
Chapter 7
Simulation Methods for the Analysis
of Complex Systems

Hindolo George-Williams, T. V. Santhosh, and Edoardo Patelli

Abstract Everyday systems like communication, transportation, energy and indus-
trial systems are an indispensable part of our daily lives. Several methods have been
developed for their reliability assessment—while analytical methods are computa-
tionally more efficient and often yield exact solutions, they are unable to account for
the structural and functional complexities of these systems. These complexities often
require the analyst tomakeunrealistic assumptions, sometimes at the expenseof accu-
racy. Simulation-based methods, on the other hand, can account for these realistic
operational attributes but are computationally intensive and usually system-specific.
This chapter introduces two novel simulation methods: load flow simulation and
survival signature simulationwhich together address the limitations of the existing
analytical and simulation methods for the reliability analysis of large systems.

7.1 Introduction

A system is classed as complex from one of two fronts—in terms of the functional
relationships between its components and in terms of its structure. A structurally
complex systemdoes not conform to a series, parallel, or series-parallel configuration.
Most real-world systems are composed of components that can operate at multiple
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performance levels or states and components with a functional coupling with other
components. Such systems are deemed functionally complex, since their states cannot
be directly deduced from their traditional two-state structure functions. They are
characterised bymultiple states, with the number of states determined by the diversity
in the states of their components, structure and the functional relationships between
their components [21]. In these systems, the number of performance levels may
or may not be finite, depending on the performance measure under consideration
and the type of system [21]. For instance, the power generated by a power plant
may take any value between zero and its maximum achievable value, depending
on the performance levels of its component and the demand on the grid. Complex
systems may be standalone or form an indispensable part of some critical system like
healthcare, safety-critical and industrial control systems. It is, therefore, important
to be able to assess their susceptibility to failures, as well as quantify and predict the
ensuing consequences, for effective planning of restoration andmitigation measures.

7.2 Reliability Modelling of Systems and Networks

In system reliability evaluation, the analyst has numerous techniques at their disposal,
which can be classified as heuristic-, analytical- or simulation-based [1] and further
as static or dynamic. In particular, dynamic techniques not only model the system
based on the functional and structural relationships between its components, but also
support dynamic relationships like inter-component and inter-system dependencies.

7.2.1 Traditional Approaches

Reliability Block Diagrams and Fault Trees have been extensively used in the reli-
ability evaluation of binary-state systems. Both techniques have proven particularly
useful for moderately sized systems with series-parallel configurations. However,
they become difficult to apply with large or complex systems and often require
additional techniques to decompose the system. The Reliability Graph [40] was,
therefore, developed to overcome this difficulty and proved very efficient in mod-
elling structural complexities. Reliability block diagrams, fault trees and reliability
graphs, however, assume components to be statistically independent, which renders
them inadequate for systems susceptible to restrictivemaintenance policies and inter-
component dependencies. However, techniques including but not limited to dynamic
reliability block diagrams [10], dynamic fault trees [6], condition-based fault trees
[35], dynamic flow graphs [2], Petri Nets [26] and other combinatorial techniques
[38] have been developed to model these dynamic relationships. They have found
application in a wide range of reliability engineering problems, including repairable
systems with restrictive maintenance policies.
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Though the earliest forms of these techniques including binary decision diagrams
were applicable only to binary-state systems, numerous instances of their recent
extension tomulti-state systems exist, see, e.g. [39]. However, these extensions either
require state enumeration or the derivation of the minimal path or cut sets of the
system, which is an NP-hard problem [41].

The extended block diagram technique and graph-based algorithms share
two common limitations. First, they define reliability with respect to the maximum
flow through the system. Therefore, they are limited to systems with single output
nodes and those with multiple output nodes where only the presence of flow at these
nodes is relevant and not the relative magnitude of the flow. The second limitation
arises from the assumption that there are no flow losses in the system, making them
inapplicable to certain practical systems like energy systems and pipe networks,
susceptible to losses in some failure modes. More recently, various researchers have
made invaluable contributions to multi-state system reliability analysis, developing
techniques applicable to a wide range of systems [22]. These techniques have mainly
been based on either the structure function approach, stochastic process, simulation
or the Universal Generating Function approach [21, 25].

The most popular stochastic process employed in system reliability analysis is
the Markov Chain (MC), which involves enumerating all the possible states of the
system and evaluating the associated state probabilities [25]. This technique is only
easily applicable to exponential transitions or distributions with simple cumulative
distribution functions, requires complicated mathematics and becomes complex for
large systems. For an M component binary-state system, the number of states in
the model ranges from M + 1 for series systems, to 2M for parallel systems. For
large multi-state systems, the number of states increases exponentially, rendering the
model difficult to construct and expensive to compute.

The Universal Generating Function was introduced to address the state explo-
sion problem of the MC. It allows the algebraic derivation of a system’s perfor-
mance from the performance distribution of its components [21, 24]. However, both
the Universal Generating Function and Markov Chain are limited in the number
of reliability indices they can quantify. Also, like all multi-state system reliability
evaluation techniques, they are maximum-flow-based and assume flow conservation
across components. The Universal Generating Function, though straightforward for
series/parallel systems, it requires a substantial effort for complex topologies.

Simulation methods are the most suitable for multi-state system reliability and
performance evaluation, since they mimic the actual operation of systems. Their
advantage over their analytical counterpart is due to the fact that they support any
transition distribution, allow the effects of external factors on system performance to
be investigated [43] and are easily integrated with other methods [36]. In particular,
they allow the explicit consideration of the effects of uncertainty and imprecision
on the system, providing a powerful tool for risk analysis and by extension, ratio-
nal decision-making under uncertainty. They are, therefore, mostly used to analyse
systems for which analytical approaches are inadequate. However, even some of the
existing simulation methods [23, 43] require prior knowledge of the system’s path
set, cut set or structure function and are mostly limited to binary-state systems [42].
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7.2.2 Interdependencies in Complex Systems

Engineers and system designers are under immense pressure to build systems robust
and adequate enough to meet the ever-increasing human demand and expectation.
Unavoidably, the resulting systems are complex and highly interconnected, which
ironically constitute a threat to their resilience and sustainability [18]. Two systems
are interdependent if at least a pair of components (one from each system) are cou-
pled by some phenomena, such that a malfunction of one affects the other. In such
systems, an undesirable glitch in one system could cascade and cause disruptions
in the coupled system. The cascade could be fed back into the initiating system
and the overall consequences may be catastrophic [5]. To minimise the effects of
failures, some interdependent systems are equipped with reconfiguration provisions.
This normally entails transferring operation to another component, rerouting flow
through alternative paths, or shutting down parts of the system.

The achievement of maximum overall system performance is, in general, desir-
able. However, in many applications (nuclear power plants, for instance), it is more
important to guarantee system availability and recovery in the shortest possible time,
following component failure [16]. Interdependencies are manifested in engineering
systems at two levels: between components (inter-component), which can be func-
tional or induced and between systems/subsystems (inter-system) [15].

Functional dependencies are due to the topological and/or functional relationships
between components. Induced dependencies, on the other hand, are due to a state
change in one component (the initiator) triggering a corresponding state change in
another (the induced), such that evenwhen the initiator is reinstated, the induced does
not reinstate, unless manually made to do so. Functional dependencies in standalone
systems are intrinsically accounted for by the innate attributes of the system reliability
modelling and evaluation technique while induced dependencies require explicit
modelling. Inter-system dependencies, on the other hand, are due to functional or
induced couplings between multiple systems. The functional dependencies in these
systems, however, may require explicit modelling. This is the case for components
relying on material generated by another system. For instance, an electric pump in a
water distribution system relies on the availability of the electricity network.

Induced dependencies are further divided into Common-Cause Failures (CCF)
[27] and cascading events, as summarised in Fig. 7.1. Common-cause failures are
the simultaneous failure of multiple similar components due to the same root cause.
Their origin is traceable to a coupling that normally is external to the system. Notable
instances are shared manufacturing lines, shared maintenance teams, shared envi-
ronments and human error. A group of components susceptible to the same CCF
event is called a Common-Cause Group (CCG). An important point to note about
common-cause failures is that, on occurrence of the failure event, there is a probabil-
ity associated with multiple component failure and that the affected components fail
in the same mode. Consequently, the number of components involved in the event
ranges from 1 to the total number of components in the CCG. CCF events may affect
an entire system or only a few of its components and, therefore, pose a consider-
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Interdependencies

Inter-component Inter-system

Functional Induced

Cascading FailuresCommon-Cause Failures

Fig. 7.1 Types of interdependencies in complex systems. Functional dependencies—such as when
the failure of power supply forces the unavailability of connected components. Common-Cause
Failures—due to earthquake excitation, vibration, environmental conditions (temperature, humidity,
contaminants), shared maintenance. Cascading events such as the failure of one component might
overload other components

able threat to the reliability of systems. CCF modelling and quantification attracts
keen interest from system reliability and safety researchers, as well as practitioners.
Examples of the work that has been done in this field can be found in [28, 33, 37].
Most of the methods presented in these publications, however, are built on reliability
evaluation techniques that do not segregate the topological from the probabilistic
attributes of the system. As such, they are computationally expensive for problems
involving multiple reliability analysis of the same system. They also have yet to be
applied to multi-state systems, as well as systems susceptible to both cascading and
common-cause failures.

Cascading failures are those with the capacity to trigger the instantaneous failure
of one ormore components of a system. They can originate from a component or from
a phenomenon outside the system boundary. The likelihood of the initiating event
originating from within the system distinguishes them from CCF. Another point of
dichotomy is that the affected components do not necessarily have to be similar or
fail in the same mode. In addition, at the occurrence of the initiating event, the prob-
ability of all the coupled components failing is unity, same for the case when they are
in a state rendering them immune [15, 18]. A few prominent examples of initiating
events external to the system are extreme environmental events, natural disasters,
external shocks, erroneous human-system interactions and terrorist acts. Various
models have been developed to study the effects of cascading failures on complex
systems [29]. However, a good number of these models only assess their response
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to targeted attacks, variation in some coupling factor or the relative importance of
system components. When faced with the additional situation of random component
failures, a complete reliability and availability analysis should be performed [18].
Even methods that fulfill this requirement have their applicability hampered by com-
ponents that undergo non-Markovian transitions, components susceptible to delayed
transitions, and reconfigurable systems.

7.3 Load Flow Simulation

The load flow simulation is a recently proposed technique for the reliability and
performance analysis of multi-state systems [17]. It is based on the fact that if the
performance levels of a system’s components are known, the performance levels
of the system can be directly derived from its network model. In this formalism,
each component is modelled as a semi-Markov stochastic process and the system
as a directed graph whose nodes are the components of the system. The approach
is intuitive and applicable to any system architecture and easily programmable on
a computer. It outperforms other multi-state system reliability analysis approaches,
since it does not require state enumeration or cut set definition. Efficient algorithms
for manipulating the adjacency matrix of this directed graph to obtain the flow equa-
tions of the system are available in OpenCossan [31].

The operation of the system is simulated using Kinetic Monte Carlo method by
initially sampling the state and time to the next transition (hereafter referred to as
transition parameters) of each component. The simulation jumps to the smallest sam-
pled transition time tmin , at which time the states of the components undergoing the
transition are updated. Using the updated performance levels of the components of
the system, the virtual flow across the system is computed via a linear programming
procedure that employs the interior-point algorithm. The new transition parameters
of the components undergoing a transition are then sampled and the simulation jumps
to the next smallest transition time. This cycle of component transition parameter
sampling, transition forcing and system performance computing continues until the
mission time T is reached. The system performance computed at every component
transition is captured and saved in counters, from which the performance indices of
the system can be deduced. A component shutdown and restart procedure is incor-
porated to replicate the actual operating principles of most practical systems. In this
procedure, the availability of each system component is tested against its predefined
reference minimum input load level at every transition and the effects of functional
interdependence on the failure probability of the components are accounted for.
Figure7.2 provides a high-level illustration of the load flow simulation procedure.

Ageing and component performance degradation is common in most systems.
For such systems, techniques built around the flow conservation principle become
obsolete, as the flow generated by sources can be dissipated in intermediate com-
ponents in certain failure modes. For instance, consider a 100MW power generator
supplying a 95MW load through a 125MW transformer. If there are no power losses
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Fig. 7.2 Flowchart of the load flow simulation

in the transformer, 95MWwill be drawn from the generator and delivered to the load.
However, if the efficiency of the transformer deteriorates to say 75%, it now takes
all 100MW from the generator but delivers only 75MW to the load. In both cases,
the apparent difference between the generation capacity and demand is the same but
the power drawn from the generator increases while the effective power supplied
to the load deteriorates. For this example, the demand would have to be slashed to
75MW or less, to preserve the operational integrity of the generator. Other scenarios
where component inefficiency affects system reliability are: a power transmission
line prone to losses and an oil pipeline where a failure mode is a hole in a pipe or
gasket failure at some flange [17].

The load flow simulation approach has been successfully applied to the availabil-
ity assessment of a reconfigurable offshore installation [18], dynamic maintenance
strategy optimization of power systems [19] and the probabilistic risk assessment of
station blackout accidents in nuclear power plants [16].

Advantages Over Existing Techniques:

1. Inherits all the advantages of simulation approaches used for system reli-
ability and performance evaluation.

2. Implements any system structurewith relative ease, since it doesn’t require
knowledge of the minimal path or cut sets prior to system analysis.

3. Calculates the actual flow across every node of the system.
4. Models systemsmadeupofmultiple source and sinknodeswith competing

static or dynamic demand.
5. Models losses in components and across links.
6. Models component restart and shutdown.
7. Not limited to integer-valued node capacities and system demand, as

required by other graph-based algorithms.

7.3.1 Simulation of Interdependent and Reconfigurable
Systems

Load flow simulation allows the modelling of inter-component and inter-system
dependencies, thereby supporting the reliability assessment of realistic engineering
systems [18]. Components and external events that influence the operation of the
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Fig. 7.3 Illustration of decoupling procedure for interdependent systems

system are identified and numbered, followed by the identification and modelling of
all the inter-component dependencies in the system. The strategy is to decouple the
interdependent system into its constituent systems (subsystems) as shown in [18].
The nodes associated with each subsystem are then identified and its directed graph
obtained (i.e. only nodes with actual commodity flow are considered). The states of
each node are then identified and modelled as described in [17].

For illustrative purposes, consider the original system in Fig. 7.3 (left panel). It is
an interdependent four commodity system—each solid line transports a commodity
and the broken line depicts an induced dependency in the direction of the arrow.
Node 2 is part of subsystem S2 and relies the commodity from subsystem S3 to
drive its operation. One would say it is functionally dependent on subsystem S3 and
exhibits a dual operation mode, operating both as a sink and an intermediate node.
Its sink mode directly influences flow in S3, while its transmission mode directly
influences flow in S2. It is, therefore, logical to separate node 2 into its constituent
nodes, each representing a mode of operation. Virtual nodes representing the sink
modes of dual nodes are created and assigned new IDs, creating a decoupled system
(see Fig. 7.3 (right panel)). A load-source functional dependency exists between the
decoupled nodes, since the transmission node is incapacitated if flow into the sink
node is inadequate. Therefore, they make a load-source pair, with the transmission
node being the load and the sink node, the local source node.

Local sources, otherwise known as support nodes in load-source pairs, are mod-
elled as binary-state objects: state 1 (active) has capacity l, depicting the availability
of the dependent node; State 2 (inactive) has capacity 0 and depicts its unavailabil-
ity. l is the minimum level of support required to operate the dependent/sink node
and in practical cases represents the load rating of that component. By applying the
decoupling procedure described to all load dependency relationships in the system,
the following load-source pairs; {2, 14}, {3, 16}, {1, 18}, {13, 15} and {9, 17} are
obtained. Li = { j, l} signifies that node i requires a minimum of l units of a certain
commodity from node j to operate. If i has a load dependency relationship with
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multiple nodes, Li takes the form of a two-column matrix, with each row defining
the node’s relationship with another node.

Induceddependencies are definedby theparameter Di = {d j1, d j2, d j3, d j4}u×4 |
j = 1, 2, ..., u − 1, u, which defines the state change induced in other nodes as a
result of a state change in node i . d j1 is the state of i triggering the cascading event,
d j2; the affected node, d j3; the state the node has to be in to be affected, and d j4; its
target state on occurrence of the event. Each row of Di defines the behaviour of an
affected node, and u, the number of relationships. If node i and the affected node
d j2 belong to different subsystems, the subsystem the latter belongs to is dependent
on the subsystem of the former. For example, suppose state 2 of node 5 in Fig. 7.3
forces node 7 into state 3 if it is in state 1 at the time node 5 makes the transition to
state 2. The induced dependency of node 7 on node 5 is defined by D5 as

D5 = (
2 7 1 3

)
(7.1)

Once the system has been decoupled, the dependency tree depicting the relation-
ships between its subsystems and their ranking is derived. The rank of a subsystem
depends on its position on the tree relative to the reference subsystem. The indepen-
dent subsystem, which is also the reference subsystem, is assigned rank 1 and the
remainder ranked in ascending order of their longest distance from this reference.
See [18] for the details of the ranking, reconfiguration and simulation procedures.

7.3.2 Maintenance Strategy Optimization

The load flow simulation approach can be exploited to optimise the maintenance
strategies of complex systems. The multi-state semi-Markov models of components
are extended to represent their behaviour under various maintenance strategies. The
operation of the system is then simulated using a slightly modified version of the
simulation procedure depicted in Fig. 7.2 and detailed in [19]. Non-Markovian com-
ponent transitions associatedwith the operational dynamics imposed bymaintenance
strategies are implemented. For example, the maintenance of a failed component can
only be initiated if there is an idle maintenance team, making the transition of the
component from its failed to working state non-Markovian, since it is conditional on
the availability of a maintenance team. Additional component states such as preven-
tive maintenance, corrective maintenance, shutdown, diagnostics, idle and awaiting
maintenance are included to model different maintenance activities.

To illustrate the derivation of the multi-state model of a component under various
maintenance strategies, consider a binary-state component. The component is subject
to both preventive and corrective maintenance and maintained by a limited number
of maintenance teams. In addition, its corrective maintenance consists of two stages:
a diagnosis stage and a restoration stage. Following diagnosis, the maintenance team
could proceed with the actual repairs if spares are not required or make a spares
request. There is a known probability associatedwith spares being needed for a repair
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Fig. 7.4 Multi-state models of binary-state component under maintenance delays

and while the maintenance team awaits the spares, it could be assigned to another
component. Similarly, there is a probability associated with spares being needed to
complete the preventive maintenance of the component, which could be interrupted
if these spares are not immediately available. The resulting multi-state models of
the component under two contrasting maintenance strategies are shown in Fig. 7.4,
with the component’s state assignments and possible transitions. Transitions are
either normal, forced or conditional. Normal transitions occur randomly and depend
only on their associated time-to-occurrence distributions. Forced transitions occur
purely as a consequence of events outside the component boundary, and their time-
to-occurrence distributions are unknown. Conditional transitions, on the other hand,
have a known time-to-occurrence distribution but are assigned a lower priority and
only occur on fulfilment of a predefined probabilistic condition or set of conditions
[19]. Unlike normal transitions in which the next state of the component depends
only on its current state, the next state of the component under forced transitions
may also depend on its previous state. As such, the multi-state component transition
parameter sampling procedure presented in [17] cannot be used to determine the
transition parameters of the component. For this, the set of procedures presented in
[19] are required. The binary-state component models in Fig. 7.4 can be generalised
for multi-state components by defining one ‘Idle’ state (if components are kept out
of operation during spares delay), a ‘Diagnosis’ state (where necessary) and one
‘Corrective Maintenance’ state for each repairable failure mode.

With this approach, multiple contrasting complex maintenance strategies can be
simulated without the need to modify the simulation algorithm, as the maintenance
strategy is implemented at the component level. See, for instance, the optimal main-
tenance strategies for a hydroelectric power plant derived in [19].
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7.3.3 Case Study: Station Blackout Risk Assessment

The complete lack of AC power at a nuclear power plant is critical to its safety, since
AC power is required for its decay heat removal. Though designed to cope with
these incidents, nuclear power plants can only do so for a limited time. The impact of
station blackouts on a nuclear power plant’s safety is determined by their frequency
and duration. These quantities, however, are traditionally computed via a static fault
tree analysis that deteriorates in applicability with increasing system complexity.
The load flow simulation approach was used to quantify the probability and dura-
tion of possible station blackouts at the Maanshan Nuclear Power Plant in Taiwan,
accounting for interdependencies between system components, maintenance, system
reconfiguration, operator response strategies and human errors [16].

TheMaanshan Plant is powered through two physically independent safety buses,
which themselves are powered by six offsite power sources through two independent
switchyards. Each safety bus has a dedicated backup diesel generator and both buses
share a third diesel generator. Two gas turbine generators connected through the
second switchyard power the plant’s safety systems if all three diesel generators are
unavailable. The gas turbine generators, however, take about 30 min to become fully
operational, when powered on. The goal in this case study was to quantify the risk
to the plant, of station blackouts initiated by the failure of the grid sources, as well
as the switchyards and identify the best recovery strategy, to minimise this risk.

The load flow simulation approach was used to model the structural/functional
relationships between the components of the system as described in Sect. 7.3 and
the formalism described in Sect. 7.3.1 to model both the interdependencies between
components and their dynamic behaviour under various recovery strategies. The full
details of the solution approach and results are available in [16].

7.4 Survival Signature Simulation

For very large-scale systems and networks, the full system structure information (or
structure function, minimal paths sets, etc.) might not be available or may be difficult
to obtain. Having a compact representation of the system, therefore, is advantageous.

Survival signature [7] has been proposed as a generalisation of system signature
[11, 12] to quantify the reliability of complex systems consisting of independent
and identically distributed (i id) or exchangeable components, with respect to their
random failure time. It has been shown in [8] how the survival signature can be
derived from the signatures of two subsystems in both series and parallel config-
uration. The authors developed a non-parametric-predictive inference for system
reliability using the survival signature. Aslett et al. [3] demonstrated the applicabil-
ity of the survival signature to system reliability quantification via a parametric, as
well as non-parametric approach.An efficient computational approach for computing
approximate and exact system and survival signatures has been recently presented
in [20, 34]. Feng et al. [13] developed an analytical method to calculate the sur-
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Fig. 7.5 Example of a bridge network composed of six-component of two types

Table 7.1 Survival signature for the system shown in Fig. 7.5

l1 l2 �(l1, l2) l1 l2 �(l1, l2)

0 [0, 1, 2, 3] 0 2 [0, 1] 0

1 [0, 1] 0 2 2 1/3

1 2 1/9 2 3 2/3

1 3 1/3 3 [0, 1, 2, 3] 1

vival function of systems with uncertainty in the parameters of component failure
time distributions. These methods are all useful but less practical for larger complex
systems and not applicable to non-exponential transitions.

As an illustration, consider a six-component bridge network with two component
types (Fig. 7.5), the survival function is given by Table7.1.

Considering 2 working components of type 1; l1 = 2 and 3 of type 2; l2 = 3,
there are three possible combinations in total but only two combinations lead to
success (the survival of the system) of the system. Hence, the survival signature of
the system is 2

3 , as shown in Table7.1. Similarly, for l1 = 3 and l2 = [0, 1, 2, 3],
there are eight possible combinations in total, all of which result in success. Hence,
the survival signature of the system in this case is equal to 1.0. Thus, knowing the
success paths from the combinations of multiple types of active components, it is
possible to compute the survival function of a complex system.

Exact analytical solutions are restricted to particular cases (e.g. systems with
component failure times following the exponential distribution and non-repairable
components). The survival function of a system with K component types is given by

P(Ts > t) =
m1∑

l1=0

...

mK∑

lK =0

φ(l1, . . . , lK )P(

K⋂

k=1

{Ck(t) = lk}) (7.2)

where

P(

K⋂

k=1

{Ck(t) = lk}) =
K∏

k=1

(
mk

lk

)
[Fk(t)]mk−lk [1 − Fk(t)]lk (7.3)

Here, Ck(t) ∈ {0, 1, . . . ,mk} denotes the number of components of type k in the
systemwhich function at time t , and Fk(t) represents theCDF of the random failure
times of components of the different types. In this approach, we have a strong i id
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Fig. 7.6 Flow chart of the Monte Carlo simulation algorithm for complex systems with repairable
components based on survival signature. Details of the simulation method are available in [30]

assumption of failure times within same components types. With this assumption,
all state vectors [7] are equally likely to occur.

However, simulation methods can be applied to study and analyse any system,
without introducing simplifications or unjustified assumptions. AMonteCarlo-based
approach can be combined with survival signature, to estimate the reliability of
a system in a simple and efficient way. A possible system evolution is simulated
by generating random events (i.e. the random transition such as failure times of
the system components) and then estimating the status of the system based on the
survival signature (Eq. (7.2)). By counting the number of occurrences of a specific
condition (e.g. the number of times the system is in working status), it is possible to
estimate the survival function and reliability of the system.

The most generally applicable Monte Carlo simulation methods adopting the sur-
vival signature for multi-state component and repairable systems have been proposed
in [30]. Its procedural steps are presented in Fig. 7.6.

7.4.1 Systems with Imprecision

The reliability analysis of complex systems requires the probabilistic characterisation
of all the possible component transitions. This usually requires a large dataset that is
not always available. To avoid the inclusion of subjective assumptions, imprecision
and vagueness of the data can be treated by using imprecise probabilities that combine
probabilistic and set theoretical components in a unified construct (see, e.g. [4, 9]).
Randomness and imprecision are considered simultaneously but viewed separately
at any time during the analysis and in the results [32].
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Imprecision can occur at component level, where the exact failure distribution is
not known or at system level, in the form of an imprecise survival signature. The latter
occurs when part of the system can be unknown or not disclosed. Such imprecision
leads to bounds on the survival function of the system, providing confidence in the
analysis, in the sense that it does not make any additional hypothesis regarding to
the available information. When the imprecision is at the component level, a naïve
approach, employing a double loop sampling approach where the outer loop is used
to sample realisations of component parameters, can be used. In other words, each
realisation defines a new probabilistic model that needs to be solved adopting the
simulationmethods proposed above, fromwhich the envelop of the system reliability
is identified. However, since almost all systems are coherent (a system is coherent if
each component is relevant, and the structure function is nondecreasing), it is only
necessary to compute the system reliability twice, using the lower and upper bounds
for all the parameters, respectively. If the imprecision is at the system level (i.e. in
the survival signature), the simulation strategy proposed in Fig. 7.6 can be adopted
without additional computational cost by collecting, in two separate counters, the
upper and lower bounds of the survival signature at each component transition, as
illustrated in [30]. Hence, imprecision at the component and system levels can be
considered concurrently, without additional computational costs.

7.4.2 Case Study: Industrial Water Supply System

An industrial water supply system consisting of 13 components, as shown in Fig. 7.7,
is chosen as a case study, to demonstrate the capability of the survival signature
method. The system is expected to deliver water to at least one of the two tanks
T 2 or T 3 from tank T 1, through a set of motor-operated pumps and valves. The
component failure datawith the corresponding distributions are provided inTable7.2.
The survival signature method is employed to compute the reliability of the system.

Fig. 7.7 Industrial water supply system



7 Simulation Methods for the Analysis of Complex Systems 109

Table 7.2 Reliability parameters of the components of the water supply system

Component Failure rate
(h−1)

MTTR (h) Repair rate
(h−1)

Distribution
type

T1, T2, T3 λ1 = 5 · 10−5 24 μ1 = 0.0417 Exponential

P1, P2, P3 λ2 = 3 · 10−3 17.4 μ2 = 0.0575 Exponential

V1, V2, V3, V4, V5, V6, V7 λ3 = 2 · 10−4 9 μ3 = 0.111 Exponential

Table 7.3 Survival signature (selected parts only) for the system shown in Fig. 7.7 computed with
approach proposed in [20]

l1 l2 l3 � l1 l2 l3 �

[0, 1] ∀ ∀ 0

2 1 2 1/63 3 1 2 1/21

2 1 5 8/63 3 1 5 8/21

2 1 7 2/9 3 1 7 2/3

2 2 6 22/63 3 2 6 6/7

2 3 5 8/21 3 3 5 6/7

2 3 7 2/3 3 3 7 1

The components of the system are categorised into three types, namely, pumps,
tanks and valves. The survival signature is given in Table7.3. The survival function
of the water system is then calculated analytically as shown below:

P(TS > t) =
3∑

l1=0

3∑

l2=0

7∑

l1=0

�(l1, l2, l3)

(
3

l1

)
[1 − e−λ1t ]3−l1

[
e−λ1t

]l1 ×
(
3

l2

) [
1 − e−λ2t

]3−l2 [
e−λ2t

]l2 ×
(
7

l3

) [
1 − e−λ3t

]7−l3 [
e−λ3t

]l3 (7.4)

The resulting survival functions without repair and with repairable components are
shown in Fig. 7.8.

As shown in Fig. 7.8, the results of the simulation method are in agreement with
the analytical solution for both repairable and non-repairable components. The pro-
posed simulation method is applicable to any distribution type, intervals or even
probability boxes. It not only separates the system structure from its component fail-
ure time distributions, but also doesn’t require the i id assumption between different
component types, as illustrated in [14].
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Fig. 7.8 Survival function without repairable (left panel) and with repairable components (right
panel) computed using 10000 samples and verified by the analytical solutions

7.5 Final Remarks

System topological complexity, component interdependencies, multi-state compo-
nent attributes and complex maintenance strategies inhibit the application of sim-
ple reliability engineering reasoning to systems. For systems characterised by these
attributes, simulation-based approaches allow the realistic analysis of their reliability,
despite the relatively higher computational costs of these approaches. This, however,
is not a problem, with recent advancement in computing.

The load flow simulation approach is an intuitive simulation framework that is
applicable to binary and multi-state systems of any topology. It does not require the
prior definition of the structure function, minimal cut sets or the minimal path sets of
the system. Instead, it employs a linear programming algorithm and the principles of
flow conservation to compute the flow through the system. Thus, it can model flow
losses and implement reconfiguration requirements relatively easily. It can model
all forms of interdependencies in realistic systems, using intuitive representations.
These attributes render the framework intuitive and generally applicable.

While the load flow simulation approach is optimised for multi-state systems, it
may not be the best for binary-state systems with identical components. Since the
survival signature is a function of the system topology only, it can be calculated only
once and reused in multiple reliability analyses. This feature reduces the reliability
evaluation of the system to the analysis of the failure probabilities of its components,
which is computationally cheap. Efficient simulation methods based on system sur-
vival signature allow the reliability analysis of complex systems without resorting to
simplifications or approximations.

The load flow and survival signature simulation approaches are not alternative to
each other; instead, they can be coupled to take advantage of their unique features,
especially for systems with multiple outputs and potentially, multi-state systems.
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The algorithms and examples presented are available at: https://github.com/
cossan-working-group/SystemReliabilityBookChapter.
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