯ ,𝑚，𝑘 =

2,3,⋯ , 𝑛.And the identification value of parameter matrix A and parameter vector B are  𝐴̂ =

(𝑎̂𝑖𝑗)𝑚×𝑚，𝐵̂ = (𝑏̂1, 𝑏̂2, ⋯ , 𝑏̂𝑚)
𝑇, 

Taking ⊗̂̃j
(0)
(1) =⊗̃𝑗

(0)
(1)，𝑗 = 1,2,⋯ ,𝑚, when 𝑘 ≥ 2, the discrete solution of the model 

is: 

            𝑋̂(0)(⊗̃𝑘) = 𝐴̂𝑍(1)
𝛾
(⊗̃)(𝑘 − 𝜏) + 𝐵̂                       (9) 

Where  𝑋̂(0)(⊗̃𝑘) =

[
 
 
 
 ⊗̂̃1

(0)
(𝑘)

⊗̂̃2
(1)
(𝑘)

⋮

⊗̂̃𝑚
(1)
(𝑘)]

 
 
 
 

，𝑍(1)
𝛾
(⊗̃𝑘) =

[
 
 
 
 (𝑧1

(1)
(⊗̃)(𝑘 − 𝜏))𝛾1

(𝑧2
(1)
(⊗̃)(𝑘 − 𝜏))𝛾2

⋮

(𝑧𝑚
(1)
(⊗̃)(𝑘 − 𝜏))𝛾𝑚]

 
 
 
 

            (10) 

4.3 Establishment of multi-variable gray prediction model with nonlinear time lag for degree 

of greyness sequence 

The MGM(1,m|τ, γ)model for multi-variable gray number gray sequence 𝐺°(0)(⊗) =

{𝑔𝑗
°(0)
(⊗1), 𝑔𝑗

°(0)
(⊗2),⋯ , 𝑔𝑗

°(0)
(⊗𝑛)}（𝑗 = 1,2,⋯ ,𝑚) is as follows: 

{
 
 

 
 𝑔𝑗

°(0)(⊗1)(𝑘) = 𝑐11(𝑧1
(1)𝑔∘(⊗𝑘−𝜏))

𝛾1 + 𝑐12(𝑧2
(1)𝑔∘(⊗𝑘−𝜏))

𝛾2 +⋯+ 𝑐1𝑚(𝑧𝑚
(1)𝑔∘(⊗𝑘−𝜏))

𝛾𝑚 + 𝑑1

𝑔𝑗
°(0)(⊗2)(𝑘) = 𝑐21(𝑧1

(1)𝑔∘(⊗𝑘−𝜏))
𝛾1 + 𝑐22(𝑧2

(1)𝑔∘(⊗𝑘−𝜏))
𝛾2 +⋯+ 𝑐2𝑚(𝑧𝑚

(1)𝑔∘(⊗𝑘−𝜏))
𝛾𝑚 + 𝑑2

⋮

𝑔𝑗
°(0)(⊗𝑚)(𝑘) = 𝑐𝑚1(𝑧1

(1)𝑔∘(⊗𝑘−𝜏))
𝛾1 + 𝑐𝑚2(𝑧2

(1)𝑔∘(⊗𝑘−𝜏))
𝛾2 +⋯+ 𝑐𝑚𝑚(𝑧𝑚

(1)𝑔∘(⊗𝑘−𝜏))
𝛾𝑚 + 𝑑𝑚

 

It is noted as 

𝐺̂°(0)(⊗)(𝑘) = 𝐶̂𝐺̂°(0))
𝛾
(⊗𝑘−𝜏) + 𝐷̂                     (11) 

The identification values of the parameter matrices C and D are 𝐶̂ = (𝑐̂𝑖𝑗)𝑚×𝑚，𝐷̂ =

(𝑑̂1, 𝑑̂2, ⋯ , 𝑑̂𝑚)
𝑇 , (𝒄̂1, 𝒄̂2, ⋯ , 𝒄̂𝑚) = (𝑃

𝑇𝑃)−1𝑃𝑇(𝑄1, 𝑄2, ⋯ , 𝑄𝑚) is given by the least squares 

estimate, where 
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𝐶̂𝑖 =

[
 
 
 
 
𝑐̂𝑖1
𝑐̂𝑖2
⋮
𝑐̂𝑖𝑚
𝑑̂𝑖 ]
 
 
 
 

，𝑃 =

[
 
 
 
 𝑔1

°(1)
(⊗2−𝜏) 𝑔2

°(1)
(⊗2−𝜏) ⋯ 𝑔𝑚

°(1)
(⊗2−𝜏) 1

𝑔1
°(1)
(⊗3−𝜏) 𝑔2

°(1)
(⊗3−𝜏) ⋯ 𝑔2

°(1)
(⊗3−𝜏) 1

⋮ ⋮ ⋱ ⋮ ⋮

𝑔1
°(1)
(⊗𝑛−𝜏) 𝑔2

°(1)
(⊗𝑛−𝜏) ⋯ 𝑔𝑚

°(1)
(⊗𝑛−𝜏) 1]

 
 
 
 

，𝑄𝑖 =

[
 
 
 
 𝑔𝑖

°(0)
(⊗2)

𝑔𝑖
°(0)
(⊗3)

⋮

𝑔𝑖
°(0)
(⊗𝑛)]

 
 
 
 

 

5 Cases analysis 

In this section, the proposed model is used to simulate and predict the smog index data. he 

Beijing Air Quality Index (AQI) and PM2.5 values from 5:00 to 16:00 in 2018 are taken as the 

smog data. MGM(1,m) model (Referred to as model 1) and MGM(1,m|τ, γ) for interval gray 

numbers (hereinafter referred to as model 2) are separately applied to simulate and predict the AQI 

and PM2.5, and their results are then compared. 

The index data of AQI and PM2.5 used in the experiment are gray numbers. Therefore, in this 

paper, the corresponding degree of greyness and kernels of AQI and PM2.5 are calculated, and then 

the obtained data is substituted into MATLAB to calculate the time lag coefficient. The program 

performs calculations, and the time-lag coefficient is 3, and the nonlinear parameters are 9.01 =γ

and 1.12 =γ . Then, the coefficient is substituted into the program corresponding to the 

MGM(1,m|τ, γ) for interval gray numbers, and it is restored to the gray numbers. Finally, the 

simulated values, the predicted values and the corresponding simulated errors and prediction 

errors are obtained. According to the actual data from 8:00 to 16:00, the specific results are shown 

in Table 1 and Table 2. For a more intuitive expression, this paper makes a line chart to 

demonstrate the simulated prediction results of the two models about AQI and PM2.5, as shown in 

Figures 1 to 4 . 

Table 1 Simulation effect and prediction effect of model 1 and model 2 on AQI 

 

Time    Data  

Model 1 Model 2 

Analog value 

Simulation error 

Analog value 

Simulation 

error 

Lower 

bound 

Upper 

bound 

Lowe

r 

bound 

Upper 

bound 

8 [198,379] [198,379] 0 0 [198,379] 0 0 
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9 [178,304] [178.39,284.56] 0.22 6.4 [201.12,274.39] 12.99 9.74 

10 [167,198] [161.53,220.39] 3.28 11.31 [164.63,216.56] 1.42 9.37 

11 [143,178] [146.37,186.55] 2.36 4.81 [144.18,175.34] 0.83 1.5 

12 [130,167] [131.06,160.73] 0.82 3.75 [128.92,152.51] 0.83 8.68 

13 [114,143] [116.71,139.16] 2.38 2.68 [117.6,140.72] 3.16 1.6 

14 [101,130] [103.64,120.75] 2.62 7.12 [108.12,128.92] 7.05 0.83 

  
Average 

simulation error 
1.67 5.15 

Average 

simulation error 
3.75 4.53 

                    Predictive value 

Prediction error 

Predictive value 

Prediction error 

Lower 

bound 

Upper 

bound 

Lowe

r 

bound 

Upper 

bound 

15 [98,114] [91.86,104.92] 6.27 7.97 [100.29,118.11] 2.33 3.6 

16 [98,101] [81.29,91.27] 17.05 9.63 [94.71,109.94] 3.36 8.85 

  
Average 

prediction error 
11.66 8.8 

Average 

prediction error 
2.84 6.23 

 

 

 

 

Fig.1 Simulation and prediction relative error of 

upper bound of AQI gray number 

 

 Fig. 2 Simulation and prediction relative error 

of AQI gray number lower bound 
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Table 2 Simulation effect and prediction effect of model 1 and model 2 on PM2.5 

Time    Data  

Model 1 Model 2 

Analog value 

Simulation error 

Analog value 

Simulation error 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

8 [61,92] [61,92] 0 0 [61,92] 0 0 

9 [53,77] [52.01,74.85] 1.87 2.79 [55.57,73.99] 4.86 3.91 

10 [46,61]  [46.16,62.74] 0.34 2.85 [47.3,60.84] 2.82 0.25 

11 [40,53]  [41.41,53.89] 3.52 1.68 [41.95,50.73] 4.87 4.28 

12 [37,46]  [37.03,46.53] 0.08 1.14 [37.47,44.31] 1.27 3.67 

13 [33,40]  [33.01,40.26] 0.04 0.65 [33.75,40.2] 2.27 0.51 

14 [30,37]  [29.36,34.90] 2.13 5.69 [30.56,36.32] 1.88 1.85 

  
Average 

simulation error 
1.14 2.11 

Average 

simulation error 
2.57 2.07 

                    Predictive value 

Prediction error 

Predictive value 

Prediction error 

Lower 

bound 

Upper 

bound 

Lowe

r 

bound 

Upper 

bound 

15 [28,33] [26.06,30.29] 6.93 8.21 [27.82,32.8] 0.63 0.61 

16 [28,30] [23.09,26.32] 17.53 12.26 [25.58,29.88] 8.65 0.41 

  
Average 

prediction error 
12.23 10.23 

Average 

prediction error 
4.64 0.51 
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Fig.3 Simulation and prediction relative error of 

upper bound of PM2.5 gray number 

 

 Fig.4 Simulation and prediction relative error of 

lower bound of PM2.5 gray number 

 

 

It can be seen from Tables 1 to 2 and Figures 1 to 4 that in the 8:00 to 14:00 period, the 

Model 1 and Model 2 are used to simulate the AQI and PM2.5 data. At the time 15:00 to 16:00 

period, AQI and PM2.5 analog value are obtained 

Among them, at 8:00 to 14:00 period, the simulated average errors of the lower bound of the 

gray number of AQI data by Model 1 and Model 2 are 1.67% and 3.75%, respectively, and the 

simulated average errors of the upper bound of the gray number of AQI data by Model 1 and 

Model 2 are 5.15%, 4.53%; the simulated average errors of the lower bound of the gray number of 

PM2.5 data by Model 1 and Model 2 are 1.14%, 2.57%; the simulated average errors of the upper 

bound of the gray number of PM2.5 by Model 1 and Model 2 are 2.11%, 2.07 %. At 15:00 ~ 16:00 

period, the average prediction errors of the model 1 and model 2 for the lower bound of the gray 

number of AQI data are 11.66% and 2.84%, respectively, and the average simulation errors of the 

model 1 and model 2 for the upper bound of the gray number of AQI data are 8.8%, 6.23%; The 

average errors of the model 1 and model 2 for the lower bound of the gray number of PM2.5 data 

are 12.23% and 4.64%; the average errors of the model 1 and model 2 for the upper bound of the 

gray number of PM2.5 data are 10.23% and 0.51% respectively. 

To sum up, the AQI and PM2.5 data can be simulated and predicted by applying the 

non-linear time lag multi-variable gray prediction model for interval gray numbers to obtain 

accurate prediction results. The average simulation error of the upper and lower bounds of Model 

1 are 3.41% and 1.63%, the average simulation error of the upper and lower bounds of Model 2 

are 4.41% and 2.58%, respectively. The simulation accuracy of Model 1 and Model 2 is high, and 

the simulation effect of Model 1 is better; the average prediction errors of the upper and lower 

bounds of Model 1 are 10.23% and 11.23%, respectively, and the upper and lower bound 
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prediction errors of model 1 are 4.54% and 2.58% respectively. The comparison results show that 

the prediction effect of model 2 is better than that of the original model. Therefore, the improved 

model has a higher research and application value. 

6 Conclusions 

The gray system MGM(1,m) model is suitable for the simulation and prediction of smog 

data, and its simulation accuracy is relatively high. Based on the original MGM(1,m) model, for 

the uncertainty, lag effect, and non-linearity of the smog data, this paper introduces the interval 

gray number and time, lag parameters and nonlinear parameters. As a result, a nonlinear time lag 

model based on the interval gray number is constructed, and the model and the original model are 

applied to actual cases. This paper randomly selects the data from 5:00 to 16:00 on December 3, 

2018 in Beijing, and compares the simulation accuracy and prediction accuracy. The results show 

that the prediction accuracy of the new model is better than that of the original model, and the 

model can be used to predict the uncertainty of the smog data. Therefore, the improved model is 

more accurate and its feasibility is stronger, it can be used for smog prediction, and it can obtain 

more accurate results. 
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