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Abstract
Structural health monitoring and assessment (SHMA) is exceptionally essential for preserving and sustaining any mechanical
structure’s service life. A successful assessment should provide reliable and resolute information to maintain the con-
tinuous performance of the structure. This information can effectively determine crack progression and its overall impact
on the structural operation. However, the available sensing techniques and methods for performing SHMA generate raw
measurements that require significant data processing before making any valuable predictions. Machine learning (ML)
algorithms (supervised and unsupervised learning) have been extensively used for such data processing. These algorithms
extract damage-sensitive features from the raw data to identify structural conditions and performance. As per the available
published literature, the extraction of these features has been quite random and used by academic researchers without a
suitability justification. In this paper, a comprehensive literature review is performed to emphasise the influence of damage-
sensitive features on ML algorithms. The selection and suitability of these features are critically reviewed while processing
raw data obtained from different materials (metals, composites and polymers). It has been found that an accurate crack
prediction is only possible if the selection of damage-sensitive features and ML algorithms is performed based on available
raw data and structure material type. This paper also highlights the current challenges and limitations during the mentioned
sections.
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Introduction

Structural health monitoring and assessment (SHMA) can
be described as the process of monitoring the status of a
structure and detecting structural damage over time. Here,
the damage is referred to as any change in structure or
material (as crack) that negatively affects the behaviour of
the structure and shortens its operating life. SHMA tech-
nologies provide early warnings of damage occurrences to
support asset management decisions and hence eliminates
unscheduled maintenance and in-service failures. Structural
damage is a term that represents a change that negatively
affects the performance of structures.1 The SHMA tools
permit operators to formulate a predictive maintenance
strategy and retain the optimal performance of the structure.

The SHMA can present various economic benefits by
reducing system failures, increasing the efficiency of
maintenance and providing cost-effective data-based de-
signs. The implementation of SHMA strategies extend

structure design life and improve safety. These benefits and
objectives of SHMA are widely implemented across dif-
ferent industries, for instance, civil infrastructure,
manufacturing, aerospace and power generation. Rytter2 has
defined a hierarchy of levels that is required to perform a
particular task of SHMA as shown in Figure 1. It must take
into consideration that moving to the next level of the hi-
erarchy, previous levels must be completed, where a higher
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level of desired detail leads to increased difficulty. It is well
recognised that prognosis is different from the other hier-
archy level. It can only be accomplished with an under-
standing of the damage physics.3

In process of SHMA, statistical analysis, damage-
sensitive features extraction and dynamic responses are
employed to monitor the structure.4 Scholars applied dif-
ferent non-destructive methods in the SHMA field such as
vibration/model analysis, X-rays, ultrasonic testing and
holography or Shearography (one of the optical methods).5

Montalvão et al.6 reviewed the damage assessment, de-
tection and localisation vibration-based for composite
structures. Mba and Rao7 critically review the rotating
machinery diagnostics using acoustic emission technology.
Wang et al.8 used vibration measurement to analyse the
limitations and merits of different gear damage monitoring
techniques. Staszewski et al.9 employed passive and active
methods to estimate the severity in composite plates and to
locate delamination using 3D laser vibrometry. The optical
fibre sensors were used to evaluate the strain of concrete
structures. The structure failure is commonly caused by
damage occurring in the geometry and materials them-
selves. It is extremely essential to analyse the engineering
structural response concerning various factors such as
boundary conditions, environment factors, loading patterns
and material state. Therefore, it is valuable to monitor the
structure regularly to avoid sudden failures, predict and
manage the structure’s deterioration such as corrosion, fa-
tigue and creep. In general, the development of robust
SHMA technologies tends to have three main challenges.
First, the damage is not directly measurable.10 This means
that huge amounts of data are collected with the expectation
that will include information on the structural health state.

This information is extracted through the process of feature
selection to identify damage-sensitive features; however,
this is a highly personalised procedure at the moment.
Second, confounding factors such as changes in boundary
conditions and/or obscure load patterns in data associated
with damage and environmental conditions. Therefore, it is
necessary to eliminate them before implementing health
decision strategies. Third, numerous techniques of struc-
tural health monitoring require damage situation data from
all damage scenarios of interest, often in a set of operational
conditions. The obtained data usually is not feasible
practically and economically or would cause safety
concerns.

According to the literature, SHMAmethods are split into
two categories: physics-based and data-based.10,11 Physics-
based (known as model-driven or model updating) ap-
proaches employ inverse techniques in combination with
law-based models to update or infer set parameters.12,13

Health-related decisions are then made through the inter-
pretation of these updated parameter values. In contrast,
data-based approaches (known as data-driven) aim to learn
the relationships between structural damage states and
measured response data based on machine learning-based
models or pattern recognition without a physics-based
model construction.10,14,15 Decisions regarding the struc-
tural health state are later made by prediction or classifi-
cations of in-service data using the inferred statistical
model. In addition to the aforementioned, there is a third
approach category (known as forward model-driven ap-
proaches) which combines statistical pattern recognition
methodologies and physics-based models, applied in a
forward manner. The following subsection indicates some
challenges of SHMA approaches.

Figure 1. Rytter’s hierarchy for SHMA tasks.
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Structural health monitoring and
assessment approaches

Inverse model-driven approaches. Inverse model-driven ap-
proaches usually include constructing a high-fidelity of the
structure, for which health decisions need to be taken,
generally in the produce of a finite element analysis (FEA)
model. The process of making health decisions often fol-
lows two stages. In the first stage, the model is calibrated to
have a more accurate structural representation. This is
generally achieved through updating the model, depending
on the undamaged in-service data condition. The second
stage includes collecting in-service monitoring data, which
have an unknown health condition. Subsequently, the model
is again updated relied on in-service data and changes in the
inferred model parameters from the calibration of base-
line are applied to carry out damage detection and as-
sessment at Rytters hierarchy levels. The prognosis can
also be feasible because it is possible to generate an
updated physics-based model through the inverse model-
driven process.3 Therefore, SHMA through an inverse
model-driven approach depend on the model updating
procedures. Model updating refers to methods where it
can adjust certain model parameters to decrease the re-
sidual between observational data and model predic-
tion.16 This task is mostly attempted in two general
methods: Sensitivity methods, the error between obser-
vations and predictions are reduced by changing defined
parameters set. Direct methods, where structural matrices
are updated to regenerate measured data.12,17,18

Commonly in structural health monitoring, sensitivity-
based techniques are used more than direct approaches. This
is because of the direct approach to updating full structural
matrices. The direct approach also leads often inferred
parameters with little physical meaning and leading to a lack
of control over the updated matrix values. Initial devel-
opment of model updating methodologies dealt with the
problem from a deterministic view such as the well-
established iterative sensitivity-based approach.13 Such
approaches dealt with the problems of model updating by
applying optimisation technologies, whereby a cost func-
tion is established, frequently in parameter steps are made
by sensitivity matrices and a least-squares formulation.13,19

On the other hand, these approaches demand regularisation
because the problem of model updating has been ill-
posed.20

These deterministic approaches have difficulties in
dealing with uncertainties and variability that are present
(e.g. Parametric variability, environmental conditions and
model form uncertainties). For these causes, alternative
frameworks for approaching model updating have been
developed.13,19 Bayesian and Fuzzy methods are two
popular philosophical approaches to handle uncertainties
within model updating.21

Technologies of inverse model-driven face numerous
challenges when applied as part of the SHMA strategy. First
of all, the number and type of parameters to use must be
chosen.22 In scenarios where both the type and location of
the damage is unidentified, as is often the case, this can
result in an increased number of parameters. As the fidelity
of the model increases, where there are numerous sets of the
potential parameters, Parameterisation becomes increas-
ingly challenging. A further challenge is to interpret the
parameters updated to decide regarding the health of the
structure. This can be particularly challenging when pa-
rameters influence structural stiffness, as multiple phe-
nomena affect changes in stiffness. A thorough accurate
understanding of physics must illustrate whether the up-
dated parameters are no longer meaningful physically in-
stead of being changed by damage presence. There are
recent studies that shed light on other challenges and op-
portunities of the inverse model in several SHMA appli-
cations; see Yuan et al.23 Gomes et al.24 and Bureeate and
Pholdee.25 As mentioned, uncertainties and variability
within ‘target’ data must be managed as part of the update
process. Due to ill-conditioning, the inverse approach
cannot always be achieved. These non-identification
problems become a concern when parameter values are
used in health diagnoses, as repetitions of the update can
lead to different misleading conclusions.

Data-based approaches. Data-based methods deal with
SHMA as a pattern recognition problem. It is a statistical
model which learns from a set of training and cluster in-
service data or applied labels to new in-service data.10

Because the data sets originate from the in-service struc-
ture, the complete loading environment is integrated into
creating an undamaged, normal condition. This category of
approach eliminates the need for the development of
physics-based models of the structure, based only on the
information contained in the data, by intrinsically capturing
the uncertainties and variations. A general framework of
data-based approaches consists of the below steps10,15:

· Sensing and data collection: This step is to ensure the
location of sensors on the structure is optimal to
acquire useful data.

· Prepossessing: Data cleaning, normalisation, fusion
and compression occur, to discard the problems ap-
pearing from the data collection phase, combining
multiple information sources and reducing the
dimensionality.

· Feature extraction: Data is transformed into damage-
sensitive features and quantities that indicate the
function of the damage to be learnt. This step is to
ensure the location of sensors on the structure is
optimal to acquire useful data.
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Figure 2. Machine learning workflow.26

Figure 3. The categories of machine learning with commonly adopted algorithms.34
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· Post-processing: The extracted feature may require
further cleaning, normalisation, fusion and compression.

· Machine learning: A density estimation algorithm,
regression or classification is trained using damage-
sensitive features that have been extracted in the last
step.

· Decision: Confirm the structural health condition is
damaged or undamaged through evaluating and an-
alysing the outcome of machine learning models.

Machine learning and extracted features are crucial for a
data-based approach decision. Klunnikova et al.26 define a
clear chart of machine learning workflow for structural
damage prediction shown in Figure 2 which declares the
steps of machine learning applications. There are three steps
as follows: data prepossessing and cleaning, train model,
and test and evaluate the model. This emphasises the im-
portance of cleaning raw data, selecting and extracting
sensitive features before training machine learning models
could enhance the performance and accuracy of the model
prediction.

Figure 3 also indicates the two common machine
learning with their commonly adopted algorithms. The aim
of using machine learning algorithms (MLA) within SHMA
is to infer functions or trends of structures in different
conditions such as the relationships that identify a normal
condition of the structures. These techniques can be cat-
egorised in solutions for three major problems outlined as
follows16,27:

· Regression: An unknown function is inferred based
on mapping an input to output.

· Density estimates: Probability density clusters are
inferred from the data.

· Classification: Data are labelled based on an inferred
decision boundary.

Besides these divisions, machine learning methods can
be classified as supervised, semi-supervised, unsupervised
and reinforcement learning based on the nature of input
data. Unsupervised and supervised algorithms are charac-
terised by whether the labels for the data (as structural
damage state) are unknown or, known, respectively. Nor-
mally, density estimation is an unsupervised problem
whereas classification and regression are supervised. Due to
the unlabelled data and lack of labelled data, unsupervised
methods can only be utilised to implement novelty detec-
tion. In contrast, supervised methods can be used to perform
levels 1–4 of Rytter’s hierarchy. Various classification
methods are reported in the literature such as artificial
neural networks (ANN) and support vector machine
(SVM). Density estimation approaches as K-nearest
neighbours (KNN), kernel density estimation, Gaussian
mixture models have been applied within the SHMA

applications. Semi-supervised learning is the combination
of both unlabelled and labelled data. Note that semi-
supervised learning is not involved as a primary cate-
gory, combine elements of both unsupervised and super-
vised learning. The least popular of the categories is
reinforcement learning which is employed to acquire
knowledge on how to behave or act under uncertainty.28

For a review on machine learning methodologies im-
plemented within SHMA and their successes, the reader is
referred to Farrar and Worden10 and Fuentes.29 Since early
studies in the SHMA area, efforts have been focused
primarily on the correlation of AE signals to various kinds
of crack mechanisms due to it can be applied in-situ and
has a high sensitivity to the initial, local damages.30 For
example, the relationship between the frequency content of
AEs and fracture mechanisms.31 An assessment of various
clustering algorithms for AE using traditional AE parameters
such as functions implementing a self-organising neural
network, the K-nearest-neighbour classifier and the k-means
method was performed.32 Deep machine learning and
acoustic emission have been used to investigate the health of
ship hulls.33 The implementation of data-based methods
suffers some challenges. Unsupervised techniques suffer
from challenges in obtaining labels when in-service data
appears outside the normal condition, as well as all the
complexities of performing density estimation. Supervised
learning techniques require labelled and in-service data from
all damage conditions to infer a robust decision threshold.
This is often not economically feasible or viable at full system
levels and making their implementation an essential chal-
lenge. Semi-supervised learning presents a degree of solution
to these issues, but they still have unlabelled data that should
be leveraged to improve the machine learning model.

Forward model-driven approaches. Forward model-driven is
a less implemented category of approach to SHMA. In this
case, models are used in a forward manner, whereby
forming their predictions by training data using supervised
learning approaches. This category includes elements of
both inverse model-based and data-based, where machine
learning approaches and model calibration theory are
combined. The purpose to develop forward model-driven
approaches is to remove complexities in inferring damage
from parameter updates, as well as assistance in collecting
labelled damage condition data. There are few examples in
the literature that focus on using the forward model-driven
method. Satpal et al.35 employed SVM and model updating
approach to model predictions trained the classifier. Hariri-
Ardebili and Pourkamali-Anaraki36 utilised a similar
methodology for concrete dams. Finite element analysis
models have been utilised to generate features for ANNs in
performing damage identification in bridges.37 Forward
model-driven for SHMA offers a solution to the limitation
of available damage state data problems within data-based
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methods. Moreover, models provide other tools to perform
feature selection along with the monitoring system’s design,
such as type, location and positions of a specific sensor
network before application. The physics-based models
established in a forward model-driven provide a method-
ology to perform prognosis and achieve the complete
Rytter’s hierarchy levels.

Comprehensive reviews are reported in the form of
experimental and analytical investigations in the literature to
explain the efficiencies and limitations of machine learning
approaches in SHMA.16,38,39 However, none of these re-
view papers has emphasised the compatibility of damage-
sensitive features with a selected machine learning ap-
proach. Therefore, the purpose of this paper is to present a
comprehensive review of previous research efforts with a
focus on the role of damage-sensitive features available in
different types of damaged material structure. While
compiling this review, analysis is presented on the past
efforts in machine learning approaches with a special focus
on structures made of metals, composites and polymers.
This can assist the reader in selecting a suitable combination
of machine learning tools and damage-sensitive features
while performing damage assessment for any structure. The
rest of the paper is organised as follows. Some machine
learning applications in fracture mechanics are reviewed in
the Machine Learning Applications in Crack Mechanics
section. The importance of damage-sensitive features and
relevant tools are discussed in the Importance of Feature
Engineering and Tools section. In the Crack Assessment of
Smart Structures with Machine Learning section, the ap-
plication of machine learning approaches on structural
damage assessment made of different materials is reviewed.
The paper findings are concluded in the last Section.

Machine learning applications in
crack mechanics

There is a wide range of reasons for cracks in a structure.
They may be caused by thermal expansions, existing
flaws, stress concentrations or overloading. Crack initi-
ation and crack growth analysis is critical when pre-
dicting future performance and possible manner of
failure, as well as assessing the structural integrity of the
component. The mechanical field of crack growth anal-
ysis is called fracture mechanics. Fracture mechanics is
the area of mechanics that study crack propagation in
materials.40–42 The subdomains of fracture mechanics are
defined as follows:

· Crack diagnosis and detection: Crack might be in
macro, meso and micro scale and take the lead to the
mechanical failure. Mechanical damage is a physical
characterisation that defines the existed defect on the
structure.

· Fracture parameters and mechanical fracture: Dif-
ferent parameters such as fracture energy, fracture
toughness, crack propagation and fractography are
concerned with mechanical fracture. Fracture is the
fragmentation or separation of a solid body into two
or more pieces.

· Fault and error diagnosis and detection: faults and
errors on the mechanical system or components are
defined as losing the ability to do required mechanical
actions. In other words, it is a deviation from the
expected and occurred conditions and values.

· Failure mode and mechanism identification: A me-
chanical failure mode is a physical process that
combines their effects or takes place to create a
failure. In this regard, a detailed description of a
failure mode is known as a failure mechanism.

The study of fracture mechanics, including performing
empirical and analytical solutions are quite a time con-
suming, are required a high level of technical expertise and
are not always an easy task. There are serious challenges for
detecting faults and failure of mechanical systems, parts and
machinery.40–42 The major concerns founded in the current
studies in the fracture mechanics field are as shown in
Figure 4. In some cases, both empirical and analytical
cannot handle some complicated engineering difficulties
such as complex and nonlinear relationships amongst
higher-dimensional data. Thus, successful monitoring and
assessment for different mechanical material’s structures
afford reliable and robust information on the serviceability,
health, safety and integrity of materials. The maintenance of
the continuous performance of the structure relies highly on
formation, monitoring the occurrence and propagation of
damage.

Machine learning algorithms can be informed directly by
simulations and experiments and present machine learning
solutions. These machine learning solutions are a promising
substitute for empirical and analytical solutions if they can
provide accurate and rapid results. Machine learning
methods were applied in subdomains of fracture mechanics
to improve the performance of engineering applications.
Nasiri et al.42 reviewed artificial intelligence methods (fuzzy
logic, Bayesian network (BN), case-based reasoning, ANNs
and genetic algorithms) which were applied in fracture
mechanics and mechanical fault detection.

Kang et al.43 compared BN, probabilistic neural net-
works (PNN) and backpropagation neural network (BPNN)
in fault detection of the gear train system. The result of this
study indicated that there are no wrong diagnosis results by
BN which is based on statistical parameters of vibration
signal in the time domain for the same system. BN was
employed in Rovinelli et al.44 to define relevant micro-
structural and micromechanical parameters that affect the
rate and direction of fatigue crack propagation. Wang et al.45
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have proposed fatigue crack growth calculation based on
genetic algorithms optimised backpropagation network,
radial basis function network and extreme learning ma-
chine. Levenberg-Marquardt backpropagation algorithm

was used to predict the natural frequency and buckling load
of laminated composites. MLA (KNN, Decision tree,
Random Forest and SVM) and FEM were employed in
Balcıoğlu and Seçkin40 to analyse the fracture behaviour

Figure 4. The major concerns in the crack mechanics’ field.

Figure 5. Changing of fracture toughness values that obtained from experimental, FEA and MLA, according to the loading angle.40 FEA:
finite element analysis; MLA: machine learning algorithms.
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(toughness) of hybrid and pure knitted fabric reinforced
laminated composites in Mode I, Mode I/II and Mode II
loading angles. In this study, the J-integral method was used
to analyse the linear elastic fracture behaviour at the crack
tip. Arcan test apparatus was also used to test the fracture
behaviour of the pure carbon and glass/carbon hybrid
knitted fabrics, laminated composite reinforced with pure
glass. The result of this study indicated that KNN, decision
tree and random forest present good results for experimental
data (see Figure 5). However, it found that it was not
possible to achieve a natural behaviour curve for angles that
are not examined experimentally. Therefore, the researchers
suggested that the loading angles should be selected close to
each other and, if possible, consider all the values of the
examination range in the preparation of the dataset or these
algorithms in fracture mechanics studies. The next sections
present the importance of feature extraction and machine
learning in damage monitoring and assessment.

The importance of feature engineering
and tools

Worden and Manson15 have proposed seven axioms for
SHMA. These axioms confirm that feature extraction
through statistical classification and signal processing is
fundamental to alter sensor data (raw data) into damage
information. Therefore, feature extraction and selection
must be performed before training the machine learning
(ML) model to improve the model’s performance, flexibility
and efficiency. Most ML approaches deploy standard fea-
ture extraction and selection algorithms. However, some
also can modify features to reach the best potential pre-
diction performance. Feature extraction involves trans-
forming the measured signal into features (also known as
attributes) which will be the inputs of a learning algorithm.
The extracted features should hold the maximum amount of
information included in the collected signals by deleting all
redundant data. The suitability of features can be quantified
according to their sensitivity to crack and noise immunity. A
further constraint is defined by insensitivity to the various
operating and environmental conditions. In other words, if
the measured signals are influenced by a difference in these
operational and environmental conditions, the extracted
features should be stable and robust in these conditions.46,47

To address these problems, a preliminary step to feature
extraction is usually required. It includes applying some
signal processing procedures to correct the collected signals
to ensure a fair comparison with the baseline signal. A
popular method for reducing the effects of noise is discrete
wavelet transformation.47,48

Feature extraction involves two essential tasks that
improve the effectiveness of ML models. The first task is
dimensionality reduction which can be achieved by using

various methods such as linear discriminant analysis
(LDA), generalised discriminant analysis (GDA) and
principal component analysis (PCA). The second task in-
cludes transforming the data into a higher-dimensional
space to the patterns becoming sparse and separable,
such as in kernel-based ML algorithms.49 Feature selection
is the process of pick out the most relevant features that can
predict outputs with high accuracy.47,50 By analogy with
SHMA applications, feature selection is employed to find
features that present high performance of detection and
classification of damage. Thus, features which not have
redundant information will be excluded and discarded from
the final dataset or involve information about the damage
presence.47 Through that, the global dataset dimension will
be immensely decreased and then avoiding the dimen-
sionality curse.47,51 In terms of the number of features,
adding more features to the learning algorithm may cause a
decrease in the accuracy of the classification algorithm. In
Theory, the increase of the dimensions of feature should be
correlated with a growing increase in the training dataset,
which is impracticable in most instances and requires
significant computing time. If this condition is not tested, it
will cause an overfitting issue.52 This can be seen when the
misclassification of training data reduces as it raises for
validation data. In other words, the classifier can excellently
predict the sets of belonging for training data by memorising
them but loses its ability to generalise unknown data. A
cross-validation is an approach applied to evaluate the
accuracy and the validity of a classifier by testing it on
different partitions of the training data.47

Feature selection can be classified into three methods:

· The filter methods classify the original features ac-
cording to an important measure such as the scores
from correlation coefficients between individual
features and the response variable or chi-square test. It
uses statistical methods for the evaluation of a subset
of features.

· The wrapper methods exclude or include features
from the original features recursively and select a set
of the best-performing feature depending on the
feedback of the ML model. They use cross-validation
to evaluate a subset of features.

· The embedded methods are used by those algorithms
that have their built-in feature selection methods (e.g.
LASSO and Ridge regression).

Both wrapper and filter methods are good to avoid
overfitting problems by reducing highly correlated features
and model complexity. Since filtering approaches do not
consider the performance of the classifier, they cannot be
utilised to pick out damage-sensitive features. Wrapper
approaches are well adapted to the process of damage
detection.
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Although feature selection is an important stage in the
process of damage detection, this subject has not taken that
much consideration within the SHMA community. This is
perhaps because the intuitive thought argues that the more
features, the better the classification performance. It might be
also implicitly incorporated into the feature extraction process.
However, Bagheri et al.53 presented a feature selection using
ANN to categorise three types of faults in immersed plates.
Feature extraction was performed in time-frequency, time and
frequency domains. Eight features were selected to represent a
signal. As ANN is considered a comprehensive approach,
finding the optimal number of features is impractical, especially
when the number of hidden neurons may also be adjustable.
The authors, therefore, decided to assess each feature indi-
vidually and to compare it with the case of combinations of four
features. Although the case of four features indicates no sub-
stantial enhances in comparison with the case of a single
feature, there is no assurance the optimal number of features
was found because the other combinationswere not considered.
Similar work using the probabilistic neural network has been
undertaken by Zhang et al.54 Among the six features extracted,
four were chosen as the most discriminatory. Once again, no
explanation was given for relying on which criterion, this
feature, was founded.

Jiang et al.55 used spatial filtering to pre-process the
microphone signals. Pre-processed signals and the original
sensor signals were fed into NN5. The result of this study
showed the comparison in classification accuracy of the
NN5 model without and with spatial filtering in both
training and cross-validation. Filtered signals achieved
97.7% and 97.5% accuracy in training and cross-validation
respectively, compared against 86.4% and 80.4% without
the spatial filtering. In addition to the above-mentioned
features selection and extraction techniques, domain-
specific feature engineering techniques have been devel-
oped to deal with specific data structures and issues such as
scale invariant feature transform (SIFT) features,56 histo-
gram of oriented gradients (HOG) features57 and HAAR-
like features.58,59 It also should consider that these

techniques require error and trial testing and are developed
to only work for very specific problems and data structures. The
associated deep learning (DL) and neural networks (NNs) ap-
proaches (seeFigure 6) automate feature engineering to enhance the
performance level in various data mining and pattern recognition
domains.60 Currently, NNs have become popular because of the
increase in computation power, which cause complex NNs ar-
chitecture trainable, thus achieving superb feature extraction.61 The
complex architecture of deep neural networks allows to carry out
feature extraction automatically. In contrastwith shallow learning, or
conventional machine learning, feature extraction is performed
outside the algorithmic stage. In other words, the data scientists and
experts and not machines are responsible for analysing the raw data
and transforming it into valuable features.The extractionof sensitive
features is crucial to the successful damage assessment application
within the machine learning paradigm. However, in practice, it
seems difficult to identify damage-sensitive features superset to
estimate and evaluate the conditions of all types of structural
systems.16

Crack assessment of smart structures with
Machine learning

Smart materials can respond to external factors (such as
temperature, stress, magnetic field and humidity.) via
changing one or more of their fundamental properties in a
controlled manner. Smart materials’ integration (surface
bonded or embedded, continuous, or discrete) with struc-
tures in the sensor and actuator form make them intelligent
structures. These intelligent structures are able of sensing
and adapting their dynamic and static responses (refer to as
adaptive structures) and monitoring the damage existence,
location and severity continuously.62,63 There are two es-
sential requirement stages for structural damage assessment
and detection based on machine learning:

Stage 1. Feature extraction and selection where it can use
the measured signals to extract certain hand-crafted
characteristics.

Figure 6. The architecture of the simple neural network and deep learning neural network.
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Stage 2. Training the model where it can use the extracted
features as input to train the model and inherently map to the
output or cluster data to several groups (state of the structure
being monitored).

The modal parameters (damping ratios, frequencies and
mode shapes) of the monitored structures are considered as
extracted features in parametric machine learning-based
methods.64

On other hand, other feature techniques such as wavelet
transform,65 autoregressive modelling,66 basic statistical
analysis (using the variance and mean of the signals),67

time-frequency methods68 and PCA69 are implemented in
non-parametric machine learning-based methods.

From the literature, time domain, frequency domain,
time-frequency domain, modal analysis and impedance are
the popular domains to extract sensitive features for un-
damaged and damaged structures.70,71 The sensitive fea-
tures can be extracted either from high frequency, low-
wavelength guided waves, or low frequency, high wave-
length structural response.72 The commonly used damage-
sensitive features (known as descriptors) for acoustic waves,
low-wavelength guided, or high frequency are duration, rise
time, count to peak, peak amplitude, average frequency,
energy and peak frequency.73,74 For the classification stage,
different classifiers were implemented in both non-
parametric and parametric machine learning-based
methods such as fuzzy neural network (FNNs) ,75

ANNs,67 PNNs,60,76 SVM,77 singular value decomposi-
tion66 and online sequential extreme learning machine al-
gorithm (OS-ELM) .78 Intuitively, the success of structural
damage detection techniques based on ML is expected to
depend primarily on the choice of the classifier as well as
extracted features. Therefore, the extracted features ought to
be cautiously chosen so that they can analyse signals to
capture the most important characteristic condition. Simi-
larly, based on the extracted feature types, a suitable clas-
sifier requires to be implemented to classify them accurately.
Therefore, there have been efforts to find the best possible
combination of classifier/extracted features mostly by trial-
and-error. However, there is no guarantee that a specific
classifier/feature combination would be the best selection
for different structures. In other words, a specific combi-
nation observed to be appropriate for a certain structure may
not certainly be a good possibility for another. Employing
inappropriate classifier and/or hand-crafted features is ex-
pected as it causes poor damage detection performance.
This section presents a review of the structural damage
assessment (i.e. quantification, detection and localisation)
made of different materials via ML approaches. It also
mainly focuses on the damage-sensitive features and suit-
able ML algorithms. Therefore, it presents a general
guideline that can assist the readers to decide a suitable
combination of ML tools and damage-sensitive features
while performing damage assessment for any structure.

Composite structures

Composite materials consist of two or more materials that
have different chemical and physical properties without any
chemical reaction or solubility; thus, the consequent ma-
terials have the best characteristics from their components.16

In the last 10 years, numerous algorithms were employed in
the applications of composite-based structure’s health
monitoring and assessment including neural network,
convolutional neural network, backpropagation, K-nearest
neighbour and SVM. The usage of those algorithms in
several applications (i.e. wind turbines, bridges, high rise
buildings) is summarised below. The neural network ap-
proach was applied in the Jamboree Road overcrossing,
Irvine California to evaluate features involving long-term
structural parameters, ageing, mass and stiffness.79

Islam and Craig80 used a BPNN for delamination lo-
calisation and quantification for the composite laminates.
The model was trained with the first five model frequencies
as sensitive features. The trained model was tested with
undetected cases of delamination at different locations.
Sung et al.81 combined the Levenberg-Marquardt algorithm
with neural network and generalisation method for reliable
and accurate localisation of low-velocity impact damage in
composite laminates. The proposed model was cross-
validated, trained and tested with the differential arrival
time of impact-generated acoustic wave to lead zirconate
titanate (PZT) sensors as input and impact location as the
target output. The proposed model predicted the impact
location under the error of 5 mm. Multilayer perceptron
neural network (MLP) was employed in Chetwynd et al.82

for regression and classification problems of damage de-
tection in a stiffened curved carbon fibre reinforced panel
with surface bonded piezoelectric transducers. Twenty-
eight sensors paths of eight surface-mounted sensors
were utilised as an input to the regression and classification
networks. MLP regression network was used for predicting
the exact location of the damage on the panel, whereas the
MLP classification network was employed for the classi-
fication of undamaged and damaged regions of the panel.
The overall classification accuracy of MLP networks was
90.9%. Hoang and Nguyen83 compared the performance of
six MLAs (include classification tree, naı̈ve Bayesian
classifier, radial basis function neural network, back-
propagation artificial neural networks, least-squares support
vector machine and SVM) used for automatic recognition of
Asphalt pavement cracks based on image processing. This
study used Steerable Filter, Projective Integral and Median
Filter to remove the noisy and complex texture of pavement
background, image processing techniques and to extract
useful features from pavement images. The result showed
that the SVM and least square’s support vector machine
have high rates of classification accuracy 91.91% and
92.62%, respectively, for classifying their dataset of
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pavement images. One class of support vector mechanics
(SVMs) was used to detect and classify four classifications
of damage (saw cut, notches, delamination, drilled holes) in
composite laminates. Time embedding technique (tapped-
delay approach) and time-frequency-based technique (Ga-
bor’s spectrogram technique) were employed to extract
damage-sensitive features from the piezoelectric sensor’s
response. The result revealed that the classification accuracy
of one-class SVMs with time-embedded features was better
than time-frequency features.84

Unsupervised and supervised classifiers were employed
for clustering the AE signals obtained from unidirectional
polyester/glass composite tests. AE signal was first clus-
tered through K-means based on the amplitude, rise time,
number of counts, duration and counts to the peak of the AE
signal. The cluster identified with K-means was employed
as labelled data for the K-nearest neighbours (supervised
classifier). The trained K-nearest neighbours’ classifier was
used to classify new data. The proposed method success-
fully classified the AE signal related to interfacial deco-
hesion and matrix cracking.32

Li et al.85 performed cluster analysis of AE signals
collected from the damage initiation and development of 2D
and 3D epoxy/glass woven composites. The AE signals
were clustered via PCA and K-means++ clustering

algorithm. Peak frequency (PF) and peak amplitude (PA) of
AE signals were pointed out as the most efficient sensitive
features. Davies-Bouldin index and Silhouette coefficient
were used to define the optimum number of clusters. It can
be noted that the most common sensitive features were used
for cross-validation, training and testing of machine
learning models are:

Figure 7. Procedures of designing a well-trained machine learning algorithm.45

Figure 8. Fatigue crack growth rate (FCGR) experimental data of
cryo-rolled Al 2014 alloy.91
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· Rise time, arrival time, energy, ring down counts,
average frequency, peak amplitude, peak frequency,
central frequency, amplitude, counts to peaks and
duration from AE signals.

· The difference of amplitudes and time of occurrence
of fundamental modes, phase change, correlation
coefficient, wavelet energy, amplitudes and frequency
centroids from guided Lamb waves.

· Vibration hub loads, natural frequencies, autore-
gressive parameters, wavelet energy packets and
wavelet coefficients from low-frequency structural
vibration responses.16

Metal structures

Metal’s crack growth or fracture is one of the most serious
reasons behinds the catastrophic failures of structures and
engineering components. For instance, bridges,86 automo-
biles,87 steel buildings,88 aerospace structures89 and oil and
gas pipelines.90 Machine learning has flexible approaches to
the modelling of fatigue crack growth because of its mul-
tivariable learning ability and excellent nonlinear
approximation.45,91

Wang et al.45 proposed a fatigue crack growth calculation
method based on three different MLAs including genetic
algorithms optimised backpropagation network, radial basis
function network and extreme learning machine. Experi-
mental data (including specimen type, size, initial crack
length and loading type) of different materials (including
7050-T7451 aluminium alloy, Ti6Al4V titanium alloy,
ADB610 steel and D16 alumina) were used for training and
testing the proposed ML methods. They suggested the
following procedures for developing the well-trained model
of machine learning for fatigue crack growth as shown in
Figure 7. Raja et al.91 investigated the relationship between
stress intensity factor range ΔK and da=dN fatigue crack

growth rate da/dN using three MLAs (curve-fitting model,
extreme learning machine and BPNNs) with the experi-
mental fatigue crack growth data of cryo-rolled Al 2014
alloy. The experimental data are indicated in Figure 8. The
result pointed out that the extreme learning machine is the
quickest and best model for predicting unstable crack
growth regions compared with the other two used ML
models.

González and Zapico92 employed NNs and FEM to
identify damage in steel moment frame structures. The
mode shape and frequencies (collected by finite element
model for five-story office buildings) were used as input to
train the ML model. The model output predicted the
stiffness and mass of the structure to deliver a damage index
at each story. Another study investigated three machine
learning models (K-nearest neighbour regression, polyno-
mial regression and ridge regression) using experimental
data of metal plate to predict fatigue crack growth rate in
stage II and stage III regions (see Figure 9) model of K-
nearest neighbour regression was identified as better suited
for their application. They also founded that the accuracy of
the machine learning model is strongly reliant on the se-
lection of training data, prepossessing of experimental
data.93

Polymer structures

A ridge regularised multiple linear regression were used to
predict the damage location, damage severity and funda-
mental behaviour of acrylonitrile butadiene styrene (ABS)
structure. This study used raw experimental data (damaged
and undamaged data of aluminium and ABS under coupled
mechanical loads at various temperatures) from Baqasah
et al.94 and Zai et al.95 to train the model. The model in-
dicated that tip amplitude and natural frequency appear to be
the most important predictive features for ABS (see Figures
10 and 11). The model results also confirmed that the crack
position appears to be of little importance for either. The
model results also confirmed that the crack position appears
to be of little importance for both materials. The crack
position is not identified through the theoretical model.
Thus, in future studies, the training of the data requires to be
performed utilising the theoretical models so that more
rigorous ML models can be achieved.96

Tibaduiza et al.97 proposed a damage detection and
classification approach (see Figure 12). The proposed
method is evaluated and tested a carbon fibre reinforced
polymer (CFRP) structure. This approach involves the use
of data collected from a structural under different structural
states through a piezoelectric sensor network taking ad-
vantage of using the hierarchical nonlinear PCA, discrete
wavelet transforms and MLAs (K-nearest neighbour and
decision tree). The researchers emphasised that to work with
MLAs, it is very important properly selecting the training

Figure 9. The three-stage of crack growth.93
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data. Otherwise, results in the trained machine can be
different to the system expectations. RFs, ANNs and Haar
wavelet discrete transform was applied to predict the se-
verity and location of a crack in the Bernoulli cantilever
beam.98 Analysing the results of the prediction, it was found
that the depth of the cracks was more difficult to predict
accurately than its location. The dataset of eight Haar
wavelet coefficients produced more precise predictions on
the crack locations; meanwhile, the dataset of eight natural
frequency parameters produced more accurate predictions
on the crack depth.

Chen et al.99 developed a damage identification scheme
by combining hierarchical cluster analysis based on com-
plex network theory and waveform chain code (WCC)
analysis. Waveform chain code analysis was carried out

using the PCA reduced frequency response function (PCA-
reduced FRF) and the areas under the slope differential
value curves were calculated as damage-sensitive WCC
features. Unsupervised machine learning using hierarchical
cluster analysis was then conducted on these damage-
sensitive features. A rectangular Perspex plate was stud-
ied using the newly developed damage identification
scheme as an example. Experimental results showed that the
proposed scheme can successfully separate all the damage
conditions from the undamaged state with 100% accuracy.
In terms of damage severity and location identification, the
proposed scheme is sensitive to detect damage severity with
a damage index as low as 0.17. In addition, the combination
of PCA-reduced FRF and mode shapes showed a positive
correlation between the magnitude of the resonant peak and

Figure 10. Relative feature importance derived from model coefficients (scaled).94

Figure 11. Relative feature importance derived from model coefficients (scaled).94
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the displacement of the impact point in identifying different
damage locations of the plate. It can be seen from the
aforementioned the following points:

· Data-driven approaches can play an essential role to
find the relationship (often nonlinear) between ma-
terial structure and its properties.

· The majority of studies developed ML applications to
predict and monitor the health of composite and metal
structures whereas, there is limited literature on ML
applications for structural made of polymer material.

· Most previous studies used simple to use ML algo-
rithms and straightforward such as decision tree and
linear kernel models for different applications even
though input-data are complex and huge.

· Usually, a machine learning model cannot achieve the
expected accuracy when employed in some tasks
because of insufficient structural data. Thus, re-
processing and cleaning data before training the
models are highly important for the future develop-
ment of machine learning in structural made of dif-
ferent materials.

· Some studies used ANNs and conventional neural
networks because they can extract damage-sensitive
features during training the model and no needs to
apply another approach for feature selection and
extraction. This might cause consuming more high-
end machines (such as GPUs) and time.

· Artificial neural networks have the potential to
minimise the needs of huge data of structural in-
spection and/or experimental investigation applied in
different applications, therefore, causing large eco-
nomic benefits.100

· The reasonable design of ML algorithms and data
augmentation can assist address the data sparsity thus
enhance the performance of the application. The next
section presents more challenges of machine learning
and some future work.

Common challenges of machine learning
and future work

For ML in SHMA applications to advance from conception
and research into practice, several challenges must be
overcome. A synthesis of those challenges, as well as
opportunities for future work, is presented in this section.

Availability and quality of data

One of the main contributors to the success of machine
learning ML in other fields is the capability to obtain the
needed data. Although the quantity of data needed to obtain
reasonable performance for ML models relies on the goal
and problem, it is important to have sufficient high-quality
data that may represent the true distribution. This allows the
adopted ML algorithms to determine underlying patterns

Figure 12. Damage classification methodology in Tibaduiza et al.97
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and make predictive models that are truly generalisable
within the problem scope. One of the significant difficulties
ML in SHMA applications is that the datasets are frequently
restricted in diversity and quantity. In the experiments that
tried to predict the structural performance and response
utilising ML approaches, the data was collected from
nonlinear response history analyse by other
researchers.101,102 However, these datasets were not pub-
licly available to understand a truly representative dataset of
structural response requirements; an open access repository
with restricted quality control measures should be insti-
tuted.61 Over time, resources such as Data Centre Hub
(http://datacenterhub.org) and the National Hazard Engi-
neering Infrastructure (http://rapid.designsafe-ci.org) will
assist reduce this challenge. While there are hundreds of
data points, the datasets generated by physical experiments
are more diverse. In other words, the previous studies have
used data obtained from a wide range of experiments carried
out by numerous researchers such as Jeon et al.,103 Huang
and Burton,104 and Hoang et al.105 As part of the solution to
the shortage of data from physical experiments is to inte-
grate ML algorithms into the domain knowledge. This will
decrease the complexity of the model space and therefore
decrease the amount of data is required to perform effec-
tively. Transfer learning (TL) can be applied to tackle the
data shortage challenge. The fundamental idea behind TL is
that knowledge obtained from training one model for a
specific domain or problem can be transferred to another.

Azimi and Pekcan106 have presented a novel convolu-
tional neural network-based approach for crack identifica-
tion and localisation that uses a form of measured
compressed response data through TL-based methods. The
results indicate that TL can be implemented effectively for
crack identification of similar structural systems with dif-
ferent sensor types. In addition, Variational Autoencoder,
Generative Adversarial Networks and Monte Carlo

Simulation) can enhance current datasets through synthetic
data generation. Future studies should focus on the fol-
lowing points: (1) gathering and preserving more diverse
datasets, (2) providing synthetic data, (3) integrating do-
main knowledge into the design of the ML model and (4)
using transferable learning.

Another important consideration is the quality of the
data, which is a common difficulty for ML models. There
are no standard methods for synthesising and collecting
datasets obtained by the community of SHMA. This ab-
sence of deliberate curation methods can prompt problems
such as the presence of anomalies in the information, which
can adversely affect the exhibition of ML models. This is
particularly valid for ML approaches as logistic regression,
which is less equipped for managing noise. In other words,
the common data filtering procedure of ML models ought to
be carefully incorporated with the knowledge domain of
SHMA knowledge. Thus, a large number of the difficulties
identified with the nature of datasets quality can be tended to
if processing techniques and precise collection are instituted
and adopted. Therefore, Hsieh and Tsai107 have recom-
mended that data quality and quantity are significant factors
in the improvement of ML crack detection model. Accurate,
robust and fast ground-truth labelling and data acquisition
should be further developed.

Overfitted machine learning models

Overfitted models (see Figure 13), which bring about de-
ficient execution outside of the data utilised for training and/
or testing, is an area of significant challenge that is looked at
by the more extensive ML community. In other words, one
of the reasons for the overfitting problem is training and
learning from inaccurate and noise data entries in the
collected dataset therefore the model does not classify the
data correctly.

Figure 13. Difference between Underfitting, appropriate fitting and overfitting.

Omar et al. 15

http://datacenterhub.org/
http://rapid.designsafe-ci.org/


The reasons for overfitted are also the nonlinear and non-
parametric methods that have more flexibility and freedom
in building the model. The result of these methods can be
unrealistic models. Standard ML methods try to address the
overfitting problem by using training/testing split, boot-
strapping, bagging and k-fold cross-validation as other
approaches. For example, the stochastic methodology uti-
lised by RF to produce trees was intentionally created to
overcome the overfitting challenge related to the decision
tree.106,108

It ought to be noticed that overfitting isn’t just connected
with model training but also with model selection. A
complex nonlinear model trained on a dataset with low
dimensional features could be overfitted. For the SHMA
community, the use of domain knowledge can also assist
with eliminating overfitting issues and build robust crack
prediction and detection application. The blend of domain
knowledge with the data-based procedure, as the approach
utilised to manage data sparsity, may demonstrate to be a
powerful combination Although overfitting has been widely
investigated throughout the ML community, it might be
more vital to build SHMA applications given the com-
plexity of some of the mechanics-based relationships that
data-based models try to replicate. Therefore, the ML-
SHMA model usually needs large quantities of data,
careful adjustment and better noise filtering processes to
minimise the effects of overfitting.104,109

Interpretability and explainability of machine
learning model

Perhaps one of the main difficulties related to ML models is
interpreting the physical meaning of the model parameters
and explaining the feature effects. A usually held view is
that ML models, particularly the further developed and
complex ones, are black boxes. In other words, they are hard
to extricate the mechanics-based relationship between
features (input) and response variables (outputs) parameters
in data-based models. To increase model explainability
should carry out feature importance tests to realise their side
effect on the model output variables, which would then be
able to be benchmarked apposed the essential rules.
Analysis of variance (ANOVA) 101 and statistical methods
such as the F test110 can be employed to assess the relative
strengths of the relationships between features and response
variables. Furthermore, individual conditional expectation
curves (ICE), the partial dependence plot (PD plot) and its
variant are also widely used.111,112

Besides these feature importance measurements, model-
specific methods such as the utilisation of class activation
mapping (CAM) to envision centre zones around the image
of CNN models113,114 have been established. Feature at-
tribution or feature visualisation enables better

interpretability and understanding of black-box models.
But, it sometimes may be reasonable to trade model ac-
curacy for better explainability.100 Some new endeavours on
the interpretability of ML have shown the advantage of
bringing domain knowledge into ML approaches by
combining a physics-based loss function. A particular
model is to implant hard conditions with a Lagrange
multiplier into the loss function.114,115 This method com-
bines a physics-based law into the objective function which,
present a means to explain some models of machine
learning. A recent paper116 in the structural health moni-
toring field combines unlabelled simulation data with ob-
served labelled field data using a physics guided neural
network with a loss function. The used method involves
further conditions presenting the difference between ob-
served and simulation output.

Overall, these studies30,117–124 highlight the need for
combining ML models with the physics-based model in
different SHMA applications to interpret the physical
meaning of the model parameters and explaining the effects
of the feature on the accuracy of the ML model. However,
combining physics-based models and machine learning
continues a challenging problem particularly for the com-
munity of structural crack performance assessment and will
remain to be investigated in future research.

Machine learning method selection

A various range of algorithms was implemented in the
presented ML-SHMA studies. Unfortunately, there is no
agreement or general stance about ML method selection. In
certain studies, the researcher(s) focused on a single
method.110,111 However, a clear and cogent reason is never
provided for the selected method. Other studies have
concentrated on comparing the performance of ML models
developed using various methods. Hsieh and Tsai107

compared a performance evaluation of eight ML-based
crack segmentation models using three-dimensional pave-
ment images and consistent evaluation metrics with varied
conditions to identify potential directions and challenges for
future crack detection development. However, the results of
such comparative evaluations are difficult to generalise,
because they are highly conditioned by the adopted dataset
and model testing (e.g. partition point for training–testing
split, performance metric) and model training (e.g. whether
k-cross-validation is adopted). Future efforts are expected to
focus more on analysing domain-specific characteristics of
adopted datasets and apply knowledge-informed ap-
proaches in selecting ML algorithms instead of using a
solely performance-based search. For instance, multi-output
models are particularly useful in predicting baseline net-
work curves because they can predict multiple response
variables.
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Tackling some of the above challenges by creating well-
organised and systematic datasets would also assist in the
selection of methods. The advantage of having such
benchmark datasets is that a standard dataset will encourage
particular attention to the integration of domain knowledge
and associated data models. However, performance-based
model selection is often the perfect solution where there is
no sense of how domain knowledge can be incorporated. An
instant strategy that can be employed to guide method
selection is to begin by training and evaluating the per-
formance of a linear (basis function) ML model logistic
regression for classification problems and (OLS, LASSO,
ridge) for regression problems. Except for very specific
problems, it has been demonstrated that linear models work
reasonably well, yet are easy to implement (e.g. Burton et al.112

and Mangalathu and Jeon113), and more critically, have high
model interpretation and transparency. In cases where the initial
linear models do not work well, they should be further ex-
amined before moving to more complex models. For instance,
poor performancemay be due to the simplicity of the linearML
model or noisy data. The first situation requires an advanced
exploration (e.g. non-parametric models) able to capture the
data complexity. However, noise problems within the data can
be handled by filtering.

Conclusion

This paper presents a review of ML applications in SHMA
for different materials made of composite, metal and
polymer. The increase in computational power in recent
years has enhanced the capability of ML in complex ap-
plications involving large-scale, high-dimensional nonlin-
ear data. With the advantages in pattern recognition and
function approximation, ML offers a natural choice to help
address the challenges in SHMA. Several key challenges
need to be tackled to take advantage of using machine
learning in SHMA practice. Firstly, collecting high-quality
data sources critical for the development of machine
learning model are currently limited within the SHMA
community. Therefore, a unified effort is required to curate
diverse, collect and generate datasets to an open-source
storage area that can be used and populated by practitioners
and researchers. This effort should also include the creation
of benchmark data sets for specific SHMA subdomains to
align and focus research resources. Reasonable design of
ML algorithms, TL and data augmentation, and domain
knowledge can also help address the data sparsity. Second,
the results from ML models are often difficult to interpret.
This can be addressed by using importance testing to better
understand the individual effects of features on the response
variable. The introduction of physics-based loss functions
can offer insight into ML model training and interpretation
and can potentially improve robustness. Third, overfitting is
a significant issue for ML models, especially when

attempting to capture complex mechanics-based relation-
ships in SHMA problems. This issue can be further studied
by examining the SHMAS data space and proposing
physics-based validation and evaluation techniques. Future
research should also focus on finding ways to combine data-
based procedures with SHMA domain knowledge, which
will serve to boost performance and provide model insights.
Lastly, previous studies did not establish general guidelines
for the selection of ML models. Future studies should in-
corporate more knowledge-informed selection strategies. As a
rule of thumb, initial exploration should focus on simple linear
models which are usually easy to interpret and explain. The
complexity of the data space can also inform the model se-
lection. Sufficient sources of high-quality data are important
for the development of the ML model. Therefore, reasonable
design of ML algorithms and data augmentation can assist
address the data sparsity. The extraction of sensitive features is
also mainly crucial for the successful damage assessment
application within the machine learning paradigm.
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