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Abstract— The three-dimensional (3D) perception of
autonomous vehicles is crucial for localization and analysis of
the driving environment, while it involves massive computing
resources for deep learning, which can’t be provided by vehicle-
mounted devices. This requires the use of seamless, reliable,
and efficient massive connections provided by the 6G network
for computing in the cloud. In this paper, we propose a novel
deep learning framework with 6G enabled transport system
for joint optimization of depth and ego-motion estimation,
which is an important task in 3D perception for autonomous
driving. A novel loss based on feature map and quadtree is
proposed, which uses feature value loss with quadtree coding
instead of photometric loss to merge the feature information
at the texture-less region. Besides, we also propose a novel
multi-level V-shaped residual network to estimate the depths of
the image, which combines the advantages of V-shaped network
and residual network, and solves the problem of poor feature
extraction results that may be caused by the simple fusion of
low-level and high-level features. Lastly, to alleviate the influence
of image noise on pose estimation, we propose a number of
parallel sub-networks that use RGB image and its feature map
as the input of the network. Experimental results show that
our method significantly improves the quality of the depth map
and the localization accuracy and achieves the state-of-the-art
performance.
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I. INTRODUCTION

THE 6G networks provide an unprecedented, seamless,
reliable, efficient massive connectivity to solve the large-

scale computing problem for autonomous vehicles [1]. The
ego-motion of the vehicle and the distance from the surround-
ing environment is one of the most important tasks in the
autonomous vehicles [2], [3]. Depth and ego-motion estima-
tion plays an important role in 3D geometric understanding.
Generally speaking, the depth information of the environment
can be obtained through LiDAR, ultrasound and depth camera.
However, the dense ground truth are difficult to acquire.
LiDAR has a high-precision and long-distance sensing range,
while the number of LiDAR scan lines is limited and only
sparse depth values can be provided, such as in the KITTI [4]
dataset, where the resolution of depth map is only 30% of
the image. RGB-D cameras are mostly used for indoor depth
acquisition, they have low resolution and limited precision in
obtaining depth maps, and RGB-D cameras are susceptible
to glass or pure black objects, which are prone to distortion
and incorrect depth values [5]. In addition, these sensors
are expensive. To overcome the limitations of traditional
hardware-based methods, more and more attention has been
paid to predicting depth from monocular images. In terms
of ego-motion estimation, although monocular camera-based
methods are less stable than other sensors such as stereo input
or fusion of IMU and GPS, it has advantages such as lower
cost, higher resolution and not limited to outdoor or indoor
scenes. It is still preferred to estimate depth and ego-motion
based on a monocular camera.

Image-based depth estimation and ego-motion calculation
can be considered as multi-view geometry problems, which
can traditionally be computed through precise linear mathe-
matical relationships. The representative algorithms are Struc-
ture from Motion (SfM) and visual Simultaneous Localization
And Mapping (vSLAM). SfM is usually used for offline
calculation from a set of disordered images, while vSLAM
uses sequence images to calculate pose and depth in real
time [6]. These two types of methods construct a glob-
ally consistent pose and three-dimensional maps by tracking
hand-crafted image geometric features (such as SIFT [7],
SURF [8], ORB [9], and so on) over multiple frames, and by
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optimizing methods such as Bundle Adjustment or Kalman
filter. Among them, MonoSLAM [10] and ORB-SLAM [11]
can create sparse 3D maps of key points. DTAM [6] and
REMODE [12] generally create dense scenes by optimizing
depth values. However, since these methods rely on low-
level features for calculation, only reliable sparse depths
can be obtained. In a challenging texture-less environment,
epipolar search and block matching techniques are used to
calculate the dense depth, and the effect is generally very
poor. In recent years, with the emergence of Convolutional
Neural Networks (CNN) [13], the performance of visual
understanding has been greatly improved. Therefore, many
methods based on deep learning have emerged to break
through the limitations of classical methods. Deep learning
has achieved good results in image-based depth map estima-
tion. However, supervised learning requires a large amount
of labelled data, either from specialized devices such as
LiDAR [4] or synthetic datasets [14], which in many cases
results in domain shifts [15]. To solve this problem, the method
of joint estimation of depth and pose by self-supervision has
recently been promoted [16]–[19]. Through depth and pose,
the reference image can be projected under the perspective
of the target image, jointly optimize depth and ego-motion by
minimizing the photometric error between the target image and
the composite image, accurate depth contributes to accurate
pose estimation, and vice versa. Over the years, many scholars
have done a lot of research on different methods. The current
works mainly focus on the joint estimation of multi-tasks such
as depth, optical flow, and normal [17], [18], [20]–[23]; the
combination of classical methods and deep learning [24]–[30];
network innovation [31]–[37]; design new objective functions
or training strategies [19], [38]–[47].

Recently, without using the labeled ground truth of depth
map, a self-supervised deep learning network can use relative
pose to synthesize the target image from the reference image,
and the photometric error between synthesized target image
and real one is used as self-supervisory signal. Since the
photometric loss only depends on the difference in pixel
intensity of the image, it cannot describe the distortion artifacts
of the distorted image, so the estimated depth is blurred. At the
same time, the photometric loss is easy to fall into the local
minimum in the texture-less area [48]. We propose a novel loss
function based on the feature values of the image and quadtree
coding to solve these two problems. Different hierarchical
features of target image and composite image are extracted by
Vgg-16 [49] with pre-training weights. For more abstract high-
level features, the differences of feature values are directly
calculated, quadtree coding is used for shallow features with
more detail, and feature differences in uniform textured areas
are compiled into average errors to jump out of local minimum
values. In terms of depth estimation, V-Net [50] combines
shallow features with deep features to show good performance
in depth recovery. However, due to the gap between low-level
and high-level features in semantic level and spatial resolution,
simple fusion may be less effective [51]. Therefore, a multi-
level V-shaped residual network is proposed, which connects
the multi-level V-shaped network in series through the residual
method to better extract the feature information of the image.

At the same time, by fusing the features of different V-shaped
network outputs, the information of different levels of features
is fully utilized. In depth estimation, learning-based systems
usually perform quite well in terms of interior points but blur
the edges of objects. We designed the contour loss function
to overcome this problem. The contour loss function directly
uses the photometric error of the contour in the target image
and the synthesized target image to constrain the depth at
the contour of the object. In previous ego-motion estimation,
traditional geometric algorithms or a CNN are often used for
pose estimation. We design multiple parallel sub-networks in
a pose estimation network. The first sub-network takes the
original RGB image as input, and the other sub-networks take
the feature maps of different levels of RGB image as input.
This design method avoids the influence of RGB image noise
on the final pose estimation result. The main contributions are
summarized as following three-folds:

1) We propose a novel loss based on feature map with
quadtree encoding to calculate the feature error between
the target image and its reconstructed image. The fea-
tures error is calculated in the unit of quadtree block to
soelve the local minimum problem during training.

2) We propose a novel joint optimization network for
depth and ego-motion estimation. In the pose estima-
tion network, several parallel subnetworks are designed.
To improve the accuracy of ego-motion estimation, RGB
images are fed into the network in parallel with their
multilevel feature maps. Regarding the depth estimation,
we propose a novel depth estimation network, which
combines the advantages of V-shaped network with
residual network.

3) A contour loss function is proposed to strengthen the
prediction of the edge depth of the object in the image
based on the learning system. Experiments show that
our method is suitable for outdoor and indoor datasets.
And the proposed method has excellent performance in
depth estimation and ego-motion.

The remainder of this paper is organized as follows:
Section II is the related work. Section III mainly introduces the
system framework and principles used in this paper, including
the method architecture and algorithm details. Section IV
presents our experimental results and comparisons with other
methods. Section V is the conclusion.

II. RELATED WORK

In this section, we will introduce the work of depth
estimation and ego-motion estimation according to different
research methods. At the same time, we also briefly introduce
some related work under the 6G scenario.

A. Joint Estimation of Multiple Tasks

Ranjan et al. [17] solved the unsupervised learning of sev-
eral interrelated problems in low-level vision: single-view
depth prediction, camera motion estimation, optical flow, and
video segmentation into static scenes and moving regions.
Chen et al. [18] proposed a self-supervised learning frame-
work GLNet to learn depth, optical flow, camera pose and
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intrinsic parameters from monocular videos. Yin and Shi [20]
proposed a joint unsupervised learning framework for video
monocular depth, optical flow and ego-motion estimation.
Casser et al. [21] proposed an unsupervised monocular learn-
ing of depth and ego-motion using structure and seman-
tics. Atapour-Abarghouei and Breckon [22] proposed a joint
understanding method of geometric scene and semantic scene
based on multi-task learning. Klingner and Fingscheidt [23]
approached with monocular depth estimation as a secondary
task, which enables us to predict the DNN’s performance for
various other (primary) tasks by evaluating only the depth
estimation task with a physical depth measurement provided,
e.g., by a LiDAR sensor. These methods mainly focus on
processing multiple tasks in computer vision at the same
time, and make use of the complementary advantages between
different tasks to better complete tasks such as prediction and
estimation.

B. Combination of Classical Methods and Deep Learning

Tateno et al. [24] used CNN to predict the single-view
depth and input it into LSD-SLAM to achieve dense recon-
struction. Laidlow et al. [25] fused the output of a semi-
dense multi-view stereo algorithm with the depth and gradient
predictions of a CNN in a probabilistic fashion, using learned
uncertainties produced by the network. Tang and Tan [26]
used a deep neural network to predict a set of basic depth
maps, combined with Levenberg-Marquardt (LM) optimiza-
tion method to optimize the coefficients and poses of the depth
map. Yang et al. [27] incorporated deep depth predictions
into Direct Sparse Odometry (DSO) as direct virtual stereo
measurements. Lee et al. [28] proposed a deep learning algo-
rithm for single-image depth estimation based on the Fourier
frequency domain analysis and proposed a new loss function,
called depth balanced Euclidean loss. Wang and Xu [29] pre-
sented an architecture based on convolutional neural network
and Kalman filter, which is used for unsupervised learning
of accurate ego-motion and high-resolution single-view depth,
and used as little as possible Parameters. Chuah et al. [30]
predicted pixel-wise affine transformation parameters based on
the depth information encoded in the aggregated cost volume,
this mothed is robust against the ill-posed regions such as
the textureless surfaces. Deep learning can extract deeper
semantic information, and traditional methods have better
interpretability. The above methods combine the advantages
of these two methods to varying degrees.

C. Network Innovation

Eigen et al. [31] presented a new method that addresses
depth estimation and ego-motion by employing two deep net-
work stacks: one that makes a coarse global prediction based
on the entire image, and another that refines this prediction
locally. Nath Kundu et al. [32] avoided image noise by adver-
sarial learning and explicitly imposing content consistency
on the adaptive target representation. Yang et al. [33] closely
combined the predicted depth, pose and uncertainty into the
direct visual ranging method to enhance front-end tracking and
back-end nonlinear optimization. Pillai et al. [34] proposed

a sub-pixel convolutional layer extension for deep super-
resolution, which can accurately synthesize high-resolution
differences from the corresponding low-resolution convolu-
tion features. Laina et al. [35] proposed a fully convolu-
tional structure that includes residual learning. The proposed
model contains fewer parameters and requires less training
data. Spencer et al. [36] proposed DeFeat-Net, an approach
to simultaneously learn a cross-domain dense feature rep-
resentation, alongside a robust depth-estimation framework
based on warped feature consistency. Park et al. [37] propose
a deep sensor fusion framework consists of calibration network
and depth fusion network for high-precision depth estimation.
The above methods mainly focus on the improvement of
the network in order to better play the role of the neural
network.

D. Design a New Objective Function or Training Strategy

Tang et al. [38] predicted by a single network trained in
a tightly coupled manner through the depth and normal.
Poggi et al. [39] solved the effect of binocular image artifacts
on the depth map by moving to the trinocular domain for train-
ing. A novel interleaved training procedure was introduced that
can execute the trinocular assumption outlined from the current
binocular dataset. Wang et al. [40] used an implicit depth cue
extractor which leverages dynamic and static cues to generate
useful depth maps. Bozorgtabar et al. [19] demonstrated the
benefit of using geometric information from synthetic images,
coupled with scene depth information, to recover the scale
in depth and ego-motion estimation from monocular videos.
Mahjourian et al. [41] explicitly considered the inferred three-
dimensional geometry of the scene and designed a consistent
3D loss function for the three-dimensional point clouds and
ego-motion across consecutive frames. Wong and Soatto [42]
proposed a novel objective function that exploits the bilateral
cyclic relationship between the left and right disparities and
introduced an adaptive regularization scheme that allows the
network to handle both the co-visible and occluded regions in
a stereo pair. Lai et al. [43] proposed a single and principled
network to jointly learn spatiotemporal correspondence for
stereo matching and flow estimation, with a newly designed
geometric connection as the unsupervised signal for tempo-
rally adjacent stereo pairs. Heo et al. [44] designed a new
type of filter called WSM to take advantage of the tendency of
scenes to have similar depth in the horizontal or vertical direc-
tion. Srinivasan et al. [45] presented a novel method to train
machine learning algorithms to estimate scene depths from a
single image, by using the information provided by a camera’s
aperture as supervision. Su et al. [46] addressed monocular
depth estimation with a general information exchange convo-
lutional neural network. This method can capture long-range
context and fine-grained features by refining the description
of local context stage by stage. Jia et al. [47] proposed a
correlation-aware structure, to dig into the relations between
depths, converting the independent depths into a graph-like
connected depth map. The above methods mainly study new
constraint methods or training strategies to artificially improve
the performance of the model.
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Fig. 1. Schematic diagram of the deep learning framework for joint optimization of depth and ego-motion estimation. The white boxes represent variables,
the orange boxe represent the networks that need to be trained, the blue boxes represent the feature maps calculated by Vgg-16, the yellow boxes represent
fixed calculations, and the green boxes represent the loss function.

E. Related Work Under the 6G Scenario

Zhang et al. [52] proposed a fuzzy probability Bayesian
network (FPBN) method for dynamic risk assessment to
establish a risk propagation model for industrial control
systems (ICSs). Fang et al. [53] considered the problem of
maximizing the profit of the cloudlets’ managing platform
that receives computing requests from mobile users and fulfils
these requests by leveraging computing service of participating
cloudlets. Qu and Xiong [54] presented a Resilient, Fault-
tolerant and High-efficient global replication algorithm (RFH)
for distributed Cloud storage systems. Wu et al. [55] devel-
oped a structure fidelity data collection (SFDC) framework
leveraging the spatial correlations between nodes to reduce
the number of the active sensor nodes while maintaining the
low structural distortion of the collected data. Li et al. [56]
proposed a multi-step trajectory clustering method for robust
Automatic Identification System (AIS) trajectory clustering.
Zhou et al. [57] elaborated the operation details of secure
spectrum sharing, incentive mechanism design, and efficient
spectrum allocation. Zhou et al. [58] considered how to maxi-
mize the energy efficiency of M2M-TXs via the joint optimiza-
tion of channel selection, peer discovery, power control, and
time allocation. Li et al. [59] investigated the physical layer
security (PLS) of the ambient backscatter NOMA systems with
emphasis on reliability and security. The above methods are
some noteworthy directions in the 6G scenario.

The core contribution of our method is to design a new
constraint relationship based on feature graph and quadtree
coding, which can effectively solve the problem that the
network falls into local minimum if the texture region lacks
feature information. The constraint based on contour solves
the disadvantage of fuzzy edge depth. In addition, our new
network architecture helps to improve the ability of network
to extract and effectively use image features.

III. SYSTEM FRAMEWORK

The proposed deep learning framework for joint optimiza-
tion of depth and ego-motion estimation is shown in Fig. 1.
The whole framework contains three neural networks with
different objectives, which are a multi-level V-shaped residual
network for depth estimation, PoseNet for pose estimation,
and VggNet for feature extraction of target image and its
reconstructed image. The multi-level V-shaped residual net-
work is used to predict the dense depth pred of the target
image rgb1. PoseNet is used to predict the relative pose
[R|t] of the target image rgb1 and the reference image rgb2.
VggNet uses a pre-trained model to extract features of RGB
images. PoseNet is composed of four sub-networks in parallel,
rgb1 and rgb2 and their three different levels of feature maps
as the input of the four sub-networks. By using the dense depth
map pred and pose [R|t], the reference image rgb2 can be
converted to the perspective of the target image rgb1 to form
the reconstructed target image rgb1�. Where rgb2 is the right
view in the stereo image or the keyframe in the continuous
image. Based on the feature map and quadtree, the loss of
the feature quadtree is designed. The deep feature value error
and shallow feature quadtree block error of the target image
and the reconstructed target image are used as the supervision
signal to jointly optimize the depth and pose. In addition,
we also use multiple loss functions such as photometric loss
and structural similarity loss to jointly optimize our network
model. Section A introduces the multi-level V-shaped residual
network, section B describes the pose estimation network, and
section C presents the joint optimization loss functions.

A. Multi-Level V-Shaped Residual Network for Depth
Estimation

1) Network Architecture: The multilevel V-residual network
architecture is shown in Fig. 2. Each level of V-shaped
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Fig. 2. Multilevel V-shaped residual network architecture diagram.

network has the same architecture, except for the different
inputs. Each level of V-shaped network is connected in the
residual form of residuals. The network combines the feature
maps output by each level of the V-shaped network and
then makes predictions, and combines the advantages of the
V-shaped network and the residual network to solve the
possible adverse effects of the simple fusion of low-level and
high-level features. The multi-level V-shaped residual network
takes the original resolution of the RGB image as input, and
outputs the predicted dense depth map consistent with the
resolution of the RGB image.

2) Network Details: Each V-shaped module adopts a
V-shaped structure with a shallow network depth. The
down-sampling part uses two-dimensional convolution kernel,
Batch Normalization (BN) and Parametric Rectified Linear
Unit (PReLU) to extract features. Between down-sampling
each layer of features, a 2 × 2 convolution kernel with a step
size of 2 is used instead of the maximum pooling layer to
reduce the resolution of the feature map. This approach avoids
the impact of the loss of information on the segmentation
accuracy of the pooling layer in the process of dimensionality
reduction. BN forces the data distribution of each layer into a
normal distribution, which speeds up the convergence of the
network. PReLU is used for all activation functions throughout
the network. The PReLU is defined as follows:

PReLU(xi ) =
{

xi , i f xi > 0,

ai xi , i f xi ≤ 0,
(1)

where i represents different channels, xi represents the feature
map of the i -th layer channel, ai is the parameter corre-
sponding to it. PReLU is an activation function with different
parameters for each channel (Rectified Linear Unit, ReLU).
In the network training process, ai changes dynamically during

the back propagation of the neural network, and the change
update process of ai is shown in Eq. (2):

�ai := μ�ai + δ
∂ε

∂ai
, (2)

where μ is momentum, δ is the learning rate, ε is the
objective function, ∂ε/∂ai represents the gradient of ai , and
the initial value of ai is 0.25. The use of PReLU reduces the
risk of overfitting while hardly increasing the computational
cost. In the up-sampling part, each layer is cascaded with its
corresponding down-sampling layer by means of jumpers, and
it is gradually enlarged by a 2 × 2 deconvolution kernel until
it is the same size as the input.

We concatenate V-networks in a residual form. The first-
level V-shaped network takes RGB images as input. The
second-level V-shaped network takes the fusion result of the
output and input features of the first-level V-shaped network as
input. Feature fusion requires feature maps to have the same
scale, we use cascade operations to aggregate these feature
maps, and a 1 × 1 convolution layer is used to reduce the
channel of the features. By analogy, the input of each level
of V-shaped network can be represented by the following
formula:

xl
V F =

{
Tl(F(x)), l = 1

Tl(F(x, x1, . . . , xl−1)), l = 2 . . . L,
(3)

where x represents the original RGB image, xl represents the
feature map output by the l-th V-shaped network, L represents
the number of V-shaped networks, Tl represents the operation
processing of the l-th V-shaped network, F represents feature
fusion processing.

Each V-shaped network is connected in series in the residual
form. This forms a residual function when performing back
propagation, which speeds up the network convergence in
a short time. At the same time, this construction method
prevents the network from forgetting the previous information
in subsequent learning. The final output of the multi-level
V-shaped residual network is the aggregation of the output
features of the V-shaped network at all levels. The multi-
level features generated by the V-shaped network at all levels
are connected together along the channel, with the former
features are biased towards detailed information, and the latter
features are biased towards semantic information. In order to
make detailed information and semantic information can be
well integrated, a simple 1 × 1 convolution kernel method
is adopted. The 1 × 1 convolution kernel performs a similar
weighted average operation on the channel of the connected
feature maps. Since the parameters of the 1 × 1 convolution
kernel are learned through backpropagation, in the process
of network training, without changing the resolution of the
feature map, features are encouraged to pay attention to the
channels that benefit them most. Finally, Softmax converts
it into the probability of foreground and background regions
to obtain the predicted dense depth map. The default con-
figuration of the V-shaped network is 5, and each V-shaped
network has 5 down-sampling and 4 up-sampling. To reduce
the number of parameters, only one convolution kernel is used
for each up-sampling or down-sampling.
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Fig. 3. Schematic diagram of PoseNet network architecture. The green box
represents the feature map, the red number represents the channel number of
the feature map, and the blue number represents the change of the resolution
of the feature map relative to the previous feature map.

B. Pose Estimation Network

1) Network Architecture: PoseNet is divided into four sub-
networks. As shown in Fig. 3, the target image rgb1 and the
reference image rgb2 are the inputs of the first sub-network.
VggNet extracts three sets of feature maps of different levels
of target image rgb1 and reference image rgb2. The first layer
feature map has 64 channels, the second layer feature map has
128 channels, and the third layer feature map has 256 channels.
Three groups of different feature maps are used as input to
the other three sub-networks. PoseNet outputs a relative pose
[R|t] with 6 degrees of freedom.

2) Network Details: Each sub-network first superimposes
the RGB image or feature map of the target view and the
reference view, and then performs further processing. Since
the resolution and the number of channels of each sub-network
input image are inconsistent, the architecture of each sub-
network is different. The specific architecture is shown in
Fig. 3. PoseNet adopts ReLU as its activation function. In the
output phase, the final feature maps of the four sub-networks
are fused, and the final relative pose results [R|t] are obtained
by integrated network and the mean function.

C. Joint Optimization Loss Functions

The proposed deep learning framework for joint optimiza-
tion of depth and ego-motion estimation requires training of
two network models, a multi-level V-shaped residual network
and PoseNet. In order to solve the problem that the photomet-
ric loss cannot describe the distortion artifacts of the image and
is prone to fall into the local minimum value in the texture-
less area. A new reprojection function is designed based on the
feature map of the target image and the reconstructed target
image as well as the feature quadtree. For more abstract deep-
level features, we directly calculate the difference in feature
values. Quadtree coding is applied to shallow features with
more detail, and uniform texture feature areas are compiled
into average errors to jump out of local minimum values.

1) Target Image Reconstruction: Through the dense depth
map of the target image and the relative pose of the target
image and the reference image, the reference image can be
converted to the perspective of the target image to form a
reconstructed target image. In this paper, the target image is
represented by rgb1 and the reference image is represented
by rgb2. For outdoor dataset, rgb2 is the right view in the
stereo image. For indoor datasets, rgb2 is the keyframe in
the video or continuous image. If rgb1 is the last frame in the

continuous image, then rgb2 selects the image that is exactly
the same as rgb1.

Specifically, it is divided into three steps. First, the target
image can be projected into three-dimensional coordinate
space X by using the camera internal parameter K and
the depth map spred of the target image u1 to generate
point clouds in the camera coordinate system of the target
image perspective. The mathematical form is: spred u1 =
K X . Secondly, according to the relative pose [R |t ] of the
target image and the reference image, the point clouds in the
camera coordinate system of the target image perspective X
is transferred to the reference image camera coordinate X �
system. The mathematical form is: X � = [R |t ]X . Finally,
the point cloud X � in the reference image camera coordinate
system is projected onto the reference image u2 through the
camera internal parameters K . The mathematical form is:
u2 = K X �. Through the above three steps, a pixel-to-pixel
correspondence between the target image and the reference
image can be established. The mathematical model is:

u2 = K [R |t ]spred K −1u1, (4)

where spred is the corresponding depth value of the predicted
dense depth map under the target image pixel coordinate u1, K
is the camera internal parameter, [R |t ] is the transformation
matrix between the target image and the reference image, u2 is
the coordinate position corresponding to the reference image.
Through the correspondence of Formula (4), we synthesize
rgb2 into rgb1� images from the perspective of rgb1 using
bilinear sampling:

rgb1� = C(rgb2, [R|t], pred), (5)

where C represents the projection function corresponding
to the pixels of the reference image rgb2 and the target
image rgb1.

2) Feature Map Extraction and Feature Loss: To measure
the differences between the target image rgb1 and reconstruct
the target image rgb1�. We use Vgg16 to extract the feature
map of rgb1 and rgb1�. Taking the resolution of the original
image as input, the feature maps of the first three layers are
extracted. The first layer feature map has 64 channels, the
second layer feature map has 128 channels, and the third layer
feature map has 256 channels. The resolution of each layer
of feature maps is half of the previous layer. As shown in
Fig. 4, shallow features focus on the extraction of detailed
information, and deep features focus on the extraction of
semantic information. The use of feature maps can solve
the distortion artifacts of the reconstructed image and the
difference in image intensity caused by different camera
exposures under different viewing angles.

For the second and third layer of feature maps, since the
semantic information is relatively strong, we directly calculate
the feature value error between rgb1 and rgb1�, which is
defined as:

L f eature = 1

S

∑
s∈S

∥∥ fs − fs
�∥∥

1, (6)

where S represents the set of all feature maps of the second
and third layers, fs and fs

� represent the feature values of the
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Fig. 4. Different hierarchical feature maps of target image rgb1 and reconstructed target image rgb1� . rgb1 is the target view, and rgb1� is the synthetic
view. The number of channels in each layer of feature maps in the neural network is 64, 128, and 256, respectively. Each layer only shows the visualization
effects of the first three channels (the resolution of each layer’s feature map is halved relative to the previous layer).

Fig. 5. Schematic diagram of quadtree encoding.

target image and the reconstructed target image under the s-th
feature map.

3) Quadtree and Feature Quadtree Loss: For the first layer
of feature map, it contains rich detail features. In order to avoid
the direct measure difference of the feature value, the feature
of the texture-less area will easily fall into the local minimum.
We propose a feature quadtree loss for the first layer features.

Quadtree coding subdivides a portion of two-dimensional
space into four quadrants or regions and stores relevant
information in the region into quadtree nodes. This area can
be square, rectangular or any shape. In this paper, we perform
quadtree encoding on the first layer feature map of RGB
image, First, the feature map is divided into four first-level
sub-blocks, as shown in Fig. 5(a); Then the feature values are
checked in each quadtree block. If they are the same, the block
is no longer divided. If they are different, the block is further
divided into four secondary subblocks, as shown in Fig. 5(c).
This is recursively divided until the feature values of each
sub-block are equal, as shown in Fig. 5(d).

The specific calculation process of the feature quadtree
loss is shown in Fig. 6. First, quadtree coding is performed
on the feature map of the target image rgb1; Secondly, the
obtained quadtree mask are applied onto the feature map of the
reconstruction target image rgb1�; Then, the average feature
value is calculated in each quadtree block according to the
mask on the feature map of the reconstructed target image;
Finally, the feature difference between the target image and
the first-layer feature map of the reconstructed target image is
calculated in the unit of quadtree block, which is defined as:

L f eature_quads =
∑

α∈�

∥∥I1α − I �
1α

∥∥
1
, (7)

where I1α and I �
1α represent the feature values of rgb1 and

rgb1� first layer feature map within a quadtree block. �
represents a collection of quadtree area blocks.

Fig. 6. Schematic diagram of quadtree encoding.

Algorithm 1 shows the computational flow of feature
quadtree generation and feature quadtree loss.

In the training process of the framework, in addition to the
feature loss and feature quadtree loss mentioned, we use a
variety of different loss functions to supervise the training.

4) Contour Loss: As shown in [35], deep learning-based
systems generally perform fairly well on internal points, but
blur the edges of objects. To improve the accuracy of depth
estimation in edge prediction, contour loss is designed to
increase the penalty for contours. The contour is obtained
using the basic gradient, which is defined as:

g = ( f ⊕ b) − ( f � b), (8)

where g represents the basic gradient image, f represents
the original image, b represents the structural element, ⊕
represents the dilation operation, and � represents the erosion
operation.

The result of the RGB image and its contour is shown in
Fig. 7. The contour images extracted by rgb1 and rgb1�are
directly subtracted to increase the penalty on the edges. The
contour loss is defined as:

Lcontour = ∥∥I1C − I �
1C

∥∥
1, (9)

where I1C and I �
1C represent the intensities of images rgb1 and

rgb1� on their contours, respectively.
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Algorithm 1 Feature Quadtree Generation and Loss Function
Calculation
Require:

First layer feature maps rgb1 f and rgb1� f of target image
rgb1 and reconstructed target image rgb1�,
Number of iterations for quadtree encoding N ;

1: Quadtree encoding of rgb1 f :
i=1
for i to N :

Divide rgb1 f into four i -level sub-blocks
Compute the feature values V in each quadtree block
if V is the same:

No longer divide i+1 level sub-blocks
else:

Divide i+1 level sub-blocks
Obtain the w quadtree regions encoded by the rgb1 f
quadtree and the feature value V of each region;

2: Mask the quadtree area of rgb1 f onto rgb1� f ;
3: Directly calculate the average feature value V � of each

quadtree block area on rgb1� f ;
4: Calculate the feature value difference

∣∣V − V �∣∣ in each
quadtree block in rgb1 f and rgb1� f ;

Ensure:
Mean of all feature differences 1

w

∑N
i=1

(∣∣V − V �∣∣).

Fig. 7. RGB image and its contour map.

5) Photometric Loss: In order to refine the predicted dense
depth map and improve the pose estimation accuracy. Pixel-
wise photometric error is also used for training, which is
defined as:

L photometric =
∑

s∈S

∥∥Is − I �
s

∥∥
1
, (10)

where S represents a collection of image pixels, Is and I �
s

represent the color intensity of image rgb1 and rgb1� at
pixel s.

6) SSIM Loss: Since the structural similarity (SSIM) [22]
conforms to the image quality evaluation standard of human
intuition, we follow its approach and define structural
similarity loss:

Lssim = SSI M(I1 − I �
1), (11)

where I1, I �
1 represent the color intensity of rgb1 and rgb1�

images.
7) Depth Loss: Stereo camera sensors are generally used

outdoors, and RGB-D sensors are used indoors. Therefore,
for outdoor datasets, stereo cameras are used to assist training.
First, the sparse depth map is obtained using binocular SLAM

technology, and then the predicted dense depth is constrained
by the globally optimized sparse depth.

Indoor datasets have a large number of deep-labeled sam-
ples, and the network is directly trained in a supervised
manner. Specifically, if the predicted depth map has data at
the location corresponding to the original depth map, the
difference between the two data is penalized. This loss can
improve the accuracy of training, stability and convergence
speed. Depth loss is defined as:

Ldepth(pred, d) =
∑

di, j �=0

∥∥predi, j − di, j
∥∥2

2, (12)

where i , j represent the depth map coordinates, predi, j and
di, j are the depths of the predicted dense depth map and the
original depth map at the i and j coordinates, respectively.

8) Loss of Smooth: Since there are no adjacent constraints
between the depth values of the predicted dense depth map,
in order to make the predicted dense depth map smooth,
according to [42], a depth smooth loss is used, which uses
the image gradient to weight the depth gradient:

Lsmooth =
∑

p
|∇ pred(p)|T · e−|∇ I1(P)|, (13)

where p is the pixel on the predicted dense depth map pred
and image rgb1.

In summary, the final loss function of the joint self-
supervised framework includes 7 items:
L = α1 L f eature+α2 L f eature_quads + α3 Lcontour

+α4 L photomertric + α5 Lssim + α6 Ldepth + α7 Lsmooth,

(14)

where α1…α7 are hyperparameters. According to experience,
the hyperparameters are set to 0.8, 0.8, 0.4, 0.6, 0.4, 0.8 and
0.4, respectively.

To sum up, the whole process of training of our method is
shown in Algorithm 2.

IV. PERFORMANCE ANALYSIS

In this section, we present our experimental results to
demonstrate the performance of the proposed method. The
dataset used and the implementation details are described
first, and the performance of our method is compared with
other state-of-the-art methods. Finally, we performed abla-
tion studies on our proposed methods to assess the con-
tribution of different components to the overall estimation
accuracy.

A. Dataset and Implementation Details

1) Outdoor Datasets: The most common KITTI [4] bench-
mark dataset is selected. Eigen split [31] is used for training
and testing, and we also use KITTI odometry dataset to
evaluate our method. The dataset includes raw images, 3D
point cloud data from radar, and camera trajectories, which
provides an accurate but sparse semi-dense ground truth value
with about 30% annotated pixels.
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Algorithm 2 Training of Joint Optimization of Depth and Ego-
Motion
Require:

Target image rgb1,
reference image rgb2;

1: VggNet extracts the three-level feature maps of rgb1 and
rgb2;

2: Using Multi-level V-shaped residual network to predict the
depth pred of rgb1;

3: Input rgb1 and rgb2 and their three-level feature maps into
PoseNet to calculate the relative pose [R|t] of rgb1 and
rgb2;

4: According to the formula (5) convert rgb2 to rgb1 image
perspective to get rgb1�;

5: Use VggNet to extract the three-level feature map of rgb1�;
6: Calculate the loss error:

1) Calculate the feature loss of the second and third layer
feature maps of rgb1 and rgb1�,

2) Use Algorithm 1 to calculate the loss of the first layer
feature map of rgb1 and rgb1�,

3) Use the basic gradient to calculate the contours of
rgb1 and rgb1�, and calculate the error of the contour,

4) Calculate the photometric loss and SSMI loss of
rgb1 and rgb1�, depth loss, smoothness of pred;

Ensure:
min (loss).

2) Indoor Datasets: We use the SUN-RGB D [60] dataset
to train the network, which contains 10k optimized RGB-D
images collected from NYUv2 [61], Berkeley B3DO [62]
and SUN-3D [63]. The sequences of two public bench-
mark datasets, TUM RGB-D [64] and ICL-NUIM [65] are
tested. The former is acquired through the Kinect sensor,
and the latter is synthesized. Both of these two datasets
provide the real situation of the camera trajectory and depth
map.

3) Implementation Details: The training framework is
implemented in Pytorch. We expanded the data in the form of
online data enhancements, including left-right flips, random
gamma color enhancements, brightness, and color shifts,
where 50% samples of each augmentation method are ran-
domly selected. The original resolution of the image is used
as the input of the network, the batch size is 1, and the training
is performed on a single Nvidia TITAN X. The network
weights are randomly initialized using zero mean Gaussian,
and the network is optimized using Adam. The learning rate
is set to 10−4, and the learning rate decay method is used
to reduce the learning rate by half for every two epochs.
A total of 200 epochs are trained. The outdoor KITTI dataset
uses a binocular visual slam to calculate the sparse depth
of the left view, which is approximately 0.3% of the RGB
pixel value. The indoor dataset uses the original depth for
supervision. Both the sparse depth and the original depth
calculated by binocular methods contain scale information,
so the dense depth map and pose we predict both contain scale
information.

TABLE I

ERROR AND ACCURACY METRICS. d pred
i j IS THE PREDICTED DEPTH AT

(i, j) ∈ I AND dgt
i j IS THE CORRESPONDING GROUND TRUTH

B. Performance Evaluation

1) Evaluation Methods: For outdoor KITTI datasets,
we follow most of the previous work. We quantitatively
evaluate the performance of monocular depth prediction using
the following metrics: mean absolute relative error (Abs Rel),
sq Rel, root mean squared error (RM SE), log RM SE , and
the accuracy under threshold (δ < 1.25, 1.252, 1.253). The
mathematical formulas of these measurements are shown in
Table I.

For the pose estimation of the KITTI dataset, we adopt
absolute trajectory error (ATE). ATE is a recognized index
for evaluating the quality of camera trajectories and is defined
as the root mean square error between the estimated and
ground truth camera trajectory. ATE directly shows the final
performance of monocular visual tracking.

For the indoor TUM RGB-D and ICL-NUIM datasets,
we use the same sequence as [38] for evaluation and com-
pare with their reported results. The percentage of correct
depth (PCD) and ATE are used as the evaluation criteria for
the indoor dataset. PCD is defined as the percentage of depth
prediction whose absolute error is less than 10% of the true
ground depth. This reveals the quality of the final depth of our
keyframes and other methods.

2) Quantitative and Qualitative Comparison of KITTI
Dataset: For the outdoor KITTI data set, binocular images
are used to assist training. The use of binocular images can
correct the accuracy and proportion of the predicted depth
map and pose. In the process of network model training,
the networks used for depth estimation and pose estimation
are coupled and jointly trained. During the testing phase,
we test the performance of these two different network
models.

The comparison results of the depth of the KITTI
dataset are shown in Table II. In the comparison methods,
Refs. [31]–[34] adopt a new network structure for depth
estimation. Ref. [39] uses a new training strategy. The above
methods are described in detail in the related work section.
Ref. [66] uses sparse ground truth depth for supervised learn-
ing. Ref. [67] refines and distills through cycle inconsistency.
Ref. [68] uses a full-resolution multi-scale sampling method
to reduce visual artifacts. At the same time, the minimum
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TABLE II

COMPARISON RESULTS OF DEPTH ESTIMATION OF KITTI DATASET (EIGEN SPLIT [31]). (‘K’ REPRESENTS KITTI RAW DATASET).
‘CS’ REPRESENTS CITYSCAPES TRAINING DATASET. D – DEPTH SUPERVISION; S – STEREO SUPERVISION; M – MONO SUPERVISION)

Fig. 8. The depth comparison of some frames of the KITTI dataset.

reprojection constraint can handle the occlusion problem
robustly. The quantitative comparison in Table II shows that
the error performance of our method is lower than most of
the current methods, and the accuracy is high, which proves
the advantages of the proposed method. Different ways of
modifying the network structure have a great impact on the
experimental results, which shows that the network structure
has a great impact on the depth structure. The results in [67]
show that refinement and distillation are beneficial to the
accuracy of depth estimation.

Fig. 8 shows some qualitative results of some pictures of
the KITTI dataset. The depth image output by our method has
clearer object boundaries. This attributes to the fact that our
multi-level V-shaped residual network is able to learn more
complex semantic representations. In addition, we use feature
loss and feature quadtree loss to make our results retain more
image details.

We evaluate the relative pose estimation based on the
KITTI odometer sequence 09/10. ORB-SLAM [69] is a classic
geometry-based traditional algorithm. Refs. [19], [40], [41]
mainly calculate poses by designing new constraints or
improving training strategies. Refs. [17], [18], [20], [21]
predict multiple visual tasks at the same time, and estimate
the camera pose by combining the advantages of different
tasks. Ref. [70] is a classic method of self-supervised joint
optimization of depth and ego-motion. As shown in Table III,

TABLE III

THE ATE OF KITTI ODOMETRY DATASET

our method is still significantly outperforms than other state-
of-the-art methods. It depends on the original resolution of
the image as the input of the network, which can retain a
lot of detailed information. Instead of intensity values, the
feature map is used as input to eliminate noise caused by
camera exposure and artifacts caused by high-speed camera
movement. Meanwhile, the feature quadtree loss can avoid
the model to fall in a local minimum.

3) Quantitative and Qualitative Comparison of Indoor
Datasets: In order to further verify the validity of the model,
we test on indoor data. The comparison results of the indoor
dataset PCD are shown in Table IV. Ref. [38] proposes a
new network training strategy. Refs. [24], [25] combines
traditional methods with deep learning methods. Ref. [35]
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TABLE IV

THE ATE OF KITTI ODOMETRY DATASET

Fig. 9. Depth maps of some frames of indoor TUM RGB-D and ICL-NUIM datasets. (a) is TUM RGB-D dataset, (b) is ICL-NUIM dataset.

TABLE V

THE ATE OF KITTI ODOMETRY DATASET

designs a new network architecture. Ref. [71] proposes a direct
featureless monocular SLAM algorithm. Ref. [12] combines
the latest techniques of Bayesian estimation and convex
optimization of image processing to estimate the depth of
the image. The comparison results show that our method
is equally effective for indoor data sets. We have achieved
better results in all sequences, except for the ICL/living2
sequence. Especially in TUM/seq1, TUM/seq3, ICL/office1,
ICL/office2, ICL/living0 sequence, our method has made sig-
nificant progress. This shows that our method is not affected by
outdoor or indoor environments. In addition, the experimental
data shows that the methods based on deep learning have
better performance than the traditional methods to a certain
extent.

In order to show the effectiveness of our method more
intuitively, we show some qualitative results of the output of
some keyframes of the TUM RGB-D and ICL-NUIM datasets
in Fig. 9. From the qualitative results, our predicted depth

images also have clearer object boundaries. At the same time,
our method overcomes the influence of some special objects
such as glass on depth cameras.

The comparison results of the indoor dataset ATE are shown
in Table V. Refs. [24], [35], [38] adopt deep learning-based
method for pose estimation. Refs. [24], [35], [38] adopt deep
learning-based method for pose estimation. Refs. [11], [71],
[72] use the traditional geometry-based method to calculate
the camera pose. It can be seen from the experimental data
in the table that the output result of the method based
on deep learning is more accurate and stable than that of
the method based on geometry. Our method is generally
better than other methods, and has more accurate and stable
results. From tables IV and V, we can see that the quality
of pose estimated by our method is directly related to the
quality of depth map, which is mainly due to the joint
optimization of depth and pose estimation during model
training.
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TABLE VI

COMPARISON RESULTS OF ABLATION STUDIES (CELLS WITH �INDICATE THAT THEY CONTAIN THIS COMPONENT)

C. Ablation Study

In order to better assess the contribution of each component
of our method to the prediction accuracy, we perform ablation
studies by changing the different components of the method,
the results are shown in Table VI. From the data of the first
and second sets of experiments, it can be seen that the use of
multi-level V-shaped residual network improves the accuracy
of depth map prediction, and also affects the result of pose
estimation to a certain extent. Through the second and third
groups of experimental data, it can be seen that the accuracy
of pose estimation by PoseNet composed of multiple sub-
networks has been improved. By comparing the third and
fourth sets of data, it is shown that the feature loss and the
feature quadtree loss improve the accuracy of depth estimation
and pose estimation to a certain extent, while reducing the
error fluctuation of pose estimation. Throughout the ablation
experiment, it can be seen that depth estimation and pose
estimation complement each other.

V. CONCLUSION AND THE FUTURE WORK

In this paper, a novel deep learning framework for joint
optimization of depth and ego-motion estimation with 6G
enabled network is proposed, and a novel loss based on
feature map and quadtree coding is presented. Deep feature
loss overcomes the problem that photometric loss cannot
describe image distortion artifacts. Shallow feature quadtree
loss compiles the feature difference of the uniform texture
area into the average error to make it jump out of the local
minimum. Multilevel V-shaped residual network combines
the advantages of V-shaped network and residual network to
extract better feature information. The fusion of the features
output by different V-shaped networks makes full use of the
shallow detail information and the deep semantic information.
PoseNet, which is composed of several parallel subnetworks,
overcomes the influence of noise in the image on the final
pose prediction result, as well as the influence of the rapid
camera movement on the image. The proposed method has
shown excellent performance on both indoor and outdoor
datasets. The proposed method currently has certain limita-
tions. Firstly, the complex network structure increases the
computational complexity. Secondly, the contour loss function
is too rough. In the future, we should focus on self-supervised
or unsupervised methods, and study the use of more reasonable
methods to solve the problem of depth blur at the edges
of objects at the same time. In addition, a more efficient
network model should be designed to reduce the computational
complexity.
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