
PU-REFINER: A GEOMETRY REFINER WITH ADVERSARIAL LEARNING FOR POINT
CLOUD UPSAMPLING

Hao Liu1,2, Hui Yuan (corresponding author)2, Raouf Hamzaoui3, Wei Gao4, Shuai Li2

1.School of Information Science and Engineering, Shandong University, Qingdao, China,
2.School of Control Science and Engineering, Shandong University, Jinan, China,

3.School of Engineering and Sustainable Development, De Montfort University, Leicester, UK,
4.School of Electronic and Computer Engineering, Peking University, Shenzhen, China,

{liuhaoxb, yuanhui0325}@gmail.com, rhamzaoui@dmu.ac.uk, gaowei262@pku.edu.cn, shuaili@sdu.edu.cn

ABSTRACT

We present PU-Refiner, a generative adversarial network
for point cloud upsampling. The generator of our network
includes a coarse feature expansion module to create coarse
upsampled features, a geometry generation module to regress
a coarse point cloud from the coarse upsampled features,
and a progressive geometry refinement module to restore
the dense point cloud in a coarse-to-fine fashion based on
the coarse upsampled point cloud. The discriminator of
our network helps the generator produce point clouds closer
to the target distribution. It makes full use of multi-level
features to improve its classification performance. Extensive
experimental results show that PU-Refiner is superior to
five state-of-the-art point cloud upsampling methods. Code:
https://github.com/liuhaoyun/PU-Refiner.

Index Terms— Point cloud upsampling, deep learning,
generative adversarial networks

1. INTRODUCTION

With the advancement of 3D acquisition technology (e.g.,
depth cameras and LiDAR), point clouds have become
popular for 3D applications, such as autonomous navigation
[1], immersive telepresence [2], etc. However, raw point
clouds are usually uneven, sparse and noisy, which negatively
affects subsequent rendering and analysis. To address this
problem many point cloud upsampling methods [3-12] have
been proposed. Ideally, the upsampling method should
take a sparse, non-uniform and noisy low-resolution (LR)
point cloud and produce a dense, uniform and noise-free
high-resolution (HR) point cloud.

The existing point cloud upsampling methods can
be divided into two main categories: optimization-based
methods [3-7] and deep learning-based methods [8-12].
A pioneering optimization-based method was proposed by
Alexa et al. [3] who built a Voronoi diagram on the surface
and inserted points at the vertices of the diagram. Lipman
et al. [4] proposed an effective locally optimal projection
(LOP) operation to resample points. Huang et al. [5]

proposed an edge-aware (EAR) upsampling method, which
first interpolates the points away from the edge then moves
points gradually towards the edge singularity. Dinesh et
al. [6] proposed a model-based point could super-resolution
method via graph total variation on surface normal. In [7],
the same authors also proposed a fast graph total variation
method for color point cloud super-resolution. Recently,
deep learning has shown excellent performance for point
cloud upsampling. PU-Net [8] introduced the idea of
using multiple independent multilayer perceptrons (MLPs) to
upsample points. Yu et al. [9] exploited the point-to-edge
relationship for an edge-aware upsampling task. Wang et al.
[10] proposed a patch-based progressive upsampling network,
which learns different levels of detail in successive steps. Li et
al. [11] proposed an efficient generative adversarial network
(GAN) called PU-GAN to generate the upsampled point
clouds. Qian et al. [12] used a local 2D parametric surface
and corresponding normal vectors to adaptively upsample the
point clouds.

Most current deep learning-based upsampling methods
use a simple duplication feature-based upsampling strategy
to generate the upsampled points directly. However, such
a naive technique may prevent the network from exploring
feature details. In this paper, we propose a novel and effective
GAN for point cloud upsampling, namely PU-Refiner. The
generator first generates a coarse upsampled point cloud with
a coarse feature expansion module and a geometry generation
module. Then, a progressive geometry refinement module
is used to “carve” the coarse point cloud into a realistic
dense point cloud with an elaborate geometry texture in a
coarse-to-fine fashion. The discriminator uses multi-level
features and point-wise confidence values to strengthen its
recognition accuracy.

2. PROPOSED METHOD
2.1. Overview

Given a sparse, non-uniform LR point cloud PLR ∈ RN×3,
where N is the number of points and 3 corresponds to the



Fig. 1. Architecture of PU-Refiner. Proposed generator (top) and discriminator (bottom).

dimension of the geometry coordinates, PU-Refiner aims to
generate a dense, uniform HR point cloud PHR ∈ RrN×3,
where r is the upsampling ratio. PU-Refiner is structured as
follows.

2.2. Generator

The generator (Fig.1 (top)) aims to generate an HR point
cloud. It consists of four modules: feature extraction,
coarse feature expansion, geometry generation and geometry
refinement.

Feature extraction learns point-wise expressive features
F ∈ RN×C (C is the number of features) from PLR. We
adopt the feature extraction module of [10] because of its high
efficiency.

Coarse feature expansion expands F to coarse
upsampled features F ′ ∈ RrN×C′

, where C ′ is the number
of upsampled features. As shown in Fig.1, we first copy F
r times to form the plain upsampled features. To enhance
the variety of features, we attach a 2D vector (it uniformly
distributes in the interval [-0.2, 0.2]) [13] to the upsampled
feature. Finally, F ′ is obtained after applying a MLP with a
self-attention unit [14].

Geometry generation regresses a coarse upsamped point
cloud PHR c ∈RrN×3 from F ′ via three fully connected (FC)
layers.

Geometry refinement (GR). The existing upsampling
methods generally produce the upsampled features by a
simple feature replication technique in the feature extension
module. However, such a simple strategy ignores the details
of high-level semantics of the upsampled features. Therefore,
we propose a progressive GR to alleviate the drawback of
feature replication. As shown in Fig.1 (top), the coarse
upsampled point cloud PHR c and coarse upsampled features
F ′ are fed into the proposed GR module to predict the
point-wise coordinate offsets ∆O ∈ RrN×3. By using ∆O,
we can get a refined dense point cloud. In this way, a realistic
upsampled point cloud can be progressively approximated via

several cascaded GR modules.
As shown in Fig.2, the proposed GR first takes an

arbitrary coarse point cloud and F ′ as inputs. Then, we
construct a local relationship via a k-nearest neighbor (k-NN)
search for each point, i.e.,

f̂xyz
ij = [fxyz

i � (fxyz
i − fxyz

j )], (1)

f̂F ′

ij = [fxyz
i � (fxyz

i − fxyz
j )� fF ′

i � (fF ′

i − fF ′

j )], (2)

where f̂xyz
ij and f̂F ′

ij are the geometry and feature gradient
of the i-th point with its j-th neighbor, respectively, fxyz

i

and fxyz
j are the i-th point of the coarse point cloud and

its j-th neighbor in Euclidean space, respectively, fF ′

i and
fF ′

j are the i-th feature of F ′ and its j-th feature neighbor in
feature space, respectively, and � denotes the concatenation
operation. Note that the same k-NN indexes of the coarse
point cloud are used to group feature neighbors of F ′.
Next, MLPs are employed to embed geometry feature f̂xyz

and enhanced feature f̂F ′
into the descriptive features f̃xyz

and f̃F ′
, respectively. Inspired by [15], we propose a

multi-head point offset transformer (MPOT) to accurately
predict coordinate offset features. Unlike the self-attention
unit in [14], for each head, we take f̃F ′

as both the query
vector (Q) and the key vector (K) and f̃xyz as the value vector
(V) [15]. In this way, it is easier to regress coordinate offsets
from geometry space (i.e., f̃xyz). Finally, we apply several
residual blocks [16] followed by FC layers to obtain ∆O.

2.3. Discriminator
As a supervisor, the discriminator regulates the generator to
produce a refined dense point cloud. We propose an efficient
multi-level discriminator, as shown in Fig. 1 (bottom). In
particular, the HR point cloud first passes through four MLP
layers. Then, we use max pooling for the output of the last
MLP layer to get a global response vector, and the duplicated
global response vector is concatenated with the output of the



Fig. 2. Proposed geometry refinement (GR) module and multi-head point offset transformer unit.
previous four MLPs for feature enhancement. As such, the
representative multi-level features (MF) are fused together,
which is helpful to improve the discriminative results. Next,
a self-attention unit is used to boost feature interactions.
Finally, we obtain point-wise confidence values from the
discriminator with several FC layers. Point-wise confidence
values are more robust and allow more accurate prediction
than a single confidence value obtained from the whole HR
point cloud.

2.4. Loss functions
To train PU-Refiner, we used a compound loss function.

Adversarial loss. A least-squares adversarial loss [17] is
used to train our generator G and discriminator D,

Lg(PHR) =
1

2
(](D(PHR)− 1))2, (3)

Ld(PHR, PT ) =
1

2
(](D(PHR)))2 + (](D(PT )− 1))2),

(4)
where PHR is the final HR output of generator G, 1 is a vector
of ones, and PT is the ground truth HR point cloud which has
the same number of points as PHR. D(PHR) ∈ RrN×1 and
D(PT ) ∈ RrN×1 are the confidence value vectors obtained
by feeding PHR and PT into D, respectively, and ] denotes
the average operator.

Reconstruction loss. We adopt the Chamfer distance
(CD) [8] to evaluate the reconstruction error between PHR

and PT .

Lrec = Lcd(PHR, PT ) =
1

N
(
∑

p∈PHR

min
q∈PT

‖p− q‖22 +∑
q∈PT

min
p∈PHR

‖q − p‖22),

(5)
where p and q are arbitrary points in PHR and PT ,
respectively. Moreover, we also adopt CD to force all the
coarse upsampled point clouds PHR c to be closer to the
underlying surface of PT ,

Lcoarse =
∑M

i=1
wiLcd(P i

HR c, PT ), (6)

where P i
HR c is the i-th coarse upsampled point cloud, wi is

a weight, and M is the number of coarse upsampled point
clouds.

Uniform loss. The uniform loss [11] is also adopted to
ensure the uniformity of the generated HR point cloud,

Luni =
∑T

i=1
Uimblance(Si) · Ucluster(Si), (7)

where Si is a ball queried point cloud subset with T selected
seed points from PHR by farthest point sampling [18],
Uimblance(Si) penalizes the consistency of the number of
points of each Si and Ucluster(Si) ensures that each point in
Si has a similar distance to its nearest neighbor.

Compound loss. To summarise, a compound loss is
used to train PU-Refiner, i.e., a generator loss LG and a
discriminator loss LD, where

LG = wgLg(PHR) +wrecLrec +Lcoarse +wuniLuni, (8)

LD = wdLd(PHR, PT ), (9)

and wg , wrec, wuni and wd are weights.

3. EXPERIMENTAL RESULTS

3.1. Experimental setup
Dataset. We used the dataset in [11], which includes 147 3D
models with various shapes. As in [11], we randomly picked
120 point cloud models for training and the rest for testing.
By randomly cropping 200 patches from each training point
cloud, we obtained 24000 patches for training.

Network details. For feature extraction, we set N and
C to 256 and 480, respectively. The number of coarse
upsampled features C ′ was 230. The head number of MPOT
was set to three and the number of residual blocks (each one
contains three linear layers with ReLU) was set to 5 in the GR
module. Note that three GR modules were applied to generate
the final PHR. M was set to three and the weights w1, w2

and w3 in Eq.(6) were equal to 700, 1300, 2600, respectively.
Moreover, we empirically set the weights wg , wrec, wuni and
wd in the compound loss to 1, 3900, 10, 1, respectively.

Training and Testing. A two time-scale update rule
(TTUR) [19] was used to train PU-Refiner for 150 epochs
with batch size 28 in the Tensorflow platform. The initial
learning rate of the generator was 0.002 and that of the
discriminator was 0.0002. During the test, we followed the



Fig. 3. Visual upsampling (×4) results of all methods for 2048 input points of the Dog (top) and Handicraft (bottom).
Table 1. Quantitative results for the test dataset.

Method CD HD P2F Uniformity
(10−3) (10−3) (10−3) (10−3)

EAR [5] 0.87 10.33 7.79 28.62
PU-Net [8] 0.53 5.95 13.23 974.19
MPU [10] 0.44 5.32 3.07 13.15

PUGeo [12] 0.41 5.34 3.43 9.26
PU-GAN [11] 0.29 4.42 2.94 3.98

PU-Refiner 0.27 3.87 2.48 3.17

patch fusion-based strategy [10] to acquire the final HR point
clouds.

Evaluation metrics. We used four common evaluation
metrics to quantitatively assess the upsampling performance:
CD [8], Hausdorff distance (HD) [20], point-to-surface (P2F)
distance [21] and Uniformity [11]. To compute these metrics,
Monte Carlo random sampling was used to choose 2048
points from each test point cloud as LR point cloud PLR. The
ground truth PT was obtained by sampling 8192 points from
each test point cloud using Poisson disk sampling.

3.2. Comparison with other methods
We compared PU-Refiner with five state-of-the-art
upsampling methods: one optimization-based EAR [5]
and four learning-based methods (PU-Net [8], MPU [10],
PU-GAN [11] and PUGeo [12]). The upsampling ratio r was
set to 4.

Quantitative results. Table 1 lists the average
upsampling accuracy for the test dataset. We can see
that PU-Refiner achieved the best performance for all the
evaluation metrics.

Qualitative results. Fig. 3 shows visual comparison
results. We can observe that PU-Refiner restored the uniform,
dense point clouds with natural geometry texture, while the
other methods failed. It is worth noting that even when
the input point cloud was very sparse (partially incomplete),
PU-Refiner was able to infer a reasonable local representation
(see the dog’s tail and handicraft’s edge in Fig. 3).

Robustness analysis. To prove the generalization ability
of PU-Refiner, we used our trained model on randomly
selected 20 point clouds from the unseen ModelNet40 [22]
dataset. The objective results, which are reported in Table

Table 2. Quantitative results for the unseen ModelNet40.

Method CD HD P2F Uniformity
(10−3) (10−3) (10−3) (10−2)

EAR [5] 1.33 12.28 6.90 65.01
PU-Net [8] 1.19 11.92 7.10 33.58
MPU [10] 0.91 8.60 2.80 36.43

PUGeo [12] 0.58 7.09 2.83 32.93
PU-GAN [11] 0.40 6.66 2.40 22.86

PU-Refiner 0.44 6.48 2.40 21.51

2, show that PU-Refiner performed best except for the CD
metric for which it was second best.

3.3. Ablation study

To further evaluate the contribution of each component of our
network, we include an ablation study (Table 3).

Table 3. Ablation study.

Method CD HD P2F Uniformity
(10−3) (10−3) (10−3) (10−3)

w/o GR 0.30 5.30 2.77 5.64
w/o MPOT 0.29 4.37 2.50 4.09

w/o MF 0.28 4.62 2.57 3.28
PU-Refiner 0.27 3.87 2.48 3.17

4. CONCLUSION
We proposed a novel point cloud upsampling network with
adversarial learning. For the generator, a coarse feature
expansion and a GR module are proposed to progressively
generate a natural HR point cloud. The discriminator uses
multi-level features to guide the generator to produce a
faithful HR point cloud. Extensive experimental results
demonstrated the superiority of PU-Refiner compared with
five state-of-the-art methods. In the future, we will explore
how to upsample other attributes of the point cloud, such as
color.

5. ACKNOWLEDGMENT
This work has received funding from the National Natural
Science Foundation of China under Grant 62172259 and
61871342, and the OPPO Research Fund.



6. REFERENCES

[1] X. Chen, H. Ma, J. Wan, B. Li and T. Xia, “Multi-view
3d object detection network for autonomous driving,” in
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, Jul. 2017, pp. 6526–6534.

[2] W. Wu and C. Zhang, “Immersive 3d communication,”
in Proceedings of the 22nd ACM international
conference on Multimedia, Nov. 2014, pp. 1229–1230.

[3] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D.
Levin, and C. T. Silva, “Computing and rendering point
set surfaces,” IEEE Transactions on Visualization and
Computer Graphics, vol. 9, no. 1, pp. 3–15, Jan. 2003.

[4] Y. Lipman, D. Cohen–Or, D. Levin, H. Tal–Ezer,
“Parameterization-free projection for geometry
reconstruction,” ACM SIGGRAPH, Jul. 2007.

[5] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher,
and H. Zhang, “Edge-aware point set resampling,” ACM
Transactions on Graphics, vol. 32, no. 1, pp. 1–12, Jan.
2013.

[6] C. Dinesh, G. Cheung, I. V. Bajić, “3D point cloud
super-resolution via graph total variation on surface
normals,” IEEE International Conference on Image
Processing (ICIP), Sept. 2019, pp. 4390–4394.

[7] C. Dinesh, G. Cheung, I. V. Bajić, “Super-resolution
of 3d color point clouds via fast graph total variation,”
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), May. 2020, pp.
1983–1987.

[8] L. Yu, X. Li, C. Fu, D. Cohen-Or, and P. Heng, “PU-Net:
point cloud upsampling network,” in Proceedings of
IEEE Conference on Computer Vision and Pattern
Recognition, Dec. 2018, pp. 2790–2799.

[9] L. Yu, X. Li, C. Fu, D. Cohen-Or, and P. Heng, “EC-Net:
an edge-aware point set consolidation network,” in
European Conf. on Computer Vision, Sept. 2018, pp.
386–402.

[10] Y. Wang, S. Wu, H. Huang, D. Cohen-Or, and O.
Sorkine-Hornung, “Patch-based progressive 3d point set
upsampling,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, Jun. 2019,
pp. 5958–5967.

[11] R. Li, X. Li, C. Fu, D. Cohen-Or, and P. Heng,
“PU-GAN: a point cloud upsampling adversarial
network,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, Nov. 2019,
pp. 7202–7211.

[12] Y. Qian, J. Hou, K. Kwong, and Y. He, “PUGeo-Net:
a geometry-centric network for 3d point cloud
upsampling,” in European Conf. on Computer Vision,
Nov. 2020, pp. 752–769.

[13] Y. Yang, C. Feng, Y. Shen, and D. Tian, “FoldingNet:
point cloud auto-encoder via deep grid deformation,” in
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, Jun. 2018, pp. 206–215.

[14] H. Zhang, I. J. Goodfellow, D. N. Metaxas, and A.
Odena. “Self-attention generative adversarial networks,”
in Int. Conf. on Machine Learning, 2019, pp.
7354–7363.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.
Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in Neural
Information Processing Systems, 2017, pp. 5998–6008.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of
IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[17] X. Mao, Q. Li, H. Xie, R. Y.K. Lau, Z. Wang, and
S. P. Smolley, “Least squares generative adversarial
networks,” in IEEE Int. Conf. on Computer Vision, 2017,
pp. 2794–2802.

[18] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi,
“The farthest point strategy for progressive image
sampling,” IEEE Transactions on Image Processing,
vol. 6, no. 9, pp. 1305–1315, 1997.

[19] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler,
and S. Hochreiter, “GANs trained by a two time-scale
update rule converge to a local nash equilibrium,” in
Advances in Neural Information Processing Systems,
2017, pp. 6626–6637.

[20] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and
C. T. Silva, “A benchmark for surface reconstruction,”
ACM Transactions on Graphics, vol. 32, no. 2, pp. 1–17,
Apr. 2013.

[21] K. Low, “Linear least-squares optimization for
point-to-plane icp surface registration,” Technical
Report TR04-004, University of North Carolina, 2004.

[22] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang,
and J. Xiao, “3D shapenets: a deep representation for
volumetric shapes,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, Jun. 2015,
pp. 1912–1920.


