

Urea Hydrogen Peroxide Detonation Performance

1. Introduction

Urea Hydrogen Peroxide (UHP) - Carbamide Peroxide:

- Commonly used in the cosmetic and pharmaceutical industries
- Easily manufactured from readily available household chemicals
- ⊳ Explosive properties recently studied [1-2] : non-ideal, detonable at large scale

Scope of our research:

- Detonability of commercial lab grade UHP at the 100 g scale
- → Determining detonation performance parameters for risk assessment purposes

2. Material and methods

- Commercial lab grade UHP (97%); 85% particles > 600 µm
- Explo5: Ideal detonation parameters & JWL coefficients for Autodyn modelling
- > Need for maximum experimental data: lab & underwater measurements Detonation velocity (VoD), Detonation pressure (Pdet), Equivalent shock (Es) & bubble (Eb) energy

Lab firing:

- 100 g cylindrical charges
- ID 30 mm, length 5 ID
- Heavy confinement (4 mm steel) Initiation by a standard N°8 military detonator and an 8 g C4 booster

Performance assessment: witness plate indentation and VoD measurements (Optimex 64), detonation pressure calculated from Cooper [3] from VoD and loading density

$$P_{det} = \rho_0 . (VoD)^2 . (1 - 0.7125 . \rho_0^{0.04})$$

Underwater firing:

- 100 g loose UHP spherical charges in plastic (PE) bags
- Initiation by a standard N°8 military detonator and an 8 g C4 booster
- 100 g C4 spherical charges fired for comparison

Performance assessment: brisance from underwater shock pressure and explosive power from bubble period (tb)

Francis Halleux¹, Jean-François Pons¹, Ian Wilson¹, Romuald Van Riet², Bart Simoens², Michel H. Lefebvre²

¹ Cranfield University, Defence Academy, SN6 8LA Shrivenham, United Kingdom ² Department of Chemistry, Royal Military Academy, 1000 Brussels, Belgium

3. Results and discussion

Lab firings results (theoretical predictions between brackets)							
UHP loading density [g/cm3]	0.75	1	1.1				
Average VoD [m/s]	2897 (3657)	3647 (4774)	3860 (5215)				
Calculated Pdet [GPa]	1.86 (2.42)	3.82 (5.48)	4.67 (6.92)				
Average indent depth [mm]	5.1 (5.5)	7.1 (8.5)	7.8 (9.5)				
Deleting being an TNT [0/]	0	10	22				
Relative brisance vs INI [%]	9	18	22				
Relative brisance vs C4 [%]	6.5	13	16				
Relative brisance vs ANFO [%]	28	58	71				

- Differences between the calculated and the experimental velocities of detonation between 750 and 1300 m/s, highlighting the non-ideal behaviour of UHP in these conditions [4]
- Calculated detonation pressures up to 33% lower than the predictions from the thermodynamic code Explo5 and the resulting indentations of the witness plate up to 20% lower than the simulated ones, especially at growing densities

	ρ [g/cm ³]	m [g]	P _{max} [MPa]	t _b [ms]	E _s [Pa ² s]	E _{sw} [MJ/kg]	E _b [s ³]	E _{bw} [MJ/kg]
C4	1.63	100	21.45 (21.47)	121.5	11097 (11090)	0.929161 (0.928603)	0.0018	1.9735
UHP	0.75	100	8 (13.02)	80.7	1170 (5450)	0.097968 (0.456347)	0.0005	0.5784

- ۶ UHP: highly non-ideal behaviour with experimental data significantly lower than the value from our Autodyn model (60% Pmax, 20% shock energy equivalent)
- Autodyn model based on CJ state ideal parameters calculated from Explo5, more suitable for military explosives, such as C4
- Calculated equivalencies (from TNT literature data):

Underwater explosions - TNT equivalencies [%]					
Charge	Brisance	Explosive Power			
UHP	13	33			
C4	129	105			

4. Conclusions and future work

- > Detonation performance of UHP at the 100 g -scale has been characterised.
- Lab results confirmed self-sustained detonation under heavy confinement, with observed detonation velocities consistent with literature values from large-scale field experiments.
- TNT equivalents were calculated based on experimental results and compared to those obtained by theoretical prediction.
- UHP explosive power and brisance were quantified from bubble period and underwater shock pressure, with respective TNT equivalencies of 33% and 13%. This latter shock energy equivalent from underwater explosions is consistent with UHP relative brisance calculated from lab firing.
- Performing such an experimental campaign has proven useful to characterise the performances of non-ideal explosives for risk assessment purposes.
- **Future work** includes further assessment of booster contribution on total energy and a size-effect study, firing kg-size UHP charges underwater using the same scaled distances

References

[1] A.K. Hussein, Relative Explosive Strength of Some Explosive Mixtures Containing Urea and/or Peroxides, Chinese Journal of Explosives & Propellants 2016, 39 (5), 22-27.

[2] R. Matyas, Explosive Properties and Thermal Stability of Urea-Hydrogen Peroxide, Propellants, Explosives,

Pyrotechnics 2017, 42 (2), 198-203. [3] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996, p 265.

[4] C.L. Mader, Numerical modeling of Explosives and Propellants, CRC Press, New York, 2008, pp 261-265.