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Abstract: In this paper, a Distributed Nonlinear Dynamic Inversion (DNDI)-based consensus protocol
is designed to achieve the bipartite consensus of nonlinear agents over a signed graph. DNDI inherits
the advantage of nonlinear dynamic inversion theory, and the application to the bipartite problem
is a new idea. Moreover, communication noise is considered to make the scenario more realistic.
The convergence study provides a solid theoretical base, and a realistic simulation study shows the
effectiveness of the proposed protocol.
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1. Introduction

In the last decade, multiple agents has been considered an attractive area of research
for different applications, such as cooperative mobile robotics [1], sensory networks [2],
flocking [3], formation control of robot teams [4], rendezvous of multiple spacecraft [5] etc.
These agents are connected by a communication network and share information to achieve
a common goal cooperatively. The consensus or agreement among agents is the key
to successfully attaining the common goal (e.g., the common value of certain dynamic
variables). Generally, the consensus is achieved by consensus protocols, which are designed
using different branches of control theory.

However, these protocols are designed considering the communication topology
represented by a graph. Therefore, the role of the graph is critical. Many researchers have
solved different kinds of consensus problems considering communication issues, such
as [6–21] and many more. It is important to note that all these papers show cooperation
among the agents, which is analyzed over the nonnegative graph having nonnegative edge
weights (antagonistic interactions). However, there should be a way for the agents not to
be a part of the consensus and form another group with a different consensus value.

This type of problem was first addressed by Altafini [22] who showed that cooperation
and competition are possible over a signed graph with positive and negative edge weights.
A single group of agents are divided into two with a consensus value that is the same in
magnitude but has an opposite sign. This type of consensus problem is named bipartite
consensus. After the bipartite consensus scheme was proposed, there has been an effort
to apply the concept to solve different problems in the area, such as a social network and
opinion dynamics [23].

Similarly to ordinary consensus, researchers solved various categories of consensus
problems for agents with linear dynamics [24–34]. A few researchers experimented with
nonlinear agents [35–40]. These papers primarily focused on mechanizing a consensus
protocol suitable for different types of bipartite consensus problems using different branches
of control theory. Along with different control techniques, a nonlinear control technique is
popular for designing a nonlinear controller for conventional control problems.
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This control technique is known as Nonlinear Dynamic Inversion (NDI) [41]. Recently,
a distributed consensus controller was proposed in [21], which was designed using NDI
and named Distributed NDI or DNDI. This inherits all the advantages of NDI and is
applicable to consensus problems of nonlinear agents. Moreover, DNDI was found to be
robust against communication issues, such as noise.

There exist a few papers where the bipartite consensus studied for linear agents
considering the noise [42–48], but none exist (to the best of the authors’ knowledge) for
nonlinear agents. DNDI was introduced in the context of ordinary consensus of MASs, and
it is not applicable to bipartite problems in its current form. In this paper, we aim to modify
the DNDI and make it suitable to apply to bipartite problems of nonlinear agents in the
presence of communication noise.

• Feedback linearization theory is used to cancel the nonlinearities in the plant. More-
over, the closed-loop response of the plant is similar to a stable linear system.

• The NDI controller has many advantages. Examples of these advantages include
(1) simple and closed-form control expression, (2) easily implementable, global ex-
ponential stability of the tracking error, (3) use of nonlinear kinematics in the plant
inversion and (4) minimize the need for individual gain tuning, etc.

The contributions of this work are given below:

1. Distributed Nonlinear Dynamic Inversion (DNDI) control protocol is used for bipartite
consensus of nonlinear agents for the first time. This is a unique idea because the
advantages of NDI are inherited in DNDI and applied to bipartite problems.

2. The mathematical details for the convergence study are presented, which gives a solid
theoretical base.

3. The effect of communication noise is studied, which is a practical consideration in the
context of multi-agent operation.

4. The detailed simulation study considering the noise separately gives a clear under-
standing regarding the effectiveness of the proposed consensus protocol.

The rest of the paper is organized as follows. In Section 2, the preliminaries are given.
In Section 3, the problem description is presented. Mathematical details of DNDI for
bipartite consensus protocol are shown in Section 4. The convergence study of DNDI is
presented in Section 5. Simulation results are shown in Section 6, and Section 7 gives
our conclusions.

2. Preliminaries

A brief description about the topics required for this work is discussed in this section.

2.1. Bipartite Consensus of MASs

Definition 1. A group of agents is said to achieve a bipartite consensus if limt→∞(xi(t)− xd(t)) =
0, ∀i ∈ p and limt→∞

(
xj(t) + xd(t)

)
= 0, ∀j ∈ q, where xd(t) is a desired trajectory, and

p ∪ q = {1, 2, . . . , N}; p ∩ q = ∅. It can be mentioned that the definition leads to ordinary
consensus when p or q is empty.

2.2. Graph Theory

In this work, we define a weighted graph G = {V , E} to represent the communication
topology among the agents. The vertices of G are given by V = {v1, v2, . . . , vN}, which
represent the agents. The edges are represented using the set E ⊆ V × V , which denote the
communication among the agents. The connection among the agents are described by an
adjacency matrix A = [aij] ∈ <N×N . The elements of weighted adjacency matrix A of G
are aij > 0 if (vi, vj) ∈ E , otherwise aij = 0. Since there is no self loop, the adjacency matrix
A has diagonal elements, which are 0, i.e., vi ∈ V , aii = 0. The degree matrix is written as
D ∈ <N×N = diag{d1 d2 . . . dN}, where di = ∑j∈Ni

aij. The Laplacian matrix is written as
L = D−A.
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The Laplacian matrix L is used to analyze the synchronization of networked agents
on a nonnegative graph. However, the Laplacian matrix needs to be defined differently for
a signed graph. In the case of a signed graph, ai,j > 0 means the cooperative interaction,
and ai,j < 0 represents the antagonistic interaction. We define the Laplacian matrix for a
signed graph as signed Laplacian (Ls) given by

Ls = diag

(
N

∑
j=1
|a1j|, . . . ,

N

∑
j=1
|a1j|

)
−A (1)

2.3. Communication Noise

The agents share their information over the communication network, but channel
noise perturbs them. Therefore the information received by ith agent from its neighbours
is noisy. In this work, we consider the noise is additive and adopt a noise model, which
shows how the noise is added to information shared by the agents with their neighbours.
Let us consider the perturbed information received by ith agent from jth neighbour j ∈ Ni
can be given by X̄ji = Xji + σjiωji, where Xi, Xj ∈ <n are states, ωji; i, j ∈ 1, 2, . . . , N are
independent standard white noises, and σji is the noise intensity. This model is used in the
simulation study.

2.4. Theorems and Lemmas

The useful Lemmas are given here.

Definition 2 ((Structural balance) [22,49]). A signed graph is structurally balanced if it has
a bipartition of the nodes V1, V2, i.e., V1 ∪ V2 = V and V1 ∩ V2 = ∅ such that aij ≤ 0, ∀vi ∈
Vp, vj ∈ Vq where p, q ∈ 1, 2, p 6= q, and ∅ is empty set; otherwise aij ≥ 0.

Lemma 1 ([50]). A spanning tree is structurally balanced.

Lemma 2 ([51]). Suppose the signed graph G(A) has a spanning tree. Denote the signature
matrices set as

D = {D = diag(σ1, σ2, . . . , σN)|σi ∈ {1, −1}} (2)

Then the following statements are equivalent.

1. G(A) is structurally balanced.
2. aijaji ≥ 0 and the associated undirected graph G(Au) is structurally balanced, where

G(Au) =
A+AT

2 .
3. ∃D ∈ D, such that Ā = [āij] = DAD is a nonnegative matrix.
4. either there are no directed semicycles, or all directed semicycles are positive.

It can be mentioned that the most important property of nonnegative graphs is that
when the graph has a spanning tree. In this case, 0 is a simple eigenvalue of the ordi-
nary Laplacian matrix, and all its other eigenvalues have positive real parts ([52]). Some
significant results are given for signed digraphs as follows.

Lemma 3 ([53]). Suppose the signed digraph G(A) has a spanning tree. If the graph is structurally
balanced, then 0 is a simple eigenvalue of its Laplacian matrix and all its other eigenvalues have
positive real parts; but not vice versa.

Corollary 1 ([30]). Let G(A) be a nonnegative digraph having a spanning tree. Then for any
D ∈ D, which has both positive and negative entries, the graph G(DAD) is a signed digraph, has
a spanning tree and is structurally balanced.
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Corollary 2 ([30]). Suppose the signed graph G(A) is undirected and connected. The graph is
structurally balanced, if and only if 0 is a simple eigenvalue of L and all other eigenvalues have
positive real parts.

3. Problem Description

This paper aims to design a controller to achieve bipartite consensus among the
agents in MASs. The communication among the agents is described as a signed digraph
G(A), which has a spanning tree and is structurally balanced. The controller is designed
by modifying Distributed NDI (DNDI), briefly described in the following section. The
dynamics of ith agent is given in Equations (3) and (4).

Ẋi = f (Xi) + g(Xi)Ui (3)

Yi = Xi (4)

The state and control of ith agent is given by Xi ∈ <n and Ui ∈ <n, respectively. The
output of ith agent is given by

Yi = Xi ∈ <n (5)

The agents are assumed to be working in a randomly changing environment. We
considered the communication issues, such as communication noise.

4. Distributed Nonlinear Dynamic Inversion (DNDI) Controller for
Bipartite Consensus

A derivation of Distributed Nonlinear Dynamic Inversion (DNDI) controller for bi-
partite consensus is presented in this section. The DNDI is proposed by Mondal et al. [21]
for ordinary consensus. In this section, DNDI is modified to achieve bipartite consensus
among nonlinear agents. We already mentioned that we consider a signed graph here to
analyze the consensus. Therefore, the error in states of ith agent (scalar agent dynamics,
i.e., Xi ∈ <) is given by

εi = ∑
j∈Ni

(
|aij|Xi − aijXj

)
(6)

Error expression in Equation (6) is simplified to obtain Equation (7).

εi = |di|Xi − aiX (7)

where
|di| = ∑

j
|aij| ∈ <, ai = [ai1 ai2 . . . aiN ] ∈ <N

and

X =


X1
X2
...

XN

 ∈ <N

In the case of the state of the ith agents being a vector, i.e., Xi ∈ <n; n > 1, the error in
Equation (7) is modified as

εi = |d̄i|Xi − āiX (8)

where |d̄i| = (|di| ⊗ In) ∈ <n×n, āi = (ai ⊗ In) ∈ <n×nN , and X ∈ <nN . In is n× n identity
matrix. ‘⊗’ denotes the kroneker product.

To obtain the consensus protocol, we define a Lyapunov function

Ψ =
1
2

εT
i εi (9)
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Differentiation of Equation (9) yields

Ψ̇ = εT
i ε̇i (10)

Lyapunov stability condition requires the time derivative of the Lyapunov function
to be

Ψ̇ = −εT
i κiεi (11)

where κi ∈ <n×n is a positive diagonal gain matrix. Using the expressions of Ψ̇ in
Equations (10) and (11), we can write

εT
i ε̇i = −εT

i κiεi (12)

Therefore, Equation (12) is written as

ε̇i + κiεi = 0 (13)

Expression of ε̇ can be obtained by differentiating Equation (8) as follows.

ε̇i = |d̄i|Ẋi − āiẊ

= |d̄i|[ f (Xi) + g(Xi)Ui]− āiẊ (14)

The expressions of εi and ε̇i are substituted in Equation (13)

|d̄i|[ f (Xi) + g(Xi)Ui]− āiẊ + κi(|d̄i|Xi − āiX) = 0 (15)

Finally, Equation (15) is simplified to obtain the expression of Ui for ith agent as follows

Ui = (g(Xi))
−1
[
− f (Xi) + |d̄i|−1(āiẊ− κi(|d̄i|Xi − āiX))

]
(16)

In the next section, we present the convergence study of the DNDI-based consensus
protocol obtained in Equation (16). Before we proceed to the next section, we mentioned a
few Lemmas (Lemma 4–6) here, which will be used in the convergence study.

Lemma 4 ([54]). The Laplacian matrix L in an undirected graph is semi-positive definite, it has a
simple zero eigenvalue, and all the other eigenvalues are positive if and only if the graph is connected.
Therefore, L is symmetric and it has N non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤
. . . ≤ λN .

Lemma 5 ([55]). Let ψ1(t), ψ2(t) ∈ Rm be continuous positive vector functions, by Cauchy
inequality and Young’s inequality, there exists the following inequality:

ψ1(t)ψ2(t) ≤ ‖ ψ1(t) ‖‖ ψ2(t) ‖

≤ ‖ ψ1(t) ‖λ

λ
+
‖ ψ2(t) ‖ζ

ζ
(17)

where
1
λ
+

1
ζ
= 1

Lemma 6 ([56]). Let R(t) ∈ < be a continuous positive function with bounded initial R(0). If the
inequality holds Ṙ(t) ≤ −βR(t) + η where β > 0, η > 0, then the following inequality holds.

R(t) ≤ R(0)e−βt +
η

β

(
1− e−βt

)
(18)
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5. Convergence Study of DNDI for Bipartite Consensus

Convergence study of DNDI for bipartite consensus is presented here. We define a
Lyapunov function

∆ =
1
2

XT(Ls ⊗ In)X (19)

We considered a undirected and connected signed graph. Therefore, Ls ⊗ In can be
written as

Ls ⊗ In = ΓΦΓT (20)

where Γ ∈ <nN×nN is the left eigenvalue matrix of Ls ⊗ In, Φ = (diag{0, λ2(Ls), λ3(Ls),
. . . , λN(Ls)} ⊗ In) ∈ <nN×nN is eigenvalue matrix, ΓTΓ = ΓΓT = InN×nN .

∆ =
1
2

XT(Ls ⊗ In)X

=
1
2

XTΓΦΓTX

=
1
2

XTΓ
√

Φ
√

Φ ΓTX

=
1
2

XTΓ
√

ΦΦ̄
√

Φ̄−1
√

Φ̄−1
√

Φ̄Φ ΓTX

=
1
2

XTΓΦΦ̄−1ΦΓTX

=
1
2

XTΓΦ
(

ΓTΓ
)

Φ̄−1
(

ΓTΓ
)

ΦΓTX

=
1
2

XT
(

ΓΦΓT
)(

ΓΦ̄−1ΓT
)(

ΓΦΓT
)

X

=
1
2

XT(Ls ⊗ In)Ω(Ls ⊗ In)X

=
1
2

ΞTΩΞ (21)

where Φ̄ = (diag{λ2(Ls), λ2(Ls), λ3(Ls), . . . , λN(Ls)} ⊗ In) ∈ <nN×nN, Ξ = [εT
1 εT

2 . . . εT
N ]

T

∈ <nN , and Ω = ΓΦ̄−1ΓT ∈ <nN×nN .

Remark 1. Using Equations (19) and (21), we can write

λmin(Ω)

2
‖ Ξ ‖2≤ ∆ ≤ λmax(Ω)

2
‖ Ξ ‖2 (22)

∆ =
1
2

XT(Ls ⊗ In)X =
1
2

XTΞ (23)

Remark 2. According to Lemma 4, λ2 > 0. Hence, Φ̄ is invertible.

Remark 3. It can be observed that Ω = ΓΦ̄−1ΓT is positive definite matrix. Therefore, ∆ is positive
definite subject to consensus error and qualify for a Lyapunov function.

Differentiation of Equation (19) yields

∆̇ = XT(Ls ⊗ In)Ẋ = ΞTẊ =
N

∑
i=1

εT
i [ f (Xi) + g(Xi)Ui] (24)
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where Ξ = [εT
1 εT

2 . . . εT
N ]

T ∈ <nN . Substitution of the control expression of Ui in
Equation (24) gives

∆̇ =
N

∑
i=1

εT
i

[
|d̄−1

i |(āiẊ− κiei)
]

=
N

∑
i=1
−εT

i |d̄−1
i |κiεi +

N

∑
i=1

εT
i |d̄−1

i |āiẊ (25)

Using Lemma 5, we can write

εT
i |d̄−1

i |āiẊ ≤‖ εi ‖ ‖ |d̄−1
i |āiẊ ‖≤

‖ εi ‖2

2
+
‖ |d̄−1

i |āiẊ ‖2

2
(26)

Substituting ∑N
i=1−εT

i |d̄
−1
i |κiεi in Equation (25) with inequality relation, we get

∆̇ ≤
N

∑
i=1

[
−εT

i |d̄−1
i |κiεi +

‖ εi ‖2

2
+
‖ |d̄−1

i |āiẊ ‖2

2

]
(27)

By designing the gain κi as

κi = |d̄i|
(

1
2
+

αi
2

λmax(Ω)

)
(28)

Equation (27) can be written as

∆̇ ≤
N

∑
i=1

[
−αi

2
λmax(Ω) ‖ εi ‖2 +

‖ |d̄−1
i |āiẊ ‖2

2

]
≤ −αi∆ + ζ (29)

where ζ = ∑N
i=1

‖|d̄−1
i |āiẊ‖2

2 . Applying Lemma 6 we get

∆ ≤ ζ

αi
+

(
∆(0)− ζ

αi

)
e−αit (30)

Hence, we conclude that ∆ is bounded as t→ ∞. In addition, we show the Uniformly
Ultimate Boundedness (UUB) here.

Using Equations ((22)) and ((30)), and Lemma 1.2 presented by Ge et al. in [56] we
can write

λmin(Ω)

2
‖ Ξ ‖2≤ ∆ ≤ ζ

αi
+

(
∆(0)− ζ

αi

)
e−αit (31)

Equation (31) is simplified as

λmin(Ω)

2
‖ Ξ ‖2 ≤ ζ

αi
+

(
∆(0)− ζ

αi

)
e−αit

‖ Ξ ‖ ≤

√√√√2 ζ
αi
+ 2
(

∆(0)− ζ
αi

)
e−αit

λmin(Ω)
(32)

If ∆(0) = ζ
αi

, then we can write

‖ Ξ ‖≤ Θ∗ (33)
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∀t ≥ 0 and Θ∗ =
√

2ζ
αiλmin(Ω)

. If ∆(0) 6= ζ
αi

then for any given Θ > Θ∗ there exist a time
T > 0 such that ∀t > T, ‖ Ξ ‖≤ Θ.

Θ =

√√√√2 ζ
αi
+ 2
(

∆(0)− ζ
αi

)
e−αiT

λmin(Ω)
(34)

Therefore, we can conclude
lim
t→∞
‖ Ξ ‖= Θ∗ (35)

6. Simulation Study

The simulation results are presented here. We considered two cases. In the first case
(Case 1), we describe the performance of DNDI without the communication noise. The
second case (Case 2) shows the effect of communication noise.

• Case 1: Bipartite consensus without noise
• Case 2: Bipartite consensus with noise

6.1. Agent Dynamics and Control Calculation

We considered six agents in this syudy. The agents are having highly nonlinear terms
in their dynamics. The dynamics for ith agent [21] is given in Equations (36) and (37).

Ẋi1 = Xi2 sin(2Xi1) + Ui1 (36)

Ẋi2 = Xi1 cos(3Xi2) + Ui2 (37)

where Xi =
[
Xi1 Xi2

]T . Placing the dynamics of Equations (36) and (37) in the form given
in Equations (3) and (4) gives

f (Xi) =

[
Xi2 sin(2Xi1)
Xi1 cos(3Xi2)

]
(38)

and

g(Xi) =

[
1 0
0 1

]
(39)

and

Ui =

[
Ui1
Ui2

]
(40)

where Xi ∈ <2. The states X1i of all the agents are denoted by X1 = [X11 X21 . . . X61 ]. Simi-
larly, we denote X2 = [X12 X22 . . . X62 ], U1 = [U11 U21 . . . U61 ], and U2 = [U12 U22 . . . U62 ].
The errors in X1 and X2 is given by ei in X1 and ei in X2, respectively.

The initial conditions for the agents (X1 and X2) are given in the Table 1.

Table 1. The initial conditions of the agents.

Agents 1 2 3 4 5 6

X10 6.25 −3.6 5 3.3 3.6 7.6
X20 7.2 2.7 7 3.4 −4.7 6.6
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6.2. Communication Topology

The communication topology is represented by a signed graph. The adjacency matrix
corresponding to the graph is given in Equation (41).

A =



0 3 0 −5 0 1
3 0 −4 0 0 1
0 −4 0 0.5 0 0
−5 0 0.5 0 −3.5 0
0 0 0 −3.5 0 1
1 1 0 0 1 0

 (41)

The graph corresponding to the adjacency matrix is shown in Figure 1. The weights
are on each edge. The signed graph is undirected and connected. The eigenvalues of the
Laplacian matrix (Ls) of this signed graph are shown in Figure 2. One eigenvalue is zero
and the other have a positive real part. Therefore, the graph has a spanning tree, and it is
structurally balanced (Corollary 2).

Figure 1. Signed graph corresponding to A.
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Figure 2. Eigen values of signed graph.

6.3. Case 1: Bipartite Consensus without Noise

The control signals U1 and U2 obtained by DNDI are given in Figures 3 and 4, respec-
tively. These controls have generated the bipartite consensus among the agents. It can be
observed that the states of the agents are divided into two groups. This is primarily for
the signed graph and the consensus protocol used in this work. One group contains the
agents 1, 2, 5, and 6. The other group contains agents 3 and 4. The states of all the agents,
i.e., X1 and X2 are shown in Figures 5 and 6, respectively. It is clear that the states of agents
in each group achieved the consensus with different values. The consensus errors in states
X1 and X2 are shown in Figures 7 and 8, respectively. The errors converge to zero in a few
seconds, which shows the effectiveness of the proposed controller.

Figure 3. Control U1 (Case 1).
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Figure 4. Control U2 (Case 1).

Figure 5. States of the agents X1 (Case 1).
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Figure 6. States of the agents X2 (Case 1).

Figure 7. Consensus errors of agents in state X1 (Case 1).
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Figure 8. Consensus errors of agents in state X2 (Case 1).

6.4. Case 2: Bipartite Consensus with Noise

In this case, the effect of communication noise is studied. The control signals U1 and
U2 are given in Figures 9 and 10, respectively. The figures show the effect of communication
noise. The noise intensity is considered as σji = 0.25× rand(), where rand() is a MATLAB
function, which generates random number between 0 and 1. The effect of communication
noise on states X1 and X2 is shown in Figures 11 and 12, respectively. The consensus errors
(Figures 13 and 14) confirms the performance of the DNDI controller. Therefore, it is clear
that the proposed controller is able to achieve the bipartite consensus in the presence of
communication noise.

Figure 9. Control U1 (Case 2).
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Figure 10. Control U2 (Case 2).

Figure 11. States of the agents X1 (Case 2).
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Figure 12. States of the agents X2 (Case 2).

Figure 13. Consensus errors of agents in state X1 (Case 2).
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Figure 14. Consensus errors of agents in state X2 (Case 2).

7. Conclusions

We modified the DNDI controller to achieve bipartite consensus among nonlinear
agents. The application of DNDI in the bipartite consensus problem is a new idea. We
also included communication noise in the simulation study, which is realistic. The con-
vergence study showed the theoretical proof of the effectiveness of the controller. The
simulation results provided in the paper show the assured performance of the proposed
controller. Therefore, DNDI is a potential candidate for achieving bipartite consensus
among nonlinear agents.
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