
    

Forecasting smog in Beijing using a novel time-lag GM(1,N) model based on 

interval grey number sequences 

 

Abstract 

Purpose - Smog seriously affects the ecological environment and poses a threat to public health. Therefore, 

smog control has become a key task in China, which requires reliable prediction.  

Design/methodology/approach - Based on interval grey number sequences, the traditional GM(1,N) 

model neglects the time-lag effect of driving terms, hence this paper introduces the time-lag parameters into 

driving terms of the traditional GM(1,N) model and proposes a novel time-lag GM(1,N) model. Firstly, 

calculating kernel and degree of greyness of the interval grey number sequence respectively. Then, 

establishing the time-lag GM(1,N) model of kernel and degree of greyness sequences respectively to obtain 

values of them after determining the time-lag parameters of two models. Finally, the upper and lower 

bounds of interval grey number sequences are obtained by restoring the values of kernel and degree of 

greyness. 

Findings - In order to verify the validity and practicability of the model, the monthly concentrations of 

PM2.5, SO2 and NO2 in Beijing during August 2017 to September 2018 are selected to establish the time-lag 

GM(1,3) model for kernel and degree of greyness sequences respectively. Compared with three existing 

models, the proposed model in this paper has better simulation accuracy. Therefore, the new model is 

applied to forecast monthly PM2.5 concentration for October to December 2018 in Beijing, and provides a 

reference basis for the government to formulate smog control policies. 

Originality/value - The proposed model can simulate and forecast system characteristic data with the 

time-lag effect more accurately, which shows that the time-lag GM(1,N) model proposed in this paper is 

practical and effective.  

Key words Smog, Time-lag GM(1,N) model, Interval grey number, Kernel and degree of greyness, 

Forecasting 

 

 

1 Introduction 

In recent years, the smog problem in China has attracted wide public attention. Smog not only affects 

urban air quality (Lu et al., 2018), damages social economy (Hao et al., 2018), but also seriously endangers 

human health (Asraf et al., 2019). The Chinese government has been committed to smog control, and has 

put forward clear requirements for improving air quality in both “the 13th Five-Year Plan of Environmental 

Planning” and “the Three-Year Action Plan for Winning the Blue Sky Defending War”, and has designated 

Beijing as one of the key control areas. Beijing is the capital and central city of China, as well as the 

national political center, cultural center and international exchange center. Therefore, accurately forecasting 

the smog situation of Beijing is of great significance, which can provide a scientific basis for the 

government’s smog control work. 

For the sake of forecasting the trend of smog more accurately, many scholars have established the 

statistical model (Zhang et al., 2018), the neural network model (Biancofiore et al., 2017), the support 

vector machine (García Nieto et al., 2013), the weather research and forecasting model with chemistry 

(Saide et al., 2011), and the combined model (Zhu et al., 2017) to conduct a series of smog studies. By 

comparing the above methods, it is found that these methods mainly forecast smog data with high temporal 



    

resolution. However, it is not always possible to have data with high temporal resolution, and a number of 

scholars have applied grey prediction models to forecast smog based on data with low temporal resolution 

(Wu et al., 2018). Grey prediction model is an important branch of grey system theory. As a new 

uncertainty system theory, grey system theory is characterized by small data modeling to obtain accurate 

results. Since Professor Deng founded grey system theory in 1982, the research object of grey systems has 

been the uncertain systems with small data and poor information, mainly through in-depth mining of 

existing information and extracting valuable information, so as to study the system intrinsic law (Liu et al., 

2010). Considering the unexpected suddenness of smog, the smog related indicator data is usually uncertain. 

In the system research, due to the limitation of human cognitive ability, it is difficult to fully understand the 

information reflecting the system operation behavior, resulting in people only obtain the value range of 

system elements or parameters. Usually, the number that only knows the value range but does not know its 

exact value is called grey number. In other words, the value of smog has obvious characteristics of grey 

numbers which is uncertain within a certain range.  

GM(1,1) model and GM(1,N) model are important components of grey prediction models. GM(1,1) 

model is the basic model of grey prediction models, which mainly simulates and forecasts the behavior 

sequence of a single system. Scholars not only optimized GM(1,1) model from the aspects of background 

value optimization (Wang et al., 2018; Zeng et al., 2020; Wu et al., 2013), coefficient improvement(Zeng et 

al., 2016; Wang et al., 2019), but also combined it with the statistical model to solve practical problems 

(Yuan et al., 2016). GM(1,1) model does not count the influence of relative factors on the change of system 

characteristic data, and GM(1,N) model, as an extension of GM(1,1) model, fully considers the interference 

of relative factors on system characteristic data. Therefore, scholars established GM(1,N) model to conduct 

overall and global dynamic analysis of the system, and improved the system via background value (Wang 

et al., 2016; Ma et al., 2018), driving terms optimization (Wu et al., 2018; Ding et al., 2018; Zeng et al, 

2019), discretization (Ding, 2019; Ma et al., 2019), coefficient improvement (Wu, 2018; Wang, 2014) etc. 

These researches focus mainly on real number sequences, and optimize the GM(1,N) model on both system 

characteristic data and relative factors changing at the same time. However, these models are not suitable 

for systems with lag. Time-lag effect is to describe the delay relationship in the system, which is widely 

used in transportation (Zhou et al., 2017), economy (Lee et al., 2016), meteorology (Zheng et al., 2020) and 

other fields, so many scholars have also improved the GM(1,N) model from the angle of system lag, and 

constructed time-lag GM(1,N) model and the derived model(Zhai et al., 1996; Wang et al.,2015), discrete 

time-lag GM(1,N) model(Zhang et al., 2015; Dang et al., 2017; Ding et al., 2017), time-lag GM(1,N) model 

with fractional order accumulation (Mao et al., 2015). Through comparison, it is found that the literatures 

of time-lag mainly are focusing on the discrete grey prediction model, and the research results are relatively 

similar. Therefore, systematic studying on the non-discrete GM(1,N) model with time-lag dynamic change 

characteristics of is necessary.  

Due to limited cognitive ability, observation errors and measurement errors, a lot of real number 

variables cannot be accurately described by real numbers, so many scholars have begun to explore the 

modeling mechanism of grey prediction model based on interval grey number sequences (Dang et al., 2018; 

Xie et al., 2018). At present, the existing GM(1,N) model based on interval grey number sequences (Xiong 

et al., 2018) can only model simultaneous changing variables, and cannot consider the relationship of 

time-lag cumulative effect in the real social system, which may lead to larger prediction error. Therefore, 

this paper will analyze the time-lag effect of previous relative factors on the current system characteristic 

data, construct a time-lag GM(1,N) model based on interval grey number sequences, and determine 

time-lag parameters of the model respectively. Meanwhile, this paper will consider the time-lag effect of 



    

SO2 and NO2 on PM2.5, establish the time-lag GM(1,3) model to simulate and forecast PM2.5 concentration 

in Beijing, and compare the result with the time-lag discrete GM(1,3) model, traditional GM(1,3) model 

and multiple linear regression model. Besides, the time-lag GM(1,3) model is also applied to forecast the 

smog situation of Beijing.  

The other research arrangements in this paper are as follows: the basic concepts of interval grey 

numbers and traditional GM(1,N) models are introduced in Section 2; the modeling mechanism of the 

time-lag GM(1,N) model based on kernel and degree of greyness sequences are presented respectively, 

determination of time-lag parameters and model checking method are also introduced in Section 3; the 

time-lag GM(1,3) model based on interval grey number sequences is applied to simulate and forecast 

monthly PM2.5 concentration of Beijing in Section 4; conclusions are summarized in Section 5. 

 

2 Basic concepts 

2.1 Interval grey number 

Definition 1 (Liu et al., 2010) The grey number with both lower bound 𝑎𝑘 and upper bound 𝑏𝑘 is 

called interval grey number, and interval grey number is denoted as ⊗𝑘∈ [𝑎𝑘 , 𝑏𝑘]. 

Definition 2 (Liu et al., 2010) Assume that the interval grey number is ⊗𝑘∈ [𝑎𝑘 , 𝑏𝑘](𝑎𝑘 < 𝑏𝑘), in the 

absence of interval grey number value distribution information, we can obtain:  

(1) When ⊗𝑘 is a continuous function, so ⊗̃= (𝑎𝑘 + 𝑏𝑘) 2⁄  is the kernel of interval grey number 

⊗𝑘; 

(2) When ⊗𝑘  is a discrete function, and 𝑎𝑖 ∈ [𝑎𝑘 , 𝑏𝑘](𝑘 = 1,2,⋯ , 𝑛)  is all possible values of 

interval grey number ⊗𝑘, so ⊗̃=
1

𝑛
∑ 𝑎𝑖
𝑛
𝑖=1  is the kernel of interval grey number ⊗𝑘. 

Definition 3 (Liu et al., 2010) When the background or domain of interval grey number ⊗𝑘 is 𝛺, and 

μ(⊗𝑘) is a measure on 𝛺, so 𝑔∘(⊗𝑘) = μ(⊗𝑘) μ(𝛺)⁄  is called the degree of greyness in interval grey 

number ⊗𝑘. 

Definition 4 (Liu et al., 2010) The sequence consisting of interval grey number ⊗𝑘∈ [𝑎𝑘 , 𝑏𝑘], 𝑘 =

1,2,⋯ , 𝑛 is called the interval grey number sequence X(⊗). The sequence of all upper bounds in X(⊗) 

is called the upper bound sequence of X(⊗), denoted as 𝑋𝑏 = (𝑏1, 𝑏2, ⋯ , 𝑏𝑛). The sequence of all lower 

bounds in X(⊗) is called the lower bound sequence of X(⊗), denoted as 𝑋𝑎 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑛). The 

sequence of all kernels in X(⊗)  is called the kernel sequence of X(⊗) , denoted as 𝑋⊗̃ =

(⊗̃1,⊗̃2, ⋯ ,⊗̃𝑛). The sequence of all degree of greyness in X(⊗) is called the degree of greyness 

sequence in X(⊗), denoted as 𝑋𝑔∘ = (𝑔1
∘, 𝑔2

∘ , ⋯ , 𝑔𝑛
∘ ).  

Lemma 1 (Zeng, 2011) Assume that ⊗𝑘∈ [𝑎𝑘 , 𝑏𝑘] is the continuous interval grey number, ⊗̃=

(𝑎𝑘 + 𝑏𝑘) 2⁄  is the kernel of interval grey number ⊗𝑘 , and 𝑔∘(⊗𝑘) = μ(⊗𝑘) μ(𝛺)⁄  is the degree of 

greyness in interval grey number  ⊗𝑘 , so we have 𝑎𝑘 =⊗̃𝑘− 0.5𝑔
∘(⊗𝑘)μ(⊗𝑘) , 𝑏𝑘 =⊗̃𝑘+

0.5𝑔∘(⊗𝑘)μ(⊗𝑘). 

2.2 GM(1,N) model 

Definition 5 (Liu et al., 2010) Assume that the system characteristic data sequence is 𝑋1
(0)
=

(𝑥1
(0)(1), 𝑥1

(0)(2),⋯ , 𝑥1
(0)(𝑛)), and relative factor sequences are shown as follows: 



    

𝑋2
(0)
= (𝑥2

(0)(1), 𝑥2
(0)(2),⋯ , 𝑥2

(0)(𝑛)), 

𝑋3
(0)
= (𝑥3

(0)(1), 𝑥3
(0)(2),⋯ , 𝑥3

(0)(𝑛)), 

⋯⋯ 

𝑋𝑁
(0)
= (𝑥𝑁

(0)(1), 𝑥𝑁
(0)(2),⋯ , 𝑥𝑁

(0)(𝑛)), 

when 𝑋𝑖
(1)

 is the first order accumulating generation sequence of 𝑋𝑖
(0)

, 𝑖 = 1,2,⋯ ,𝑁 , and  𝑍1
(1)
=

(𝑧1
(1)(2), 𝑧1

(1)(3)⋯ , 𝑧1
(1)(𝑛)) is the mean sequence generated by the consecutive neighbor of 𝑋1

(1)
,and 

𝑧1
(1)(𝑘) = 0.5(𝑥1

(1)(𝑘) + 𝑥1
(1)(𝑘 − 1)), the GM(1,N) model is shown as follows: 

𝑥1
(0)(𝑘) + 𝑎𝑧1

(1)(𝑘) =∑𝑏𝑖𝑥𝑖
(1)(𝑘)

𝑁

𝑖=2

. 

Definition 6 (Liu et al., 2010) In the GM(1,N) model, 𝑎 represents the system development coefficient, 

𝑏𝑖𝑥𝑖
(1)(𝑘)  represents the driving term, 𝑏𝑖  represents the driving coefficient, and �̂� =  [𝑎, 𝑏2,···

, 𝑏𝑁]
𝑇represents the undetermined coefficient vector. 

Theorem 1 (Liu et al., 2010) When 𝑋1
(0)

 is the system characteristic data sequence, 𝑋𝑖
(0)(𝑖 =

2,3, … , 𝑁) is the relative factor sequence, 𝑋𝑖
(1)

 is the first order accumulating generation sequence of 

𝑋𝑖
(0)

, and 𝑍1
(1)

 is the mean sequence generated by the consecutive neighbor of 𝑋1
(1)

, where 

𝐵 =  

[
 
 
 
 −𝑧1

(1)(2) 𝑥2
(1)(2)

−𝑧1
(1)(3) 𝑥2

(1)(3)

⋯ 𝑥𝑁
(1)(2)

⋯ 𝑥𝑁
(1)(3)

⋮ ⋮

−𝑧1
(1)(𝑛) 𝑥2

(1)(𝑛)

 ⋮

⋯ 𝑥𝑁
(1)(𝑛)]

 
 
 
 

, 𝑌 =  

[
 
 
 
 𝑥1
(0)(2)

𝑥1
(0)(3)

⋮

𝑥1
(0)(𝑛)]

 
 
 
 

. 

Therefore, the undetermined coefficient vector of the GM(1,N) model is �̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇, which can be 

estimated by the least squares method as follows: 

�̂� =  (𝐵𝑇𝐵)−1𝐵𝑇𝑌. 

Theorem 2 (Liu et al., 2010) The coefficient vector �̂�  of the GM(1,N) model satisfies above 

conditions, thus we obtain as follows: 

(1) The whitening equation is shown as follows: 

𝑑𝑥1
(1)

𝑑𝑡
+ 𝑎𝑥1

(1) =∑𝑏𝑖𝑥𝑖
(1)

𝑁

𝑖=2

, 

and the solution of the whitening equation can be obtained as follows: 

𝑥 
(1)(𝑡) = 𝑒−𝑎𝑡 [𝑥1

(1)(0) − 𝑡∑𝑏𝑖𝑥𝑖
(1)(0)

𝑁

𝑖=2

+∑∫𝑏𝑖𝑥𝑖
(1)(𝑡)𝑒𝑎𝑡 𝑑𝑡

𝑁

𝑖=2

]. 



    

(2) When the change of 𝑋𝑖
(1)

 is very small, we suppose that ∑ 𝑏𝑖𝑥𝑖
(1)(𝑘)𝑁

𝑖=2  is a grey constant. 

Therefore, the approximate time response of the GM(1,N) model is shown as follows: 

�̂�1
(1)(𝑘 + 1) =

1

𝑎
 ∑𝑏𝑖𝑥𝑖

(1)(𝑘 + 1)

𝑁

𝑖=2

+ 𝑒−𝑎𝑘 [𝑥1
(1)(0) −

1

𝑎
∑𝑏𝑖𝑥𝑖

(1)(𝑘 + 1)

𝑁

𝑖=2

], 

where the solution can be obtained with the initial condition 𝑥1
(1)(0) = 𝑥1

(0)(1). 

(3) The inverse accumulating reduction equation is shown as follows: 

�̂�1
(0)(𝑘 + 1) =  �̂�1

(1)(𝑘 + 1) − �̂�1
(1)(𝑘). 

 

3 Methodology 

3.1 Time-lag GM(1,N) model based on kernel sequences 

Definition 7 Assume that the kernel sequence in the interval grey number sequence is ⊗̃𝑖
(0)=

(⊗̃𝑖
(0) (1),⊗̃𝑖

(0) (2),⋯ ,⊗̃𝑖
(0) (𝑛)) , 𝑖 = 1,2,⋯ ,𝑁, and the kernel is shown as follows： 

⊗̃𝑖
(0) (𝑗) =

(𝑎𝑖𝑗 + 𝑏𝑖𝑗)

2
, 𝑖 = 1,2,⋯ ,𝑁, 𝑗 = 1,2,⋯ , 𝑛.                              (1) 

Definition 8 Assume that the system characteristic data of kernel sequence is shown as follows: 

⊗̃1
(0)
= (⊗̃1

(0) (1),⊗̃1
(0) (2),⋯ ,⊗̃1

(0) (𝑛)), 

and relative factor sequences of kernel sequence are shown as follows: 

⊗̃2
(0)
= (⊗̃2

(0) (−𝑙),⋯ ⊗̃2
(0) (−2),⊗̃2

(0) (−1),⊗̃2
(0) (0),⊗̃2

(0) (1),⋯ ,⊗̃2
(0) (𝑛)), 

⊗̃3
(0)
= (⊗̃3

(0) (−𝑙),⋯ ⊗̃3
(0) (−2),⊗̃3

(0) (−1),⊗̃3
(0) (0),⊗̃3

(0) (1),⋯ ,⊗̃3
(0) (𝑛)), 

⋯⋯ 

⊗̃𝑁
(0)
= (⊗̃𝑁

(0) (−𝑙),⋯ ⊗̃𝑁
(0) (−2),⊗̃𝑁

(0) (−1),⊗̃𝑁
(0) (0),⊗̃𝑁

(0) (1),⋯ ,⊗̃𝑁
(0) (𝑛)), 

where 𝑛, 𝑙 are positive integer, ⊗̃𝑁
(0) (1),⋯ ,⊗̃𝑁

(0) (𝑛) means current data and ⊗̃𝑁
(0) (0),⋯ ,⊗̃𝑁

(0) (−𝑙) 

means previous data. Thus, the time-lag relative factors of kernel sequence are shown as follows: 

⊗̃2
(0)
= (⊗̃2

(0) (1 − τ2),⊗̃2
(0) (2 − τ2),⋯ ,⊗̃2

(0) (𝑛 − τ2)), 

⊗̃3
(0)
= (⊗̃3

(0) (1 − τ3),⊗̃3
(0) (2 − τ3),⋯ ,⊗̃3

(0) (𝑛 − τ3)), 

⋯⋯ 

⊗̃𝑁
(0)
= (⊗̃𝑁

(0) (1 − τ𝑁),⊗̃𝑁
(0) (2 − τ𝑁),⋯ ,⊗̃𝑁

(0) (𝑛 − τ𝑁)), 

where τ𝑖 , 𝑛 are positive integer, and τ𝑖 ∈ [0, 𝑙 + 1] (𝑖 = 2,3,⋯ ,𝑁) is the time-lag parameter for relative 

factors. When ⊗̃𝑖
(1)

 is the first order accumulating generation sequence of ⊗̃𝑖
(0)

, 𝑖 = 1,2,⋯ ,𝑁, and 



    

𝑍1
(1)

 is the mean sequence generated by the consecutive neighbor of ⊗̃1
(1)

, the time-lag GM(1,N) model 

based on kernel sequences is shown as follows: 

⊗̃1
(0) (𝑘) + 𝑎𝑧1

(1)(𝑘) =∑𝑏𝑖 ⊗̃𝑖
(1) (𝑘 − τ𝑖) 

𝑁

𝑖=2

.                                   (2) 

Especially, when τ𝑖 = 0 indicates that all relative factors and system characteristic data sequences are 

synchronous variables, the time-lag GM(1,N) model based on kernel sequences degenerates to the GM(1,N) 

model based on kernel sequences. 

Definition 9 In the time-lag GM(1,N) model based on kernel sequences, 𝑎 represents the system 

development coefficient, 𝑏𝑖 ⊗̃𝑖
(1) (𝑘 − τ𝑖)  represents the driving term, 𝑏𝑖  represents the driving 

coefficient, and �̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇represents the undetermined coefficient vector. 

Theorem 3 When ⊗̃1
(0)

 is the system characteristic data sequence, ⊗̃𝑖
(0) (𝑖 = 2,3, … , 𝑁)  is the 

relative factor sequence, ⊗̃𝑖
(1)

 is the first order accumulating generation sequence of ⊗̃𝑖
(0)

, 𝑍1
(1)

 is the 

mean sequence generated by the consecutive neighbor of ⊗̃1
(1)

, and τ𝑖 is the time-lag parameters of 

relative factors, where 

𝑩 = =

[
 
 
 
 −𝑧1

(1)(2) ⊗̃2
(1) (2−τ2)

−𝑧1
(1)(3) ⊗̃2

(1) (3 − τ2)

⋯ ⊗̃𝑁
(1) (2 − τ𝑛)

⋯ ⊗̃𝑁
(1) (3 − τ𝑛)

⋮ ⋮

−𝑧1
(1)(𝑛) ⊗̃2

(1) (𝑛 − τ2)

 ⋮

⋯ ⊗̃𝑁
(1) (𝑛 − τ𝑛)]

 
 
 
 

, 𝒀 =  

[
 
 
 
 ⊗̃1

(0) (2)

⊗̃1
(0) (3)

⋮

⊗̃1
(0) (𝑛)]

 
 
 
 

.  

Therefore, the undetermined coefficient vector of the time-lag GM(1,N) model based on kernel sequences 

is �̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇, which can be estimated by the least squares method as follows: 

(1) When 𝑛 = N + 1, and |𝑩| ≠ 0, so �̂� = 𝑩−1𝒀; 

(2) When 𝑛 > N + 1, and |𝑩𝑇𝑩| ≠ 0, so �̂� = (𝑩𝑇𝑩)−1𝑩𝑇𝒀; 

(3) When 𝑛 < N + 1, and |𝑩𝑇𝑩| ≠ 0, so �̂� = 𝑩𝑇(𝑩𝑩𝑇)−1𝒀. 

Proof: By substituting 𝑘 = 2,3,⋯ , 𝑛 into formula (2), equations are obtained as follows: 

⊗̃1
(1) (2) = −𝑎𝑧1

(1)(2) + 𝑏2 ⊗̃2
(1) (2 − τ2) +··· +𝑏𝑁 ⊗̃𝑁

(1) (2 − τ𝑁),

⊗̃1
(1) (3) = −𝑎𝑧1

(1)(3) + 𝑏2 ⊗̃2
(1) (3 − τ2) +··· +𝑏𝑁 ⊗̃𝑁

(1) (3 − τ𝑁),
⋮

⊗̃1
(1) (𝑛) = −𝑎𝑧1

(1)(𝑛) + 𝑏2 ⊗̃2
(1) (𝑛 − τ2) +··· +𝑏𝑁 ⊗̃𝑁

(1) (𝑛 − τ𝑁).

 

Therefore, we can obtain by the least square method as follows: 

𝒀 = 𝑩𝒂. 

(1) When 𝑛 = N + 1 and |𝑩| ≠ 0, and 𝑩 exists an inverse matrix, the equation has unique solutions, 

that is �̂� = 𝑩−1𝒀. 

(2) When 𝑛 > 𝑁 + 1, and 𝑩 is a column full rank matrix, we have the full rank decomposition of 𝑩 

is 𝑩 = 𝑫𝑪, then the generalized inverse matrix of 𝑩 can be obtained as follows: 

𝑩+ = 𝑪𝑇(𝑪𝑪𝑇)−1(𝑫𝑇𝑫)−1𝑫𝑇 , 



    

�̂� = 𝑪𝑇(𝑪𝑪𝑇)−1(𝑫𝑇𝑫)−1𝑫𝑇𝒀. 

Due to 𝑩 is a column full rank matrix, when 𝑪 is an identity matrix, we have 𝑩 = 𝑫𝑰𝒏, 𝑩 = 𝑫, that is  

�̂� = 𝑪𝑇(𝑪𝑪𝑇)−1(𝑫𝑇𝑫)−1𝑫𝑇𝒀 = (𝑫𝑇𝑫)−1𝑫𝑇𝒀 = (𝑩𝑇𝑩)−1𝑩𝑇𝒀. 

(3) When 𝑛 < 𝑁 + 1, 𝑩 is a row full rank matrix, when 𝑫 is an identity matrix, we have 𝑩 = 𝑰𝒏𝑪, 

𝑩 = 𝑪, that is 

�̂� = 𝑪𝑇(𝑪𝑪𝑇)−1(𝑫𝑇𝑫)−1𝑫𝑇𝒀 = 𝑪𝑇(𝑪𝑪𝑇)−1𝒀 = 𝑩𝑇(𝑩𝑩𝑇)−1𝒀. 

Definition 10 Let �̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇, the whitening equation for a time-lag GM(1,N) model based on 

kernel sequences is shown as follows: 

𝑑 ⊗̃1
(1)

𝑑𝑡
+ 𝑎 ⊗̃1

(1)=∑𝑏𝑖 ⊗̃𝑖
(1) (𝑡 − τ𝑖) 

𝑁

𝑖=2

.                                            (3) 

Theorem 4 The coefficient vector �̂� of the time-lag GM(1,N) model based on kernel sequences 

satisfies above conditions, thus we obtain the solutions as follows: 

(1) The solution of the whitening equation can be obtained as follows: 

⊗̃ 
(1) (𝑡) = 𝑒−𝑎𝑡 [⊗̃1

(1) (0) − 𝑡∑𝑏𝑖 ⊗̃𝑖
(1) (0)

𝑁

𝑖=2

+∑∫𝑏𝑖 ⊗̃𝑖
(1) (𝑡 − τ𝑖)𝑒

𝑎𝑡 𝑑𝑡

𝑁

𝑖=2

].  (4) 

(2) When the change of ⊗̃𝑖
(1)

 is very small, we suppose that ∑ 𝑏𝑖 ⊗̃𝑖
(1) (𝑘 − τ𝑖)

𝑁
𝑖=2  is a grey constant. 

Therefore, the approximate time response of the time-lag GM(1,N) model based on kernel sequences is 

shown as follows: 

⊗̂̃1
(1) (𝑘 + 1) =

1

𝑎
 ∑𝑏𝑖 ⊗̃𝑖

(1) (𝑘 + 1 − τ𝑖) 

𝑁

𝑖=2

 

+𝑒−𝑎𝑘 [⊗̃1
(1) (0) −

1

𝑎
∑𝑏𝑖 ⊗̃𝑖

(1) (𝑘 + 1 − τ𝑖) 

𝑁

𝑖=2

].         (5) 

where the solution can be obtained with the initial condition ⊗̃1
(1) (0) =⊗̃1

(0) (1). 

(3) The inverse accumulating reduction equation is shown as follows: 

⊗̂̃1
(0) (𝑘 + 1) = ⊗̂̃1

(1) (𝑘 + 1) −⊗̂̃1
(1) (𝑘).                                           (6) 

3.2 Time-lag GM(1,N) model based on degree of greyness sequences 

Definition 11 Assume that the degree of greyness sequence in the interval grey number sequence is 

𝑔𝑖
∘(0) = (𝑔𝑖

∘(0)(1),𝑔𝑖
∘(0)(2),⋯ ,𝑔𝑖

∘(0)(𝑛)) , 𝑖 = 1,2,⋯ ,𝑁, and the degree of greyness is shown as follows： 

𝑔𝑖
∘(0)(𝑗) =

(𝑏𝑖𝑗 − 𝑎𝑖𝑗)

μ(𝛺)
, 𝑖 = 1,2,⋯ ,𝑁, 𝑗 = 1,2,⋯ , 𝑛.                              (7) 

Definition 12 Assume that the system characteristic data sequence of the degree of greyness is shown 

as follows: 



    

𝑔1
∘(0) = (𝑔1

∘(0)(1),𝑔1
∘(0)(2),⋯ ,𝑔1

∘(0)(𝑛)), 

and the relative factor sequences of the degree of greyness are shown as follows: 

𝑔2
∘(0) = (𝑔2

∘(0)(−𝑙),⋯𝑔2
∘(0)(−2),𝑔2

∘(0)(−1),𝑔2
∘(0)(0),𝑔2

∘(0)(1),⋯ ,𝑔2
∘(0)(𝑛)), 

𝑔3
∘(0) = (𝑔3

∘(0)(−𝑙),⋯𝑔3
∘(0)(−2),𝑔3

∘(0)(−1),𝑔3
∘(0)(0),𝑔3

∘(0)(1),⋯ ,𝑔3
∘(0)(𝑛)), 

⋯⋯ 

𝑔𝑁
∘(0) = (𝑔𝑁

∘(0)(−𝑙),⋯𝑔𝑁
∘(0)(−2),𝑔𝑁

∘(0)(−1),𝑔𝑁
∘(0)(0),𝑔𝑁

∘(0)(1),⋯ ,𝑔𝑁
∘(0)(𝑛)), 

where 𝑛, 𝑙 are positive integer, 𝑔𝑁
∘(0)(1),⋯ ,𝑔𝑁

∘(0)(𝑛) means current data and 𝑔𝑁
∘(0)(0),⋯ ,𝑔𝑁

∘(0)(−𝑙) 

means previous data. Thus, the time-lag relative factors of the degree of greyness sequence are shown as 

follows: 

𝑔2
∘(0) = (𝑔2

∘(0)(1 − 𝜏2),𝑔2
∘(0)(2 − 𝜏2), ⋯ ,𝑔2

∘(0)(𝑛 − 𝜏2)), 

𝑔3
∘(0) = (𝑔3

∘(0)(1 − 𝜏3),𝑔3
∘(0)(2 − 𝜏3), ⋯ ,𝑔3

∘(0)(𝑛 − 𝜏3)), 

⋯⋯ 

𝑔𝑁
∘(0) = (𝑔𝑁

∘(0)(1 − 𝜏𝑁),𝑔𝑁
∘(0)(2 − 𝜏𝑁),⋯ ,𝑔𝑁

∘(0)(𝑛 − 𝜏𝑁)), 

where τ𝑖 , 𝑛 are positive integer, and τ𝑖 ∈ [0, 𝑙 + 1](𝑖 = 2,3,⋯ ,𝑁) is the time-lag parameter for relative 

factors. When 𝑔𝑖
∘(1)

 is the first order accumulating generation sequence of 𝑔𝑖
∘(0)

, 𝑖 = 1,2,⋯ ,𝑁, and 𝑍1
(1)

 

is the mean sequence generated by the consecutive neighbor of 𝑔1
∘(1)

, the time-lag GM(1,N) model based 

on degree of greyness sequences is shown as follows: 

𝑔1
∘(0)(𝑘)+ 𝑎𝑧1

(1)(𝑘) =∑𝑏𝑖𝑔𝑖
∘(1)(𝑘 − 𝜏𝑖) 

𝑁

𝑖=2

.                                     (8) 

Especially, when τ𝑖 = 0 indicates that all relative factors and system characteristic data sequences are 

synchronous variables, the time-lag GM(1,N) model based on degree of greyness sequences degenerates to 

the GM(1,N) model based on degree of greyness sequences. 

Definition 13 In the time-lag GM(1,N) model based on degree of greyness sequences, 𝑎 represents the 

system development coefficient, 𝑏𝑖𝑔𝑖
∘(1)(𝑘 − 𝜏𝑖) represents the driving term, 𝑏𝑖 represents the driving 

coefficient, and �̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇represents the undetermined coefficient vector. 

Theorem 5 𝑔1
∘(0)

 is the system characteristic data sequence, 𝑔𝑖
∘(0)(𝑖 = 2,3,… ,𝑁) is the relative factor 

sequence, 𝑔𝑖
∘(1)

 is the first order accumulating generation sequence of 𝑔𝑖
∘(0)

, 𝑍1
(1)

 is the mean sequence 

generated by the consecutive neighbor of 𝑔1
∘(1)

, and τ𝑖 is the time-lag parameter of relative factors, where 



    

𝑩 =

[
 
 
 
 −𝑧1

(1)(2) 𝑔
2
∘(1)(2 − τ2)

−𝑧1
(1)(3) 𝑔

2
∘(1)(3 − τ2)

⋯ 𝑔
𝑁
∘(1)(2 − τ𝑁)

⋯ 𝑔
𝑁
∘(1)(3 − τ𝑁)

⋮ ⋮

−𝑧1
(1)(𝑛) 𝑔

2
∘(1)(𝑛 − τ2)

 ⋮
⋯ 𝑔

𝑁
∘(1)(𝑛 − τ𝑁)]

 
 
 
 

, 𝒀 =  

[
 
 
 
 
𝑔
1
∘(0)(2)

𝑔
1
∘(0)(3)

⋮
𝑔
1
∘(0)(𝑛)]

 
 
 
 

,  

The undetermined coefficient vector of the time-lag GM(1,N) model based on degree of greyness 

sequences is �̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇, which can be estimated by the least squares method as follows: 

(1) When 𝑛 = N + 1, and |𝑩| ≠ 0, so �̂� = 𝑩−1𝒀; 

(2) When 𝑛 > N + 1, and |𝑩𝑇𝑩| ≠ 0, so �̂� = (𝑩𝑇𝑩)−1𝑩𝑇𝒀; 

(3) When 𝑛 < N + 1, and |𝑩𝑇𝑩| ≠ 0, so �̂� = 𝑩𝑇(𝑩𝑩𝑇)−1𝒀. 

The proof is same as Theorem 3. 

Definition 14 Let �̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇, the whitening equation for a time-lag GM(1,N) model based on 

degree of greyness sequences is shown as follows: 

𝑑𝑔
1
∘(1)

𝑑𝑡
+ 𝑎𝑔

1
∘(1) =∑𝑏𝑖𝑔𝑖

∘(1)(𝑡 − τ𝑖) 

𝑁

𝑖=2

.                                             (9) 

Theorem 6 The coefficient vector �̂� of the time-lag GM(1,N) model based on degree of greyness 

sequences satisfies above conditions, thus we obtain the solutions as follows: 

(1) The solution of the whitening equation can be obtained as follows: 

𝑔∘(1)(𝑡) = 𝑒−𝑎𝑡 [𝑔
1
∘(1)(0) − 𝑡∑𝑏𝑖𝑔𝑖

∘(1)(0)

𝑁

𝑖=2

+∑∫𝑏𝑖𝑔𝑖
∘(1)(𝑡 − τ𝑖)𝑒

𝑎𝑡 𝑑𝑡

𝑁

𝑖=2

].  (10) 

(2) When the change of 𝑔°
𝑖

(1)
 is very small, we suppose that ∑ 𝑏𝑖𝑔

°
𝑖

(1)
(𝑘 − τ𝑖)

𝑁
𝑖=2  is a grey constant. 

Therefore, the approximate time response of the time-lag GM(1,N) model based on degree of greyness 

sequences is shown as follows: 

𝑔∘̂
1

(1)
(𝑘 + 1) =

1

𝑎
 ∑𝑏𝑖𝑔𝑖

∘(1)(𝑘 + 1 − τ𝑖) 

𝑁

𝑖=2

 

+𝑒−𝑎𝑘 [𝑔
1
∘(1)(0) −

1

𝑎
∑𝑏𝑖𝑔𝑖

∘(1)(𝑘 + 1 − τ𝑖) 

𝑁

𝑖=2

].          (11) 

where the solution can be obtained with the initial condition 𝑔1
∘(1)(0) = 𝑔1

∘(0)(1). 

(3) The inverse accumulating reduction equation is shown as follows: 

𝑔
1
∘̂ (0)(𝑘 + 1) =  𝑔

1
∘̂ (1)(𝑘 + 1) − 𝑔

1
∘̂ (1)(𝑘).                                             (12) 

3.3 Identification method of time-lag parameter τ𝑖  

In the modeling process of the time-lag GM(1,N) model based on interval grey number sequences, 

identifying the time-lag parameter τ𝑖 is the most critical step, which directly affects the modeling and 

prediction accuracy of the model. 



    

This paper considers from the angle of improving the model prediction accuracy, by minimizing the 

average relative error of modeling as the optimal objective function and taking the relationship between 

model parameters as the constraint condition, the objective function of the time-lag GM(1,N) model based 

on kernel sequences is constructed as follows: 

min
τ𝑖
𝑎𝑣𝑔(𝑒(𝑘)) =

1

𝑛 − 1
∑ |

⊗̂̃𝑘−⊗̃𝑘

⊗̃𝑘

| ,

𝑛

𝑘=2

                                     (13) 

𝑠. 𝑡.

{
 
 

 
 

�̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇;

⊗̂̃1
(0) (𝑘) =⊗̂̃1

(1) (𝑘) −⊗̂̃1
(1) (𝑘 − 1), 𝑘 = 2,3,⋯ , 𝑛;

⊗̂̃1
(1) (𝑘) =

1

𝑎
 ∑𝑏𝑖 ⊗̃𝑖

(1) (𝑘 − 𝜏𝑖) 

𝑁

𝑖=2

+ 𝑒−𝑎(𝑘−1) [⊗̃1
(1) (0) −

1

𝑎
∑𝑏𝑖 ⊗̃𝑖

(1) (𝑘 − 𝜏𝑖)

𝑁

𝑖=2

] ;

 

Similarly, the objective function of the time-lag GM(1,N) model based on degree of greyness sequences is 

constructed as follows: 

min
τ𝑖
𝑎𝑣𝑔(𝑒(𝑘)) =

1

𝑛 − 1
∑ |

𝑔𝑘
∘̂ − 𝑔𝑘

∘

𝑔𝑘
∘ | ,

𝑛

𝑘=2

                                     (14) 

𝑠. 𝑡.

{
 
 

 
 

�̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇;

𝑔1
∘̂(0)(𝑘) =  𝑔1

∘̂(1)(𝑘) − 𝑔1
∘̂(1)(𝑘 − 1), 𝑘 = 2,3,⋯ , 𝑛;

𝑔∘̂
1

(1)
(𝑘) =

1

𝑎
 ∑𝑏𝑖𝑔𝑖

∘(1)(𝑘 − 𝜏𝑖) 

𝑁

𝑖=2

+ 𝑒−𝑎𝑘 [𝑔1
∘(1)(0) −

1

𝑎
∑𝑏𝑖𝑔𝑖

∘(1)(𝑘 − 𝜏𝑖) 

𝑁

𝑖=2

] ;

 

Formula (13) and formula (14) can be solved by LINGO, MATLAB or some intelligent optimization 

algorithms (such as particle swarm optimization, genetic algorithm, etc.). After the optimal solution of the 

time-lag parameter τ𝑖 is determined, the structural parameters of the model can be estimated, and then the 

simulation and prediction results can be obtained through the optimal time response function. 

3.4 Model error testing 

In order to study the reliability of the prediction results, it is necessary to test the error of the model. In 

this paper, the prediction model is tested by comparing the relative error and average relative error of upper 

and lower bounds in interval grey number sequences, the average relative error of grey elements in interval 

grey number sequences, and the model average relative error. The calculation formulas are shown as 

follows: 

The relative error of grey elements upper and lower bounds in interval grey number sequences is shown 

as follows: 

{
 
 

 
 ∆𝑘̅̅ ̅=

|�̂�𝑘 − 𝑎𝑘|

𝑎𝑘
× 100%

∆𝑘=
|�̂�𝑘 − 𝑏𝑘|

𝑏𝑘
× 100%  

, 𝑘 = 1,2,⋯ , 𝑛.                                         (15) 

The average relative error of grey elements upper and lower bounds in interval grey number sequences 

is shown as follows: 



    

{
 
 

 
 �̂�𝑘 =

1

𝑛
∑∆𝑘

𝑛

𝑘=1

�̂�𝑘 =
1

𝑛
∑∆𝑘

𝑛

𝑘=1

 

, 𝑘 = 1,2,⋯ , 𝑛.                                                   (16) 

The average relative error of grey elements in interval grey number sequences is shown as follows: 

∆𝑘=
1

2
∑(∆𝑘 + ∆𝑘)

𝑛

𝑘=1

, 𝑘 = 1,2,⋯ , 𝑛.                                                  (17) 

The model average relative error is shown as follows: 

∆ =
1

𝑛
∑∆𝑘

𝑛

𝑘=1

=  
1

2
∑(�̂�𝑘 + �̂�𝑘) .

𝑛

𝑘=1

                                                 (18) 

The prediction accuracy is an important criterion to measure the quality of prediction model. This paper 

specifies the prediction accuracy corresponding to the average relative error, that is the prediction model 

passing the model error testing when the model average relative error is less than 10%, as shown in Table 1.  

Table1 Prediction accuracy corresponding to average relative error (Lewis, 1982) 

Average relative error (%) Prediction accuracy 

<10 High 

10-20 Good 

20-50 Reasonable 

>50 Weak 

3.5 Modeling steps 

The time-lag GM(1,N) model based on interval grey sequences can be established as illustrated as 

follows: 

Step 1: After obtaining the raw data, both kernel and degree of greyness in the interval grey sequence of 

the system characteristic data and relative factors are calculated. 

Step 2: By minimizing the average relative error of modeling as the optimal objective function, the 

time-lag parameter τ𝑖  of the time-lag GM(1,N) model are determined in both kernel and degree of 

greyness sequences respectively. 

 Step 3: After calculating the coefficient vector �̂� =  [𝑎, 𝑏2,···, 𝑏𝑁]
𝑇of the time-lag GM(1,N) model 

based on kernel and degree of greyness sequences, the time-lag GM(1,N) model can be built based on 

kernel and degree of greyness sequences respectively, so values of both kernel and degree of greyness can 

be respectively obtained.  

Step 4: The upper and lower bounds of the interval grey number sequence are obtained by restoring the 

simulated and predicted values of kernel and degree of greyness sequences. 

Step5: Calculating the model errors, if the model average relative error passes the model error testing, 

the modeling process will end. If not, the raw data will be updated, and start again from Step 1.  



    

No 

In order to present the modeling process more clearly, modeling steps are as shown in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Fig.1 Modeling flow chart of the time-lag GM(1,N) model based on interval grey number sequences  

 

4 Case Study 

Smog is mainly composed of inhalable particulate matter, sulfur dioxide and nitrogen oxides, among 
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GM(1,N) model in kernel and degree of greyness  

sequences. 

 

Step 5: Calculating the model errors. 
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End 
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number sequence are obtained by restoring the simulated 
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sequences. 



    

which the former is particulate matter, and the latter two are atmospheric pollutants. When the three are 

combined with fog, the atmosphere becomes turbid so that visibility decreases. Under the meteorological 

condition that is difficult to diffusion, the accumulation of atmospheric pollutants is conducive to the 

formation of smog, in other words, the accumulation of atmospheric pollutants and smog production has 

the time-lag effect (Shao et al., 2018; Zhang et al., 2018), and the previous atmospheric pollutants will have 

a certain impact on the current smog. Therefore, the time-lag GM(1,N) model based on interval grey 

number sequences is suitable to conduct smog prediction. 

4.1 Selection and processing of data 

PM2.5 is the main indicator of smog in Beijing (Gao et al., 2018; Qian et al., 2019), so this paper takes 

PM2.5 concentration as the system characteristic data of the model for studying the change trend of smog in 

Beijing. Furthermore, PM2.5 can be transformed from SO2 and NO2 in air pollutants (Zhang et al., 2013), 

thus SO2 and NO2 concentrations are considered as the relative factors of the model. Due to the limitation 

of data acquisition tools, acquisition conditions and artificial errors, there may be unavoidable measurement 

errors in smog related data, which makes the data of PM2.5, SO2 and NO2 concentrations uncertain, so their 

values have certain grey number characteristics in a certain range. This paper mainly considers the situation 

of interval grey numbers. 

The monthly data of PM2.5, SO2 and NO2 concentrations at 35 monitoring stations in Beijing from 

August 2017 to September 2018 were collected from http://beijingair.sinaapp.com. In data processing, we 

averaged the hourly data of 35 monitoring stations into daily data, and then the daily data into monthly data. 

Moreover, the maximum and minimum values of the observed values in a moving window of three months 

are taken as the upper and lower bounds of the interval grey number for the third month in the 

corresponding moving window. We denote that the interval grey number corresponding to PM2.5, SO2 and 

NO2 concentrations as 𝑋1(⨂), 𝑋2(⨂), 𝑋3(⨂) respectively. Using January 2018 to September 2018 as 

current data and August 2017 to December 2017 as previous data, the raw data is shown in Table 2. Based 

on the data of PM2.5, SO2 and NO2 concentrations in Beijing in the past two years, their domains are 

determined as μ(Ω1) = μ(Ω2) = μ(Ω3) = 500. 

Table 2 Interval grey number sequence of PM2.5, SO2 and NO2 concentrations 

𝑘 Time 𝑋1(⨂)(μg/m3) 𝑋2(⨂)(μg/m3)  𝑋3(⨂)(μg/m3) 

-4 Aug. 2017 [38,52] [3,6] [34,38] 

-3 Sep. 2017 [38,58] [3,4] [34,49] 

-2 Oct. 2017 [38,58] [3,4] [35,49] 

-1 Nov. 2017 [46,58] [3,5] [44,48] 

0 Dec. 2017 [44,57] [4,9] [44,47] 

1 Jan. 2018 [34,46] [5,8] [34,49] 

2 Feb. 2018 [34,50] [8,10] [34,49] 

3 Mar. 2018 [34,85] [8,10] [34,58] 

4 Apr. 2018 [50,85] [7,10] [34,58] 

http://beijingair.sinaapp.com/


    

5 May 2018 [48,85] [6,8] [40,58] 

6 Jun. 2018 [48,74] [5,7] [36,50] 

7 Jul. 2018 [48,74] [4,7] [36,50] 

8 Aug. 2018 [36,74] [3,5] [28,36] 

9 Sep. 2018 [34,59] [3,4] [26,34] 

4.2 Establishment and comparison of the model 

Step 1: According to Table 2, the data for January 2018 to July 2018 are used as the training set, and the 

data for August 2018 to September 2018 are used as the test set. According to formula (1) and formula (7), 

the kernel and degree of greyness in PM2.5, SO2 and NO2 concentrations are calculated, and the results are 

shown in Table 3. 

Table 3 Kernel and degree of greyness sequences in PM2.5, SO2 and NO2 concentrations 

𝑘 ⨂̃1(𝑘) ⨂̃2(𝑘) ⨂̃3(𝑘) 𝑟1(𝑘) 𝑟2(𝑘) 𝑟3(𝑘) 

-4 45 4.5 36 0.028 0.006 0.008 

-3 48 3.5 41.5 0.04 0.002 0.03 

-2 48 3.5 42 0.04 0.002 0.028 

-1 52 4 46 0.024 0.004 0.008 

0 50.5 6.5 45.5 0.026 0.01 0.006 

1 40 6.5 41.5 0.024 0.006 0.03 

2 42 9 41.5 0.032 0.004 0.03 

3 59.5 9 46 0.102 0.004 0.048 

4 67.5 8.5 46 0.07 0.006 0.048 

5 66.5 7 49 0.074 0.004 0.036 

6 61 6 43 0.052 0.004 0.028 

7 61 5.5 43 0.052 0.006 0.028 

Step 2: According to formula (2) and formula (13), the time-lag parameters of the time-lag GM(1,3) 

model based on kernel sequences are determined by MATLAB, which are τ2 = 2, τ3 = 2.  

According to formula (8) and formula (14), the time-lag parameters of the time-lag GM(1,3) model based 

on degree of greyness sequences are determined by MATLAB, which are τ2 = 3, τ3 = 1. 

Step 3: The model parameters are determined according to Theorem 3 and Theorem 5, and according to 

Formula (2), the time-lag GM(1,3) model based on kernel sequences with PM2.5 concentration is 

established as follows: 

⊗̃1
(0) (𝑘) + 1.53𝑧1

(1)(𝑘) = 8.73 ⊗̃2
(1) (𝑘 − 2) + 0.59 ⊗̃3

(1) (𝑘 − 2). 

According to Formula (8), the time-lag GM(1,3) model based on degree of greyness sequences with PM2.5 

concentration is established as follows: 

𝑔1
∘(0)(𝑘) + 1.35𝑧1

(1)(𝑘) = 12.56𝑔2
∘(1)(𝑘 − 3) + 0.55𝑔3

∘(1)(𝑘 − 1). 

According to the time-lag GM(1,3) model based on kernel and degree of greyness sequences with PM2.5 

concentration, the simulated and predicted values of kernel and degree of greyness sequences with PM2.5 

concentration are respectively obtained. 

Step 4: According to Lemma 1, the upper and lower bounds of the interval grey number sequence are 



    

calculated by restoring the simulated and predicted values of kernel and degree of greyness sequences with 

PM2.5 concentration, and the results are shown in tables 4 and 5. 

Step 5: According to formula (15) and formula (16), relative errors and average relative errors of PM2.5 

concentration upper and lower bounds are calculated, and the results are shown in Table 4 and Table 5. 

According to formula (17) and formula (18), average relative errors of PM2.5 concentration interval grey 

number and model are calculated, and the results are shown in table 6. 

In order to test the superiority of the model proposed in this paper, we select the time-lag discrete 

GM(1,3) model and the traditional GM(1,3) model based on interval grey number sequences as the 

comparison model. To verify the superiority of the new model in dealing with small data, the multivariate 

linear regression model is also selected as the non-grey comparison model, because the multiple regression 

model and GM(1,N) model both study the influence of multiple independent variables on one dependent 

variable. The time-lag discrete GM(1,3) model, the traditional GM(1,3) model and the multivariate linear 

regression model are established as follows: 

The time-lag discrete GM(1,3) model based on kernel and degree of greyness sequences with PM2.5 

concentration are shown as follows: 

⊗̃1
(1) (𝑘) − 0.04 ⊗̃1

(1) (𝑘 − 1) = 2.86 ⊗̃2
(1) (𝑘 − 3) − 2.53 ⊗̃3

(1) (𝑘 − 2) + 144.53, 

𝑔1
∘(1)(𝑘) + 0.97𝑔1

∘(1)(𝑘 − 1) = −7.02𝑔2
∘(1)(𝑘 − 1) + 3.38𝑔3

∘(1)(𝑘) − 0.19. 

The GM(1,3) model based on kernel and degree of greyness sequences with PM2.5 concentration are 

shown as follows: 

⊗̃1
(0) (𝑘) + 0.53𝑧1

(1)(𝑘) = 4.10 ⊗̃2
(1) (𝑘) + 0.14 ⊗̃3

(1) (𝑘), 

𝑔1
∘(0)(𝑘) + 0.94𝑧1

(1)(𝑘) = −7.61𝑔2
∘(1)(𝑘) + 2.65𝑔3

∘(1)(𝑘). 

The multivariate linear regression model based on kernel and degree of greyness sequences with PM2.5 

concentration are shown as follows: 

⊗̃1
(0) (𝑘) = 48.89 − 2.77 ⊗̃2

(0) (𝑘) + 0.68 ⊗̃3
(0) (𝑘), 

𝑔1
∘(0)(𝑘) = 0.01 − 7.97𝑔2

∘(0)(𝑘) + 2.31𝑔3
∘(0)(𝑘). 

According to the time-lag discrete GM(1,3) model and the GM(1,3) model and multiple linear 

regression model based on kernel and degree of greyness sequences, we can obtain the simulated and 

predicted values of PM2.5 concentration kernel and degree of greyness sequences. The simulated and 

predicted results and average relative errors are shown in Table 4 to Table 6. For convenience, the time-lag 

GM(1,3) model, time-lag discrete GM(1,3) model, GM(1,3) model and multiple linear regression model are 

recorded as TLGM(1,3), TLDGM(1,3), GM(1,3) and MLR respectively. 

Table 4 PM2.5 concentration simulated and predicted values of the lower bound in the interval grey number and their 

relative error 

Time 
Actual 

Value 

TLGM(1,3) TLDGM(1,3) GM(1,3) MLR 

Simulated 

Value 

Relative 

Error(%) 

Simulated 

Value 

Relative 

Error(%) 

Simulated 

Value 

Relative 

Error(%) 

Simulated 

Value 

Relative 

Error(%) 

Jan. 2018 34 34.00 0.00 34.00 0.00 34.00 0.00 50.12 47.41 



    

Feb. 2018 34 34.21 0.62 36.10 6.18 31.96 6.00 39.21 15.32 

Mar. 2018 34 32.73 3.74 35.59 4.69 52.29 53.79 31.87 6.26 

Apr. 2018 50 49.79 0.42 56.76 13.51 63.75 27.50 37.24 25.52 

May 2018 48 55.05 14.69 53.80 12.08 61.65 28.44 46.39 3.35 

Jun. 2018 48 53.05 10.52 52.31 8.98 57.12 19.00 49.69 3.52 

Jul. 2018 48 41.69 13.15 50.44 5.09 54.69 13.94 55.06 14.71 

Average simulated error (%) 6.16  7.22  21.24  16.59 

  Predicted 

Value 

Relative 

Error(%) 

Predicted 

Value 

Relative 

Error(%) 

Predicted 

Value 

Relative 

Error(%) 

Predicted 

Value 

Relative 

Error(%) 

Aug. 2018 36 38.35 6.53 32.81 8.86 48.56 34.89 56.19 56.08 

Sep. 2018 34 35.29 3.79 29.37 13.62 44.17 29.91 58.77 72.86 

Average predicted error (%) 5.16  11.24  32.40  64.47 

Table 5 PM2.5 concentration simulated and predicted values of the upper bound in the interval grey number and their 

relative error 

Time 
Actual 

Value 

TLGM(1,3) TLDGM(1,3) GM(1,3) MLR 

Simulated 

Value 

Relative 

Error(%) 

Simulated 

Value 

Relative 

Error(%) 

Simulated 

Value 

Relative 

Error(%) 

Simulated 

Value 

Relative 

Error(%) 

Jan. 2018 46 46.00 0.00 46.00 0.00 46.00 0.00 68.29 48.46 

Feb. 2018 50 51.50 3.00 57.09 14.17 51.55 3.10 65.36 30.72 

Mar. 2018 85 86.47 1.73 87.85 3.35 103.56 21.84 78.84 7.25 

Apr. 2018 85 90.78 6.80 85.94 1.11 112.31 32.13 76.24 10.31 

May 2018 85 84.90 0.12 82.39 3.07 100.00 17.65 79.48 6.49 

Jun. 2018 74 79.54 7.49 81.76 10.48 82.47 11.45 73.53 0.64 

Jul. 2018 74 75.57 2.12 80.97 9.42 70.85 4.26 70.92 4.16 

Average simulated error (%) 3.03  5.94  12.92  15.43 

  Predicted 

Value 

Relative 

Error(%) 

Predicted 

Value 

Relative 

Error(%) 

Predicted 

Value 

Relative 

Error(%) 

Predicted 

Value 

Relative 

Error(%) 

Aug. 2018 74 62.79 15.15 62.74 15.22 66.98 9.49 74.36 0.49 

Sep. 2018 59 60.12 1.90 54.35 7.89 59.54 0.92 74.63 26.49 

Average predicted error (%) 8.53  11.55  5.21  13.49 

Table 6 PM2.5 concentration interval grey number and average relative error 

Time 
TLGM(1,3) TLDGM(1,3) GM(1,3) MLR 

Relative Error(%) Relative Error(%) Relative Error(%) Relative Error(%) 

Jan. 2018 0.00 0.00 0.00 47.94 

Feb. 2018 1.81 10.18 4.55 23.02 

Mar. 2018 2.74 4.02 37.82 6.76 

Apr. 2018 3.61 7.31 29.82 17.92 

May 2018 7.41 7.57 23.05 4.92 

Jun. 2018 9.01 9.73 15.23 2.08 

Jul. 2018 7.64 7.25 9.10 9.44 

Average simulated 

error (%) 
4.60 6.58 17.08 16.01 

Aug. 2018 10.84 12.04 22.19 28.29 

Sep. 2018 2.85 10.76 15.42 49.68 



    

Average predicted 

error (%) 
6.85 11.40 18.81 38.99 

Table 4 shows that the average relative errors of lower bounds in training sets for TLGM(1,3), 

TLDGM(1,3), GM(1,3) and MLR models are 6.16%, 7.22%, 21.24%, 16.59%, and those of test sets are 

5.16%, 11.24%, 32.40% and 64.47% respectively. It shows that the proposed TLGM(1,3) model has a good 

ability to simulate and forecast lower bounds in interval grey number sequences, and this novel model is 

superior to the existing time-lag discrete model. Besides, Table 5 shows that the average relative errors of 

upper bounds in training sets for TLGM(1,3), TLDGM(1,3), GM(1,3) and MLR models are 3.03%, 5.94%, 

12.92%, 15.43%, and those of test sets are 8.53%, 11.55%, 5.21% and 13.49% respectively. Although the 

upper bound prediction accuracy of GM(1,3) model is higher than that of TLGM(1,3), the upper bound 

simulation accuracy of GM(1,3) model is worse than that of TLGM(1,3) model, which is higher than 10%. 

It shows that GM(1,3) model does not consider the time-lag effect among SO2, NO2 and PM2.5, and the 

effect of previous relative factors on the current smog lag accumulation. Moreover, Table 6 shows that the 

average relative errors of training sets for TLGM(1,3), TLDGM(1,3), GM(1,3) and MLR models are 4.60%, 

6.58%, 17.08%, 16.01%, and those of test sets are 6.85%, 11.40%, 18.81% and 38.99% respectively. It 

shows that TLGM(1,3) model can describe the system characteristic data more reasonably, and the reason 

is that TLGM(1,3) model takes full account of the latency and time-lag effects of previous relative factor 

sequences on the current system characteristic data sequences. 

According to Table 4 to Table 6, we compare the simulated and predicted values, the relative errors and 

the average relative errors of PM2.5 concentration upper and lower bounds in interval grey numbers in 

Beijing from January 2018 to September 2018, and the comparison charts are as shown in Fig. 2 to Fig. 6. 

 

 

 

 

 

 

 

 

 Fig.2 Simulated and predicted values of PM2.5            Fig.3 Simulated and predicted values of PM2.5 

concentration lower bound                            concentration upper bound 

 

 

 

 

 

 

 



    

 

 

 

 

 

 

 

 

 

 

Fig.4 Relative error of PM2.5 concentration lower bound           Fig.5 Relative error of PM2.5 concentration upper bound 

 

Fig.6 Average relative error of PM2.5 concentration interval grey number 

4.3 Forecasting smog in Beijing 

For understanding the smog situation of Beijing in the future, the time-lag GM(1,3) model proposed in 

this paper is used to forecast PM2.5 concentration in Beijing in the next three months of 2018, and the 

prediction results are shown in Table 7. 

Table7 Forecasting PM2.5 monthly average concentration in Beijing  

Time October 2018 November 2018 December 2018 

PM2.5 concentration (μg/m3) [29.51,63.25] [26.75,60.29] [24.38,57.50] 

Maximum value (μg/m3) 63.25 60.29 57.50 

Minimum value (μg/m3) 29.51 26.75 24.38 

Average value (μg/m3) 46.38 43.52 40.94 

Table 7 shows that PM2.5 concentration of Beijing will continue to decrease in the next three months of 

2018, indicating that the smog situation of Beijing will ease in autumn and winter. If the government 

strictly controls coal combustion, industry, motor vehicles and other pollution sources in Beijing, the 

average PM2.5 concentration of Beijing may reach 24.38 μg/m3 in December 2018. Besides, the predicted 

results for 2018 is compared with PM2.5 concentration of Beijing in the past four years from October to 

December, the result shows that the predicted average PM2.5 concentration of Beijing in 2018 may be the 

lowest value in the five years, and the comparison chart is shown in Fig. 7. We also compare the predicted 

average PM2.5 concentration of Beijing in 2018 against the observed average values in the previous 4 years 



    

for other months, and the comparison chart is shown in Fig. 8. Fig. 7 and Fig. 8 show that the monthly 

average PM2.5 concentration of Beijing has a fluctuating downward trend in the five years, and overall 

characteristics are high in winter and low in summer. Particularly, the PM2.5 concentration of Beijing 

decreased sharply in autumn and winter, and it was the lowest monthly average concentration level of the 

past five years from August 2018 to December 2018. 

 

 

 

 

 

 

 

 

Fig.7 Monthly average PM2.5 concentration                 Fig.8 Annual average PM2.5 concentration 

          of Beijing (October to December)                        of Beijing (January to September) 

After averaging PM2.5 concentration monthly data, the PM2.5 concentration annual estimated value of 

Beijing in 2018 can be obtained. Moreover, the resulted predicted annual PM2.5 concentration of Beijing in 

2018 is compared with the observed values in the past four years, and the comparison chart is shown in Fig. 

9. Fig. 9 shows that since the State Council promulgated “the Action Plan for the Prevention and Control of 

Air Pollution” in 2013, PM2.5 concentration of Beijing has decreased year by year in the past five years, and 

the annual average PM2.5 concentration in Beijing was 58 μg/m3 in 2017, which had fulfilled the target task 

on schedule. By averaging the original monthly data and predicted monthly value of PM2.5 concentration, 

we can obtain the annual average PM2.5 concentration of Beijing may be 51 μg/m3 in 2018, which will be 

probably the lowest value in the past five years. It shows that the smog control effect in Beijing has been 

better in the past five years, but it still does not meet the national standards. Therefore, it is necessary to 

further improve the control policy and strengthen the smog control efforts. 

 

 

 

 

 

 

 

 

 

Fig.9 Annual average PM2.5 concentration of Beijing 



    

5 Conclusions 

The GM(1,N) model based on interval grey number sequences does not consider the time-lag effect 

mechanism of driving terms, thus this paper introduces the time-lag parameter into driving terms, and 

proposes a time-lag GM(1,N) model based on interval grey number sequences. The following conclusions 

are drawn:  

The monthly data of PM2.5, SO2 and NO2 concentrations of Beijing for August 2017 to September 2018 

are selected, which are used to establish the time-lag GM(1,3) model based on interval grey number 

sequences, and the associated time-lag parameters are also determined. Meanwhile, the time-lag discrete 

GM(1,3) model, traditional GM(1,3) model and multiple linear regression model are selected as the models 

for comparison, and the comparing result shows that the prediction model proposed in this paper has better 

simulation and prediction accuracy, while the corresponding simulation and prediction errors are controlled 

within 10%. 

PM2.5 concentration in Beijing is forecasted for October to December 2018 by the time-lag GM(1,3) 

model proposed in this paper. Besides, we compare the PM2.5 concentration of Beijing in the past five years, 

and the result illustrates that PM2.5 concentration of Beijing had a fluctuating downward trend in the past 

five years, especially those of autumn and winter declined sharply in the past five years, which indicates 

that the model proposed in this paper can provide a basis for the government’s smog control and 

decision-making.  
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