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A B S T R A C T

There is significant under-utilization of wind energy resources, particularly in countries that have high wind
potential. From the 67 highest wind potential countries, 39 have installed less than 500 MW of wind power
capacity, while the remaining countries have an average installed capacity of 20,596 MW. In the lagging coun-
tries, there is significant potential for sustainable value creation, however large investment gaps need to be closed.
Entering a new market for wind power Original Equipment Manufacturers is complex and requires a prediction of
the future market size. Quantitative research to promote wind power internationalization is scarce. The objective
of this paper is therefore to estimate the market size by predicting the probability of commercial wind devel-
opment in the lagging countries. The purpose is to help the Original Equipment Manufacturers in their market
entry decisions. The second purpose is to provide an example how to reduce risk required to close the Sustainable
Development Goals financing gap. Using a binary logistic regression model based on technological path creation
theory, the probability for the 39 lagging countries to enter the wind power commercialization stage was pre-
dicted. Results show that 12 of the lagging countries have a high probability to commercialize wind energy. A new
simulation-based approach was presented to stimulate wind power market entry. The prediction of adoption
probability proves useful to reduce risk required to close the financing gap to achieve the Sustainable Develop-
ment Goals.
1. Introduction

Renewable energy resources are more equally distributed globally
compared to fossil and nuclear resources (UNDP, 2000). There are many
countries with significant wind resources, however large shares of this
capacity remain unexploited. From the 67 highest wind potential coun-
tries defined by Zwarteveen et al. (Zwarteveen et al., 2021a, 2021b), 39
have less than 500 MW wind power installed and, the remaining 28
countries have an average installed wind energy of 20,596 MW (Inter-
national Renewable Energy Agency, 2020a). The technical potential in
these high wind countries is � 1 PWh/yr (Lu et al., 2009), which rep-
resents a generating capacity of on average � 114,000 MW, or � 380,
000 MW of installed wind power with an assumed capacity factor of 0.3.
It shows that specifically the 39 lagging countries have significant unused
potential compared to the 28 frontrunners and that it is not the technical
capacity that is limiting them from installing more wind energy. Of the
39 lagging countries, 36 are developing and emerging markets (as
defined by the International Monetary Fund (2018)). In the net zero
carbon strategy of the International Energy Agency (2021) wind energy is
ld.ac.uk (J.W. Zwarteveen).
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expected to grow 11 fold until 2050 with the majority of growth in
emerging markets. This illustrates the importance and potential of sus-
tainable development in the emerging world.

Successful triple bottom line post-pandemic recovery requires
evidence-based economic analysis and initiatives to strengthen the local
economy (Ranjbari et al., 2021). Increasing wind energy could support
the targeted recovery: the job creation per 1 million USD spend under a
stimulus program was 2.6 times higher for wind energy compared to oil
and gas (Bacon and Kojima, 2011). Local job creation is one of the so-
cioeconomic benefits wind energy brought to Europe (Ortega-Izquierdo
and Río, 2020) and it is essential for sustainable development in
emerging markets (Arnold, 2018). Increasing the wind power generation
capacity in the lagging countries also contributes to achieving Sustain-
able Development Goal (SDG) 7, which is to ensure global access to
affordable, reliable, sustainable, and modern energy (United Nations,
2018). Attracting significant financial resources is essential to achieve
the SDGs (Barua and Chiesa, 2019). The private sector has an important
role to achieve the power-related SDGs, yet a large investment gap exists
(UNCTAD, 2014). Barua (2020) highlights a less engaged private sector
April 2022
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as a high priority and critical challenge to close the investment gap and
proposes to create attractive risk-return business models as a solution to
promote private investment. The wind power Original Equipment Man-
ufacturers (OEMs) that are the most successful in internationalization,
measured in total abroad sales and number of countries covered (Yusta
and Lacal-Ar�antegui, 2020), also suffer from high pressure on their
margins resulting in recent profit warnings (Binnie et al., 2021; Thomas
and Sanderson, 2021). Even though domestic environmental regulations
in leading countries resulted for the local wind industry in global
competitive advantages (Kuik et al., 2019), still, prudent market entry
strategies are required to capture the global benefits. A reliable estima-
tion of a future risk-return is needed before expansion decisions can be
taken. However, unavailability of reliable data is another challenge
regarding the gap in financing the SDGs (Barua, 2020). Generating data
that can be used by wind power OEMs to estimate future risk-return of
their market entry is essential.

Both advanced and emerging economies have reformed their elec-
tricity sector in the last decades (Jamasb, 2006). The main reason for
privatization of the sector was to establish clear and stable price deter-
mination and incentives that restore financial viability (Newbery, 2004).
In the process, the number and type of stakeholders involved with energy
technology diffusion changed, providing a more important role for the
private sector. Policies have an impact on private investment and vice
versa (C�ardenas Rodríguez et al., 2015). Besides policy makers and pri-
vate investors, wind power OEMs play an important role in wind energy
diffusion: without their technology, wind energy can not be exploited.
However, a market entry for a wind power OEM is an intricate strategic
move. Internationalization into a new market can be done through
export, licenses, joint ventures, and fully owned foreign investment
(Buckley and Casson, 1998). Wind turbine technology is a complex
export product. Localized production, transport, installation, commis-
sioning, operation, andmaintenance of wind turbines require the setup of
a local company in each country where turbines are sold. Bidding on
foreign wind power project supply tenders would be one market entry
method, and Lacal-Ar�antegui (2019) defines five additional approaches
to entering newmarkets specific to the wind power OEMs: joint ventures,
licensing, acquisitions, developing wind projects or (partly) financing the
wind projects. Based on the market entry of the automotive industry
Sivakumaran et al. (2015) define two critical success factors: firstly
market barrier-induced costs (country specific related entry costs, such as
local content requirements) and secondly sales potential and synergies
(estimation of future sales volume and potential cross-market synergies).
Regarding wind energy, the barrier induced costs can be estimated up
front before taking the market entry decision. However, predicting the
sales potential is more difficult. Internationalization into a country
without significant installed wind capacity means entering a market
without noteworthy competition, which could result in first-mover ad-
vantages (Agarwal and Gort, 2001). Being a first-mover can also result in
disadvantages, especially because of uncertainties in the market and
complex green practices (Luan et al., 2013). If the market does not
develop, the first-mover has unnecessarily invested in an expensive local
setup. Therefore, market entry is only profitable in the long run if the
sustainable returns of the sales exceed the barrier-induced costs. This
highlights the critical importance of market forecasting for wind power
OEMs.

The market size for wind energy can be described along four stages of
path creation: pre-commercialization, early commercialization,
commercialization, and widespread diffusion (Surana and Anadon,
2015). The objective of this paper is to estimate the market size by pre-
dicting the probability of entering commercial wind exploitation for the
lagging countries in wind adoption. The purpose is to help OEMs in their
market entry decisions. More broadly, the second purpose is to provide
an example how to reduce risk required to close the financing gap to
achieve the Sustainable Development Goals. This study uses a dataset
created by Zwarteveen et al. (2021b) with the aim to predict the prob-
ability of the 39 lagging high wind capacity countries entering the
2

commercialization stage. With todays and future's predicted probability,
OEMs can have greater certainty when devising their market entry and
market development strategy.

2. Method

Path creation theory explains how a nascent technology comes about,
especially relevant in the early stages of diffusion. Paths and stages form
the basis of the theory (Geels, 2002; Surana and Anadon, 2015). Alter-
natively, wind power diffusion can also be measured as ‘wind power
growth’, often used to determine factors influencing the total installed
wind capacity measured in MW (Popp et al., 2011). Because of the very
low amount of wind energy installed in the 39 lagging countries, path
creation can help to increase understanding how wind energy can evolve
from the niches. Applying path creation theory to nascent wind power
diffusion, Zwarteveen et al. (2021b) created binary logistic regression
models to quantitatively model the transition between the stages. The
first (M1) to model the transition from no wind to pre-commercialization
(>1–50 MW installed wind power), the second (M2) to model the tran-
sition to early commercialization (>50 MW–500 MW installed wind
power), and the third (M3) to model the transition to commercialization
(>500 MW installed wind power). The accumulated wind power instal-
lation (International Renewable Energy Agency, 2020b) was transformed
into binary the categories for each model. Based on a Systems Control
inspired closed loop feedback mechanism, technology diffusion can be
described along the ‘desire for wind energy’ (why is a country interested
in wind energy), the ‘mechanism of change’ (how does wind diffusion
take place) and ‘disturbing factors’ (such as war) (Zwarteveen et al.,
2021a). Pioneering wind energy projects are frequently developed
without supporting deployment policies (Steffen et al., 2018), hence the
focus on the mechanism of change might not bring significant insight in
early stages of wind diffusion. Therefore, the research variables of
Zwarteveen et al. (2021b) were chosen to be related to the desire for
wind energy (why is a country interested in wind energy) as this is
particularly relevant in the first stages of path creation. The logic is that a
mechanism of change will autonomously follow once the desire of
change exists.

The purpose of this paper is to identify commercial opportunities in
the lagging countries. Firstly, the binary logistic regression formula for
the transition to the commercialization stage (M3) was simplified to
predict the probability of commercialization. Themodel only took desire-
related factors that influence wind energy diffusion into account, as this
is argued to be the main driver for early path creation. Variables related
to the mechanism of change – such as policies and grid connection –were
not included. By using backward elimination (Heinze and Dunkler,
2017), non-significant variables were removed until only significant
variables remained. This step reduced the original 15 explanatory vari-
ables from model M3 (Zwarteveen et al., 2021b) to 9, listed in Table 1.
Backward elimination excluded 6 of the 15 variables to their
non-significance: the education index, electricity import dependency,
energy import dependency, vested interests in oil-based electricity pro-
duction, vested interests in solar energy production and the country
classification (advanced economies or developing and emerging econo-
mies). The regression results of the simplified model are shown in
Table 2. Binary logistic regression is non-linear, hence the regression
coefficient (log odd) is not the same as the predicted probability. The size
and sign of the coefficient are however related to the size and the sign of
the predicted probability. The model fit (measured with the McFadden's
pseudo-R squared (McFadden, 1974)) of the original model was 0.7, the
simplified also achieved 0.7. This value demonstrates a substantial model
fit (Chin, 1998).

The simplified regression model is used to predict the probability for
stage transition to commercial wind (Pcw) (UCLA, 2021):

Pcw ¼ eaþb4v4þb5v5þb9v9þb10v10þb11v11þb12v12þb14v14þb15v15þb17v17

1þ eaþb4v4þb5v5þb9v9þb10v10þb11v11þb12v12þb14v14þb15v15þb17v17
Eq 1



Table 1
The variables of the simplified model to predict the transition to commercial wind exploitation, listed with their sources (Source: adapted from (Zwarteveen et al.,
2021b)).

Predictor variables Explanation Unit Reference

Business case v4 Business case
potential

Price advantage of wind energy compared to
electricity price.
Electricity price – levelized cost of wind
energy

USD/MWh (Euromonitor International, 2020;
Global Petrol Prices, 2020; United
Nations, 2020a)
(International Renewable Energy
Agency, 2019, 2020c)

Economic
contribution

v5 Unemployment
rate

Urgency for a country to create jobs, as
measured in unemployment rate

Fraction of labor force without work The World Bank (2019a)

Environment v9 GHG emission High CO2 levels might influence choice for
low CO2 energy technology

CO2 emissions (metric tons per capita) The World Bank (2020)

v10 Smog High PM2.5 levels might influence choice for
low PM2.5 energy technology

PM2.5 air pollution, mean annual exposure in mg/
m3

The World Bank (2019b)

Spill over v11 Neighbor
influence

The effect of having neighbors with wind
energy. Knowledge and products might spill
over across borders.

Fraction of countries in geographical cluster that
has adopted wind energy

International Renewable Energy
Agency (2020b)

v12 Globalization Global partners with wind energy.
Knowledge and products might spill over
through globalized network

KOF globalization index, a composite globalization
index including economic, social and political
dimensions, measured per country

Gygli et al. (2019)

Vested interests v14 Fossil - Gas Existing fossil interests might have impact
on wind exploitation

Gas based electricity production in kWh billion United Nations (2020b)

v15 Fossil - Coal Existing fossil interests might have impact
on wind exploitation

Coal based electricity production in kWh billion United Nations (2020b)

v17 Renewable -
Hydro

Existing renewable interests might have
impact on wind exploitation

Hydro based electricity production in kWh billion United Nations (2020c)

Table 2
The regression results of the simplified model to predict the transition to com-
mercial wind exploitation.

Variables Log odds (b)

a Constant �167.060***
Business case

v4 Business case potential 0.409***
Economic contribution

v5 Unemployment rate 106.740***
Environment

v9 GHG emission �1.441**
v10 Smog 0.861***

Spill over
v11 Neighbor influence 38.539***
v12 Globalization 1.568***

Vested interests
v14 Fossil – Gas 0.148***
v15 Fossil – Coal 0.020**
v17 Renewable - Hydro 0.121***

Specifications Value
Number of Observations 431
Number of Groups 36
LR chi2(9) 303.71
Log likelihood �68.813
Prob > chi2 0.000
/lnsig2u 5.641
sigma_u 16.783
Rho 0.988
LR test of rho ¼ 0: chibar2(01) 127.76
Prob≥chibar2 0.000
Hausman CNA
McFadden's pseudo-R squared 0.688

* 0.1, ** 0.05, ***0.01 significant levels, CNA ¼ Convergence not achieved for
the fixed effect model.
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where a is the constant, bi the log odd and vi the value of the explanatory
variable with the number i. The set is screened for missing data and only
countries with values for all variables in Table 2 are used. In detail, only
Greenland was eliminated, as it did not have a value for 3 of the 9
considered variables. Calculating the probability for stage transition with
3 missing values would result in inaccurate outcomes. Estimating the
missing values is one method of solving the missing data, however
3

dropping cases when the missing data sample is rather small is a rec-
ommended method according to Tabachnick and Fidell (2013).

As a second step, the lagging countries are clustered according to their
probability for stage transition to commercial wind. Binary logistic
models predict an outcome of zero or one. A grid-based clustering
approach (Gan et al., 2007) followed by the 1.5 Interquartile Range (IQR)
rule to determine outliers of the group (Tabachnick and Fidell, 2013) is
used to determine high, low, and in-between probabilities.

Lastly, simulations are executed using the prediction model to
calculate the probability for future scenarios.

3. Data and results

The 67 high wind potential countries, as defined in the introduction,
and their stage in wind development (based on 2019 installation (In-
ternational Renewable Energy Agency, 2020a)) are shown in Table 3.
Regarding the values for the independent variables (as per Table 1) for all
lagging countries, see appendix A.

The focus is on the 39 countries before commercialization. Using the
simplified prediction model, the probability to exceed 500 MW of wind
energy is calculated per country. Greenland was removed because of
insufficient data. The results are visualized in Fig. 1 (further details,
including country numbers are located in Appendix B).

Using grid-based clustering, two rough categories are defined: coun-
tries with low probability and countries with high probability (Fig. 1).
With changing input variables, binary logistic models have output values
close to 0 and 1 with a limited tipping phase. Hence, all outliers of both
groups are considered to be part of the tipping point group (Table 4).
Using the 1.5 IQR method, 9 outliers were identified, 4 from the high
probability group and 5 from the low probability group. Two outliers can
be visually identified as they are clearly not located on the 0% and 100%
line (Fig. 1 - country number 22 and 23). The other outliers are closer to
the remaining values (details in Appendix B). This illustrates that only
small changes in the values of the explanatory values result in a change
from very close to 0% to very close to 100% in predicted probability or
vice versa.

The results of both steps in the clustering analysis split all lagging
wind adopters into three groups of low, high, and tipping probability to
enter full commercial wind (Table 5).



Table 3
High wind potential countries grouped into different stages of commercialization
(International Renewable Energy Agency, 2020a).

Stage Countries (2019
allocation)

Wind energy: commercialization (>500
MW installed)

Argentina Morocco
Australia Netherlands
Brazil New Zealand
Canada Norway
Chile Pakistan
China Poland
Denmark South Africa
Egypt Spain
France Sweden
Germany Turkey
India Ukraine
Ireland United

Kingdom
Japan United States
Mexico Uruguay

Wind energy before commercialization
(<500 MW installed)

Afghanistan Mali
Algeria Mauritania
Angola Mongolia
Belarus Mozambique
Bolivia Namibia
Chad Niger
Colombia Nigeria
Congo DR Oman
Czech Republic Paraguay
Eritrea Russia
Ethiopia Saudi Arabia
Greenland Somalia
Iceland Syria
Indonesia Tanzania
Iran Tunisia
Iraq Turkmenistan
Kazakhstan Uzbekistan
Kenya Venezuela
Libya Zambia
Madagascar

Table 4
Outliers of the high and low probability groups determined
with the 1.5 IQR method.

Group Outliers

High probability group Namibia
Iceland
Kenya
Tunisia

Low probability group Libya
Paraguay
Iran
Bolivia
Belarus

Table 5
Lagging countries and their predicted probability to start wind power commer-
cialization (which is to exceed 500 MW of installed capacity).

Low Tipping point High

Turkmenistan Namibia Indonesia
Angola Iceland Eritrea
Ethiopia Kenya Nigeria
Kazakhstan Tunisia Colombia
Uzbekistan Libya Mali
Oman Paraguay Saudi Arabia
Syria Iran Niger
Venezuela Bolivia Chad
Congo DR Belarus Somalia
Madagascar Mauritania
Afghanistan Russia
Zambia Czech Republic
Tanzania
Iraq
Mongolia
Mozambique
Algeria
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4. Discussion

This paper considered 39 high wind potential countries with less than
500 MW wind energy capacity installed. It used a binary prediction
model to estimate the probability of breaking this threshold, entering full
commercial wind exploitation. After the screening for missing data, 38
countries remained. The 38 countries were split into 3 groups, low, high,
Fig. 1. Predicted probability of exceeding 500 MW of wind power, visualized per co
steps of 10%, results in 22 countries in the low probability group and 16 countries

4

and tipping probability. But what are the implications of the distribution
of the countries in these groups?

4.1. Low probability

17 countries have a low probability of entering full commercial wind
utilization. This is the largest group in Table 5. It contains 8 countries
from Africa, 4 from Central Asia, 4 from theMiddle East, and 1 from Latin
untry (country numbers according to Appendix B). Grid based clustering, using
in the high probability group.
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America. It is unlikely that these countries will install wind turbine ca-
pacity exceeding 500 MW in the near future. However, some of the
countries have already reached the early commercialization stage, for
example Ethiopia with 324 MW wind installed in 2019 (International
Renewable Energy Agency, 2020a).

4.2. High probability

With 12 countries, the high probability group is the second largest
group in Table 5. 7 are from Africa, 2 from Europe, 1 from the Middle
East, 1 from Latin America, and 1 from the Indo Pacific region. No
country from Central Asia is present in this promising list. The high
probability indicates that it is likely that the accumulated installed wind
capacity will soon exceed the 500 MW. Signs can already be witnessed,
examples are the 1000 MW signed wind projects in Russia (Lee, 2021),
the finalized tender of 400MW in Saudi Arabia and the plans for a second
tender (Aguinaldo, 2020), and the plans to build multiple wind farms
exceeding 500MW in combined capacity in Colombia (Azzopardi, 2021).
However, the prediction model has a model fit of 0.7, meaning the
chosen explanatory variables only explain 70% of the variation in the
dependent variable. There are other factors explaining the remaining
30% in variation of the dependent variable. Some countries in the high
probability list have not installed any wind power yet. As proposed by
Zwarteveen et al. (2021a), it is likely that the ‘mechanism of change’ (e.g.
grid availability and feed in tariff policies) and ‘disturbing factors’ (such
as war) also influence the probability for significant wind growth.

4.3. Tipping probability

The countries with tipping probability form with a count of 9 the
smallest group in Table 5. Depending on how the values of the variables
of table A-1 (Appendix A) change, these countries can quickly develop
into either low or high probability countries. Within the group, Iran is the
country with the largest population, an indication of total energy demand
(Yoo and Lee, 2010) and total environmental impact (Chertow, 2000). To
understand the sensitivity, simulation of Iran's probability to exceed 500
MW of wind energy is shown in Fig. 2.

It can be seen that small changes in the individual variables result in
disproportionate changes in probability. Table 6 shows two scenarios:
globalization of Iran and a further isolation of Iran, scenarios that are
potentially the outcome of the US ambitions on reaching a new nuclear
deal (Wadhams andWainer, 2021). For the globalization scenario, higher
electricity prices resulting in a better business case, a higher globalization
factor, lower unemployment and higher smog caused by higher
Fig. 2. Predicted probability simulation, visualized for the tipping coun

Table 6
Simulation scenarios and outcome for Iran.

Scenario Business case potential Globalization Unemploy

Global �30 60 0.08
Isolate �50 50 0.15
Today �49.3942 55.2214 0.11382

5

productivity has been chosen. The rationale is that an increase in glob-
alization results in an uptake of economic activity with an improvement
of free-market mechanisms. This scenario results in a high probability.
For the opposite scenario, the isolation scenario, a lower globalization
factor, and a higher unemployment has been chosen. This results in a low
probability.
4.4. Implications for the OEM

Countries with high wind potential and low wind installed capacity
form significant business opportunities for wind power OEMs. However,
entering new markets comes at a cost. Opening a local business, locali-
zation of supply chains, hiring, and training of new employees result in
financial barriers. Having certainty about how the market develops is key
when taking the decision on market entry and market development. The
categorization in Table 5 is a valuable support in taking these decisions. It
provides focus on countries that have a high probability of entering full
commercial wind utilization. A market entry into these markets is likely
to bring volume related benefits. It also provides a list of countries that
are less likely to develop a solid wind business in the near future.
Entering these markets comes at a risk of potentially winning one project,
without a succession of other projects. This would be costly. The tipping
countries in the middle indicate that given the right circumstances, the
group of the high probability countries can grow. Being a first mover
could bring some competitive benefits. The downside is that, if the cir-
cumstances change, these countries can also become low probability
countries. It is worth noting that Table 6 is the categorization with the
latest available data. However, next year, the explanatory variables will
have different values and therefore the consistency of the 3 groups is
likely to be different. To determine the fitting market entry and market
development strategy, up-to-date values are to be used for a country
specific simulation, combined with an understanding of the factors
‘mechanism of change’ and ‘disturbing factors’ (section 4.2). The com-
plete decision model is shown in Fig. 3.

A market entry strategy should take the existence of potential com-
petitors into account (Buckley and Casson, 1998). A first mover market
entry results in a monopoly position, however it can introduce a high
cost. As such the OEM growth strategy should consider the competitive
strategy related to market entries. Based on the country analysis and the
OEM growth strategy, the two decisions (market entry today yes/no,
wind market development yes/no) can be made. Together, these two
decisions shape the OEM country strategy, as further detailed in Fig. 4.

Four different approaches to new wind markets are proposed:
try Iran. The triangles highlight the current value of the variables.

ment rate Smog Probability Probability Group

60 99.999999% High
40 0.000027% Low
38.9788 0.001072% Tipping



Fig. 3. Combining the country analysis with the OEM strategy to make the specific market entry and development decisions.

Fig. 4. The OEM country strategy for new markets, split into 4 approaches.
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� Reactive entry: enter the market and continue to respond to oppor-
tunities. The market develops by itself or the market does not develop
by itself but either way the OEM should wait for tenders and respond
to them competitively. By having a presence in the market, the speed
of responding to tenders is high.

� Proactive entry: enter the market and improve the adoption proba-
bility by influencing the values of the explanatory variables, such as
the business case potential or globalization. Potential supporting
strategies to maximize impact could be joint ventures, licensing, ac-
quisitions, developing wind projects, and (co) finance wind projects
(Lacal-Ar�antegui, 2019).

� Reactive waiting: monitor the conditions of a country, reassess peri-
odically the market entry decision.

� Proactive waiting: improve the adoption rate by influencing the
values of the explanatory variables and reassess periodically the
market entry decision. Potential supporting strategies to maximize
early impact could be collaborate with industry organizations and
trade networks.

Depending on the company growth strategy and the competitive
environment, per country the OEM can select the fitting approach. Tak-
ing the earlier example of Iran: the probability analysis shows a tipping
probability regarding the commercialization of wind energy (Table 6).
Even though a feed-in-tariff is in place (Hosseinioun and Bashiri, 2020),
the last large wind farm exceeding 50 MW was installed in 2016 (Inter-
national Renewable Energy Agency, 2020b). Hence the current mecha-
nism of change is not very effective. The present US sanctions (Wadhams
and Wainer, 2021) form a disrupting factor, highly limiting international
6

investments in or export to Iran. Assuming an aggressive but frugal
growth strategy of a wind power OEM, reactive entry would introduce
costs without soon to be expected revenues. A pro-active entry would
introduce even higher costs to lobby regarding e.g. clean air initiatives.
And with the current US sanctions in place, it is not likely that a signif-
icant wind energy growth, for which export to Iran is necessary, can take
place. This leaves two options: pro-active waiting and re-active waiting.
Given the large amount of high probability countries and the OEMs
desire for frugal market entry, focussing on the existing high probability
countries would make the best use of corporate resources. This results in
a re-active waiting market strategy for Iran. A new assessment for the
market entry and market development strategy is to be made if alter-
ations to the current US sanctions occur.
4.5. Policy implications

The implications for policy follow the three input elements presented
in Fig. 3. Firstly, the presence of disrupting factors should be minimized.
Sudden significant effects such as war or disasters form blocking factors
for wind energy growth (Zwarteveen et al., 2021a). Efforts need to be put
in place to ensure political stability (Friebe et al., 2014). Secondly, an
effective mechanism of change is needed. Multiple effective mechanisms
to stimulate wind power growth can be selected (Friebe et al., 2014;
Keeley and Matsumoto, 2018; Polzin et al., 2015). However, constancy is
needed to secure long-term market entry investments, hence uncertainty
in policies, resulting in boom-bust cycles, should be avoided (Barradale,
2010). Lastly, policy makers should simulate the probability for their
country to enter the commercial wind stage. This is novel. It would
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enable the country to forecast and adjust the attractiveness for OEMs
(and other players in the wind industry) to enter their market. Table 1
shows the 9 factors influencing the probability to enter the commercial
wind stage. These factors highlight the importance of integrating the
wind energy policy with economic policy (electricity pricing), the foreign
trade policy (neighbor influence and globalization efforts) and the
generic energy policy (diversification of energy generation portfolio).
The first step would be to calculate the current probability for commer-
cial wind adoption, by using equation (1). If this results in low or tipping
probability, scenarios are to be created for future values of the influ-
encing factors. Iterations should be executed until the probability is high.
The last step is to work backwards from the values of the influencing
factors of the high probability scenario to policies to achieve those.
Creating long term integrated policies enable the simulation of future
adoption probability for commercial wind and allow for long term ho-
listic socio-economic and environmental scenarios.

4.6. Limitations

This study only considered the 67 highest wind potential countries.
Further research is needed to determine if the model could also be
applied to other countries with moderate wind resources. The model fit
might be less accurate (currently it is 0.7), however by combining it with
the mechanism of change and disturbances, the approach is likely to be of
significant value to OEMs.

The categorization of the countries was based on the latest available
data from the dataset of Zwarteveen et al. (2021b). However, the data for
some variables dates to 2016. This dataset was chosen since it provided
the latest, consistent data for all countries. For analysis of specific
country, contemporary data could be used.

It should also be noted that onshore and offshore were both consid-
ered in the models. With the current growth of offshore extending into
emerging markets such as Vietnam (Afanasiev, 2021), further research
could focus on a specific offshore model.

Furthermore, the focus of this paper was on OEMs, however the
findings might also be useful for international developers and interna-
tional independent power producers who need to choose between
different markets to place their investment.

5. Conclusions

The aim of this paper was to estimate the probability that late
adopters of wind energy would begin significant wind utilization. Using a
7

binary logistic probability model, 39 high wind potential countries with
currently less than 500 MW installed were categorized into 3 groups:
high probability, tipping probability, and low probability to enter com-
mercial wind exploitation. Simulation showed that countries with
tipping probability can either move quickly to the low or high probability
group.

By combining the outcome of the prediction model with information
on the mechanism of change and potential disturbing factors, the wind
power OEM can make informed decisions on market entry and market
development for new wind markets.

The broader implication for addressing the private investment gap to
achieve the SDGs is that a thorough understanding of the local market
conditions is needed to calculate the likelihood of long-term success.
Simulating the probability of entering the commercialization stage based
on path creation theory is a helpful method to de-risk investments related
to market entries of sustainable technology. The triple bottom line should
be considered simultaneously both from a private company and the local
countries point of view. Regarding the economic value, only a reliable
profitable business case both for the company (favourable risk-return
balance) as well as for the country (local value creation resulting in
employment) is needed to close todays significant SDG financing gap.
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Appendix A. Variable values
Table A
1. Explanatory variables and their values per country (dataset (Zwarteveen et al., 2021b)). Greenland removed due to missing data.

Country v4 v5 v9 v10 v11 v12 v14 v15 v17
Afghanistan
 �16.9421
 0.11118
 0.245101
 56.9108
 0.6
 38.1618
 0
 0.107
 0.829

Algeria
 �25.9565
 0.11704
 3.69916
 38.884
 0.555556
 56.778
 74.894
 0
 0.638

Angola
 �43.9855
 0.06886
 1.20286
 32.3885
 0.545455
 41.4786
 0
 0
 7.653

Belarus
 1.08692
 0.04595
 6.13371
 18.7656
 1
 68.619
 33.507
 0
 0.405

Bolivia
 37.1449
 0.03498
 1.95851
 21.569
 0.857143
 59.156
 7.189
 0
 2.234

Chad
 172.362
 0.01891
 0.069756
 66.0292
 0.555556
 41.0539
 0
 0
 0

Colombia
 64.1883
 0.09707
 2.03038
 16.5272
 0.857143
 65.0934
 10.822
 3.153
 56.648

Congo DR
 �7.92757
 0.04236
 0.025645
 44.9093
 0.545455
 45.2509
 0.002
 0
 9.482

Czech Republic
 127.29
 0.01933
 9.6739
 16.0712
 1
 85.6801
 3.747
 41.206
 3.04

Eritrea
 145.319
 0.05144
 0.210687
 48.0302
 0.666667
 30.3343
 0
 0
 0

Ethiopia
 �43.9855
 0.02081
 0.143525
 38.9787
 0.454545
 44.6341
 0
 0
 12.957

Iceland
 46.1593
 0.02842
 6.15468
 6.48115
 1
 72.2403
 0
 0
 14.059

Indonesia
 28.1304
 0.04687
 2.15376
 16.5027
 1
 63.3752
 50.511
 187.645
 18.6324

Iran
 �49.3942
 0.11382
 8.3167
 38.9788
 0.4
 55.2214
 257.955
 0
 15.051

Iraq
 �34.971
 0.12822
 5.1914
 61.6362
 0.6
 44.1386
 27.761
 0
 2.176
(continued on next column)
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Table A (continued )
Country
 v4
 v5
 v9
 v10
8

v11
 v12
 v14
 v15
 v17
Kazakhstan
 �25.9565
 0.0459
 13.8927
 13.8243
 0.4
 64.6785
 18.466
 71.851
 11.21

Kenya
 100.246
 0.02642
 0.365117
 28.5784
 0.454545
 55.9294
 0
 0
 2.7768

Libya
 �43.9855
 0.18563
 7.78851
 54.2547
 0.666667
 55.445
 22.834
 0
 0

Madagascar
 37.1449
 0.01758
 0.156877
 22.5423
 0.545455
 50.0556
 0
 0.116389
 0.7885

Mali
 127.29
 0.07224
 0.176967
 38.5266
 0.666667
 48.7162
 0
 0
 1.105

Mauritania
 226.449
 0.09548
 0.657914
 47.423
 0.555556
 52.2851
 0
 0
 0

Mongolia
 �16.9421
 0.06011
 8.30017
 40.1129
 0.4
 66.5354
 0
 5.69417
 0

Mozambique
 37.1449
 0.03241
 0.285402
 21.2987
 0.545455
 54.7181
 2.93
 0
 14.06

Namibia
 46.1593
 0.20273
 1.79304
 25.3588
 0.454545
 59.1722
 0
 0.066
 1.593

Niger
 46.1593
 0.00475
 0.097016
 94.0538
 0.666667
 47.6051
 0
 0.23034
 0

Nigeria
 1.08692
 0.08096
 0.647285
 71.7982
 0.454545
 56.1364
 26.67
 0
 5.527

Oman
 �34.971
 0.02671
 14.1671
 41.1152
 0.6
 62.9017
 35.088
 0
 0

Paraguay
 �7.92757
 0.04809
 1.09287
 11.9091
 1
 63.1461
 0
 0
 59.5634

Russia
 �7.92757
 0.04585
 11.9994
 16.1602
 0.4
 72.5747
 518.659
 168.046
 187.131

Saudi Arabia
 �16.9421
 0.05927
 17.3676
 87.9454
 0.4
 66.1004
 209.69
 0
 0

Somalia
 848.449
 0.11351
 0.045496
 32.0346
 0.454545
 31.2857
 0
 0
 0

Syria
 �43.9855
 0.0837
 1.65177
 43.7573
 0.6
 51.459
 10.559
 0
 0.754

Tanzania
 19.1159
 0.0198
 0.225685
 29.0766
 0.545455
 51.2824
 4.227
 0
 2.35

Tunisia
 1.08692
 0.16022
 2.6484
 37.656
 0.555556
 68.0515
 19.715
 0
 0.017

Turkmenistan
 �43.9855
 0.03913
 12.4736
 21.7677
 0.6
 41.1237
 22.534
 0
 0

Uzbekistan
 �34.971
 0.05917
 2.88279
 28.4559
 0.6
 47.266
 49.2737
 3.249
 8.42737

Venezuela
 �34.971
 0.08801
 5.50071
 17.0086
 0.857143
 53.6092
 36.507
 0
 64.847

Zambia
 �25.9565
 0.11425
 0.314183
 27.438
 0.545455
 57.0869
 0
 1.335
 12.198

Year of data
 2019
 2019
 2016
 2017
 2019
 2017
 2017–2018
 2017–2018
 2017–2018
Appendix B. predicted probability
Table B
1. Predicted probability of exceeding 500 MW of wind power per country

County number Country Predicted probability of exceeding 500 MW
1
 Turkmenistan
 0.000000%

2
 Angola
 0.000000%

3
 Ethiopia
 0.000000%

4
 Kazakhstan
 0.000000%

5
 Uzbekistan
 0.000000%

6
 Oman
 0.000000%

7
 Syria
 0.000000%

8
 Venezuela
 0.000000%

9
 Congo DR
 0.000000%

10
 Madagascar
 0.000000%

11
 Afghanistan
 0.000000%

12
 Zambia
 0.000000%

13
 Tanzania
 0.000000%

14
 Iraq
 0.000000%

15
 Mongolia
 0.000000%

16
 Mozambique
 0.000000%

17
 Algeria
 0.000020%

18
 Libya
 0.000109%

19
 Paraguay
 0.000804%

20
 Iran
 0.001072%

21
 Bolivia
 0.508415%

22
 Belarus
 3.690523%

23
 Namibia
 96.029546%

24
 Iceland
 99.363971%

25
 Kenya
 99.830275%

26
 Tunisia
 99.995971%

27
 Indonesia
 99.999319%

28
 Eritrea
 99.999486%

29
 Nigeria
 99.999792%

30
 Colombia
 100.000000%

31
 Mali
 100.000000%

32
 Saudi Arabia
 100.000000%

33
 Niger
 100.000000%

34
 Chad
 100.000000%

35
 Somalia
 100.000000%

36
 Mauritania
 100.000000%

37
 Russia
 100.000000%

38
 Czech Republic
 100.000000%
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