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Similarity-based Information Fusion Grey Model for Remaining Useful Life 

Prediction of Aircraft Engines

Abstract 
Purpose �On-line health monitoring of large complex equipment has become a trend in the field of equipment diagnostics and 

prognostics due to the rapid development of sensing and computing technologies. The purpose of this paper is to construct a more 

accurate and stable grey model based on similar information fusion to predict the real-time remaining useful life (RUL) of aircraft 

engines.

Design/methodology/approach �First, a referential database is created by applying multiple linear regressions on historical samples. 

Then similarity matching is conducted between the monitored engine and historical samples. After that, an information fusion grey 

model is applied to predict the future degradation trajectory of the monitored engine considering the latest trend of monitored sensory 

data and long-term trends of several similar referential samples, and the real-time RUL is obtained correspondingly.

Findings �The results of comparative analysis reveal that the proposed model, which is called similarity-based information fusion 

grey model (SIFGM), could provide better RUL prediction from the early degradation stage. Furthermore, SIFGM is still able to 

predict system failures relatively accurately when only partial information of the referential samples is available, making the method a 

viable choice when the historical whole lifecycle data are scarce.

Research limitations/implications �The prediction of SIFGM method is based on a single monotonically changing health indicator 

(HI) synthesized from monitoring sensory signals, which is assumed to be highly relevant to the degradation processes of the engine.

Practical implications �The similarity-based information fusion grey model can be used to predict the degradation trajectories and 

RULs of those online condition monitoring systems with similar irreversible degradation behaviors before failure occurs, such as 

aircraft engines and centrifugal pumps.

Originality/value � This paper introduces the similarity information into traditional GM(1,1) model to make it more suitable for long 

term RUL prediction, and also provide a solution of similarity-based RUL prediction with limited historical whole lifecycle data. 

Keywords GM(1,1), remaining useful life, similarity-based, information fusion, aircraft engine

Paper type Research paper

1. Introduction

Prognostic and Health Management (PHM) is a promising tool for optimal operation and maintenance solution of 

equipment which has complex structure and operates at high speeds, high load and high temperature environment, and 

has been widely applied in many industrial fields such as electricity, aircraft and rail transit, etc.. Prognostics is defined 

as �the estimation of time to failure and risk for one or more existing future failure modes� by the international standard 

organization, so remaining useful life (RUL) prediction is one of the main tasks of PHM. Accurate estimation of 

equipment RUL contributes to maintenance decision-making and potential failure discovery, in which way measures can 

be taken to effectively avoid unexpected breakdown, extend the service life, and reduce maintenance costs. 

Prognostic methods can be broadly categorized into physics-based and data-driven approaches (Peng et al., 2018). 

Generally, physics-based methods aim to implement RUL prediction by accurately describing the equipment�s failure 

mechanism and degradation process with limited historical data (Wang et al., 2016; Zhu et al., 2012). It needs to be 

constructed according to the physical laws by which the equipment follows during degradation and the interrelationships 

between different parts of the system. However, it is rather challenging and costly to build an accurate physical model for 

complex systems. The data-driven approach can get around these difficulties, and provide accurate RUL predictions 

timely and economically due to the rapid growing of sensor technology and real-time computing. Data-driven methods 

involve using health indicators (HI) for degradation degree indication of the system. Machine learning methods like 
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neural network (Chen and Liu, 2015), support vector machine (SVM) (Li et al., 2015; Chen et al, 2018), Bayesian 

learning (Cao et al, 2017), hidden Markov model (Peng and Dong, 2011), particle filter (Zhang et al., 2018) and 

statistical methods (Bakir et al., 2019) have been widely used in data-driven RUL estimation. 

Extensive efforts have been made to develop data-driven prognostic methods for RUL prediction. Zhao et al. (2017) 

proposed a degradation pattern learning method using an improved back propagation neural network for aircraft engine 

RUL estimation. García Nieto et al. (2015) built a hybrid model based on SVM and particle swarm optimization (PSO) 

to predict the RUL of aircraft engines. Li and Lei (2017) simulated degradation trajectories by applying stochastic 

process models and estimated the probability density function of RUL. Lasheras et al.(2015) considered failure risks by 

integrating the multivariate adaptive regression splines, principal component analysis (PCA) and classification and 

regression trees. To improve the performance of PCA, an adaptive canonical variate analysis was proposed to predict the 

RUL of slowly evolving faults (Li and Duan, 2017; Li and Yang, 2019). The above approaches focus on modeling the 

degradation process via condition monitoring data and have achieved a satisfied level of accuracy. However, they require 

a time-consuming training process and large amounts of degradation data to ascertain accurate estimations.

The similarity-based prognostic approaches, which extract information from similar samples to make up the 

potential data deficiency of the monitored equipment and do not require a sophisticated degradation model, provide a 

different line of thought. The main idea of similarity-based RUL prediction can be expressed as: if the test sample and 

referential samples have similar degradation pattern over a certain period of time, they might have a similar RUL (Liu 

and Wang, 2017). The degradation features/health indices extracted from initial sensor data are applied for similarity 

matching between the present monitored and historical samples, then the RUL of the present sample can be computed as 

the weighted average of the RULs of several most similar historical samples with the weights being determined as the 

similarity score between samples. Liu and Hu (2019) put forward a similarity matching approach to predict the RUL of 

cutting tools considering Euclidean distance similarity and spatial direction. Zio et al. (2010) proposed a RUL prediction 

approach based on fuzzy similarity analysis, which compared degradation data of the observed system to the trajectory 

patterns of reference systems. Li and Zhang (2018) presented a RUL estimation method by comparing the similarity of 

fixed-length health index curves between the test unit and the extracted representative curves. Liang et al. (2018) 

proposed a method to estimate RUL based on the similarity between raw sensory measurements. Huang et al. (2019) put 

forward an improved trajectory similarity-based approach which could provide confidence interval of RUL prediction on 

the basis of adaptive kernel density estimation (KDE) and H�����	�����

Although the similarity-based methods have attracted great attention in recent years, they have some limitations. For 

example, if the similar samples found in the training database are not similar enough to the test sample, the RUL 

predictions may be inaccurate. In addition, similarity-based RUL algorithms require a large number of samples based on 

full life cycle data. For large-scale equipment, it may be the case that the machines are not allowed to run to failure and 

hence only a portion of the degradation data is available. Grey model (GM) offers a new possibility to deal with the small 

sample size data, which is able to achieve relatively accurate prediction with only 4 data points (Liu and Yang, 2016). 

Some exploratory efforts on failure prognostics using GM method have been made and satisfactory results have been 

observed. Li and Miao (2015) proposed a combined model of GM and SVM to forecast the RUL of batteries. Zhou et al. 

(2014) proposed a revised grey model with a forgetting factor to predict the RUL of lithium-ion batteries. 

Due to the fact that sensory signals are fluctuated and GM is sensitive to new data information, the applicability of 

GM in long-term failure prognostics is relatively limited. To compensate for the deficiency of whole lifecycle samples 

and the instability of GM in long-term prediction, this paper puts forward a similarity-based information fusion grey 
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with time prolonged, while another category of sensor values remains constant or diverges over time. Only the first 

category of sensor values can effectively reflect the degradation trend of the system. Different sensor selection methods 

have been proposed in previous research (Wang et al., 2008; Liang et al., 2018; Xu et al., 2014). In this part, we apply 

the sensor combination utilized in research work by Huang et al. (2019). The chosen sensor combination shows an 

obvious trend of monotonic change and produces satisfying prediction performance along with our proposed method.

Since the scales of sensory measurements are totally different, data normalization is necessary to convert different 

scales of data into a nominal range for further health indicator extraction. Specifically, z-score normalization is utilized in 

this work, which can be described as follows:

, (1)
' i i

i

i

v
v

�
�
�

�

where ( ) is the value of sensor data, is the number of selected sensors from monitoring samples, iv 1,2, ,i N� L
thi N

is the normalized data of sensor data,  and  represent the corresponding mean and standard deviation of the '

iv thi i� i�

 sensor data respectively.thi

After data normalization, all sensory data are in a nominal range and a single dimension HI can be generated. Many 

dimensionality reduction techniques such as logistic regression (Yan et al., 2004), multiple linear regression (MLR) 

(Huang et al., 2019), principal component analysis (PCA) (Liu et al., 2019), canonical variate analysis (CVA) (Li and 

Yang, 2019) are presented to reduce the multi-dimensional features from the original monitoring data to a single 

dimensional HI. Particularly, MLR is chosen in this paper to indicate the degradation of the system since MLR can 

preserve the original degradation patterns in the signal data (Wang et al., 2008) and have a relative low computation 

complexity. The synthesized HI is computed as follows:

(2)
'

0

1

N

i i

i

x v� � �
�

� 	 	

where is the normalized N-dimensional feature vector, is the health indicator, are ' ' '

1 2' ( , , , )NV v v v� L x 0 1( , , , )N� � �L

the  model parameters, and is the noise term. To obtain the model parameters, one can assign the synthesized 1N 	 �

health indicator values of healthy conditions with 1 and near failure conditions with 0, respectively. The parameters of 

the MLR model are then stored for further utilization to testing samples.0 1( , , , )N� � �L

2.2 Similarity matching and traditional similarity-based RUL prediction 

In this stage, the HI trajectory of the testing sample is generated by following the same data preprocessing procedure as 

described in Section 2.1, and is compared with the HIs in referential sample database. The similarity matching process 

consists of three main elements: sliding window size, similarity measurement function and weight function.

The first step of a trajectory pointwise similarity matching method is to determine the sliding window size  for L

similarity matching. At operating time , the length-fixed HI trajectories of the test sample can be expressed as t

,, 1, 1, ,( , , , )t T t L T t T t TX x x x� 	 �� L

Where denotes the HI of the testing sample at time . The HI of the referential sample at operating time  ,t Tx t thj t

can be expressed as

, ,, 1, 1, ,( , , , )t j t L j t j t jX x x x� 	 �� L 1,2, ,j R� L

where is the number of available referential samples, and denotes the HI of referential sample at time . R ,t jx thj t

Similarity matching can be processed by any consecutive HI trajectories of a referential sample before its failure. In 
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3.1 GM(1,1)

GM series models are the basic of grey prediction theory, especially the original even grey model proposed by Deng is 

broadly used (Liu et al., 2016). GM(1,1), which means a single variable first order grey model, extracts evolution law of 

the sequence by a single variable differential equation of first order.

Definition 1. Assume a non-negative sequence of raw data is

,(0) (0) (0) (0)( (1), (2), , ( ))X x x x n� L

then  is called first order accumulative generation sequence of , where (1) (1) (1) (1)( (1), (2), , ( ))X x x x n� L
(0)X

, (7)(1) (0)

1

( ) ( )
i

j

x i x j
�

�


and is called the background value of sequence ,where 
(1) (1) (1) (1)( (2), (3), , ( ))Z z z z n� L

(0)X
. (8)� �(1) (1) (1)( ) 0.5 ( 1) ( )z i x i x i� � 	

Definition 2. Build a differential equation of , the equation 
(1)X

(9)
(1)

(1)( )
( )

dx t
ax t b

dt
	 �

is defined as the whitening form of GM(1,1), where the parameter  is called the development coefficient and  a b

is called the grey action quantity. 

The parameter vector  of GM(1,1) model can be obtained by the least square estimation [ , ]Ta b� �
, in which

1( )T TB B B Y�� �
(0) (0) (0)(2), (3), , ( )

T

Y x x x n� �� � �L

,(1) (1) (1)(2) (3) ( )

1 1 1

T

B
z z z n

�
� �� � �
� �
� �

L

L

Taking  as the initial value, then the time response equation of GM(1,1) is
(1) (0)(1) (1)x x�

 (10)(1) (0) ( 1)� ( ) ( (1) ) a ix i x b a e b a� �� � 	
To obtain the predicted value of the primitive data at time , the inverse accumulated generating operation is used k

to establish the following grey model:

(11)(0) (1) (1) (0) ( 1)� � �( ) ( ) ( 1) (1 )( (1) )a a kx k x k x k e x b a e� �� � � � � �

3.2 SIFGM for RUL prediction

After a suitable prognostic feature is constructed and several similar referential samples are selected, the SIFGM 

prognostic technique can be applied to predict the RUL of the running machine. The GM(1,1) is trained using a small 

number historical data of the test sample, which do not consider measurement and process noise. The GM(1,1) is very 

sensitive to the latest modeling data subject to the modeling mechanism, on the one hand, it could better reflect the latest 

trend of the test sample, on the other hand, the outputs may be affected by measurement and process noise, which lead to 

a poor prediction in long-term. It has been proved that information fusion could improve the accuracy and robustness of 

traditional GM(1,1) method (Yang et al. 2019), which inspires the idea of SIFGM. The SIFGM will not only learn from 

the historical information of the test sample, but also learn from the future information of the similar referential samples 

from the observation point.

The schematic of an information fusion GM(1,1) is illustrated in Figure 3. As shown in the figure, the final 

predicted trajectory of SIFGM is between the GM(1,1)�s prediction and the integrated referential trajectory which is 
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generated from the selected similar samples in the training database. The latest tendency of the test sample is captured 

using GM(1,1), and the predictive failure time is closer to the true failure time by considering similar referential 

information. 
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Figure 3. Illustration of the SIFMG prediction

Definition 3. Suppose  are the selected referential sequences of testing sample  by the 
1 2

(0) (0) (0), , ,
hr r rX X XL (0)X

similarity matching procedure,  are the corresponding development coefficients of referential 
1 2
, , ,

hr r ra a aL

sequences  calculated by GM(1,1) from the end point of similarity matching to the end of each 
1 2

(0) (0) (0), , ,
hr r rX X XL

sequence. The integrated referential development coefficient is defined as the weighted average of the ra�

referential development coefficients, 

, (12)
1 21 2 hr r r h ra w a w a w a� 	 	 	L

where is the weight of referential sequence  determined by similarity ( 1,2, , )jw j h� L
(0) ( 1,2, , )

jrX j h� L

degree.

From the time response equation of GM(1,1), it is observed that the simulated curve of GM(1,1) is determined by 

three parameters: development coefficient, grey action quantity and initial value. Though integrated referential 

development coefficient  reflects the information of all selected referential sequences, to further determined the ra�

curve shape of referential development sequence, additional information is needed. So we creatively construct a mapping 

sequence according to the latest section of the monitored sample in SIFGM. 

Theorem 1. Given a testing sample , if the first point and the end point of are adopted to construct the (0)X (0)X

mapping sequence , and is denoted as the first order accumulative generation sequence of , then
(0)

mX (1)

mX (0)

mX

, (13)
( 1)(1) (1)( ) ( (1) ) ma i

m m m m mx i x b a e b a
� �� � 	

, (14)
( 1)(0) (1) (1) (1)( ) ( ) ( 1) (1 )( (1) )m ma a i

m m m m mx i x i x i e x b a e
� � �� � � � � �

in which and , and  is the first order accumulative generation m ra a�
( 1)(1) (1)

( 1)

( (1) ( ) )

1

m

m

a n

m
m a n

a x x n e
b

e

�

�

�
�

�
(1)X
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sequence of .(0)X

Proof. Consider that the evolution trend of GM(1,1) models is determined by the development coefficient, so the 

development coefficient of the mapping sequence is assumed to be the same as . When the development coefficient ra�

of mapping sequence is determined by , the other parameters of the mapping sequence can be obtained from the m ra a�

differential equations. Since the general solution of the grey differential equation in GM(1,1) can be represented as (15),

, (15)
(1) ( ) atx t ce b a�� 	

where  is a constant,  and are parameters calculated by the least square estimation method.c a b

From the description of (15), the mapping sequence we created is a particular solution. To make the mapping 

sequence useful for HI trajectory prediction, the initial condition is set to  and . For 
(1) (1)(1) (1)mx x� (1) (1)( ) ( )mx n x n�

the general solution in (15), constant is determined by the initial value, soc

. (16)
(1) (1)m m mc x b a� �

Then the unknown parameter  can be obtained as (17)mb

. (17)

( 1)(1) (1)

( 1)

( (1) ( ) )

1

m

m

a n

m
m a n

a x x k e
b

e

�

�

�
�

�

Definition 4.  is denoted as the simulated value of the SIFGM, 
(0)�
fX

. (18)
(0) (0) (0)� �( ) (1 ) ( ) ( )f mx i x i x i� �� � 	

where is called the fusion coefficient, and the value range of the fusion coefficient is .� � [0,1]

The value of fusion coefficient reflects the degree of reliance on referential information, and is depended on the 

impact of the noise to the sensory data. When , the SIFGM(1,1) model deteriorates into the normal GM(1,1); 0� �

when , the SIFGM(1,1) model deteriorates into predicting the changes of its mapping sequence. Generally, the 1� �

greater the sensory data is affected by the noise, the larger the value of fusion coefficient. In engineering practice, the 

value of fusion coefficient could be estimated by testing the fusion coefficient for the best prediction performance using 

several sequences in the historical database.

The future HI trajectory of the test sample at time  is given by a metabolism SIFGM model, the predictive HI t

value of the test sample at time is1t 	

. (19)
(0) (0) (0)� �( 1) (1 ) ( 1) ( 1)f mx t x t x t� �	 � � 	 	 	

The idea of metabolism SIFGM is taking  as the new information of the original sequence , and 
(0)� ( 1)fx t 	 (0)X

removing the first data sample, so the updated sequence is . Repeat 
(0) (0) (0) (0) (0)( (2), (3), , ( ), ( 1))X x x x k x t� 	L

the above metabolism procedure until the  first exceed the pre-defined failure threshold, then the RUL of the 
(0)� ( )fx t l	

test sample at observation time is determined as .k l

In this study, we use the information of the similar sequences� development trend to realize multi-step ahead 

predictions until the failure threshold is reached, which makes it possible to use both the run-to-failure data and 
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degradation data without failure as references.

4. Case study: C-MAPSS dataset #1

To comprehensively evaluate the prediction performance of the proposed SIFGM method, this study adopts two 

scenarios using C-MAPSS dataset #1, which are whole lifecycle data and partially degradation data without failure. 

Some comparisons with other approaches are also included.

4.1 Data description

The data used in this experiment are from the C-MAPSS simulation program provided by the prognostics center of 

excellence of National Aeronautics and Space Administration (NASA), which aims to solve the lack of run-to-failure test 

data for data-driven prognostics (Saxena et al., 2008). The data set includes 4 sets of data under different operating states 

and fault modes, in which 21 sensors (as shown in Table 1) and 3 input parameters are used to record the entire engine 

degradation process. Each data set includes a training set, a test set and a residual life subset. Each dataset contains 

information of the residual life of multiple engines in a homogeneous state. These engines are in normal state at the 

beginning, and then failure occurs at a certain moment and show obvious degradation of performance, and the 

degradation continues to accumulate until the system failure. Because of the degradation process integrity of the training 

data set, this paper adopts the samples in first group of training data set for demonstration. The first group of training data 

set is the assembly of High-Pressure Compressor (HPC) failure generated in the same operating state, including the 

monitoring samples of 100 compressors.

Table 1 Sensor data description

No. Description Units

1 Total temperature at fan inlet °R

2 Total temperature at LPC outlet °R

3 Total temperature at HPC outlet °R

4 Total temperature at LPT outlet °R

5 Pressure at fan inlet psia

6 Total pressure in bypass-duct psia

7 Total pressure at HPC outlet psia

8 Physical fan speed rpm

9 Physical core speed rpm

10 Engine pressure ratio (P50/P2) --

11 Static pressure at HPC outlet psia

12 Ratio of fuel flow to Ps30 pps/psi

13 Corrected fan speed rpm

14 Corrected core speed rpm

15 Bypass Ratio --

16 Burner fuel-air ratio --

17 Bleed Enthalpy --

18 Demanded fan speed rpm

19 Demanded corrected fan speed rpm

20 HPT coolant bleed lbm/s

21 LPT coolant bleed lbm/s

The health condition of the aircraft engine is monitored by 21 sensors equipped on the engine itself. Since some 

signals retain their constant values (i.e., No. 1, 5, 6, 10, 16, 18, and 19), these sensory data are discarded first. Then, the 

remaining 14 sensors are further analyzed. The sensor combination utilized in research work by (Huang et al. 2019) is 

applied here, namely the results of sensor selection are No. 2, 4, 7, 8, 11, 12 and 15. The selected seven sensor signals 
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have shown certain degradation trends, then data normalization is applied to convert different scales of multi-sensor into 

a nominal range, finally HI is constructed by multiple linear regression (MLR) as mentioned in Section 2.1. The 

degradation trajectories database of training samples is shown in Figure 4.
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Figure 4. Degradation trajectories database of training samples

4.2 Prognostic performance criteria

To comprehensively evaluate the performance of the prediction approaches, two evaluation criteria for each prediction 

trajectory are chosen in this paper, i.e. mean absolute deviation (MAD) and mean prediction score (MPS). 

Mean absolute deviation (MAD) is a common criterion used in prediction models, which is defined as

(20)
0

1 �MAD
K

t t

t t

R R
K �

� �


where is the actual RUL from the prognostic starting point , is the predictive RUL at time , and  is the K 0t
�

tR t tR

actual RUL at time .t

Another assessing criterion, prediction score, is an asymmetric penalty function with late predictions penalized more 

heavily than early predictions, which is defined by the PHM community as

, (21)

13

10

1, 0

1, 0

t

t

d

t

t d

t

e for d
s

e for d

�� � ��
�  

� !�"

where  is the predictive error at time point , and denote the prediction score at time point . The �
t t td R R� � t

ts t

mean prediction score of a test sample from the prognostic starting point is defined as 0t

. (22)

0

1 K

t

t t

MPS s
K �

� 


where is the actual RUL from the prognostic starting point . The MPS is an average score over the whole testing K 0t

sample from the prognostic starting point to the engine failure.0t

4.3 Results and discussion
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To demonstrate the effectiveness of developed SIFGM method, exponential regression (ER) method and the original grey 

model (GM(1,1)) are chosen here to conduct a comparative analysis. This choice is mainly driven by the fault evolution 

behavior of the aircraft engine dataset derived by C-MAPSS, which is suggested to follow an exponential function. More 

specifically, the exponential function applied here is 

(23)0 1 2 3exp( )x x t# # #� � 	

where is the initial HI of the engine reflected the non-zero initial degradation, are the parameters obtained 0x 1 2 3, ,# # #

by solving a nonlinear least squares curve fitting problem, and is the synthesized HI.x

The developed SIFGM method and its counterparts need to predict the degradation trajectory of the test sample 

first, and the RUL is further determined by a pre-defined failure threshold, which is set as the average minimum HI value 

of all training samples in the database. Note that three key parameters affecting the performance of the proposed method, 

where the sliding window size and the number of the most similar samples  are related to similarity matching L h

process and the fusion coefficient  is related to the prediction process. All parameters are tested using 100 training �
samples. It should be noticed that the closer to the end point of the sequence, the more accurate the prediction. So for 

testing a suitable , all predictions start from 100th cycle to avoid unfair comparison. Since the final results is not only L

related to , but also the number of the most similar samples , 4 different values of  are chosen in Figure 5. L h h

Figures 5-7 present the average MAD and MPS for the 100 training samples given different values of ,  and . L h �
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Figure 5 Average MPS of SIFGM approach with different values of sliding window size (RUL predictions start from L
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predictions start from 60 cycles)
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Figure 7. Average MAD and MPS of SIFGM approach with different values of fusion coefficient (RUL predictions �
start from 60 cycles)

As shown in Figure 5, the recommended sliding window size is taken  considering different values of . 60L � h

Though the preferable number of the most similar samples  seems to be 10 in Figure 5, taking or h 20h � 25h �

performs better based on the adopted two criteria when RUL predictions start from 60 cycles as shown in Figure 6. Due 

to the fact that it is hard to define which value is better from Figure 6, and the final results of these two values are only 

slightly different, the number of the most similar samples is taken as  for convenience. This also suggests that 20h �

appropriate quantity of the most similar samples could provide more stable prediction in the early degradation stage. 

Based on the determined and , the values of fusion coefficient is tested, and the recommended value is L h �

, shown in Figure 7. The performance of the proposed approach is then evaluated in two scenarios.0.2� �

4.3.1 RUL prediction results of whole lifecycle data

In this part, the degradation trajectories database is generated from 100 training samples using whole lifecycle data. The 

RUL of the 100 testing samples are predicted from 60th cycle until the engine failure, and the latest 60 observing data 

points are fed into the retrieval module. The maximum iteration of all models is set to 240 cycles since 96% of the 

machines operate less than 240 cycles from 60th cycle. The maximum acceptable similarity measurement distance is 
thd

set to 1. The prediction performance of the proposed SIFGM method is evaluated by average MAD and average MPS of 

100 samples. It's worth noting that the average prediction error measured by scores defined in (21), however, is not 

intuitive, because several large errors among the many predictions will completely dominate the final score. For example, 

a late prediction of 60 cycles will give a penalty score of 402.43, which could happen in early failure prediction of those 

rather long sequences of the testing samples (Wang et al., 2008). As a comparison, a late prediction beyond 30 cycles 

gives only 19.09 penalty score and an early prediction beyond 30 cycles gives only 9.05 penalty score for all comparable 

models. Figures 8 and 9 illustrate the comparison of the trajectory prediction and RUL estimation between the proposed 

method and its counterparts.
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Figure 8. Illustration of the trajectory prediction comparison (whole lifecycle data)
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Figure 9. Illustration of the RUL estimation comparison (whole lifecycle data)

Figure 8 presents all predictive trajectories of two samples from 60th cycle until the engine failure using three 

models, and Figure 9 shows the corresponding RUL at each cycle. Based on above figures, some results and discussion 

are summarized. 

(1)The HI trajectories predicted by the proposed SIFGM method is much closer to the true HI trajectory compared 

with ER and GM(1,1), and the distribution of SIFGM prediction curves is more concentrated, which proves the 

robustness of the SIFGM prediction in one aspect. 

(2)In the early stage of engine operation, some HI trajectories predicted by GM(1,1) failed to reach the failure 

threshold at the maximum iteration, while some HI trajectories predicted by ER reach the failure threshold too fast. This 

is because the GM(1,1) and ER can only extract the information from the historical data, and the fluctuations in the raw 

data impact greatly on the results. In contrast, SIFGM method adopts the latest information of the test sample and draws 

on the development trends of similar referential samples at the same time, which leads to a better and more stable 

prediction. 

(3)In the very late stage of engine operation, ER performs better than the other two methods, since ER utilizes all 

the data points while GM(1,1) is more sensitive to the new information and SIFGM is an extension of GM(1,1). This also 

shows that three models are effective in short-term prediction near failure, but only SIFGM can provide more reliable 

long-term predictions.
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(4)Almost all RULs predicted by the proposed SIFGM method are well located within the  confidence ± 20%

boundaries of the actual RUL, while only half of predictions by ER are in this area and the majority of predictions by 

GM(1,1) are out of the boundaries. 

The quantitative evaluation results of the aforementioned algorithms are detailed in Table 2. Average MAD and 

MPS are used to evaluate the performance of three prediction models. The prognostic performance is greatly improved 

by applying the similar referential information from the perspective of both evaluation criteria. Owing to the fact that 

average MAD and MPS considers all cycles of RUL prediction, it also reflects the robustness of SIFGM prediction 

compared with its counterparts. The predictive RUL of the proposed diagnostic and prognostic framework could provide 

valuable information for spare parts organizing and maintenance scheduling in advance, and prevent serious abnormal 

conditions and catastrophic failures simultaneously.

Table 2 The performance of the proposed SIFGM and its counterparts (whole lifecycle data)

SIFMG GM ER

Average MAD 7.37 23.94 25.42

Average MPS 2.88 10.55 8.64

4.3.2 RUL prediction results of partial degradation data

For practical applications, large amounts of run-to-failure data are difficult to obtain. Indeed, it is partial degradation data 

rather than entire run-to-failure data that are commonly available for engineers. In order to test the performance of the 

proposed method to predict RUL when only part of the whole life cycle data is available for referential machines, part of 

the whole life data of the original samples are cut off after 180 cycles, resulting in 48 sequences of whole life cycle data 

and 52 sequences of degradation data without failure. HIs are calculated based on the truncated data and are then stored 

in the training library for similarity matching, while other experimental conditions are the same as those in 4.3.1. Figure 

10 illustrates the comparison of the RUL estimations among the proposed method and its counterparts.
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Figure 10. Illustration of the RUL estimation comparison (partial degradation data)

Based on the results shown in Figure 10, the prediction performance of the proposed model does not change much, 

though the fluctuation of predictive RULs using partial degradation data is larger than that of the results using the whole 

life fault data. The conclusion that SIFGM shows superiority over its counterparts as summarized in 4.3.1 still holds true, 

demonstrating that the SIFGM is able to effectively utilize the partial information of the referential samples, while the 

traditional similarity-based RUL methods fail to do so. The quantitative evaluation results are detailed in Table 3. 

Compare the results in Table 2 and 3, the performance of the SIFGM is superior to other models, the prediction error is 
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less than half of other models� results. Though the errors become larger in partial degradation data, the predictive RULs 

are still valuable and stable for parts organizing and maintenance scheduling in advance. 

Table 3 The performance of the proposed SIFGM and its counterparts (partial degradation data)

SIFMG GM ER

Average MAD 9.37 23.66 25.41 

Average MPS 4.16 10.40 8.59 

5. CONCLUSIONS

A trajectory prognostic method based on grey forecasting model and similarity information fusion for RUL prediction is 

proposed in this paper. The main contribution of this study is to extend the framework of the RUL estimation by 

introducing metabolism grey model and information fusion in the RUL estimation module. With this improvement, both 

the latest trend of the test sample and long-term trend of the similar referential samples can be adopted in HI trajectory 

prognostic, resulting in a more accurate and stable RUL prediction. The case study in two scenarios demonstrates the 

effectiveness and applicability of the proposed framework for RUL estimation of aircraft engine, which also provides a 

viable choice of similarity-based RUL prediction when the historical whole lifecycle data are scarce. 

To obtain a more accurate prediction, the parameters of the SIFGM method were tested using several discrete 

values. However, the parameter combination is probably not optimal. More computational experiments will be necessary 

to make conclusions on the performance of different combinations. The fusion coefficient is taken as a fixed value from 

beginning to the end, which fails to reflect the reliance degree of monitoring sample on referential information in 

different operation stages. Future research will discuss the method which can adjust the fusion coefficient dynamically. 

Theoretical demonstration of the robustness of SIFGM and the application of SIFGM to other real cases need to be 

further explored as well.
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