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• SOC field estimates derived from national
datasets depend on the modelling ap-
proach.

• Models with fine scale input data provide
more robust SOC estimates at field-level.

• A fine input and output model can assist
farmers adjust their management prac-
tices.

• Estimated baseline payments derived by
the tested models favour farms with high
SOC.

• Farms with low SOC are unfavoured by
models to predict their initial baseline.
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Improved farmmanagement of soil organic carbon (SOC) is critical if national governments and agricultural businesses
are to achieve net-zero targets. There are opportunities for farmers to securefinancial benefits from carbon trading, but
field measurements to establish SOC baselines for each part of a farm can be prohibitively expensive. Hence there is a
potential role for spatial modelling approaches that have the resolution, accuracy, and estimates to uncertainty to es-
timate the carbon levels currently stored in the soil. This study uses three spatialmodelling approaches to estimate SOC
stocks, which are compared with measured data to a 10 cm depth and then used to determine carbon payments. The
three approaches used either fine- (100 m× 100 m) or field-scale input soil data to produce either fine- or field-scale
outputs across nine geographically dispersed farms. Each spatial model accurately predicted SOC stocks (range:
26.7–44.8 t ha−1) for the five case study farms where the measured SOC was lowest (range: 31.6–48.3 t ha−1). How-
ever, across the four case study farms with the highest measured SOC (range: 56.5–67.5 t ha−1), both models
underestimated the SOC with the coarse input model predicting lower values (range: 39.8–48.2 t ha−1) than those
using fine inputs (range: 43.5–59.2 t ha−1). Hence the use of the spatial models to establish a baseline, from which
to derive payments for additional carbon sequestration, favoured farms with already high SOC levels, with that benefit
greatest with the use of the coarse input data. Developing a national approach for SOC sequestration payments to
farmers is possible but the economic impacts on individual businesses will depend on the approach and the accounting
method.
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1. Introduction

To reduce the effects of climate change, many countries are imple-
menting policies to achieve net-zero greenhouse gas (GHG) emissions by
2050 (Smith et al., 2012; Van Soest et al., 2021). A key policy measure in
those countries is to incentivise land managers to sequester more soil car-
bon as some sectors of the economy will remain a source of GHG even in
2050 (Chambers et al., 2016). This planned increase in soil carbon will be
in contrast to a previous historic global loss of soil carbon of about 133
Gt, primarily because of agricultural practices (FAO and ITPS, 2021). Glob-
ally it is estimated that about 1700 Gt of carbon is stored in the soil to a
depth of 1 m (Canadell et al., 2021), although the mean estimates of 27
global studies have ranged from 504 Gt to 3000 Gt (Scharlemann et al.,
2014).

Because increasing soil carbon storage can be a very effective climate
changemitigation strategy (Amin et al., 2020),many national governments
are planning to pay farmers to increase the amount of carbon stored on
their land (e.g. UK Government, 2021a). There are two practical challenges
that need to be addressed for this policy to be successful. Firstly, it is expen-
sive to develop a robust soil C baseline from which to evaluate the success
of C sequestration measures at farm level. Measurement of soil carbon in
every field can be costly and measurements can vary widely within small
areas due to the inherent soil variability. Secondly, the policy formulations
around farmer incentives need to consider both the retention of existing soil
C as well as encouraging farmers and landmanagers to sustainably increase
soil C over the medium to long term. Hence, national incentivization
schemes need to have means of producing robust, auditable information
on the amount of current levels of soil C stored on farms, and an accounting
procedure to quantify the amount of carbon that has been or will be seques-
tered.

The cost of using physical field measurements of SOC and bulk density
to establish a baseline can be high, moreover, it may be more cost-effective
to use spatial models. Such spatial models, and their underlying data sets,
are often derived from national-level soil C datasets such as national soil
maps (Veronesi et al., 2014). These need to be downscaled to farm, field
and within field-level soil C estimates which are sufficiently robust,
policy-relevant and useful for farmer decision making. Whereas there is a
substantive body of research on national and international level soil C
stocks (Adhikari et al., 2019; Bárcena et al., 2014; Chen et al., 2019; Guo
and Gifford, 2002; Wang et al., 2018); and on site-specific and soil
process-specific C sequestration processes (Baisden et al., 2002; Coleman
et al., 2017; Laskar et al., 2021; Muhammed et al., 2018; Muhlbachova
et al., 2015; Pschenyckyj et al., 2020), there is surprisingly little informa-
tion on the implication of using national-level datasets at local, farm-level
decision making, and the economic consequences of using different na-
tional datasets to support decisions at farm level. This study aims to prove
the hypothesis that there are consequences concerning policy, payments
and land users when national-level soil C information is downscaled to a
farm and a field level. To test the hypothesis, three spatial modelling ap-
proaches were developed and compared to quantify SOC stocks and their
associated uncertainty at a farm-scale. This was followed by an examination
of how the modelling approach and accounting method for carbon pay-
ments could affect farm revenue and the societal cost of promoting carbon
sequestration.

2. Materials and methods

2.1. Description of study areas and soils datasets

Existingmeasurements of SOC and bulk densitywere collated fromnine
locations to form a calibration and a validation dataset. The calibration
dataset comprised SOC and bulk density data (0–10 cm) taken at five
farms across Great Britain, following a method described by Hodson et al.
(2021). The farms or sites were Hodgson's Fields near Skeffling in Yorkshire
(SKF), the Allerton Project farm at Loddington, Leicestershire (LOD),Manor
Farm near Bath in Somerset (MAN), Elm Farm Organic Research Centre in
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Berkshire (ELM), and a farm near Swanage in Dorset (SWA). The validation
dataset included another two sites described by Hodson et al. (2021): a site
at Craibstone in Aberdeenshire (ABE) and Torr Organic Farm near
Auchencairn in Dumfries and Galloway (TORR) (Fig. 1). The validation
dataset also included SOC and bulk density obtained from Clapham Park
and Silsoe in Bedfordshire (Upson, 2014). The site at Clapham Park com-
prised areas of 14-year-old woodland, grassland, and silvopasture agrofor-
estry with widely-spaced trees planted on grassland (Upson et al., 2016).
The site at Silsoe comprised an arable area that had recently been converted
to grassland and an area of widely-spaced poplar trees with a grass
understorey (Upson and Burgess, 2013). Soil samples were taken over a
depth including 0–10 cm and analysed as described by Upson et al.
(2016) and Upson and Burgess (2013).

2.2. Spatial modelling approaches

Three spatial modelling approaches were used to predict the SOC stock
at the nine sites across four cardinal directions and to a soil depth of 10 cm.
The three approaches included different combinations of two distinct
sources of spatial soil data inputs and two output scales (Fig. 2). A depth
of 10 cm was chosen because this was the depth available in the measured
datasets used for the calibration and validation of the approaches
(Table A.1 in Appendix A).

Many existing digital soil maps describe soil organic carbon at a rela-
tively coarse scale of 1 km × 1 km. For example, in England and Wales,
field surveys between 1979 and 1983 were used to create a national soils
map (NATMAP) of soil associations, and a National Soil Inventory was
made on a 5 km× 5 km grid describing soil properties such as soil organic
content (Keay et al., 2009; Hallett et al., 2017). Using these two sources,
and information from the National Soil Inventory of Scotland (NSIS) (Lilly
et al., 2010), a map of SOC at a 1 km × 1 km scale was created for Great
Britain (Bradley et al., 2005; Gregory et al., 2014). However, it is possible
to use additional variables, such as meteorological data and altitude, and
using random forest and artificial neural networks to determine the soil var-
iability at a finer scale of 100 m× 100 m (Taalab et al., 2013). Using such
techniques, Campbell (2018) developed a dataset of soil organic content for
Great Britain using a 100 m × 100 m grid.

2.2.1. Spatial modelling approach 1
Spatial modelling approach 1 used input vector data in the form of field

delineations from the Rural Payments Agency in the UK, land cover (UK
Centre for Ecology & Hydrology, 2017), and NATMAP soil associations
(Farewell et al., 2011; Hallett, 2010). During the first step, the field parcels
were categorised in one of the four land cover groups of the national soil
map of England and Wales: arable (AR), improved grassland (IG), wood-
land and rough grazing (W/RG), and other which included water (OT)
(Farewell et al., 2011).

The next stepwas to identify the soil series that each soil associationwas
made up from and fit splines to the whole soil profile, to derive a value for
the organic carbon content (OCC) and bulk densities for the depth of 0–10
cm. In England andWales, each soil association comprises one or more soil
series with an indicative proportion of those series (Table A.2 in Appendix
A) each with a specified OCC and bulk density value to a depth of about
150 cm (Fig. A.1 in Appendix A) (Farewell et al., 2011; Hallett, 2010).
The original measurements of organic carbon used in the National Soil
Resources Institute (NSRI) dataset were made using the Tinsley loss on
ignition (LOI) method, (Kalembasa and Jenkinson, 1973) and to standard-
ise the results the LOI values (units: g (100 g soil)−1) were converted to an
organic carbon content (OCC; unit: g C (100 g soil)−1) using Eq. (1) (Ball,
1964) with a correlation coefficient of 0.99 for an LOI range of 5.8 to
88.5 g (100 g soil)−1.

OCC ¼ 0:476� LOI−1:87 (1)

The values of bulk density in the NSRI dataset were measured using
the pedogenic Soil Survey and Land Research Centre (SSLRC) method



Fig. 1. Measurements of soil organic carbon and bulk density for a calibration
dataset (blue dots) were taken on grassland areas near Skeffling (SKF),
Loddington Farm (LOD), Manor Farm (MAN), Elm Farm Organic Research Centre
(ELM), and a farm near Swanage (SWA). Validation measurements (red dots)
were taken at Craibstone near Aberdeen (ABE), Torr Organic Farm (TORR),
Clapham Park (CP), and Silsoe (S).
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(Avery and Bascomb, 1982). In order to derive a value for the OCC and bulk
densities for the same depth as the field measurements of 0–10 cm, we
fitted a relationship between OCC (Fig. A.1.a in Appendix A) and bulk
density (Fig. A.1.b in Appendix A) with depth for each land cover and soil
association. This was done using the R packages ithir (Malone, 2019), agp
(Gramacy, 2016), dplyr (Wickham et al., 2021) sp. (Pebesma et al., 2021)
and openxlsx (Schauberger et al., 2021). Creating these splines, allowed
the prediction of the SOC for any specified soil depth with a 1 cm precision
depth interval.

The overall OCC and bulk density of each soil association for the speci-
fied depthwere derived from theweightedmean average of the component
soil series using the propagate (Spiess, 2018) package in R. The SOC stock
(0–10 cm; unit t ha−1) was then derived using Eq. (2) (Taalab et al., 2013),

SOCi stock ¼ BD� OCC � di (2)

where SOCi stock is the soil organic carbon stock for the depth increment i (t
C ha−1), BD is the soil bulk density (g cm−3), OCC is the organic C content
per unit mass of dry soil (g C (100 g soil)−1), and di is the soil thickness of
the depth increment i (cm). Lastly, the SOC for each delineated field was
the multiplication product of the per hectare SOC stock with the area of
the field shapefile.

The soil associations across the nine locations were primarily clays or
loams, and none were characterised by a large gravel or stone content.
Hence it was unnecessary to include the gravel content during the
3

estimation of the SOC stocks. A diagrammatic representation of the steps
followed for this approach can be found in more detail at Appendix B,
Fig. B1.

2.2.2. Spatial modelling approach 2
Spatial modelling approach 2 (Model 2), used Digital Soil Mapping

(DSM) to create a 100 m × 100 m raster grid dataset of soil properties in
Great Britain, at set depth intervals to a depth of 150 cm, as described by
Campbell (2018). The dataset combines the above NSRI data, with repre-
sentative soil series profiles from the equivalent National Soil Inventory
from the Scotland database (Lilly et al., 2010), and data from the National
Soil Survey (NSI). The soil properties, which included LOI values and soil
and clay contents, were predicted by a combination of the spline method
described earlier (for the fixed depth intervals) and then through DSM, by
utilising the Boosted Regression Models method using climate, organisms,
relief, parent material, and landscape position and environmental covari-
ates (Campbell, 2018).

In order to obtain the soil properties for a depth of 0–10 cm, we used a
depth weighted sum of the discrete 0–5 and 5–15 cm depths and aggre-
gated the value for the 0–15 cm depth. We then produced a 100 m ×
100 m grid raster, for the depth of 10 cm with the calculated LOI, clay,
sand values, model uncertainties and the horizontal x and y coordinates
for each pixel using the rgl (Murdoch and Daniel, 2021), raster (Hijmans
et al., 2021) and sp. (Pebesma et al., 2021) R libraries. This was followed
by the production of three 100 m × 100 m grid point shapefiles that
were merged using the QGIS 3.20 (QGIS, 2021) software. For the creation
of the grid with the known LOI, clay and sand values, Thiessen polygons
from the points were created with an influence area of 1 ha (100 m ×
100m squares) and were later overlaid to the vector land cover/soil associ-
ation layer inQGIS. This resulted in every 1 ha square grid beingmade up of
a combination of land covers and soil associations (Fig. 2b).

The propagate package in R (Spiess, 2018) was used to calculate the
OCC and its uncertainty using Eq. (1). The bulk density of non-arable min-
eral soils (BDarable; g cm−3) in England was calculated using a pedotransfer
function (Hollis et al., 2012; Eqs. (3) & (4)) where OCC is measured in %,
and Sand% and Clay% is measured in terms of % sand and % clay
respectively.

BDmineral ¼ 0:69794þ ð0:750636� Exp −0:230355 OCC%ð Þ
þ 0:0008687 Sand%ð Þ− 0:0005164 Clay%ð Þ (3)

In those cases where the land use was arable, a modified equation was
used to calculate the bulk density (Eq. (4)).

BDarable ¼ 0:80806þ ð0:823844� Exp −0:27993 OCC%ð Þ
þ 0:0014065 Sand%ð Þ− 0:0010299 Clay%ð Þ (4)

Because of different environmental conditions in Scotland, Eq. (5) was
used to derive the bulk density of mineral soils (BDminScot). The equation in-
cluded the horizon thickness (Horthick; cm), the natural logarithm (log) of
the OCC measured in g C (100 g soil)−1 and the logarithm of the odds
ratio (logit) of the Clay (g clay (100 g soil)−1) as inputs (Gagkas and Lilly,
personal communication 2021).

BDminScot ¼ 1:29101− 0:33984 � log OCCð Þ þ 0:05622 � logit Clayð Þð Þ
þ 0:01259 � Horthick ð5Þ

Logit ¼ log Clay= 100−Clayð Þð Þð (6)

The propagate package in R (Spiess, 2018) was used to calculate the
bulk density and the uncertainty of each 100 m square grid by using first/
second-order Taylor expansion including the covariates. To allow compar-
ison with Model 1, a SOC stock value was derived for each land cover and
soil association combination using the land cover and soil association layer
in QGIS (Fig. 2b). These SOC stock values were distributed according to the
area of each combination within the square grid. This method allowed an



Fig. 2. Farm scale spatial modelling approaches (Models) of soil organic carbon (SOC) stocks with the datasets used to develop them illustrated for the study site at
Loddington: a) Spatial modelling approach 1 (Model 1) using land cover and coarse-scale soil association designations, and coarse-scale land parcel boundary data
derived from the Rural Payments Agency (RPA), b) Spatial modelling approach 2 (Model 2) using fine-scale 100 m × 100 m soil properties data with predicted values of
loss on ignition (LOI), clay and sand content, and fine-scale 100 m × 100 m grid squares data, and c) Spatial modelling approach 3 (Model 3) using input data from a
100 m × 100 m square grid with predicted values of loss on ignition (LOI), clay and sand content, and outputs using coarse-scale Rural Payments Agency (RPA) land
parcel boundary data.
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estimation of the uncertainty of the stocks by propagating it in all four car-
dinal directions and to a soil depth of 10 cm. A diagrammatic representa-
tion of the steps followed for this approach can be found in more detail at
Appendix B, Fig. B2.

2.2.3. Spatial modelling approach 3
Spatial modelling approach 3 (Model 3) used the same soil properties

described for the 100 m square grid raster in Model 2. However, whereas
Model 2 delineated areas using the 100 m grids, Model 3 delineated the
farm into fields that contained one or more areas of a combination of a
4

land cover and soil association (Fig. 2c). This resulted in each field parcel
having an LOI, clay and sand value that was calculated as the mean of all
the 100 m × 100 m grid squares that fell inside the field boundaries. We
then used the same calculation steps (e.g. Eqs. (3)–(6)) as in Model 2 to ob-
tain the OCC and the bulk density datasets. The calculation of the SOC for
the area of each land cover/soil association combination, for the 0–10 cm
depth, was again performed by using Eq. (2). Here, the uncertainty associ-
ated with the area (ha) was that of the UKCEH land cover classification, as
the soil associations dataset was assumed unbiased, and not having any un-
certainty related to its landscape (x, y) placement. Similar to Model 2, this



Table 1
Analytical representation of the calibration and validation performance results of the three spatial modelling approaches (models) of soil organic content (SOC). The regres-
sion equations describe the relationship between the estimated (SOCpred; t ha−1) and measured (SOCmeas; t ha−1) soil organic carbon values to the depth of 10 cm. The num-
ber of observations (n), R2, root mean square error (RMSE), and upper and lower confidence limits of the intercept and the slope, and the range of measured and estimated
values are also presented.

Model Regression equation n R2 RMSE Intercept confidence limits
(95%)

Slope confidence limits
(95%)

SOC range (t ha1)

Estimated Measured

Calibration
1 SOCpred = 0.293 SOCmeas + 28.2 19 0.39 16.0 18.2–38.1 0.1–0.5 29.0–51.6 28.1–89.7
2 SOCpred = 0.403 SOCmeas + 18.9 90 0.50 15.8 14.8–23.0 0.3–0.5 20.0–78.3 20.3–97.7
3 SOCpred = 0.436 SOCmeas + 15.6 19 0.64 17.2 6.8–24.5 0.3–0.6 26.1–57.1 28.1–89.7

Validation
1 SOCpred = 0.048 SOCmeas + 37.0 13 0.43 18.3 35.0–39.1 0.0–0.1 38.5–40.4 39.7–74.8
2 SOCpred = 0.668 SOCmeas + 12.9 54 0.68 11.0 5.5–20.2 0.5–0.8 31.6–84.1 25.9–93.6
3 SOCpred = 0.744 SOCmeas + 8.83 13 0.69 8.3 −9.6–27.3 0.4–1.1 36.0–69.8 39.7–74.8
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last method was used to estimate the uncertainty of the stocks by propagat-
ing it across the four cardinal directions and to a depth of 10 cm. A diagram-
matic representation of the steps followed for this approach can be found in
more detail at Appendix B, Fig. B3.

2.3. Comparison of spatial model outputs with measurements

The measurements from Skeffling (SKF), Loddington Farm (LOD),
Manor Farm (MAN), Elm Farm Organic Research Centre (ELM), and the
farm near Swanage (SWA) previously described, were used as calibration
datasets (Fig. 1). The measurements from Craibstone near Aberdeen
(ABE), Torr Organic Farm (TORR), Clapham Park (CP), and Silsoe
(S) were used as validation datasets (Fig. 1).

Additionally, the measurements of three fields present in the
Loddington Farm (LOD), (Fig. 5) were used to look at how well the spatial
modelling approaches were behaving when deployed in a specific farm and
the level of in-farm stored SOC variation that they could pick up.

For Models 1 and 3, where the outputs were expressed at a field scale,
we assumed that the SOC stock was constant within each land parcel. For
the calibration and validation datasets, we performed a linear regression
of the estimated values against the calculated mean of the measured SOC
of the sampled points within each land parcel of interest. For the fine man-
agement scaleModel 2, we assumed that the SOC stockwas constant within
Fig. 3. Calibration dataset: relationship between estimated and measured soil organic
(Model 2) and 3 (Model 3) across five calibration sites: Elm Farm (EL

5

the boundaries of each 100 m square grid. For the calibration and valida-
tion of all three models, the R2 and RMSE values were calculated and
used to compare the spatial modelling approaches.

2.4. Spatial accounting approach of carbon stocks

Voluntary certified carbon sequestration schemes are typically con-
cerned with i) the additionality of the change i.e. the change has only oc-
curred as a result of the certification process, and ii) the permanence of
change e.g. can the change be maintained for the next 100 years? (Grem
and Aklilu, 2016; Badgery et al., 2020). Within the UK Land Carbon Regis-
try, there are two types of units: i) pending issuance units (PIUs) which de-
scribes an anticipated carbon sequestration over 5–10 year periods in the
future, and ii) full carbon credits which are verified accumulations of car-
bon storage (Woodland Carbon Code, 2022). For the three spatial methods,
we compared the assumed SOC, and the value of the additional carbon
stored assuming i) the level of soil carbon is increased by 10 t C ha−1

over the measured value, and ii) the same level of carbon compared with
a baseline derived from the models.

To illustrate the financial and economic implications of the approaches,
we selected an indicative value of carbon of £100 (t C)−1, which lies within
a wide range of values reported in the literature. Graves et al. (2015)
estimated the value of soil carbon in terms of positive effects on crop yields,
carbon (SOC) values (0–10 cm) using spatial modelling approaches 1 (Model 1), 2
M), Loddington (LOD), Manor Farm (Man), Skeffing (SKF), and

Swanage (SWA)



Table 2
Weighted mean measured and estimated soil organic content (SOC) (0–10 cm) and
its value of sampled fields using the three spatial modelling approaches (Models).
Fields are ranked according to measured values using Model 2.

Farm/site Weighted mean SOC content value of sampled fields (t ha−1)

Model 1 Model 2 Model 3

Measured Model Measured Model Measured Model

Skeffing (SKF) 31.6 35.7 31.6 26.8 31.6 26.7
Elm Farm (ELM) 35.4 33.9 35.9 31.6 35.4 29.9
Silsoe (S) 39.7 39.8 39.7 37.6 39.7 36.9
Loddington (LOD) 43.0 48.0 40.5 40.4 43.0 39.5
Torr Organic (TORR) 41.2 39.2 48.3 44.8 41.2 41.1
Clapham (CP) 56.5 39.8 58.5 52.7 56.5 50.2
Manor Farm (MAN) 67.5 48.0 61.4 45.7 67.5 44.0
Swanage (SWA) 65.5 48.2 64.5 47.8 65.5 43.5
Aberdeen (ABE) 59.5 40.3 65.3 59.2 59.5 58.9
Mean 48.9 41.4 49.5 42.9 48.9 41.2
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soil water storage, and soil conservation, and assumed a value of £51
(t CO2e)−1, equivalent to £187 (t C)−1 for the effect of carbon sequestration
on climate change. The UK Government has provided guidance on the so-
cial value of soil carbon in reducing atmospheric CO2 for policy analysis
(Department of Energy and Climate Change, 2009). For 2000, Stern
(2007; page 323) quoted a social value of carbon (2000 prices) of £100 t
C−1, and the current mid-range estimate for policy appraisal in the UK
using 2022 prices is about £250 (t CO2e)−1, equivalent to £916 (t C)−1

(UK Government, 2021b). In December 2021, the mean quoted price on
the UK Emissions Trading Scheme and the EU Emissions Trading Scheme,
covering the power generation sector, was £68–74 (t CO2e)−1, equivalent
to £250–270 (t C)−1 (EMBER, 2021). The UK Department for Business
Energy and Industrial Strategy (2019) reported a marginal abatement cost
of reducing atmospheric CO2 levels with a mean value of £70 t C−1 for
2021 within a range of £35–105 t C−1. The price currently received in
the UK for verified woodland carbon ranges from £17 to £24 (t CO2e)−1,
equivalent to £62 to £88 (t C)−1 (Woodland Carbon Code, 2022).

3. Results

3.1. Calibration sites

Across the five calibration sites, there was a positive relationship be-
tween the measured and estimated soil organic carbon values to a depth
of 10 cm for all three spatial modelling approaches (Table 1). The lowest
correlation (R2 = 0.39) was obtained from the coarse input; coarse output
Model 1 which had a root mean square error (RMSE) of 16.0 t ha−1. Model
2, with the combination of fine input data and fine output data, had a
higher correlation (R2 = 0.50) with an RMSE of 15.8 t ha−1. The highest
coefficient of determination (R2= 0.64) was obtained usingModel 3, com-
paring fine input data with coarse outputs, with an RMSE of 17.2 t ha−1.
The 95% confidence interval of the regression equation is illustrated by
the grey shaded area in Fig. 3.

The slope of the regression equation for Model 1 was 0.293, compared
to 0.403 for Model 2 and 0.436 for Model 3, indicating that in each case
the observed variation in the estimated soil carbon contents was less than
themeasured values. For example, forModel 1 (n=19),while the averages
of the measured values within each sampled field parcel ranged from 28 to
90 t C ha−1, the estimated values only ranged from 29 to 52 t C ha1. For
Model 2, the larger number of samples (n = 90) increased the measured
range (20 to 98 t C ha1), but this was still larger than the range of estimated
values (20 to 78 t C ha1). ForModel 3 (n=19), the estimated values ranged
Fig. 4. Validation dataset: relationship between estimated and measured soil organic c
(Model 2) and 3 (Model 3), across four validation sites: Aberdeen (ABE), Clapham
Organic Farm (TOR).
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from 26 to 57 t ha1while the averagemeasured valueswithin each sampled
field parcel ranged from 28 to 90 t ha1.
3.2. Validation sites

The validation dataset also showed a positive correlation between the
estimated and the measured soil organic carbon contents (Table 1 and
Fig. 4). The poorest correlation (R2 = 0.43) was again obtained using
Model 1, while Models 2 and 3 with the fine input data had R2 values of
0.68 and 0.69 respectively. The RMSE ranged from 18.3 t ha−1 for Model
1, to 11.0 and 8.3 t ha−1 for Model 2 and 3 respectively. The value of the
slope ranged from 0.048 for Model 1 to 0.668 for model 2 and 0.744 for
Model 3. Hence the range of the estimated values was again less than the
measured values. For Model 1 (n = 13) the estimated values ranged from
38 to 40 t ha−1, while the mean measured values in each field parcel
ranged from 40 to 75 t ha−1. For Model 2 (n = 54), the estimated values
ranged from 32 to 84 t ha−1 broadly similar to the range of measured
values from 26 to 94 t ha1. For Model 3 (n = 13), the predicted values
ranged from 36 to 70 t ha−1 similar to a range of measured values from
40 to 75 t C ha1. Overall, each of the models predicted lower levels of
SOC stocks than the measured levels. The mean reduction was 19% with
Model 1, 15% for Model 2, and 14% for Model 3.
arbon (SOC) values (0–10 cm) using spatial modelling approaches 1 (Model 1), 2
Park (CP), Silsoe (S), and Torr
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3.3. Quantity and value of carbon stock across farms

The next step of the analysis was to determine how the three modelling
approaches interact with the choice of accounting method. Using 100 m×
100 m grids as an output (Model 2), the lowest mean measured SOC (0–10
cm) of 31.6 t ha−1 was at Skeffing, with the highest measured SOC value of
65.3 t ha−1 at Aberdeen. Themeanmeasured SOC (0–10 cm) at afield scale
(as used in Models 1 and 3) ranged from 31.6 t ha−1 at Skeffing to
59.5–67.5 t ha−1 at Aberdeen, Swanage and Manor Farm (Table 3).

As previously indicated, the estimated values of SOC were less than the
measured values, with a tendency of the spatial modelling approaches to
underestimate the value of SOC at sites with high soil organic carbon.
HenceModel 2 predicted a SOC (0–10 cm) of 59.2 t ha−1 at Aberdeen, com-
pared to a measured value of 65.3 t ha−1. Model 1 predicted a SOC (0–10
cm) of 40.3 t ha−1 at Aberdeen, compared to a measured value of 59.5 t
ha−1, and Model 3 predicted a SOC of 58.9 t ha−1 at Aberdeen compared
to a measurement of 59.5 t ha−1 (Table 2).

Two approaches were analysed to determine the potential receipts of
carbon payments that could be received by the farms. The first assumed
that the level of soil carbon is increased by 10 t C ha−1 over the measured
value, and the second approach assumed the same final level of carbon but
compared to the modelled values as a baseline. In approach 1, assuming a
measured increase in SOC of 10 t C ha−1 and a carbon value of £100
(t C)−1, would have resulted in a carbon value benefit of £1000 ha−1 on
each farm andwith each method. The new SOC content to achieve this var-
ied between farms, but the values from the three spatial approaches for a
given farmwere broadly similar (Table 3). Using approach 2 resulted in no-
ticeable differences between farms and spatial modelling methods. Using
Model 2 as the initial baseline, the calculated mean increase in SOC was
worth £1657 ha−1, ranging from £1010 ha−1 at Loddington to
£2570–2670 ha−1 at Manor Farm, and Swanage (Table 3). Using Model
1, the mean derived value was marginally higher than with Model 2, and
the calculated value of the assumed increased in carbon ranged from
£500 ha−1 at Loddington to £2670–2950 ha−1 at Clapham, Swanage,
Aberdeen and Manor Farm (Table 3). The mean value of the increase
(£1760 ha−1) based on Model 3 was similar to Model 1 (£1750 ha−1),
but the value was more consistent across seven of the sites ranging from
£1010–1630 ha−1, but it reached £3200–3350 ha−1 at Manor Farm and
Swanage.

3.4. Application at a farm-scale

The estimated SOC stock (0–10 cm) in t ha−1 determined by each spa-
tial modelling approach for each field at Loddington is shown in Fig. 5.
These values were used to determine the stored SOC (0–10 cm) for the
317 ha at Loddington. The estimate was 12,356 t using Model 1, 13,815 t
using Model 2, and 13,472 t using Model 3. The use of coarse data inputs
with Model 1 resulted in less within-farm variation than the two spatial
modelling approaches using input data at a finer spatial resolution.
Table 3
Assumed new SOC, based on measured values and assuming an increase in SOC of 10 t h

Farm/site Model 1 Model 2

Assumed new SOC
(t ha−1)

Value above modelled baseline
(£ha−1)

Assumed new SO
(t ha−1)

Skeffing (SKF) 41.6 590 41.6
Elm Farm (ELM) 45.4 1150 45.9
Silsoe (S) 49.7 990 49.7
Loddington (LOD) 53.0 500 50.5
Torr Organic (TORR) 51.2 1200 58.3
Clapham (CP) 66.5 2670 68.5
Manor Farm (MAN) 77.5 2950 71.4
Swanage (SWA) 75.5 2730 74.5
Aberdeen (ABE) 69.5 2920 75.3
Mean 58.9 1750 59.5

a Carbon value was assumed to be 100 £ (t C)−1.
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From the threemeasured parcels, land parcel B comprised two soil asso-
ciations, returned the highest mean SOC values and stocks in all three
models, and land parcel C the lowest. As can be observed in Table A3 in
Appendix A, the spatial modelling approachwith the combination of coarse
input data and coarse management scale (Model 1), gave similar SOC
values to all land parcels with the same land cover/soil association combi-
nation. By contrast, the use of fine-scale input data enabled the identifica-
tion of within field and between field variations.

4. Discussion

This discussion starts by examining the benefits of using fine resolution
inputs to develop farm-level inventories of SOC. It then examines sources of
error and uncertainty, the benefits of thefinal predictions being provided at
a field or 100m grid-square scale, and the implications of spatial modelling
approach use on carbon sequestration payments.

4.1. Benefits of fine resolution input data for farm-scale inventories

In the context of national targets for net-zero GHG emissions, there is a
need to develop robust farm-scale SOC inventories of soil carbon storage.
Ideally, it would be best to have standardised measured values of soil car-
bon and bulk density for each field on specified dates to specified depths,
but such data are costly in terms of time and resources. A potential cost-
effective alternative is to use validated approaches that can predict SOC
levels, with a stated level of uncertainty, moderated by spatial inputs
which can be derived more easily. For both calibration and validation
datasets, using a 100 m× 100m input dataset (Campbell, 2018) increased
the proportion of the variation in SOC that could be explained to 50–69%
(Models 2 and 3), compared to 39–43% with the coarser NATMAP dataset
(Model 1). Across the calibration and validation dataset, the RMSE associ-
ated with Model 2 (11.0–15.8 t SOC ha−1) and Model 3 (8.3–17.2 t SOC
ha−1) tended to be less than with coarse-scale Model 1 (16.0–18.3 t SOC
ha−1).

In addition to explaining a higher proportion of the variation, the slopes
of the regression equation of the estimated to measured stocks using Model
2 (0.40–0.67) and 3 (0.44–0.74) were substantially greater than that using
Model 1 (0.05–0.29). This increased slope means that Models 2 and 3 were
better able to differentiate between areas of low and high soil carbon,
which has important implications for carbon payments. For example, as
demonstrated for Loddington, Models 2 and 3 were able to pick up field-
to-field and in-field variation not captured by Model 1. Hence it seems
that the finer resolution models can enable more informed management
of soil carbon.

One reason why Models 2 and 3 were able to estimate a higher propor-
tion of variation than Model 1 is that the soil properties dataset developed
by Campbell (2018) considered the local variation of soil formation charac-
teristics such as altitude, climate, relief, parent material, and time (Jenny,
1941). In addition, the Campbell dataset accounted for spatial variation
a−1, and the valuea of the change to new SOC starting from the modelled baseline.

Model 3

C Value above modelled baseline
(£ha−1)

Assumed new SOC
(t ha−1)

Value above modelled baseline
(£ha−1)

1480 41.6 1490
1430 45.4 1550
1210 49.7 1280
1010 53.0 1350
1350 51.2 1010
1580 66.5 1630
2570 77.5 3350
2670 75.5 3200
1610 69.5 1060
1657 58.9 1760



Fig. 5. Predicted soil organic carbon (SOC) stock (t ha1) (0–10 cm) for a) each field parcel and highlighted measured parcels (in red) in the Loddington farm using spatial
modelling approach 1 (Model 1), b) each 100 m × 100 m square grid using spatial modelling approach 2 (Model 2), and c) each field parcel using spatial modelling
approach 3 (Model 3). The SOC stock values are shown using a 5 t ha−1 increment for values between 30 and 60 t ha−1 and greater increments at the extremes.
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in bulk density, OCC and the soil associations, both across the landscape
(x, y) and with depth (z). It is particularly important to account for
variations in bulk density when determining values of SOC from OCC
measurements (Taalab et al., 2013).

AlthoughModel 2 and 3 were able to explain a higher proportion of the
variation in SOC than Model 1, overall, both spatial modelling approaches
still predicted lower variation than the measured SOC values. This is dem-
onstrated by the slope values of less than 1, and large intercepts for the re-
gression line of 28.2–37.0 t SOC ha−1 for Model 1, 12.9–18.9 t SOC ha−1

for Model 2, and 8.8–15.9 t SOC ha−1 for Model 3. This means that al-
though the finer resolution dataset was better able to account for SOC
8

differences, Models 2 and 3 still tended to underestimate the SOC value
of soils high in soil carbon. The tendency for spatial models to underesti-
mate areas of high soil carbon has previously been noted by Gregory
et al. (2014).

Potential sources of error and uncertainty when comparing estimated
predictions with measured results can arise from three sources. Firstly, re-
garding the measured data, the SOC and bulk density measurements are
within typical analytical mean probable errors (2.7–5.8%) (Schrumpf
et al., 2011) and the methods and location of the measurements were also
clearly recorded. Secondly, in terms of the input data, the soil association
dataset used in Model 1 assumes definite borders making the predicted
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SOC step changes abrupt, while they are typically gradual. The 100 m ×
100 m dataset (Campbell, 2018), used in Model 2 and 3 assumed land
covers as they existed in 2000 (LCM 2000), whereas the measured values
were obtained between 2013 and 2016. However, to our knowledge, all
of the grassland sites were grassland in both 2000 and 2013–2016. In addi-
tion, the spatial modelling approaches do not address the temporal aspects
of SOC decline or increase resulting from a land cover change. To account
for such effects would require additional data on the timing of land cover
changes. Lastly, the third source of error relates to the algorithms used in
themodelling approaches. The data used to create the spatial modelling ap-
proaches with the fine-scale input data (Models 2 and 3), performed much
better in predicting the texture properties (clay and sand) than the LOI with
RMSE values equal to ±9.1 g clay (100 g soil)−1 and ±15.6 g clay (100 g
soil)−1 respectively (Campbell, 2018). Similarly, the equations used for the
calculation of thesemodels' parameters had a correlation coefficient of 0.99
for the LOI/OCC calculation (Ball, 1964) and an R2 ranging from 0.40 to
0.68, for the bulk density depending on the type and the characteristics of
soil (Hollis et al., 2012).

4.2. Benefits and costs of different carbon baseline estimates

On a traditional farm where decisions are taken at a field level, farmers
might be more interested in estimates of SOC for individual fields
(e.g., Model 3) rather than each 100 m × 100 m square grid (Model 2).
However, by using a model with the combination of fine-scale input data
and fine management scale, like Model 2, a farmer can pick up the in-
field variations and be able to adjust their management practices according
to factors like the topography and the soil type of that location. The mean
measured field sizes of the nine study areas ranged from 3.74 ha for the
farm in Swanage to 12.39 ha for the Torr Organic Farm.

4.3. Implications of spatial modelling approach choice on financial payments

Carbon farming can potentially provide an income to farmers and land-
owners who can sell the credits they earn in carbon markets where large
scale GHG emitters can purchase them to offset their own emissions. One
major challenge is that soils depending on their texture, depth and mineral
content absorb different amounts of carbon (Choudhury et al., 2016;
Jobbágy and Jackson, 2000; Yu et al., 2020). While certain practices such
as no-till and cover cropping (Hillier et al., 2011; Jian et al., 2020; Zhang
et al., 2006) can increase carbon storage, quantifying the stored amount
is crucial in order to assign the value of the change.

Although soil carbon markets are not yet fully developed, one example
includes the Emissions Reduction Fund in Australia (Australian Govern-
ment Department of Industry, Science, Energy and Resources, 2021). In
the UK, there are plans for the Sustainable Farming Incentive to pay farmers
and landowners for an increase in SOC stocks (Department for Environment
Food & Rural Affairs, 2021), and the Environmental Agency is funding a
consortium to develop a soil carbon code that will provide farmers with
an additional income (Sustainable Soils Alliance, 2021). In the US, the
Senate passed the Growing Climate Solutions Act of 2021 (US
Government, 2021) and voluntary companies such as IndigoAg and Nori
have already enabled farmers to receive carbon credit payments (Farmers
Weekly, 2021). However, as Paustian et al. (2019) highlighted there are
still no global standards for measuring, verifying or reporting SOC credits
in agricultural lands.

In the few existing farm-scale soil carbon modelling studies, predictions
are typically limited to averages over the whole farm area (Vandenbygaart
et al., 2004). In some cases, the coefficients of correlation (r) and determi-
nation (R2) are reported between the measured and predicted values, but
there is no information about the level of precision (Adewale et al., 2019;
Correndo et al., 2021; Mikhailova et al., 2016), even though model uncer-
tainty can be derived by propagating the uncertainty of input values. More-
over, rigorous approaches validated against measured values are needed in
order to avoid someone claiming carbon credits that do not occur in prac-
tice. A possible method is to develop approaches to spatially predict and
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valuate SOC that is appealing to farmers and landowners, who can both
be paid for maintaining or increasing soil carbon, while also benefiting
from improved soil health and increased crop yields.

In this paper, we assumed a carbon value of £100 (t C)−1, which is
equivalent to £27 (t CO2e)−1. This is marginally higher than prices (£17
and £24 (t CO2e)−1) received for verified woodland carbon sequestration
in the UK (Woodland Carbon Code, 2022), but less than the traded price
for carbon in the electricity generation sector (£74 (t CO2e)−1), and
about 11% of the social cost of carbon (SCC) (£250 (t CO2)−1) used in pol-
icy analysis. At present, the prices received for reducing GHG emissions
through tree and soil management are less than the penalties for emissions
in electricity generation, but over time these values should converge. Sim-
ilarly, if carbon emissions are viewed from a societal perspective, the
value of traded carbon sequestration or cost of carbon emissions should
converge to the social costs of carbon.

The choice of whether to measure or model the baseline SOC from
which to derive a value of an increase in the SOC by 10 t C ha−1 above
the initial measured value could have different financial between farms,
and the effect also varied with choice of model. Underestimation of high
SOC values, using the spatial modelling approaches, described in
Section 4.1 has important financial implications. Using Model 2, because
the mean modelled SOC (42.9 t ha−1) was less than the mean measured
value (49.5 t ha−1), an increase to a newmeasured value of 59.5 t ha−1 as-
suming the initial modelled values would result in a mean payment of
£1657 ha−1, i.e., 66% higher than if the results were only based on mea-
surements. Because Model 2 tended to show a greater underestimation of
the measured SOC at high SOC sites, using the model as a baseline meant
that the derived carbon benefit was a mean of £1296 ha−1 for the five
sites with low SOC compared to a mean of £2108 ha−1 for the four sites
with the highest SOC. Hence in this example, using the model as a baseline
favoured sites that already had a high SOC.

Using both coarse level inputs and outputs with Model 1 resulted in a
lower mean estimate of SOC of 41.4 t ha−1 compared to 42.9 t ha−1 with
Model 2. Hence assuming final measured values of SOC (that were 10 t
ha−1 above the original measured value), and baseline values based on
Model 1 would result in an assumed mean increase worth £1750 ha−1,
75% higher than the actual increase worth £1000 ha−1. Again, because
Model 1 underestimated the initial SOC of sites with high SOC values, as-
suming a modelled baseline benefited the four farms with the highest
SOC (range: £2670–2950 ha−1) than the five farms with the lowest SOC
(range: £500–1200 ha−1).

The mean values of measured and modelled SOC using Model 3 were
similar to Model 1 (Table 2), and hence the mean benefit to the farmers
of the explained increase in carbon, based on Model 3 baseline of £1760
ha−1, was 76% higher than the increase if based on measurements. How-
ever, because Model 3 was better able that Model 1 to predict the high
SOC of some high SOC sites, for seven of the nine sites, the calculated in-
crease in value ranged from £1010 ha−1 to £1630 ha−1. However, by con-
trast, Model 3 substantially underestimated the initial SOC at Manor Farm
and Swanage (by between 22.0 and 23.5 t (C ha−1)), where the assumed
increase in SOC was worth £3200–3350 ha−1.

Overall, the use of models rather than measurements to determine an
initial baseline for increases in soil carbon benefitted farmers, but such an
approach would be more costly than expected for purchasers of carbon
credits. In this example, a coefficient of 0.57–0.62would need to be applied
to mean calculated increases, so that the calculated increases matched the
actual increase of 10 t C ha−1. The appropriate coefficientwill vary depend-
ing on the increase in SOC.

4.4. Limitations of the developed spatial modelling approaches and how to over-
come them

Each of the examined spatial modelling approaches have potential lim-
itations, and there are errors and uncertainty with the measured data and
the inputs and the algorithms in the approaches. International soil carbon
accounting approaches such as used by the IPCC (2019) focus on a soil
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depth of 0–30 cm. However, in this study, the three spatial modelling ap-
proaches were only applied to a depth of 0–10 cm as this was the only
spatially explicit available measured dataset. Acquisition of complete
measured SOC data to greater depths is hard to come across due to the
labour intensity and expenses that are required. The methodology can
be applied at deeper depths, if complete spatially explicit datasets to
greater depths become available. Further research is recommended to
compare the spatial modelling approaches with measured soil carbon
values to a depth of at least 30 cm and across a wider range of land
covers.

Models 2 and 3 were based on a soil database established for land cover
at a specific date. However land cover on farms is not static, and even if the
land cover remains the same, management practices can modify the SOC
(Badgery et al., 2020; Hamburg et al., 2019; Kirk and Bellamy, 2010;
Upson et al., 2016). Hence it is likely that physical measurements will be
needed to validate current levels of SOC. However there is an argument
that havingmodelled SOC values calculated for a specific date can be useful
in establishing a common baseline from which to predict subsequent
change. In order for this to be useful, it will be important to understand
the uncertainty associated with such SOC values and the associated finan-
cial valuations. One way is to address the financial uncertainty associated
withmodelled valueswould be to apply a discounting coefficient. Although
this will reduce the financial value of estimated change, it may still be more
cost-effective for the farmer than incurring additional costs to derive amore
accurate value through other methods.

The three spatial modelling approaches developed in this study take a
screenshot of a farm or site at a specific point in time and estimate the
amount of carbon currently stored in it. The approaches do not directly de-
termine the permanence of the SOC, and changes in climate and manage-
ment may modify current levels (Badgery et al., 2020). Hence, in most
carbon sequestration schemes, current or future carbon levels eventually
need to be monitored, reported, and verified (MRV) by measurements to
demonstrate genuine abatement. The measurements associated with this
process of MRV could be collected by farmers themselves or by an
accredited organisation. The proposed field sampling will need to address
both changes in bulk density and OCC and record any changes in land
cover. Some authors have examined ways to reduce MRV costs through
the potential of non-destructive soil carbon measurements such as in-field
visible-near-infrared (vis-NIR) spectroscopic sensors and gamma-ray atten-
uation (England and Viscarra Rossel, 2018) and novel remote sensing tech-
niques (Angelopoulou et al., 2019). In practice, a combination of
approaches may be cost-effective.

5. Conclusion

In this study we have demonstrated our hypothesis that downscaling
national-level soil C information to a farm and field level has different im-
pacts depending on both the spatialmodelling approach and the accounting
method. From the three spatial modelling approaches to pay farmers for
soil carbon sequestration, the models using fine-scale resolution input
data appeared to provide a more robust estimate of the measured SOC
than the one using coarse-scale input data. Additionally, the capacity of
the fine input and output approach (Model 2) to pick up in-field variations
could assist farmers in adjusting their management practices according to
within-field variations in topography and soil type. The use of spatial
models of SOC to predict the baseline for subsequent payments based on
measured values of SOC tended to favour farms with high initial values of
SOC, because the models tended to underestimate the SOCwhen the actual
SOC was high. By contrast farms with initially low values of SOC tended to
be unfavoured by the use of models to predict their initial baseline, as the
models tended to predict SOC values close the actual values on such
farms. Further research is recommended to compare the spatial modelling
approaches with measured soil carbon values at depths greater than
10 cm and across different land covers as data become available. However,
spatially explicit measured soil carbon and bulk density data from deeper
depths are relatively rare.
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