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in the presence of communication noise

Sabyasachi Mondal1 and Antonios Tsourdos2

Abstract
In this paper, the consensus of nonlinear multi-agent systems (MASs) is discussed, considering actuator fault and switching
topology in the presence of communication noise. The actuator fault and communication noise are both considered to be
random. The switching of the topologies is considered random as well. These issues are handled by Distributed Nonlinear
Dynamic Inversion (DNDI), which is designed for Multi-Agent Systems (MASs) operation. The convergence proof with
actuator fault is provided, which shows the robustness of the controller. The simulation results show that DNDI suc-
cessfully dealt with the actuator fault and communication events simultaneously.
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Introduction

Multi-Agent Systems (MASs) is a useful platform to
execute complex tasks like surveillance, search and res-
cue, delivery, fire-fight etc., which must be performed
cooperatively, and the agents must achieve consensus
among themselves. The information shared by the agents
with its neighbour is utilised to compute the values of the
consensus protocols. These protocols are designed using
the different branches of control theory, considering the
agent dynamics and communication topology. Many re-
searchers have addressed the consensus problem in their
work which can be identified in a few categories like
flocking,1 formation control2 and synchronisation3 are some
of the examples.

In a real-world scenario, the agents face difficulties to
achieve the consensus among themselves. The difficulties
occur due to 1. issues affecting the communication among
the agents, 2. internal faults and 3. external disturbances.
The most common issues associated with MASs com-
munication are switching topology, noise and delay. The
common internal fault is the actuator fault. The external
disturbance occurs due to events in the operating envi-
ronment like a wind gust. In this paper, we will restrict our
discussion to switching topology, communication noise
and actuator fault. A brief literature survey about these
topics is presented in the following paragraphs.

The primary reasons behind the switching topology
are, change in surroundings, limited communication range
or link failure. A few examples of research papers that

discussed switching topology while designing the con-
sensus protocol are mentioned here. Wen et al.4 addressed
the distributed consensus tracking problem for agents
having Lipschitz-type node dynamics. The problem was
formulated considering changing topology among fol-
lowers. Kim et al.5 discussed the consensus problem for
heterogeneous multi-agent systems. They considered the
communication with probabilistic link failure and pre-
sented using a Bernoulli probability sequence. Ding et al.6

discussed the consensus problem of nonlinear multi-agent
systems subjected to Markovian switching topologies. Liu
et al.7 presented the leaderless consensus problem of
MASs considering switching communication topology.
Xia et al.8 described the leader-following consensus
problem, and they considered switching topology in their
study.

In addition to switching topology, communication
noise creates difficulties to achieve the consensus. It is
stochastic in nature and perturbs the agent information.
Chen et al.9 proposed a mean square consensus protocol
for MASs. In their study, they considered fixed com-
munication topologies and channel noise. Wang et al.10
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presented the consensus problem considering communi-
cation noises. The agent dynamics were linear. A consensus
algorithm for multi-agent with noisy communication is
proposed by Morita et al.11 Liu et al.12 studied the con-
sensus of MASs, and the communication among them was
subjected to noise.

There are papers where authors have studied the effect
of switching topology and communication noise simul-
taneously. Kar et al.13 described the consensus of MASs,
where they included communication link failures and
channel noise in their study. Wang et al.14 presented the
consensus of MASs subjected to both Markovian
switching topologies and communication noise. Ming
et al.15 presented the communication among the agents as
Markovian switching topologies. They included stochastic
communication noise as well. Li et al.16 presented the
consensus of MASs, where the agent communication is
subjected to Markovian switching along with communi-
cation noises. Also, necessary and sufficient conditions for
the consensus are derived. In another work,17 the same
authors considered random switching topologies in their
study along with communication noise.

In addition to communication issues, the agents may
experience faults during the execution of a complex
mission, which results in failure. The consensus protocol
should handle the fault such that the agents continue the
mission with the fault. The controller should be robust
enough to compensate for the effects of the faults. One
primary requirement of fault-tolerant control is to ensure
acceptable performance and desired safety and reliability.
There exist a few papers which discussed the actuator
faults in the consensus problem.

Saboori et al.18 proposed fault-tolerant consensus con-
trol for agents having linear dynamics. The distributed
fault-tolerant consensus problem for uncertain linear
multi-agent systems using the adaptive protocol is de-
scribed by Ye et al.19 Qin et al.20 presented the consensus
tracking problem of second-order nonlinear multi-agent
systems (MAS) with disturbance and actuator fault using
the sliding mode control. Wang et al.21 described the
leader–follower consensus problem. They considered
uncertain systems having nonlinear dynamics and actuator
fault. Sakthivel et al.22 addressed the leaderless consensus
problem for a class of continuous-time MASs. The agents
are subjected to time-varying actuator faults. Trivedi
et al.23 proposed a fault-tolerant consensus of nonlinear
MASs. The authors consider communication topologies to
be directed. They also considered communication noise
and actuator faults. Wang et al.24 presented an adaptive
consensus tracking control scheme. They considered high-
order nonlinear agents having unknown time-varying
actuator faults. Li et al.25 described the consensus prob-
lem for Lipschitz nonlinear multi-agent systems subject to
actuator faults.

All of these papers implemented robust and adaptive
controllers to handle the actuator fault. In this paper, we
have implemented Nonlinear Dynamic Inversion (NDI)
based distributed controller DNDI,26 which can handle the
actuator faults. It also can address communication issues

like switching topology and noise. The NDI is a robust state
feedback nonlinear control law that can be used to design
the fault-tolerant consensus protocol. A brief overview of
NDI is presented in the following section.

Nonlinear Dynamic Inversion is regarded as a powerful
tool that is useful to design controllers for nonlinear plants.
The philosophy behind NDI is to use feedback linear-
isation theory to remove the nonlinearities in the plant.
Also, the response of the closed-loop plant is similar to
a stable linear system. There are many advantages to using
an NDI controller. Some of them are closed-form control
expression, easy mechanisation, global exponential sta-
bility, the inclusion of nonlinear kinematics in the plant
inversion and minimisation of the need for individual gain
tuning or gain scheduling.

Dynamic inversion is used to design controllers for
many applications. Enns et al.27 implemented NDI to
design a flight controller. A controller for autonomous
landing of UAV was described by Singh et al.28 using
NDI. Padhi et al.29 presented Partial Integrated Guidance
and Control (PIGC) to describe reactive obstacle avoid-
ance of UAVs using neuro-adaptive augmented dynamic
inversion. A formation flying scheme is proposed by
Mondal et al.30 where the NDI controller is used to track
the desired attitude commanded by the leader. Caverly
et al.31 used dynamic inversion to control the attitude of
a flexible aircraft. Horn et al.32 presented a control design
study using dynamic inversion. Lombaerts et al.33 solved
an attitude control problem of a hovering quad tiltrotor
eVTOL vehicle using an NDI controller.

The contribution in this paper is given as follows.

• In this paper, we have applied the NDI-based controller,
DNDI, to solve nonlinear agents’ consensus problem
with actuator fault. DNDI inherits all the advantages of
NDI and designed for MASs operations.

• The convergence study of the controller with faults is
presented. The mathematical details provide a solid
theoretical base.

• The performance of the controller is evaluated, considering
switching topology and communication noise. We have
relaxed the restriction on the number of switching to-
pologies. The user can scale it, as it is often in real cases.
Also, switching and noise are considered random.

The rest of the paper is organised as follows. Pre-
liminaries are given in Preliminaries. The problem de-
scription is given in section Problem Description. The
mathematical details of the DNDI are shown in section
Distributed Nonlinear Dynamic Inversion controller for
Consensus of MASs. The convergent study is presented in
section Convergence of DNDI in the presence of fault. The
simulation results are discussed in section Results. Fi-
nally, the conclusion is given in section Conclusion.

Preliminaries

A brief description about the topics required for this work
is discussed in this section.
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Consensus of MASs

A general definition of the consensus of networked MASs
can be given as follows.

Definition 1. Let us consider a MASs with N agents,
where Xi, (i = 1, 2, 3, …, N) denotes the states of the ith

agent. The MASs will achieve the consensus if k Xi� Xj k
→ 0, "i ≠ j as t → +∞.

The objective of the consensus protocol is to mini-
mise the consensus error in similar states of the agents
by sharing information with its neighbours over the
communication network, which is described by graph
theory.

Graph theory. The communication topology is described
using a weighted graph, given by G = {V, E}. The vertices
are given by V = {v1, v2,…, vN}, which denote the agents.
The edges is denoted by the set E 4 V × V which rep-
resents the communication among the agents. The ele-
ments of weighted adjacency matrix A ¼ ½aij� 2ℜN×N of
G are aij > 0 if (vi, vj) 2 E, otherwise aij = 0. Since there is
no self-loop, the adjacency matrix A has zero diagonal
elements, that is, vi 2 V, aii = 0. The degree matrix can be
given by D2ℜN×N ¼ diagfd1 d2 …dNg, where di ¼P

j2Ni
aij. The Laplacian matrix is written as L = D � A. A

graph with the property that aij = aji is said to be undirected
graph. If any two nodes vi, vj2 V, there exists a path from vi
to vj, then the graph is called a connected graph. In this
paper, we suppose that the topology G of the network is
undirected and connected.

Communication noise. The communication noise perturbs
the information shared among the agents. Therefore, the
perturbed information is received by ith agent from its
neighbours. We present an additive noise model which
shows how the noise is added to information shared by the
agents with their neighbours. The perturbed information
received by ith agent from jth neighbour j 2 Ni can be given
by X ji ¼ Xji þ σjiωji, where Xi,Xj 2ℜn are states,ωji; i, j2
1, 2,…,N are independent standard white noises, and σji is
the noise intensity. This model is considered in the sim-
ulation study.

Switching topology. The agents are subjected to switching
topology. The switching of the topologies is assumed to be
random. We have generated many topologies, which are
basically the adjacency matrices. These topologies are
generated using Algorithm 1.34 It can be mentioned that
the number of topologies is not fixed and can be selected
by the user.

Let us consider Ak as the k
th topology, k = 1, 2, …, Np,

where Np is the number of topologies. It can be observed
that Np adjacency matrices are generated, and they are
square. The value of each element of these matrices is
decided through a random variable x. If the value appears x
> 0.5, the Ak(i, j) = 1, otherwise Ak(i, j) = 0. The reason for
selecting the threshold value of 0.5 is to obtain 0 and 1
with equal probability, but the threshold can be changed. It
can be mentioned that all the graphs may not consist of
a spanning tree. Therefore, the DNDI is evaluated con-
sidering this issue. At each time instant, one of the Np

topologies is selected randomly. The way to select the
graph is given in Algorithm 2.34

Let us consider AS is the selected topology. The time
instants are denoted by the variable i. Similar to Algorithm
1, the switching is decided according to the value assigned
to a random variable x. The variable x is assigned a random
value in the range between 0 and 1. If x is more than 0.5,
a random integer ind in the range [1 Np] is generated using
the MATLAB function random_integer([1 Np], 1). Then,
AS is the topology corresponding to the integer ind, that is,
AS = Aind. If the x ≤ 0.5, the topology does not change.

Actuator fault

The fault model for ith agent is discussed in equation (1)

Uif ¼ ðI� βiÞUi (1)

where Ui is the desired control input of i
th agent. Uif is the

control obtained due to the actuator fault. I2ℜm×m is the
identity matrix and βi 2ℜn×n is the fault severity diagonal
matrix for ith agent. qij is (i,j)th component of severity
matrix. it represents the value of severity in jth actuator of
ith agent.

Algorithm 1. Random topology generation

for k = 1 to Np do
for i = 1 to N do

for j = 1 to N do
x ← random number x 2 (0, 1)
if x > 0.5 then

Ak(i, j) ← 1
else

Ak(i, j) ← 0
end if
if i = j then

Ak(i, j) ← 0
end if

end for
end for

end for

Algorithm 2. Selection of topology

for i = 1 to n do
x ← random number x 2 (0, 1)
if x > 0.5 then

ind ← random_integer([1 Np], 1)
AS ← Aind

else
AS remains same

end if
end for
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Remark 1. It can be noted that the fault expression in
equation (1) describes the fault free case if βi = 0 is
selected.

Nonlinear dynamic inversion (NDI)

NDI is an efficient technique for designing a feedback
controller for nonlinear systems. The mathematical details
of NDI are given in this section. Let us consider a class of
affine nonlinear dynamics as follows

_X ¼ f ðX Þ þ gðX ÞU (2)

Y ¼ X (3)

where X 2ℜn, U 2ℜn and Y 2ℜn are state, control and
the output, respectively. f is a continuous and differen-
tiable function that represents the intrinsic nonlinear
dynamics.

Assumption 1. The system is perfectly known and the
matrix g(X) is invertible for all time.

The NDI controller aims to produce the control U to
make the output of the system, that is, Y to track a bounded
and smooth reference signal Y� with time t. The tracking
error is written as follows

e ¼ Y � Y ∗ (4)

The first order error dynamics is written as

_eþ Ke ¼ 0 (5)

To achieve the convergence of the errors, the gain must be
positive definite, that is, K > 0. The tracking error e is
substituted in equation (5) to obtain the control expression
given below

U ¼ ðgðX ÞÞ�1 �f ðX Þ � KðY � Y ∗Þ þ _Y
∗

h i
(6)

Assumption 2. g(X) is non-singular for all the time.

Lemma

The useful Lemmas are given here. Lemma 1. Let ψ1(t),
ψ2(t) 2 Rm be continuous positive vector functions, by
Cauchy inequality and Young’s inequality, there exists the
following inequality35

ψ1ðtÞψ2ðtÞ ≤ k ψ1ðtÞ kk ψ2ðtÞ k

≤
k ψ1ðtÞkλ

λ
þ k ψ2ðtÞkγ

γ

(7)

where

1

λ
þ 1

γ
¼ 1

Lemma 2. Let RðtÞ 2ℜ be a continuous positive
function with bounded initial R(0). If the inequality holds
_RðtÞ ≤� δRðtÞ þ η where, δ > 0, η > 0, then the fol-
lowing inequality holds36

RðtÞ ≤Rð0Þe�δt þ δ
η

�
1� e�δt

�
(8)

Problem. In this paper, the objective is to design a con-
sensus control for agents in MASs. There are N agents. In
this paper, the dynamics of the agents are the same
as equations (2) and (3). The dynamics for ith agent are
given by

_Xi ¼ f ðXiÞ þ gðXiÞUi (9)

Yi ¼ Xi (10)

The state vector of ith agent is given by Xi 2ℜn. The
output of ith agent is given by

Yi ¼ Xi 2ℜn (11)

The agents are assumed to be working in a randomly
changing environment. We have considered the com-
munication issues, switching topology and noise. Also,
the random actuator fault is considered (discussed in
section Preliminaries).

Distributed nonlinear dynamic inversion (DNDI)
controller for consensus of MASs

The mathematical details of DNDI are presented in this
section. In the case of consensus of agents, the reference
states to ith agent in its neighbouring agents’ states. The
error in states of ith agent (scalar agent dynamics) is given
as follows

ei ¼
X
j2Ni

aij
�
Xi � Xj

�
(12)

where j denotes the jth agent of ith agent’s neighbour-
hood Ni. The equation (12) is simplified as follows\
enleadertwodots

ei ¼ diXi � aiX (13)
where

di ¼
X
j

aij 2ℜ, ai ¼ ½ai1 ai2…aiN � 2ℜN

and

X ¼
X1

X2

«
XN

2
664

3
7752ℜN

The error in equation (13) is written for state vector of ith

agent, that is, Xi 2ℜn; n> 1 as

ei ¼ dXi � aX (14)

where d ¼ ðdiÄInÞ 2ℜn×n , a ¼ ðaiÄInÞ 2ℜn×nN , and
X2ℜnN . In is n × n identity matrix. ‘Ä’ denotes the
Kroneker product. The Kroneker product of A = [aij] and B
is given by

AÄB ¼ �
aijB

�
"i,j
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Let us construct a Lyapunov function Vi as given below

Vi ¼ 1

2
eTi ei (15)

Differentiation of equation (15) yields

_V i ¼ eTi _ei (16)

According to the Lyapunov stability theory, let the time
derivative of the Lyapunov function should be

_V i ¼ �eTi Kei (17)

where K 2ℜn×n is a diagonal gain matrix. The expression
of _V i in equations (16) and (17) are equated to obtain

eTi _ei ¼ �eTi Kei (18)

Equation (18) is simplified as follows

_ei þ Kei ¼ 0 (19)

Differentiation of equation (14) yields

_ei ¼ d _X i � a _X

¼ d½f ðXiÞ þ gðXiÞUi� � a _X
(20)

Substituting of the expressions of ei and _ei in equation (19)
gives

d½f ðXiÞ þ gðXiÞUi� � a _Xþ K dXi � aX
� � ¼ 0 (21)

The resulting expression of Ui for i
th agent is obtained by

simplifying equation (21) as follows

Ui ¼ ðgðXiÞÞ�1 �f ðXiÞ þ d
�1

a _X� K dXi � aX
� �� �h i

(22)

It can be observed that the control expressions obtained
using conventional NDI are different from what we get for
DNDI. This control expression in equation (22) is used for
simulation study.

Convergence of DNDI in the presence of fault

According to the fault model the control expression is
obtained as

Uif ¼ αiUi (23)

where, αi ¼ ðI� βiÞ 2ℜn×n is a diagonal matrix. The
values of the diagonal elements of αi are between 0 and 1.
The dynamics of ith agent is given by

_Xi ¼ f ðXiÞ þ gðXiÞUif (24)

Let us consider a scalar function

V ¼ 1

2
XT ðLÄInÞX (25)

LÄIn ¼ SQST (26)

where S 2ℜnN×nN is the left eigenvalue matrix of L ÄIn,
Q ¼ ðdiagf0,λ2ðLÞ,λ3ðLÞ,…,λN ðLÞgÄInÞ 2ℜnN×nN is ei-
genvalue matrix, STS = SST = InN×nN

V ¼ 1

2
XTðLÄInÞX

¼ 1

2
XTSQSTX

¼ 1

2
XTS

ffiffiffiffi
Q

p ffiffiffiffi
Q

p
STX

¼ 1

2
XTS

ffiffiffiffi
Q

p ffiffiffiffi
Q

p
STX

¼ 1

2
XTS

ffiffiffiffiffiffiffiffi
QQ

q ffiffiffiffiffiffiffiffi
Q

�1
q ffiffiffiffiffiffiffiffi

Q
�1

q ffiffiffiffiffiffiffiffi
QQ

q
STX

¼ 1

2
XTSQQ

�1
QSTX

¼ 1

2
XTSQ

�
STS

�
Q

�1�
STS

�
QSTX

¼ 1

2
XT

�
SQST

��
SQ

�1
ST

��
SQST

�
X

¼ 1

2
XTðLÄInÞΛðLÄInÞX

¼ 1

2
ETΛE

(27)

where Q ¼ ðdiagfλ2ðLÞ,λ2ðLÞ,λ3ðLÞ,…,λN ðLÞgÄInÞ 2
ℜnN×nN , E ¼ ½eT1 eT2 …eTN �T 2ℜnN , and Λ ¼ SQ

�1
ST 2

ℜnN×nN .

Remark 2. It can be observed from equations (25) and
(27) that

λminðΛÞ
2

k Ek2 ≤V ≤
λmaxðΛÞ

2
k Ek2 (28)

V ¼ 1

2
XT ðLÄInÞX ¼ 1

2
XTE (29)

Remark 3. Since λ2 > 0. Hence, Q is invertible.

Remark 4. Λ ¼ SQ
�1
ST is positive definite matrix.

Hence, V is positive definite subject to consensus error and
qualify for a Lyapunov function.

Differentiating equation (25) we get

_V ¼ XTðLÄInÞ _X
¼ ET _X

¼
XN
i¼1

eTi
�
f ðXiÞ þ gðXiÞUif

�

¼
XN
i¼1

eTi ½f ðXiÞ þ αigðXiÞUi�

(30)

Substituting the control Ui expression in equation (30)
yields
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_V ¼
XN
i¼1

eTi

	
ðIn � αiÞf ðXiÞ þ αid

�1

i



ai _X� Kiei

��

¼
XN
i¼1

eTi βif ðXiÞ þ
XN
i¼1

�eTi αid
�1

i Kiei þ
XN
i¼1

eTi αid
�1

i ai _X

(31)

where, βi = (In� αi). According to Lemma 1, we can write
eTi αid

�1
i ai _X ≤ k ei k k αid

�1
i ai _X k ≤keik

2

2 þ

k αid
�1

i ai _Xk2
2

(32)

and

eTi βif ðXiÞ ≤ k ei k k βif ðXiÞ k ≤
k eik2
2

þ k βif ðXiÞk2
2

(33)

Substituting the inequalities equations (32) and (33) in
equation (31) we get

_V ≤
XN
i¼1

�eTi αid
�1

i Kieiþ k eik2 þ k αid
�1

i ai _Xk2
2

"

þk βif ðXiÞk2
2

� (34)

Let us design the gain Ki as follows

Ki ¼ diα
�1
i

�
Iþ δi

2
λmaxðΛÞ þ k βif ðXiÞk2

2 k eik2
�

(35)

where δi > 0. Equation (34) is written as

_V ≤
XN
i¼1

� δi
2
λmaxðΛÞ k eik2 þ

XN
i¼1

k αid
�1

i ai _Xk2
2

≤� δiV þ η

(36)

where η ¼ PN
i¼1

kαid�1

i ai _Xk2
2 . Applying Lemma 2 we get

V ≤
η
δi
þ
�
V ð0Þ � η

δi

�
e�δi t (37)

We will present the Uniformly Ultimate Boundedness
(UUB) here. Using equations (28) and (37), we can write

λminðΛÞ
2

k Ek2 ≤V ≤
η
δi
þ
�
V ð0Þ � η

δi

�
e�δi t (38)

Equation (38) can be written as follows

λminðΛÞ
2

k Ek2 ≤ η
δi
þ
�
V ð0Þ � η

δi

�
e�δi t

k E k ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
η
δi
þ 2

�
V ð0Þ � η

δi

�
e�δi t

λminðΛÞ

vuuut
(39)

It can be observed that, if V ð0Þ ¼ η
δi
then

k E k ≤κ∗ (40)

"t ≥ 0 and κ∗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2η
δiλminðΛÞ

q
. If V ð0Þ ≠ η

δi
then for any given κ

> κ� there exist a time T > 0 such that "t > T, k E k ≤ κ

κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 η

δi
þ 2

�
V ð0Þ � η

δi

�
e�δiT

λminðΛÞ

vuuut
(41)

Therefore, we can conclude

lim
t→∞

k E k¼ κ∗ (42)

It can be observed that the consensus error converges to
a very small quantity with a proper design of δi. Also, the
term η includes the term αi, which reflects the effect of
fault.

Results

The simulation results are generated for different cases.

• Case 1: Actuator fault only
• Case 2: Actuator faults with switching topology and

communication noise

Agent Dynamics considered for Simulation Study

The nonlinear dynamics considered for the ith agents is
given by

_X i1 ¼ Xi2 sinð2Xi1Þ þ Ui1 (43)

_X i2 ¼ Xi1 cosð3Xi2Þ þ Ui2 (44)

where Xi ¼ ½Xi1 Xi2�T . Putting the dynamics of equations
(43) and (44) in the form given in equations (9) and (10)
gives

f ðXiÞ ¼ Xi2 sinð2Xi1Þ
Xi1 cosð3Xi2Þ

	 �
(45)

and

gðXiÞ ¼ 1 0
0 1

	 �
(46)

and

Ui ¼ Ui1

Ui2

	 �
(47)

where Xi 2ℜ2 . The states X1i of all the agents are de-
noted by X1 ¼ ½X11 X21 …X101�. Similarly, we denote
X2 ¼ ½X12 X22 …X102�, U1 ¼ ½U11 U21 …U101�, and
U2 ¼ ½U12 U22 …U102�.

Case 1. Actuator fault only
In this case, the effect of actuator fault is discussed

alone. The faults are assumed to be random. They are
generated usingMATLAB function rand() 2 (0, 1), that is,

βi ¼ rand 0
0 rand

	 �
. Two possible situations are dis-

cussed here.
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Random fault in a few agents

Let us consider a situation when a few agents are assumed
to have faults in their actuators. The faults start in those
actuators at different times. The details of faults consid-
ered are given in Table 1. According to the Table 1, the
faults in actuator 1 and 2 are shown in Figure 1 and Figure
2, respectively.

The response of actuator 1 for all agents is shown in
Figure 1. The magnified view of the control U1 shows that
faults in agents 3 and 8 started at t = 0.28 sec and t =
0.05 sec, respectively. They are pointed using black arrow.

The fault in actuator 2 for agents 5 and 10 started at t =
0.17 sec and t = 0.30 sec, respectively, which is visible in
the magnified view in Figure 2.

The state trajectories X1 and X2 of all the agents are
shown in Figure 3 and Figure 4, respectively. The mag-
nified views are provided in these figures. It can be ob-
served that the X1 trajectory of agents 3 and 8 are affected
by the actuator fault in U1. The X2 trajectory of agents 5
and 10 are affected byU2, which is visible in the magnified
view of Figure 4. The consensus errors of the agents are
shown in Figure 5 and Figure 6. It is clear that the DNDI
controller successfully achieves consensus among the
agents in the presence of actuator faults.

Random faults in all agents

In this case, all the agents are having random faults for t ≥
0.2 sec in both actuators. This situation somewhat de-
scribes a worst-case scenario in context of faults. The fault
in actuator 1 and 2 started at t = 0.2 sec as shown in Figure
7 and Figure 8, respectively.

The consensus of states X1 and X2 are shown in Figure 9
and Figure 10, respectively. The effect of the faults is
visible in state trajectories for t ≥ 0.2 sec. The consensus

Table 1. Fault details.

Agent Fault starting time (sec ) Actuator

3 0.28 1
5 0.17 2
8 0.05 1

10 0.30 2

Figure 1. Control U1 (Case 1). Random fault in a few agents.

Figure 2. Control U2 (Case 1). Random fault in a few agents.

Figure 3. Consensus of state X1 (Case 1). Random fault in
a few agents.

Figure 4. Consensus of state X2 (Case 1). Random fault in
a few agents.
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Figure 6. Consensus error in state X2 (Case 1). Random
faults in all agents.

Figure 7. Control U1 (Case 1). Random faults in all agents.

Figure 8. Control U2 (Case 1). Random faults in all agents.Figure 5. Consensus error in state X1 (Case 1). Random
faults in all agents.

Figure 9. Consensus of state X1 (Case 1). Random faults in
all agents.

Figure 10. Consensus of state X2 (Case 1). Random faults in
all agents.
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Figure 12. Consensus error in state X2 (Case 1). Random
faults in all agents.

Figure 13. Random switching of the topologies (Case 2).

Figure 11. Consensus error in state X1 (Case 1). Random
faults in all agents.

Figure 14. Communication noise (Case 2).

Figure 15. Control U1 (Case 2).

Figure 16. Control U2 (Case 2). The state trajectories are
shown in Figure 17 and Figure 18.
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errors are shown in Figure 11 and Figure 12, which show
that consensus is achieved using DNDI controller.

Case 2. Actuator fault with switching topology and
communication noise

In this case, the communication noise and switching
topology are considered along with the actuator fault. The
random switching and noise are shown in Figure 13 and
Figure 14, respectively. At each time instant, one topology
is selected among 100 topologies using Algorithm 2.

The control generated is shown in Figure 15 and Figure
16. It is clear that the switching topology and noise have an
effect on control signals.

The state trajectories generated by the control contain
the effect of switching topology, communication noise and
actuator faults. But the DNDI controller handled the is-
sues, and the states converged in finite time.

The convergence of the states can be verified by the
bounded consensus errors shown in Figure 19 and Figure
20.

The simulation results presented here are realistic, and
it can be seen that the NDI-based controller or DNDI is
successful in achieving the consensus among the agents in
the presence of switching topology, communication noise
and actuator faults.

Conclusion

The consensus protocol DNDI successfully handles issues
like switching topologies, noise and actuator fault si-
multaneously. Moreover, the switching among various
topologies is considered to be random, which is realistic.
The actuator fault is also random in nature, which happens
in real-world scenarios. For all the cases, DNDI main-
tained the stability of the MASs and achieved consensus
among the agents efficiently. The mathematical proof of

Figure 17. Consensus of state X1 (Case 2).

Figure 18. Consensus of state X2 (Case 2).

Figure 19. Consensus error in state X1 (Case 2).

Figure 20. Consensus error in state X2 (Case 2).
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boundedness gives the theoretical base. Therefore, DNDI
is a potential candidate for the fault-tolerant consensus
protocol design.
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