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In this paper, a Q-learning algorithm is proposed to solve the linear quadratic regulator
problem of black box linear systems. The algorithm only has access to input and output
measurements. A Luenberger observer parametrization is constructed using the control
input and a new output obtained from a factorization of the utility function. An integral
reinforcement learning approach is used to develop the Q-learning approximator structure.
A gradient descent update rule is used to estimate on-line the parameters of the Q-
function. Stability and convergence of the Q-learning algorithm under the Luenberger
observer parametrization is assessed using Lyapunov stability theory. Simulation studies
are carried out to verify the proposed approach.
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1. Introduction

Black box systems are commonly used to model systems which can be viewed in terms of measurements of its inputs and
outputs [1]. For these kind of systems, both the internal states and the parameters of the system are unknown [2,3], e.g.,
robots [4,5], unmanned vehicles [6], chemical and biological processes [7], among others.

Control of black box systems have been well studied using model-free (e.g., PD, PID, sliding mode control, etc.)[8,9] and
adaptive (e.g., neural networks, fuzzy systems, indirect and direct adaptive algorithms, etc.) controllers [10,5]. However, the
above controllers cannot ensure optimal performances [11]. Furthermore, they need access to the internal states which can
only be achieved by means of a state estimator.

In the sequel of this paper, black box linear systems are considered. For this kind of systems, state observers are used to
estimate the internal states [12]. However, they need knowledge of the parameters of the system which are unknown. For
certain black box systems such as mechanical systems, sliding mode differentiators (e.g., the Levant’s differentiator [13]) can
be used to estimate the derivatives of the output. Nevertheless, the degree of the closed-loop system and the number of con-
trol gains are increased [14]. In consequence, it makes harder the stability analysis of the closed-loop system between the
black box system and the model-free controller design.

Reinforcement learning (RL) [15] is a machine learning technique that merges the main advantages of adaptive and opti-
mal control theories[16]. In the context of control theory, the RL algorithms that achieve both optimal and adaptive perfor-
mances are called Adaptive Dynamic Programming (ADP)[17,18] algorithms. They seek on-line the solution of a Hamilton–
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Jacobi-Bellman (HJB) equation[19,20]. In particular, for linear systems the HJB equation boils down to finding the solution of
an Algebraic Riccati equation (ARE) which, in this case, is known as the linear quadratic regulator (LQR) problem [21,22].

It is well known that the LQR problem is a model-based dynamic programming algorithm and one way to solve it (with-
out system information) is by means of model-free RL/ADP algorithms [23,24]. In the literature, most of these algorithms
have an actor-critic structure [25] and use neural networks as approximators [26–28] combined with other techniques such
as experience replay or eligibility traces [29–31]. Their success rely in a persistency of excitation (PE) condition fulfilment
[32], whose function is to excite the system modes such that the estimates of the ARE solution converge to their real values.

Some of the most famous model-free RL/ADP algorithms are Lyapunov recursions [17], critic algorithms [33], actor-critic
[34,35], and Q-learning [36,27]. These methods find the solution of the ARE without knowledge of the system dynamics,
however they require state’s measurements which cannot be estimated by a state observer due to the misknowledge of
the black box system’s parameters.

1.1. Related work

To overcome the above issues, in [37] an output-feedback control was proposed to use output measurements to compute
the optimal control law. The main issue of this approach is that it requires that the rank of the output matrix must be equal
to the number of the system’s states to guarantee complete state feedback. In [38], a state parametrization is used to formu-
late a Q-learning algorithm for discrete-time systems. This algorithm finds recursively the solution of the ARE via an off-line
least squares (LS) policy iteration (PI) algorithm. However, the approach assumes that the state estimation is equal to the real
state. This assumption is not satisfied in the short term due to the incorporation of a state estimation error which fades as
time increases. Furthermore, the new value function parametrization is not a kernel matrix. This fact is discussed in future
sections.

In summary, the main concerns and motivation of this work are: (i) output-feedback controllers need a full rank output
matrix which is not common in real applications, (ii) the use of state estimators require to be analysed in the closed-loop
system and not assume that both signals are equivalent, (iii) there is no theoretical proof of the model-free RL under the state
estimator.

In this paper, a solution of the LQR problem of black box linear systems is proposed. In contrast to previous works, the
proposed approach obtains the solution of the LQR problemwithout knowledge of the internal states of the black box system
using only measurements of the input, output, and the state observer parameterization signals. Furthermore, a new output is
proposed to correlate the estimation and control problems in terms of a factored utility function that avoids the full rank
output matrix assumption. The optimal controller is formulated with a new parameterization of the Q-function to take into
account the new states of the state observer parameterization. Then, a Q-learning algorithm based on the gradient descent
technique and inverse reinforcement learning formulation is used to obtain the optimal control policy without knowledge of
the system dynamics. Rigorous stability analysis using Lyapunov stability theory are given to support the proposed tech-
nique. Simulations are carried out to verify the complete approach.

1.2. Contributions and notation

The main contributions are: (i) a state observer parameterization in terms of the input measurements and a new output
which is obtained from a factorization of the utility function, (ii) a new Q-function parameterization that takes into account
the states of the state-observer parameterization, (iii) the integral reinforcement learning and the gradient descent method-
ologies are used to estimate the optimal Q-function and the optimal control law, (iv) a stability analysis of both the state
parameterization and the Q-learning algorithm are provided to verify the uniqueness of the optimal controller and that
the closed-loop trajectories are bounded and converge exponentially to zero. Therefore, the optimal controller is obtained
without internal states measurements and parameters information of the black box system.

Throughout this paper, N; R; Rþ; Rn; Rn�m denote the spaces of natural numbers, real numbers, positive real numbers,
real n-vectors, and real n�m-matrices, respectively, In denotes a n� n identity matrix; L �f g is the Laplace transform and
L�1 �f g is the inverse Laplace transform; L1 denotes the space of bounded signals, L2 t0;1½ Þ denotes the space of square
integrable functions, kmin Að Þ and kmax Að Þ corresponds to the minimum and maximum eigenvalues of A;min �ð Þ denote the

minimum operator; adj Að Þ denote the adjoint matrix, det Að Þ is the matrix determinant, the norms kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax A>A

� �q
and

kxk stand for the spectral and vector Euclidean norms, respectively; � is the symmetric Kronecker product, vech �ð Þ is the
half-vectorization operator; where x 2 Rn; A 2 Rn�n and n;m 2 N.

2. Problem formulation

Consider the following linear time invariant continuous-time system [12],
_x tð Þ ¼ Ax tð Þ þ Bu tð Þ; x t0ð Þ ¼ x0
y tð Þ ¼ Cx tð Þ ð1Þ
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where x tð Þ 2 Rn is the state, u tð Þ 2 Rm is the control input, y 2 Rp is the output, A 2 Rn�n;B 2 Rn�m, and C 2 Rp�n denote the
plant, input, and output matrices respectively that will be considered unknown. It is assumed that the pair A;Bð Þ is control-
lable and the pair A;Cð Þ is observable.

The main goal is to find a stabilizing controller u tð Þ that minimizes the next value function,
V x tð Þð Þ ¼ R1
t q y sð Þ; u sð Þð Þds

¼ R1
t y> sð ÞSyy sð Þ þ u> sð ÞRu sð Þ� �

ds
ð2Þ
where Sy > 0 2 Rp�p and R > 0 2 Rm�m are predefined symmetric and positive definite weight matrices of the utility function
q y tð Þ;u tð Þð Þ which are assumed to be diagonal. Notice that y> tð ÞSyy tð Þ ¼ x> tð ÞSx tð Þ with S ¼ C>SyC P 0 2 Rn�n.

The Hamiltonian associated with (1) and (2) is
H x tð Þ;u tð Þ;rV tð Þð Þ ¼ rV tð Þ _x tð Þ þ x> tð ÞSx tð Þ
þu> tð ÞRu tð Þ: ð3Þ
where r ¼ @
@x is the gradient with respect to x. The optimal value function V� x tð Þð Þ is formulated as
V� x tð Þð Þ ¼ min
u2U

Z 1

t
x> sð ÞSx sð Þ þ u> sð ÞRu sð Þ� �

ds: ð4Þ
The application of the Bellman optimality principle in (3) gives the following Hamilton–Jacobi-Bellman (HJB) equation
min
u2U

H x tð Þ;u;rV� tð Þð Þf g ¼ 0: ð5Þ
Since the system (1) is linear, then the optimal value function can be designed as a quadratic function in terms of the state,
that is, V� x tð Þð Þ : Rn ! R,
V� x tð Þð Þ ¼ x> tð ÞPx tð Þ;8x; ð6Þ
where P ¼ P> 2 Rn�n is a positive definite kernel matrix which is solution of the next Algebraic Riccati equation (ARE)
A>P þ PAþ S� PBR�1B>P ¼ 0: ð7Þ
The optimal control solution is obtained by employing the stationary condition @H �ð Þ
@u ¼ 0, which results in
u� tð Þ ¼ argmin
u2U

H x tð Þ; u;rV� tð Þð Þ
¼ �Kx tð Þ ¼ �R�1B>Px tð Þ:

ð8Þ
where K 2 Rm�n is the optimal control gain matrix. The optimal value function (6) can be equivalently expressed as the fol-
lowing Q-function Q x;uð Þ : Rn � Rm ! R [36],
Q x;uð Þ :¼ V� xð Þ þ H x; u;rV�ð Þ
¼ x>Pxþ P Axþ Buð Þ þ Axþ Buð Þ>P

þx>Sxþ u>Ru;8x; u:
ð9Þ
In this formulation the dependence of time is omitted for sake of simplicity. The Q-function (9) can be written as a quadratic
function [39] in terms of the state x and control u as
Q x;uð Þ ¼ x

u

� �> P þ A>P þ PAþ S PB

B>P R

" #
x

u

� �

¼ x

u

� �> Qxx Qxu

Q>
xu Quu

� �
x

u

� � ð10Þ
where Qxx Qxu

Q>
xu Quu

� �
2 R nþmð Þ� nþmð Þ. The stationary condition @Q �ð Þ

@u ¼ 0 is employed to derive the optimal control as follows
u� tð Þ ¼ argmin
u2U

Q x;uð Þ
¼ @Q x;uð Þ

@u ¼ �Q�1
uu Q

>
xux tð Þ:

ð11Þ
The optimal Q-function Q � x;u�ð Þ is equivalent to the optimal value function (6) because the Hamiltonian is equivalent to zero
under the optimal control (11), that is, it satisfies the ARE (7).
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The above solutions need complete knowledge of the system dynamics (1) and full state feedback which is assumed to be
not available in this paper. Besides, the above statement is common in most real applications. To overcome the aforemen-
tioned issues, a state parametrization in terms of a Luenberger observer [12] is employed with a Q-learning update rule.

The following formulations are required before starting the observer design. The utility function in (2) can be factored as
q y tð Þ;u tð Þð Þ ¼ y tð Þ
u tð Þ

� �> Sy 0
0 R

� �
|fflfflfflfflffl{zfflfflfflfflffl}S

y tð Þ
u tð Þ

� �

¼ y tð Þ
u tð Þ
� �>

M>M
y tð Þ
u tð Þ
� �

¼ y tð Þ
u tð Þ
� �> M>

s

M>
r

" #
Ms Mr½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}M>M

y tð Þ
u tð Þ
� � ð12Þ
where M>M ¼ UDU> 2 Rr�r denotes the spectral decomposition of matrix S 2 Rr�r , here U 2 Rr�r is the matrix of eigenvec-
tors, and D ¼ diag kif g 2 Rr�r is a diagonal matrix whose main diagonal consists of the eigenvalues of matrix S, here
r ¼ pþm. So M ¼ D1=2U> which can also be factorized by the matrices Ms 2 Rr�p and Mr 2 Rr�m. The control input u tð Þ is
finite and bounded due to the design of R, that is, u tð Þ 2 L2 t0;1½ Þ. HereL2 t0;1½ Þ is the space over which the integral is min-
imized [40]. Then, the optimal value function (4) can be expressed as
V� x tð Þð Þ ¼ min
u2L2 t0 ;1½ Þ

kMsCx tð Þ þMru tð Þk2: ð13Þ
So the LQR problem can be formulated as an optimization problem of the form
min
u2L2 t0 ;1½ Þ

kMsCx tð Þ þMru tð Þk2

s:t: _x tð Þ ¼ Ax tð Þ þ Bu tð Þ; x t0ð Þ ¼ x0:
ð14Þ
The above notation facilitates the state observer parametrization which is discussed in the next section.

3. State observer parametrization

The main objective is to define a state parametrization of the state x tð Þ in terms of the control input u tð Þ and the utility
function factorization (12). First, let define a new output in terms of the utility function factorization
l tð Þ :¼ MsCx tð Þ þMru tð Þ: ð15Þ

where l tð Þ 2 Rr . Notice that dim y tð Þð Þ ¼ p and dim l tð Þð Þ ¼ r where r > p. However, the observability of the pair A;Cð Þ implies
the observability of the pair A;MsCð Þ, that is, the rank of the observability matrices O A;Cð Þ ¼ O A;MsCð Þ ¼ n and therefore, the
following Luenberger Observer can be designed
_bx tð Þ ¼ Abx tð Þ þ Bu tð Þ þ L l tð Þ �bl tð Þ
� 	

¼ A� LMsCð Þbx tð Þ þ Bu tð Þ þ LMsy tð Þ:
ð16Þ
where bx tð Þ 2 Rn is the estimate of the state x tð Þ;bl tð Þ ¼ MsCbx tð Þ þMru tð Þ is the estimate of output l tð Þ, and L 2 Rn�r is the
observer gain. The following Lemma establishes the convergence of bx tð Þ to x tð Þ as t ! 1.

Lemma 1. [40] Let the pair A;MsCð Þ of system (1) and (15) be observable. If u tð Þ; l tð Þ are L2 t0;1½ Þ functions, then
x 2 L2 t0;1½ Þ. Moreover, bx tð Þ ! x tð Þ as t ! 1.
Proof. First of all, since the pair A;MsCð Þ is observable then it is possible to design the observer gain L such that A� LMsCð Þ is
Hurwitz. In consequence, from (16) is easy to check that bx tð Þ 2 L2 t0;1½ Þ because u tð Þ and l tð Þ are L2 t0;1½ Þ functions. Let
define the observer error ex tð Þ ¼ x tð Þ � bx tð Þ; then the following dynamic equation is satisfied
_ex tð Þ ¼ A� LMsCð Þex tð Þ; ð17Þ

whose solution is
ex tð Þ ¼ expArex0; ð18Þ
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where A ¼ A� LMsC and r ¼ t � t0. Since A is Hurwitz then ex tð Þ 2 L2 t0;1½ Þ. Therefore x tð Þ ¼ bx tð Þ þ ex tð Þ 2 L2 t0;1½ Þ. The
above solution exhibits that the observer error exponentially converges to zero for any initial condition ex0, that is,ex tð Þ ! 0 when t ! 1 and hence, bx tð Þ ! x tð Þ. This completes the proof.
Remark 1. The factorization l tð Þ is used for the state-observer (16) design and not to solve the optimization problem (14).
Remark 2. Traditional Luenberger observers use the output of the system y tð Þ to estimate the state x tð Þ which its design is
independent of the optimal control design. In contrast, the proposed approach uses the output l tð Þ to correlate the estimation
and optimal control problems in terms of the factored utility function (15).

In the sequel of this section the state parametrization is designed. The solution of (16) is
bx tð Þ ¼ expArbx0 þ
Z t

t0

expA r�sð Þ Bu sð Þ þ Ly sð Þ� �
ds ð19Þ
where L ¼ LMs. The above solution does not give a feasible way to write a parametrization of the observer state bx tð Þ in terms
of the control input u tð Þ and the output l tð Þ. In the frequency domain, (19) is rewritten as [38]
bX sð Þ ¼ sI � A
� 	�1bx0 þ sI � A

� 	�1

�
Xm
i¼1

BiUi sð Þ þ
Xp
i¼1

LiYi sð Þ
 ! ð20Þ
where bX sð Þ ¼ L bx tð Þ
 �
;U sð Þ ¼ L u tð Þf g, and Y sð Þ ¼ L y tð Þf g. Bi and Li denote the columns of matrix B and L, respectively. Let

define D sð Þ as the characteristic polynomial of the Luenberger observer as
D sð Þ ¼ det sI � A
� 	

¼ sn þ an�1sn�1 þ . . .þ a1sþ a0;
where ai > 0. Notice that we can write the summations as follows
Xm
i¼1

sI � A
� 	�1

BiUi sð Þ :¼
Xm
i¼1

adj sI�Að Þ
D sð Þ BiUi sð Þ

Xp
i¼1

sI � A
� 	�1

LiYi sð Þ :¼
Xp
i¼1

adj sI�Að Þ
D sð Þ LiYi sð Þ:

ð21Þ
Consider the first summation of (21). Then it is possible to split the numerator as
adj sI � A
� 	

Bi ¼

bi1
n�1s

n�1 þ . . .þ bi1
1 sþ bi1

0

bi2
n�1s

n�1 þ . . .þ bi2
1 sþ bi2

0

..

.

bin
n�1s

n�1 þ . . .þ bin
1 sþ bin

0

2666664

3777775

¼

bi1
0 bi1

1 � � � bi1
n�1

bi2
0 bi2

1 � � � bi2
n�1

..

. ..
. ..

. ..
.

bin
0 bin

1 � � � bin
n�1

2666664

3777775
1
s

..

.

sn�1

266664
377775

� , Wi
uN sð Þ
where Wi
u 2 Rn�n contains the coefficients of the numerator and N sð Þ 2 Rn is a vector of powers of s. So
Xm

i¼1

Wi
u
N sð Þ
D sð ÞUi sð Þ: ð22Þ
The term N sð Þ=D sð Þ defines n filters applied to the control input ui tð Þ. This vector of n filters of ui tð Þ can be obtained by the
following linear system
_niu tð Þ ¼ ALn
i
u tð Þ þ BLui tð Þ; niu t0ð Þ ¼ 0;

wi
u tð Þ ¼ Inn

i
u tð Þ

ð23Þ
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where niu tð Þ 2 Rn is the new state vector and wi
u tð Þ 2 Rn is its output. The matrices of (23) are defined as
AL ¼

0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. . .
. ..

. ..
.

0 0 0 . . . 1
�a0 �a1 �a2 . . . �an

26666664

37777775; BL ¼

0
0
..
.

0
1

26666664

37777775: ð24Þ
Notice that det sI � ALð Þ ¼ D sð Þ. Finally the first summation of (21) can be written in the time domain as
L�1
Xm
i¼1

adj sI � A
� 	
D sð Þ BiUi sð Þ

8<:
9=; ¼ Wunu tð Þ: ð25Þ
The matrices are defined by Wu ¼ W1
u � � � Wm

u

� 
 2 Rn�nm and nu tð Þ ¼ niu

� 	>
tð Þ � � � nmu

� �> tð Þ
� �>

2 Rnm. The second sum-

mation of (21) can be equivalently written as
L�1
Xp
i¼1

adj sI � A
� 	
D sð Þ LiYi sð Þ

8<:
9=; ¼ Wlnl tð Þ; ð26Þ
where Wl ¼ Wi
l � � � Wp

l

h i
2 Rn�np. Each Wi

l contains the coefficients of adj sI � A
� 	

Li and nil tð Þ is calculated from the next

linear system
_nil tð Þ ¼ ALn
i
l tð Þ þ BLyi tð Þ; nil t0ð Þ ¼ 0;

wi
l tð Þ ¼ Inn

i
l:

ð27Þ
So, nl tð Þ ¼ nil
� 	>

tð Þ � � � npl
� �> tð Þ

� �>
2 Rnp. Since A is Hurwitz, then the first term of the right side of (19) converges to zero

such that we can ignore it or assume that bx0 ¼ 0. The final state parametrization is
bx tð Þ ¼ Wunu tð Þ þWlnl tð Þ: ð28Þ

The next theorem establishes the optimality of the state feedback controller under state observer measurements.

Theorem 1. There exists a unique optimal control u ¼ �Kx for the LQR problem which is independent of the initial condition
x0 and satisfies
min
u2U

Z 1

t0

q x sð Þ;u sð Þð Þds ¼ x>0 Px0: ð29Þ
Proof. See Appendix A.
The state parametrization (28) still require knowledge of the parameters of the system dynamics. In the next section the

Q-learning algorithm is designed in terms of the state-parametrization.

4. Q-function new parametrization

The optimal value function (6) in terms of the state parameterization (28) is [38]
V�
n tð Þ ¼ nu tð Þ

nl tð Þ

� �>
W>

u W>
l

� 
>P Wu Wl½ � nu tð Þ
nl tð Þ

� �
¼ nu tð Þ

nl tð Þ

� �> W>
u PWu W>

u PWl

W>
l PWu W>

l PWl

" #
nu tð Þ
nl tð Þ

� �
¼ n> tð ÞPnn tð Þ;

ð30Þ
where n tð Þ ¼ n>u tð Þ n>l tð Þ� 
> 2 Rj, with j ¼ mnþ np, and
Pn ¼ W>
u PWu W>

u PWl

W>
l PWu W>

l PWl

" #
2 Rj�j:
369
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Notice that (6) and (30) are equivalent. However Pn is not a kernel matrix because is a positive semi-definite matrix with
rank n which depends on the real kernel matrix P. The Hamiltonian associated to (30) and (28) is
Hn tð Þ ¼ @Vn tð Þ
@nu

_nu tð Þ þ @Vn tð Þ
@nl

_nl tð Þ þ y> tð ÞSyy tð Þ
þu> tð ÞRu tð Þ:
Here the utility function is written in terms of the output y tð Þ and not the state x tð Þ. The HJB equation is written as
Hn tð Þ ¼ 2 n>u tð ÞW>
u PWu þ n>l tð ÞW>

l PWu
� 


Amnu tð Þf�
þBmu tð Þg þ n>l tð ÞW>

l PWl þ n>u tð ÞW>
u PWl

� 

� Apnl tð Þ þBpy tð Þ
 �
þ y> tð ÞSyy tð Þ
þu> tð ÞRu tð Þ

ð31Þ
where Am 2 Rnm�nm;Bm 2 Rnm�m;Ap 2 Rnp�np, and Bp 2 Rnp�p. Each matrix has the following form
Ak ¼
AL 0

. .
.

0 AL

2664
3775Bk ¼

BL 0

. .
.

0 BL

2664
3775; k ¼ m;p:
Applying the stationary condition @Hn

@u ¼ 0 gives the following optimal controller
u� tð Þ ¼ argmin
u2U

Hn tð Þ
¼ �R�1B>

mW
>
u P Wunu tð Þ þWlnl tð Þð Þ:

ð32Þ
Here WuBm ¼ B and (28) is satisfied. Hence the optimal control (32) is equivalent to (8).
The new Q-function can be expressed in terms of (30) and (31) as follows
Q n tð Þ :¼ V�
n tð Þ þ Hn tð Þ

¼

nu tð Þ
nl tð Þ
y tð Þ
u tð Þ

26664
37775

> Q nunu Q nunl
Q nuy Q nuu

Q>
nunl

Q nlnl
Q nly Q nlu

Q>
nuy

Q>
nly

Qyy 0p�m

Q>
nuu

Q>
nlu

0m�p Quu

2666664

3777775
nu tð Þ
nl tð Þ
y tð Þ
u tð Þ

26664
37775

¼ z> tð ÞHz tð Þ

ð33Þ
where z tð Þ ¼ n>u tð Þ; n>l tð Þ; y> tð Þ;u> tð Þ� 
> 2 Rq and H 2 Rq�q with q ¼ jþ pþm and
Q nunu ¼ 2W>
u PWuAm þW>

u PWu 2 Rmn�mn

Q nunl
¼ A>

mW
>
u PWl þW>

u PWl Ap þ Ip
� � 2 Rmn�np

Q nuy ¼ W>
u PWlBp 2 Rmn�p

Q nuu ¼ W>
u PWuBm 2 Rmn�m

Q nlnl
¼ 2W>

l PWlAp þW>
l PWl 2 Rnp�np

Q nly ¼ W>
l PWlBp 2 Rnp�p

Q nlu ¼ W>
l PWuBm 2 Rnp�m

Qyy ¼ Sy 2 Rp�p

Quu ¼ R 2 Rm�m:
The stationary condition @Qn tð Þ
@u ¼ 0 is employed to derive the optimal control as follows
u� tð Þ ¼ argmin
u2U

Q n tð Þ

¼ �Q�1
uu Q>

nuu
nu tð Þ þ Q>

nlu
nl tð Þ

� 	
¼ �R�1B>

mW
>
u P Wunu tð Þ þWlnl tð Þð Þ

¼ �R�1B>Pbx tð Þ:

ð34Þ
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Notice that the state-control pair x;uð Þ of the Q-function (10) is expanded into a tuple (nu; nl; y;uÞ. This tuple gives a large
number of basis functions which are helpful for the Q-function identification. However, the number of parameters and com-
putational effort are increased.

5. Q-learning formulation

The Q-function (33) can be expressed as
Q n tð Þ ¼ z> tð ÞHz tð Þ ¼ vech Hð Þ> z tð Þ � z tð Þð Þ ð35Þ
where H :¼ vech Hð Þ 2 R
1
2q qþ1ð Þ is the half-vectorization of the matrix H where the off-diagonal elements are taken as 2Hii0.

Since H is unknown, then the following approximator is used
bQ n tð Þ ¼ bH> z tð Þ � z tð Þð Þ ð36Þ
where bH 2 R
1
2q qþ1ð Þ are the estimates of H.

The optimal value function (30) can be written in the integral reinforcement learning (IRL) form [41,42,37] as
V�
n tð Þ ¼ V�

n t � Tð Þ �
Z t

t�T
q y sð Þ;u sð Þð Þds ð37Þ
where T 2 Rþ is a small fixed time. The following temporal difference error d tð Þ is defined in terms of the approximator (36)
as
d tð Þ :¼ bQ n t � Tð Þ � bQ n tð Þ � R t
t�T q y sð Þ;u sð Þð Þds

¼ bH>U tð Þ � Ry tð Þ:
ð38Þ
where U tð Þ ¼ z t � Tð Þ � z t � Tð Þ � z tð Þ � z tð Þ and
Ry tð Þ ¼
Z t

t�T
q y sð Þ;u sð Þð Þds 2 R:
The value iteration algorithm is designed to minimize the following cost index [25]
E tð Þ ¼ 1
2
d2 tð Þ: ð39Þ
A gradient descent update rule[43] is used as
_bH tð Þ ¼ �a @E tð Þ
@bH

¼ �aU tð Þ U> tð Þ bH tð Þ � Ry tð Þ
� 	 ð40Þ
where a 2 Rþ is the learning rate. The update rule (40) can be equivalently written as
_eH tð Þ ¼ �aU tð ÞU> tð Þ eH tð Þ ð41Þ
where eH tð Þ ¼ bH tð Þ �H denote the parametric error.

Remark 3. The time T determines the step size of the integral. Hence a large enough T must be selected to obtain a fast
convergence of the Q-learning algorithm. On the other hand, a large learning rate a could destabilize the closed-loop
performance for a large time T. Conversely, a small learning rate a exhibits slow learning and, in most cases, will not achieve
parameter convergence even the PE condition is satisfied. Therefore, an adequate selection of a and T is paramount to avoid
instability and slow learning performance.

Parameter convergence is obtained if the following persistence of excitation (PE) condition [43] on the matrix U tð Þ is
fulfilled.

Definition 1. [16] A vector U tð Þ : Rq ! R
1
2q qþ1ð Þ is persistently exciting (PE) if there exists b1; b2; T > 0 such that for all t P 0

the next relationship is fulfilled
b1Iq 6
Z t

t�T
U sð ÞU> sð Þds 6 b2Iq: ð42Þ
The above definition requires that the q� q matrix U tð ÞU> tð Þ integrated over the interval t � T : t½ � be nonsingular.
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Theorem 2. Let U tð Þ be PE. The error dynamics (41) converges exponentially to zero as t ! 1 and hence, the estimatesbH tð Þ ! H.
Proof. See Appendix A.

The Q-learning formulation (40) avoids knowledge of the linear system dynamics (1) and the parametrization matrices Wu

and Wl of (28). In this case, only measurements of the output y, the input u, and the Luenberger states nu and nl are required
to compute the optimal control policy. Here the regressor vector U tð Þ contains more signals that offer a rich enough excite-
ment for parameter convergence if the control input u fulfils the PE condition (42). However, the measurements of the states
x are avoided by increasing the dimensionality of the Q-function parametrization and hence, the computational complexity
is increased.

6. Simulation studies

In this section the performance of the proposed approach is verified by: (1) analysing the performance of the state
parametrization under the new output, (2) showing that the estimates converge to the optimal kernel solution of the LQR
problem, (3) demonstrate that the state parametrization spans the number of basis functions for the value function approx-
imation such that it improves the excitement of the regressor matrix U tð Þ.

The F-16 short period dynamics proposed in [24] is used to evaluate the proposed approach. The system dynamics is writ-
ten as in (1) with
A ¼
�1:01887 0:90506 �0:00215
0:82225 �1:07741 �0:17555

0 0 �20:2

264
375B ¼

0
0

20:2

264
375

C ¼ 1 0 0
0 1 0

� �
:

Here, x ¼ g; q; de½ �>, where g is the angle of attack, q is the pitch rate and de is the elevator deflection angles, and u ¼ dec is the
elevator command. Is easy to check that the pair A;Bð Þ is controllable and the pair A;Cð Þ is observable. The weight matrices of
the utility function were proposed as Sy ¼ I2 and R ¼ 1. Under these conditionsMs ¼ C andMr could be chosen asMr ¼ 0;1½ �>
or Mr ¼ 1;0½ �>. Mr does not affect the observer design. The desired eigenvalues of the state observer were located at
ki ¼ �2;�3;�20. The observer gain and the exact solution of the LQR problem (control gain and kernel solution) were com-
puted off-line. The obtained results were
L ¼ 0:9812 0:8099 �0:2656
0:8933 1:7225 �19:5928

� �>
K ¼ �0:1951 �0:2368 0:0021½ �

P ¼
1:3581 1:0979 �0:0097
1:0979 1:3603 �0:0117
�0:0097 �0:0117 0:0001

264
375:
The exact weight matrices of the state parametrization were
Wu ¼
�0:1634 �0:0434 0
�7:093 �3:5461 0
113:1181 96:96 20:2

264
375

Wl ¼
59:0305 22:5775 0:9812
33:0149 18:0398 0:8099
31:2209 14:8550 �0:2656

264
54:0912 20:6079 0:8933
76:6532 41:6907 1:7225
�41:3326 �60:0591 �19:5928

375:

First the performance of the state parametrization was tested. The aircraft was controlled in open-loop with a control input
of u tð Þ ¼ 0:1 sin ptð Þ. Fig. 1 exhibits the state observer parametrization (SP) results and the equivalence with the Luenberger
Observer (LO) results. As it is observed, the SP is equivalent to the LO dynamics and hence, the states estimates converge to
their real state values.

The Q-function Q x; uð Þ and Q n tð Þ were compared with the LQR solution. Whilst Q x tð Þð Þ had 9 parameters, Q n had 72
parameters (Quu and Qyy were not estimated because they were known values). A PE signal composed of a sum of exponen-
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Fig. 1. State observer parametrization results.
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tial sinusoidal functions with different time frequencies was used to excite the modes of the Aircraft dynamics in the first 15
s of the simulation time. The IRL used a fixed time T ¼ 0:05 s. The learning rate was manually tuned until the best perfor-
mance was achieved. The best learning rate was a ¼ 30. Fig. 2 shows the time evolution and stabilization of the aircraft
states.

Notice that the trajectories of the unforced aircraft dynamics (u tð Þ ¼ 0) are asymptotically stable. The estimated optimal
control laws of the Q-learning with full state feedback (QL FS) and the Q-learning with state parametrization (QL SP) were
buFS tð Þ ¼ � �0:1959 �0:2363 0:0020½ �x tð Þ;

buSP tð Þ ¼ �
1:9369
1:0424
0:0408

264
375

>

nu tð Þ þ

19:3061
8:6574
0:3842
28:7983
14:0124
0:6217

2666666664

3777777775

>

nl tð Þ:
The performance of each optimal controller under the PE signal is observed in Fig. 3. All controllers exhibit the same perfor-
mance and converge to the optimal control policy.

Fig. 4 shows the minimization of the temporal difference error (which implicitly shows parameter estimates conver-
gence) in the first ten seconds of simulation time.

The Euclidean norm of the parameter estimates error k eHk was used as performance metric. The results were

k eHFSk ¼ 9:951� 10�4 and k eHSPk ¼ 4:49� 10�2. It is clear that the parametric error was increased by incorporating new
parameters. However, the final near optimal controller is closed to the LQR solution as it is shown Fig. 3. The performance
of each controller without the PE signal is shown in Fig. 5.
Fig. 2. Time evolution of the states.
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Fig. 3. Control input comparison.
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Fig. 4. Temporal difference error minimization.
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Fig. 5. Optimal controllers comparison.
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Notice that the optimal control uSP does not have knowledge of the initial condition of the aircraft dynamics. The states
trajectories stabilize at the origin almost at the same time of the other optimal controllers. Robustness of optimal control law
was achieved by adding more basis functions and estimates at the final optimal control law. This fact provides adaptability of
the estimates to changes at the black box system.
7. Conclusions

In this paper a Q-learning algorithm for black box linear systems is proposed. A state parametrization composed by a
Luenberger observer and an utility function factorization is used to estimate the internal states of the linear system and
to define a new Q-function parametrization in terms of the input, output, and the states of the parametrization. The IRL
and gradient descent formulations are used to estimate on-line the parameters of the optimal Q-function. Stability and
uniqueness of the optimal solution are analysed using Lyapunov stability theory. Simulations are carried out to verify the
approach which shows: i) a stable states parametrization, ii) near optimal solution of the Q-learning algorithm under the
assumption of full state feedback and the state parametrization, iii) adding more basis functions and estimates to the Q-
function increases the parametric error norm and the robustness of the final optimal controller.

Future work will analyse deep learning architectures in the control context of adaptive dynamic programming and rein-
forcement learning.
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Appendix A. Proofs

.

Proof. Proof of Theorem 1. Two cases are considered: (i) the feedback control u tð Þ ¼ �Kx tð Þ in (8) and (ii) the feedback
control u tð Þ ¼ �Kbx tð Þ. In both cases the gain K is the same.

Consider case (i). Substituting the feedback control (8) in the optimization problem (14) gives
_x tð Þ ¼ A� BKð Þx tð Þ :¼ AKx tð Þ
l tð Þ ¼ MsC �MrKð Þx tð Þ :¼ MKx tð Þ ð43Þ
and the ARE (7) is reduced to a Lyapunov equation of the form
A>
K P þ PAK þM>

KMK ¼ 0: ð44Þ

Notice that with this simplification it is evident that P is the observability Gramian of AK ;MKð Þ which satisfies
Z 1

t0

kl sð Þk2ds ¼ x>0 Px0: ð45Þ
So the control u ¼ �Kx tð Þ is called the optimal control law for the optimization problem (14). For case (ii), the feedback con-
troller is rewritten as u tð Þ ¼ �Kbx tð Þ ¼ �K x tð Þ þ ex tð Þð Þ :¼ �Kx tð Þ þ v tð Þ. With this feedback controller the system (43) is
rewritten as
_x tð Þ
l tð Þ

� �
¼ AK B

MK Mr

� �
x tð Þ
v tð Þ
� �

: ð46Þ
From Lemma 1 we have that the signals u tð Þ; x tð Þ; bx tð Þ; ex tð Þ and l tð Þ are L2 t0;1½ Þ functions. So v tð Þ 2 L2 t0;1½ Þ. Moreover,
x 1ð Þ ¼ 0 because AK is Hurwitz. Therefore, the next equivalence hold
min
u2L2 t0 ;1½ Þ

kl tð Þk2 ¼ min
v2L2 t0 ;1½ Þ

kl tð Þk2: ð47Þ
By differentiating x> tð ÞPx tð Þ with respect to t gives
d
dt x> tð ÞPx tð Þð Þ ¼ 2x> tð ÞP AKx tð Þ þ Bv tð Þð Þ

¼ �x> tð ÞM>
k Mkx tð Þ þ 2x> tð ÞPBv tð Þ

¼ � MKx tð Þ þMrv tð Þð Þ> MKx tð Þ þMrv tð Þð Þ
þ2x> tð ÞM>

KMrv tð Þ þ v> tð ÞM>
r Mrv tð Þ

þ2x> tð ÞPBv tð Þ
¼ �kl tð Þk2 þ kmax Rð Þkv tð Þk2:

ð48Þ
Integrating both sides of (48) in an interval t0;1½ Þ gives
�x>0 Px0 ¼ � R1
t0

kl sð Þk2 � kmax Rð Þkv sð Þk2
� 	

dsR1
t0

kl sð Þk2ds ¼ x>0 Px0 þ kmax Rð Þ R1
t0

kv sð Þk2ds:
ð49Þ
Notice that the unique optimal solution is when v tð Þ ¼ 0, that is, u tð Þ ¼ Kx tð Þ which eventually happens since ex tð Þ ! 0 as
t ! 1 as it was stated in Lemma 1. Therefore the unique optimal control law is u ¼ �Kx tð Þ and the use of the state-
observer does not affect the final closed-loop performance. This completes the proof.
Proof. Proof of Theorem 2. Consider the following Lyapunov function
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V tð Þ ¼ 1
2
eH> tð Þa�1 eH tð Þ:
The time-derivative of (50) along the trajectories of (41) is
_V tð Þ ¼ eH tð Þa�1 _eH tð Þ
¼ � 1

2
eH> tð ÞU tð ÞU> tð Þ eH tð Þ:

ð51Þ
From (51), it is clear that eH tð Þ is an L1 function and V t0ð Þ P V tð Þ. On the other hand, boundedness of eH tð Þ implies bound-
edness of U tð Þ, that is, U tð Þ 2 L1.

Let multiply (51) by one aa�1 ¼ 1 as,
_V tð Þ ¼ � eH> tð ÞU tð ÞU> tð Þaa�1 eH tð Þ
6 �cV tð Þ

ð52Þ
where c ¼ akmin U tð ÞU> tð Þ� �
. The solution of the above differential inequality is,
V tð Þ 6 e�c t�t0ð ÞV t0ð Þ: ð53Þ

So
1
a k eH tð Þk2 6 eH> tð Þa�1 eH tð Þ ¼ V tð Þ

6 e�c t�t0ð Þ eH> t0ð Þ 1
a
eH t0ð Þ

6 1
a e

�c t�t0ð Þk eH t0ð Þk2:

Hence, the parametric error of (41) converges exponentially to zero and satisfies
k eH tð Þk 6 e�
1
2c t�t0ð Þk eH t0ð Þk ð54Þ
This completes the proof.
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