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We present an explicit stabilised finite element method for solving Navier-Stokes-
Brinkman equations. The proposed algorithm has several advantages. First, the lower 
equal-order finite element space for velocity and pressure is ideal for presenting the 
pixel images. Stabilised finite element allows the continuity of both tangential and normal 
velocities at the interface between regions of different micro-permeability or at the 
interface free/porous domain. Second, the algorithm is fully explicit and versatile for 
describing complex boundary conditions. Third, the fully explicit matrix–free finite element 
implementation is ideal for parallelism on high-performance computers. In the last, the 
implicit treatment of Darcy term allowed larger time stepping and a stable computation, 
even if the velocity varies for several orders of magnitude in the micro-porous regions 
(Darcy regime).
The stabilisation parameter, that may affect the velocity field, has been discussed and 
an optimal parameter was chosen based on the numerical examples. Velocity stability 
at interface between different micro-permeability has been also studied with mesh 
refinement. We analysed the influence of the micro-permeability field on the regime 
of the flow (Stokes flow, Darcy flow or a transitional regime). These benchmark tests 
provide guidelines for choosing the resolution of the grayscale image and its segmentation. 
We applied the method on real Berea Sandstone micro-CT images, and proceeded the 
three-phases segmentation. We studied the influence of the micro-porosity field, using 
the well-known Kozeny-Carman relation to derive the micro-permeability field from the 
micro-porosity field, on the effective permeability computed. Our analysis shows that a 
small fraction of micro-porosity in the rock has a significant influence on the effective 
permeability computed.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Understanding the flow over porous media and calculation of permeability is important in petroleum engineering, earth 
science and engineering and environmental problems. Permeability is an intrinsic property of the complex micro-structure, 
and difficult to find the empirical correlation of the permeability with porosity or other properties [1]. Soulaine et al. [2]
studied the impact of sub-resolution porosity of X-ray micro-CT images on the permeability. By considering the micro-
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porosity at the pore scale, the Navier-Stokes equations are insufficient to solve the flow. The Darcy equation which governs 
the flow in porous media should be considered. It leads to the so-called Navier-Stokes-Brinkman equations.

With the development of micro-CT imaging techniques, we can now have access to the pore space with an increasingly 
fine resolution of different kinds of rocks such as sandstone or carbonate. It is possible to perform numerical simulations 
of the flow directly on the grayscale micro-CT images. This new approach, named digital rock physics, is recognised as a 
replacement to conventional laboratory approaches, and provides a better understanding of the rock properties. In the last 
few years, many techniques have been exploited to compute the flow directly on micro-CT images. One numerical method 
is the lattice Boltzmann method (LBM), which solves a discrete mesoscale form of Boltzmann equation directly on a voxel 
grid of segmented images. It is widely adopted in simulating flow and reactive transport in porous media due to its easy 
implementation and treatment of boundaries in complex geometries. It is also suited for parallel computing with a high 
computational efficiency. This approach has been adopted to investigate the porous flow directly on micro-CT images [3–9]. 
The other popular approach is the Finite Volume method (FVM). It allows to use an adaptive grid to reduce the number 
of grid cells rather than a regular grid on a 3D pore space image. FVM is fast for high-porosity structures, but requires 
more iterations for low-porosity structures to reach desired accuracy [6]. The convergence speed relies on the complexity 
and heterogeneity of the porous medium, and it is challenging to simulate slip boundary conditions [2,10–14]. Recently, 
Yang et al. [15] used the stabilised Finite Element method (FEM) for the simulations of absolute permeability by solving the 
Navier-Stokes equations directly on binarised micro-CT images. The method was the first efficient FEM based calculation 
for 3D micro-CT images. In this work, we proposed to extend the method [15] to solve Navier-Stokes-Brinkman equations 
on grayscale micro-CT images. Similar approaches have been developed for solving the coupled Darcy-Stokes flow on the 
reservoir scale [16–18].

Solving the flow on grayscale micro-CT images raises many numerical challenges. With the increased resolution, micro-CT 
images can contain millions or billions of voxels leading to a high computational cost. In addition, porous media are highly 
heterogeneous with discontinuity on physical properties, e.g. permeability and porosity. Dealing with different length scales 
and large (ten orders of magnitude) contrasts in permeability leads to ill-conditioned linear systems of equations and direct 
computation is often impracticable [16]. The flow is governed by Stokes equations in free regions and by Darcy equations in 
porous regions. The main numerical challenge is thus to consider interfaces between regions of different permeability. The 
pressure gradient changes drastically at the interface due to the variation of κmicro and needs to be carefully evaluated for 
accurate and stable computation. The transition zone at the interface, where the flow changes drastically, is estimated to be 
of the order of 

√
κmicro [19]. A fine resolution is required to resolve the transition zone.

In general, there are mainly two approaches to solve flow equations in porous media: two domain approach and single 
domain approach (unified formulation). In the two domain approaches, two different sets of governing equations are used 
to describe the flows in the fluid and the porous domains. Classically Navier-Stokes equations are solved in the free regions 
whereas Darcy equations are solved in the porous regions [16,19]. The set of equations are completed by interface condition 
to enforce the continuity. Various interface conditions have been developed and intensively discussed [20]. This method is 
adapted for domains where the interface between free and porous region is clearly defined with different layers. However, 
for grayscale images, this method does not appear suitable given the large number of interfaces and involves the definition 
of an interface matrix linked to porosity and permeability matrix. The second approach is the single domain method with 
an unified formulation for Stokes-Brinkman equations. It avoids imposing the interface conditions. It is the most suitable to 
solve the flow on grayscale micro-CT images given the complexity and a number of interfaces. Although the implementation 
of this proposed method is more straightforward, it may result in inaccurate flow field near the interface [19].

Many researchers have work on unified formulation of Stokes-Darcy equations using FEM [21–23]. One numerical chal-
lenge to solve the unified Navier-Stokes-Brinkman equations is that the Galerkin approximation of both the Stokes and 
the Darcy problems requires the use of velocity-pressure interpolations that satisfy the adequate inf-sup conditions [24]. 
Different interpolation pairs are known to satisfy this condition for each problem independently, but the key issue is to 
find interpolations that satisfy both at the same time. In case of Darcy flow, numerical error is introduced when using a 
discretisation with a continuous velocity field leading to an error which depends on the mesh resolution [16].

Different approaches were proposed to overcome this difficulty. Using Galerkin technique and mixed FE formulations can 
satisfy the inf-sup conditions, e.g. the combination of the Raviart–Thomas FE velocity space with piece-wise constant or 
linear pressures [16,24]. Discretising Darcy equations using elements with a continuous normal velocity component and a 
discontinuous tangential velocity component such as Raviart–Thomas elements allows to obtain a correct solution. However, 
these elements are not suitable for the Stokes case and are restricted to specific typologies of meshes. In particular this 
method cannot be directly applied on binarised three-dimensional images. The second alternative is to invoke the Darcy 
law in the mass conservation equation leading to a pressure Poisson problem, an elliptic problem that can be easily ap-
proximated by the Galerkin technique and Lagrangian elements. However as noted by [24], this technique leads to the loss 
of accuracy for the velocity and the very weak enforcement of the mass conservation equation. The third alternative is the 
use of stabilised FEM which allow the use of any velocity-pressure pair. Different stabilised finite element methods have 
been proposed in the literature such as Galerkin/Least-Squares (GLS) [25–27], Streamline-Upwind/Petrov–Galerkin (SUPG) 
[28–30], Pressure-Stabilising/Petrov–Galerkin (PSPG) [31–33], Pressure Gradient Projection (SPGP) [34,35,25] or Variational 
Multi-Scale method (VMS) [36,37,24,21,38,39], among others [40]. However as noted in [41–43], the choice of an opti-
mal stabilisation parameter is difficult, which is often based on heuristic methods and analysis of numerical results. The 
parameter affects the accuracy of the numerical approximation.
2
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In this work we propose to implement a stabilised FEM by using the Variational Multiscale (VMS) approach which 
consists in splitting the unknowns in large scale and sub-grid scale components and which has demonstrated that the same 
formulation works for the Stokes and the Darcy problems [21–23]. It allows the use of linear equal-order velocity and 
pressure interpolation defined on the same nodes which is ideal for describing the boundary condition in the simulation of 
flow through rock images. Applying the non-slip boundary conditions and constant pressure boundary conditions is simple 
and straightforward. Moreover, the use of trilinear discretisation coupled with stabilised FEM allows the continuity of both 
tangential and normal velocity at interface between regions of different micro-permeability. The explicit stabilised FEM 
allows us to solve the Navier-Stokes equations with reduced memory costs on large computational domain. In the proposed 
formulation, the use of the artificial compressibility with the introduction of a time derivative of the pressure in the mass 
continuity equation allows to treat the Darcy part implicitly and keep the whole algorithm explicit. The implicit Darcy term 
allows the use of larger time stepping making it possible grayscale simulation on digital rock containing more than 8003

voxels.

2. Governing equations

2.1. Navier-Stokes-Brinkman equations

The average Navier-Stokes-Brinkman equations are defined as [2]:

− ν

εmicro
∇2u + u · ∇u + ∇p + νκ−1

microu = f

∇ · u = 0
(1)

where εmicro and κmicro are the micro-porosity and the micro-permeability field respectively, p is the phase average pressure 
an u is the volume-average velocity (superficial average) equivalent to the Darcy velocity defined as:

u = 1

V f

∫
V f

u dV

p = 1

V f

∫
V f

p dV

(2)

where V f is the volume occupied by the fluid in the control volume V .
Generally the relations between micro-porosity εmicro and micro-permeability κmicro are in the form

g : [0;1] −→ [0;+∞[
εmicro �−→ f (εmicro) = κmicro

(3)

with

g(0) = 0

g(1) = +∞
g′ > 0

This general equation allows to switch asymptotically from the continuum behaviour, where Darcy flow is dominant 
(κmicro → 0) to the Navier–Stokes flow (κmicro → ∞) according to the cell porosity values, such as,

- when the micro-permeability εmicro = 1, we have Stokes flow and u = u
- when the micro-permeability 0 < εmicro < 1, we have Darcy flow and u = − κmicro

ν ∇p (Darcy’s Law)

From now, u and p will be denoted for phase average velocity and phase averaged pressure for simplicity.

2.2. Pseudo-compressible form

The artificial compressibility formulation [44] replaces the divergence free constraint by adding a pseudo-time derivative 
of the pressure. Navier-Stokes-Brinkman system (4) is modified to

∂t u − ν∇2u + εmicrou · ∇u + εmicro∇p + νεmicroκ
−1
microu = εmicro f

∂t p + ζ−1∇ · u = 0
(4)

If we denoted σ = νεmicroκ
−1 , then
micro

3
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∂t u − ν∇2u + εmicrou · ∇u + εmicro∇p + σ u = εmicro f

∂t p + ζ−1∇ · u = 0
(5)

In Equation (5), ζ−1 is the artificial compressibility coefficient, where a pseudo sound speed can be written as c = √
ζ−1. 

When the wave speed c → ∞, Equation (5) approximates Equation (1). A relaxation of the divergence free will allow to 
use fully explicit temporal discretisation methods. For the rock image calculation, a steady state solution is required and the 
coefficient will not affect the final solution as ∂t p → 0. With the artificial compressibility, the equations become a hyperbolic 
system, and a Courant number less than one is required for temporal stability for explicit methods. The Courant number 
restriction is written as:

�t ≤ β
�x

c
(6)

where β is a safe coefficient and �x is the minimum cell size. The porous media flow is a diffusion-dominated problem 
(Reynolds Number Re << 1), a diffusive velocity (that should be smaller than the sound wave speed c) can be defined as,

vdi f f = 2

hRe
(7)

with h is the cell size.

2.3. Weak formulation and notation

It is necessary to introduce some notations to obtain the weak form. Let’s denote by L2(
) the spaces of functions 
that are square integrable in 
 with respect to the Lebesgue measure. It is a Hilbert space with scalar product (u, v)
 ≡
(u, v) = ∫



u(x)v(x)d
. The integral is performed over a subdomain ω by (., .)ω . H1(
) denotes the Sobolev space of square 

integrable functions with square integral derivative as:

H1(
) = {u : 
 → R | u,∇u ∈ L2(
)} (8)

The solution H1
E (
) space and the test space H1

0 are defined by:

H1
E(
) = {u ∈ H1(
)d | u = u on �},

H1
0(
) = {u ∈ H1(
)d | u = 0 on �}. (9)

Furthermore, H−1(
) denotes the topological dual of H1
0(
) and 〈., .〉 the duality pairing between H−1(
) and H1

0(
). 
Then, the standard weak form of Equation (5) is the following: for each time t, find a velocity u(t) ∈ H1

E(
) and a pressure 
p(t) ∈ L2(
) such that

(∂t u, v) + ν(∇u,∇v) − (p,∇ · v) + 〈u · ∇u, v〉 + σ(u, v) = 〈 f , v〉 for all v ∈ H1
0(
)

(∂t p,q) + ζ−1(∇ · u,q) = 0 for all q ∈ L2(
)
(10)

3. Stabilised finite element

3.1. Variational multiscale formulation

We will use the VMS method developed in [44]. This method decomposes the solution u and p on a large scale compo-
nent and a sub-scale component. The large scale components uh and ph are resolved in the FE mesh, whilst the sub-scale 
components ũ and p̃ are approximated by a certain analytical approach. We decompose spaces H1

E (
) and L2(
) such 
that H1

E (
) = V h
⊕

Ṽ and L2(
) = Lh
⊕

L̃, where Ṽ and L̃ denote the infinite-dimensional spaces that complete the FE 
spaces V h and Lh to approximate the velocity and pressure in the standard Galerkin FE method. (.)h and ˜(.) denote the FE 
component and the sub-grid component, respectively. Thus, we approximate the velocity u and pressure p by

u ≈ uh + ũ p ≈ ph + p̃

where uh ∈ V h , ũ ∈ Ṽ , ph ∈ Lh and p̃ ∈ L̃ for each time t . Using this splitting in 10 yields

(∂t(uh + ũ), v) + ν(∇(uh + ũ),∇v) − (ph + p̃,∇ · v)

+〈(uh + ũ) · ∇(uh + ũ), v〉 + σ(uh + ũ, v) = 〈 f , v〉
(∂ (p + p̃),q) + ζ−1(∇ · (u + ũ),q) = 0

(11)
t h h

4
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3.2. FE scale problem

Codina [37] proposed to enforce the sub-scales to be orthogonal to the FE velocity and pressure spaces. We choose to use 
this approach in this paper. Thus, we choose the sub-grid spaces to be orthogonal in the L2(
) to the FE spaces. Therefore 
the time derivative terms (∂t ũ, vh) and (∂t p̃, qh) as well as the term σ(ũ, vh) vanish:

(∂t(uh + ũ), vh) = (∂t uh, vh); (∂t(ph + p̃),qh) = (∂t ph,qh)

σ (uh + ũ, vh) = σ(uh, vh)

the other considerations to satisfy this orthogonality in practice [44],

- The viscous term ν(∇(uh + ũ), ∇vh) is simplified as (by integrating by parts):

ν(∇(uh + ũ),∇vh) = ν(∇uh,∇vh) +
∑

K

[
(−ũ,∇2 vh)K + (ũ,n · ∇vh)∂k

]
= ν(∇uh,∇vh)

The term (−ũ, ∇2 vh)K vanishes for linear elements. The term (ũ, n · ∇vh)∂k is usually neglected in practice.
- In order to avoid derivatives of the sub-grid component, the convective component can be re-written as:

〈(uh + ũ) · ∇(uh + ũ), vh〉
= 〈(uh + ũ) · ∇uh, vh〉 − 〈ũ, (uh + ũ) · ∇vh〉

where we have used the fact that uh + ũ is divergence free when integrating by parts. As noted in [45], for simplification, 
one usually takes a ≈ uh as advection velocity.

- Again to avoid derivatives of the sub-grid scales, the mass conservation equation is re-written as:

ζ−1(∇ · (uh + ũ),qh) = ζ−1(∇ · uh,qh) − ζ−1(ũ,∇qh) + ζ−1(n · ũ,qh)∂


after integration by parts. As before, the sub-grid scale boundary term is neglected.

Taking into account the previous considerations, the equations we have are:

(∂t uh, vh) + ν(∇uh,∇vh) + 〈uh · ∇uh, vh〉 − (ph,∇ · vh) + σ 〈uh, vh〉 − 〈 f , vh〉
− 〈ũ,a · ∇vh〉 + 〈ũ · ∇uh, vh〉 − (p̃,∇ · vh) = 0

(12)

(∂t ph,qh) + ζ−1(∇ · uh,qh) − ζ−1(ũ,∇qh) = 0

where a = uh + ũ. The problem will be closed once an approximation for the sub-grid scale velocity and pressure is pro-
posed.

3.3. Local sub-grid scale problem

In this section, we discuss the subgrid scale formulation and then give the analytical approximation of the solution. As a 
result, the orthogonal sub-grid scale in an explicit VMS method will be given. The sub-grid scale equation reads (in strong 
form):

∂t ũ − ν∇2ũ + (uh + ũ) · ∇ũ + εmicro∇ p̃ + σ ũ = Ru

∂t p̃ + ζ−1∇ · ũ = R p

(13)

where Ru and R p are appropriate residuals of the FE components defined as,

Ru = −Pu(∂t uh − ν∇2uh + (uh + ũ) · ∇uh + εmicro∇ph + σ uh − εmicro f )

R p = −Pp(∂t ph + ζ−1∇ · uh)
(14)

Pu and Pp are projection operators onto the sub-grid scale spaces of velocities and pressure. In the case in which we take 
the identity operator in both cases, we recover the original VMS method proposed [39].
5
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3.3.1. Velocity sub-grid problem
Next, we consider the following algebraic approximation of this nonlinear differential system. We refer to [36] for a 

detailed exposition of the sub-grid problem approximation, in which the stabilisation parameters are estimated using a 
Fourier analysis approach. After time discretisation, using an implicit-explicit first order time integration, the approximated 
dynamic sub-grid model for the momentum equation reads as:

1

�t
ũn+1 + 1

τn
u

ũn+1 = 1

�t
ũn + Ru (15)

where 1
τn

u
= 1

τs
+ 1

τc
+ 1

τd
, which leads to:

ũn+1 = τn
ut

�t
ũn + τn

ut Ru (16)

where 1
τn

ut
= 1

�t + 1
τn

u
.

τs , τc and τd are called stabilisation parameters, associated respectively to Stokes flow, Convective flow and Darcy flow, 
defined as:

τs = (c1ν)−1h2

τc = (c2|un
h + ũn|)−1h

τd = (c3σ)−1

(17)

where c1, c2 and c3 are algorithmic constants.

Remark 1. The stabilisation parameter τ must vanish when the mesh is refined (no stabilisation is necessary for a fine 
enough mesh). Convergence is affected by the asymptotic behaviour of τ . To take into account the mesh refinement in 
τd , e.g. the cell size h, let’s introduce a characteristic length scale of the problem, that we denote by lu , as prescribed in 
[21]. Whereas for the Stokes problem its introduction is unnecessary, it will play a key role in the Darcy problem. The 
stabilisation parameter associated to the Darcy flow τd can be thus re-written as,

τd = (c3σ)−1 h2

l2u
(18)

The choice of lu was discussed in [24]. For equal velocity-pressure approximations, the best accurate choice is to take lu as 
lu = √

L0h, where L0 is the diameter of the domain 
, which leads to

τd = (c3σ)−1 h

L0
(19)

Remark 2. Since Stokes and Darcy problem are unified in this method, a comparison between τs and τd leads to:

τs

τd
∼ εmicro

hL0

κmicro
(20)

In case of Darcy flow we have κmicro � hL0 leading to τn
u ≈ τd . In case of Stokes flow, κmicro � hL0 leading to τn

u ≈ τs . The 
term τc can be neglected for stabilisation. Please note the permeability κmicro varies in space, the stabilisation parameter 
varies also in space.

Remark 3. We can treat the sub-grid scale term implicitly because it does not imply an increase in CPU cost. Note that the 
previous expressions for the sub-grid scales are required at the integration points.

3.3.2. Pressure sub-grid problem
The pressure sub-grid scale component can be treated in a similar way. This component can be found from:

1

�t
p̃n+1 + 1

τn
p

p̃n+1 = 1

�t
p̃n + R p (21)

where

τn
p = (c4ζ

−1τn
u )−1h2 = c4ζ

−1(c1ν + c2|un
h + ũn|h + c3σ l2u) (22)

τn
p is homogeneous to a time and c4 being an algorithmic constant, which leads to:
6
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p̃n+1 = τn
pt

�t
p̃n + τn

pt R p (23)

with 1
τn

pt
= 1

�t + 1
τn

p

The influence of this term has been discussed in literature. According to [38], this term is not required to get stability and 
convergence bounds for Stokes flow. However as noted in [24], for the Darcy problem, the pressure sub-grid scale cannot 
be neglected to satisfy the inf-sup conditions.

3.4. FE scale temporal discretisation

We remind that the FE scale problem reads as for linear element (see Equation (12)):

(∂t uh, vh) + ν(∇uh,∇vh) + 〈uh · ∇uh, vh〉 − (ph,∇ · vh) + σ 〈uh, vh〉 − 〈 f , vh〉︸ ︷︷ ︸
Galerkin part

− 〈ũ,a · ∇vh〉 + 〈ũ · ∇uh, vh〉 − (p̃,∇ · vh)︸ ︷︷ ︸
Stabilization part

= 0
(24)

(∂t ph,qh) + ζ−1(∇ · uh,qh) − ζ−1(ũ,∇qh) = 0

The motivation of using an artificial compressibility method is the possibility to use an explicit time integration scheme 
of the flow equations [44]. This approach has been successfully used to solve Navier Stokes equations on binarised grayscale 
images [15]. Considering the Navier-Stokes-Brinkman equations, velocity varies from several orders of magnitude. To resolve 
this problem, a fully explicit numerical scheme will require very small time steps for numerical stability.

In this paper we adopt a splitting scheme: we consider the Navier-Stokes part fully explicitly, using a simple second 
order time integration scheme, and we consider the Darcy term σ u implicitly as a source term in the momentum equation 
in this framework. The Darcy term is linear which allow to treat it easily in a fully implicit way. This leads to a more robust 
description in comparison with a full explicit approach. Similar approach to consider the Darcy term as an implicit source 
term into the momentum equation has been used in [2,46] to improve stability.

We have for the momentum equation:

M
un+1

h − un
h

�t
+ Mσ un+1

h + R H Su(un
h, pn

h) = 0

un+1
h = 1

1 + σ�t

(
un

h − �tM−1 R H Su(un
h, pn

h)
) (25)

where

R H Su(un
h, pn

h) = ν(∇uh,∇vh) + 〈a · ∇uh, vh〉
−〈ũ,a · ∇vh〉 − (ph,∇ · vh) − (p̃,∇ · vh) − 〈 f , vh〉

(26)

M is the mass matrix defined as Muh = (uh, vh), and we use the lumped approach to calculate M−1.
Similarly, we have for the mass continuity equation:

M
pn+1

h − pn
h

�t
+ R H S p(un

h, pn
h) = 0

pn+1
h = pn

h − �tM−1 R H S p(un
h, pn

h)

(27)

where

R H S p(un
h, pn

h) = ζ−1(∇ · uh,qh) − ζ−1(ũ,∇qh) (28)

M is the mass matrix defined as Mph = (ph, qh), and we use the lumped approach to calculate M−1.

Remark 1. There are different ways to build the mass lumping, but these methods are the same while using Cartesian 
grids and bi-linear element. It is known that the simple lumping approach will introduce dispersion effect [47–50]. For 
further work, we could easily modify the mass lumping approach for transient calculations, using for example the approach 
proposed in [50].

Remark 2. We use first order time integration for modelling the sub-grid scales. This is consistent since the sub-grid scales 
are multiplied by the stabilisation parameters, which are of the order of the time step size. Note that they essentially behave 
as the critical time step that would be found in a forward Euler time integration.
7
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3.5. Algorithm

The solver has been implemented using FORTRAN 90 and integrated in Python framework. The code has been parallelised 
using hybrid OpenMP/MPI. This parallelisation approach has been widely used and has demonstrated its efficiency [51–53]. 
MPI for Python package mpi4py is used for its simplicity, efficient high-level data structures and effective approach to object-
oriented programming with dynamic typing and dynamic binding. It supports modules and packages, which encourages 
program modularity and code reuse on most platforms. Besides Python codes are quickly developed, easily maintained, and 
can achieve a high degree of integration with other libraries written in compiled languages, such as FORTRAN.

The parallelisation is achieved by decomposing the whole computational domain on different subdomains, allocating 
each of these subdomains to computation resources and solving the problem (computing the flow) independently on these 
subdomains.

Algorithm 1 Massively parallel stabilised FE solver for Navier-Stokes-Brinkman system.
- Domain decomposition and initialisation of MPI communications

- Initialisation of the lumped mass matrix, porosity and permeability matrices

- Read u0
h , p0

h and set ũ = 0 and p̃ = 0

- Loop over time step n until steady state convergence is reached:

• Loop over elements, loop over integration points:

– Evaluate velocity prediction ûn+1
h and pressure prediction p̂n+1

h at time step n+1 using the second order approximation:

∗ ûn+1
h = 3

2 ûn
h − 1

2 ûn−1
h , p̂n+1

h = 3
2 p̂n

h − 1
2 p̂n−1

h

– Calculate the stabilisation parameters τn
ut , τn

pt as in (16), (23) and the residuals Rn
u , Rn

p as in (14).

– Evaluate velocity and pressure sub-grid scales:

∗ ũn+1 = τut
�t ũn − τut Rn

u , p̃n+1 = τpt
�t p̃n − τpt Rn

p

– Solve unknown variables for time step n+1 for all test functions vh and qh :

∗ R H Sn
u = 〈a · ∇ ûn+1

h , vh〉 + ν(∇ ûn+1
h , ∇vh) − (p̂n+1

h , ∇ · vh) − (p̃n, ∇ · vh) − 〈ũn
, a · ∇vh〉 − 〈 f , vh〉

∗ R H Sn
p = ζ−1(∇ · ûn+1

h , qh) − ζ−1(ũn
, ∇qh)

– MPI communications and addition of the neighbour integration value to FE nodes

– Update the velocity and pressure for the next time step n+1:

∗ (un+1
h , vh) = 1

1+σ�t ((un
h, vh) − �t R H Sn

u)

∗ (qh, pn+1
h ) = (qh, pn

h) − �t R H Sn
p

• Prescribe boundary conditions:

– un+1
h = u on ∂
u , pn+1

h = p on ∂
p

4. Numerical validation

This section is dedicated to validate the proposed algorithm. The choice of the stabilisation parameter will change the 
stability and accuracy of the solution. Therefore, in the following section, we study the sensitivity of the mesh resolution and 
the stabilisation parameter on the velocity and pressure field computed to determine the mesh resolution and the optimal 
stabilisation parameter that allow to minimise numerical errors. A particular attention is drawn to the behaviour of the 
method near interface. The accuracy of the velocity and pressure field is assessed. For all these following cases, the viscosity 
was taken to ν = 1 × 10−6 m2 · s−1. The time step was dt = h

12ν . The code was run until the flow reached the steady state. 
In their previous work, [44] set the value of c1 (stabilisation parameter for Stokes flow) at 4. Given their numerical results, 
we used this value for all the following cases. Concerning the stabilisation parameter c3 for Darcy flow, the optimal value 
has been discussed below in the one dimensional uniform flow case.

4.1. One dimensional uniform flow

The first problem considered is one dimensional uniform flow. This case allows to validate the numerical method for the 
accurate computation and the stability of the computed velocity and pressure field. The computational domain (see Fig. 1) 
was 0.05 mm wide and 0.3 mm long. The domain is divided into three equal parts: a left fluid domain, a middle porous 
domain I, and a right porous domain II. The porous domains I and II were assumed to possess a porosity of 0.9 and 0.8 
and micro-permeability of 1 × 10−11 m2 and 2 × 10−12 m2, respectively. As the boundary conditions, the inflow velocity of 
0.001m/s was given to the left side and the pressure on the right side was kept at 0. The free-slip condition was imposed 
on the top and bottom of the domain. The flow velocity and the pressure were set at zero in the domain.

In order to study the influence of stabilisation parameter, velocity and pressure distributions along the channel have been 
computed using a grid 240 × 40 (leading to a cell length 1.25 × 10−6), for different values of the stabilisation parameter c3. 
These computed distributions are compared with analytical solution in Figs. 2 and 3. For the velocity field analytical solution 
8
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Fig. 1. Geometry and boundary conditions for one-dimensional uniform flow.

Fig. 2. Influence of stabilisation parameter c3 on the computed velocity distribution along the channel for a grid 240 × 40, h = 1.25 × 10−6 m. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Influence of stabilisation parameter c3 on the computed pressure distribution along the channel for a grid 240 × 40, h = 1.25 × 10−6 m.

corresponds to the constant velocity imposed at the inlet, for the pressure field, the analytical pressure is computed using 
the Darcy’s Law.

Figs. 2 and 3 show the importance of the stabilisation parameter. For this case, if the stabilisation parameter τd is 
neglected (c3 = 0), the velocity distribution shows a variation of 20 % from analytical value. The bigger the stabilisation 
parameter c3 is, more accurate is the velocity distribution, but the velocity distribution oscillates on a longer distance from 
interface. The pressure field is less sensible to the stabilisation parameter used. Fig. 3 shows that pressure distribution is 
9
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Fig. 4. Influence of grid size on the computed velocity distribution along the channel for stabilisation parameter c3 = 3.

Fig. 5. Influence of grid size on the computed pressure distribution along the channel for stabilisation parameter c3 = 3.

stable and agreed fairly well with the prediction by Darcy’s law for stabilisation parameter c3 higher than 1. A stabilisation 
parameter c3 = 3 seems to be a good compromise between the accuracy and stability of velocity field.

In order to study the influence of the mesh resolution, velocity and pressure distribution along the channel have been 
computed using a stabilisation parameter c3 = 3, for different grid sizes. These computed distributions are compared with 
analytical solution for velocity and pressure field in Figs. 4 and 5.

As shown Fig. 4 numerical error decrease with the increase of mesh resolution. A finer mesh enough is able to limit the 
maximum error at less to 0.5% as shown Fig. 6.

The pressure field is less sensible to the mesh size. Fig. 5 shows that pressure distribution is stable and agreed fairly well 
with the prediction by Darcy’s law even for coarse mesh.

To complete this study we perform a convergence study with the mesh refinement. This allows to determine also the 
order of convergence reached by the method implemented. To do this we compare the results obtained using different mesh 
size with the fields given by the analytical expression.

To measure the error, we choose the L2 norm approximated by the discrete expression (29):

Error = ∥∥Ytheorical − Ycomputed
∥∥

2 =
√√√√ N∑

i=1

(yi,theorical − yi,computed)
2 (29)

where Ytheorical represents the analytical result. Fig. 7 shows the error of the computed velocity with the number of elements 
in the mesh in the X direction computed with (29).
10
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Fig. 6. Influence of grid size on the computed velocity distribution along the channel for stabilisation parameter c3 = 3.

Fig. 7. Velocity Error from Analytical Value (L2 norm) in Log-Scale.

As mentioned in [15], using the stabilised formulation with equal-order tri-linear elements, the error of the velocity 
gradient and pressure in the L2-norm is expected to decrease linearly with the element size, which suggests a 2nd order 
convergence of the velocity with the L2 norm if the solution is smooth. However Fig. 7 suggests a first order convergence of 
the velocity with the L2 norm. Then we considered a numerical experiment for Stokes-Brinkman flow with smooth solutions 
to check the theoretical convergence rates presented in [21]. The problem with exact solutions:

u = (2π sin(2πx) cos(2π y),−2π cos(2πx) cos(2π y)), p = cos(2πx) cos(2π y − 1) (30)

where the free Stokes flow in region 
S ≡ (0, 1) × (0.5, 1) and Darcy flow in region 
D ≡ (0, 1) × (0, 0.5). The whole 
velocity is enforced on Stokes boundary region and only normal component is constrained on Darcy region. The method 
shows a second order of convergence for Q1-Q1 pair.

Applied to micro-CT images, this case shows the importance of the micro-CT images resolution. A resolution not enough 
small will lead to instability field in heterogeneous regions, with high variations in the micro-permeability field. As explained 
by [19], the transition zone at the interface regions is estimated to be of the order of 

√
κmicro. This value can be a criterion 

to choose the appropriate resolution to resolve this transition zone and minimise the instabilities. Thus a computational grid 
fine enough is required to resolve this transition zone. For example, if the micro-porosity field κmicro is distributed around 
1 × 10−12 m2, we can think that a suitable cell length will be of the order of 

√
κmicro = 1 × 10−6 m. Given the results 

obtained for this case, a stabilisation parameter c3 = 3 will be used in the following cases.
11
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Fig. 8. Geometry and Boundary conditions.

4.2. Identification of Darcy-Brinkman, Stokes and transition regions

This case allows to determine for which micro-permeability κmicro, either Stokes part or Darcy Part is dominant, by 
comparing the effective permeability kef f computed in a channel filled with a homogeneous porous medium with Stokes 
and Darcy permeability.

The computational domain, presented in Fig. 8, was 0.5 mm square. Non-slip boundary conditions were applied on the 
top and bottom wall. The flow was moved by a body force taken to 1. The channel was filled with homogeneous porous 
media of micro porosity εmicro and micro permeability κmicro. An uniform grid 100 × 100 was used for the computation.

To compute kef f , we compute the specific discharge through the boundary at x = L as:

q = 1

L

L∫
0

uxdy (31)

Then, the effective permeability kef f of the domain can be obtained from Darcy’s law:

kef f = − qμ

∇p
(32)

where q is the discharge coefficient, μ the dynamic viscosity and ∇p the pressure gradient applied along the domain. For 
high permeability porous media we are in case of Stokes flow. This setup corresponds thus to the 2D Poiseuille flow in a 
channel, for which the effective permeability is given by [16]:

kef f = kS = L2

12
(33)

where ks is the Stokes permeability.
For low permeability porous media, we are in Darcy regime, for which the effective permeability is expected to be [16]:

kef f = κmicro (34)

Fig. 9 presents the effective permeability kef f computed in the channel for porous media of different micro-permeability 
κmicro. It shows that the proposed method is able to deal with either Stokes or Darcy flow with any distinction. It can be 
seen that we are Darcy regime for porous media whose micro-permeability κmicro is less than 1 × 10−9 m2. The proposed 
method allows to capture the effect of high permeability as well as low permeability region.

This simple case can be a criterion for the three-phase segmentation of a micro-CT images (see Section 5). Indeed, taking 
for example the Fig. 9, for micro-permeability κmicro equal to 10−8 m2 we are still in Stokes regime. Thus micro-porous 
regions with higher permeability can be considered as pore-space with an infinite permeability.
12
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Fig. 9. Computed effective permeability according to micro permeability κmicro.

Fig. 10. Geometry and boundary conditions for channel flow in Porous media.

4.3. Bounded 2D channel validation

Here we compare the proposed model with analytic solutions of Stokes–Brinkman equations (Equation (1)). It is a 
bounded 2D channel filled with homogeneous porous media. The computational domain (see Fig. 10) was 0.5 mm wide 
and 0.1 mm long and consists of 2000 cells (100 × 20). The domain is periodic along the X axis, and non-slip boundary 
conditions are applied on the top and bottom of the channel. The flow is driven by a fixed body force of (Fx , 0, 0) where 
Fx = 1. The domain is filled with a porous medium with a porosity εmicro and a micro-permeability κmicro.

Analytical velocity profile is derived from Stokes-Brinkman equation, considering u(y = 0) = u(y = L) = 0 as boundary 
condition.

When the channel is filled with a homogeneous porous medium, in Darcy regime, analytical velocity is given by [19]:

u =
(

e
−

√
εmicro
κmicro

y − 1

)
κmicro

μ
∇p (35)

where ∇p in the pressure gradient through the porous media.
13
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Fig. 11. Velocity profiles along Y axis compared with analytical value.

In case of free flow (εmicro = 1 and κmicro = ∞) the velocity field corresponds to Poiseuille velocity, given by:

u = L2

8μ
∇ P (

4y

L
− 4y2

L2
) (36)

The flow was computed in homogeneous porous media with different micro-permeability κmicro. The velocity profiles 
obtained along the Y axis are compared with analytical results in Figs. 11 and 12.

It can be seen that the proposed method matches very well with analytical solution in both Darcy-Brinkman flow and 
Stokes flow. Especially, the velocity near the wall, region with high gradient of velocity, is represented accurately. For low 
permeability, the velocity gradient is important near the wall, thus a finer mesh is needed to catch this high variation.

4.4. Poiseuille flow over a porous media

In this case we consider now a Poiseuille flow in a fluid domain over the porous medium, in which the fluid is driven 
horizontally in both the fluid domain and the porous medium with a horizontal pressure gradient. This case shows the 
model ability to deal with both Navier–Stokes flow at fluid nodes and Darcy–Brinkman flow at gray nodes uniformly. The 
main interest of this case is to analyse how the code deals with the velocity at the interface between porous and fluid 
domain. Velocity profile along the Y axis is compared with analytical value. The computational domain was 1 mm wide and 
14
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Fig. 12. Velocity profile along Y axis for εmicro = 1 and κmicro = ∞, compared with Poiseuille Velocity.

Fig. 13. Geometry and boundary conditions for Poiseuille flow over porous media.

long (see Fig. 13). Non-slip boundary conditions are applied on the top. The flow is driven by a pressure gradient taken to 
-1. We call U f and U p the velocities in the fluid domain 
F and in porous domain 
P respectively.

For this case, where U f (y = h) = 0 and U f (y = 0) = U p(y = 0), velocities in fluid and porous domain are given by [19]:

U f = ∇p

2μ
(y + h + −h2 + 2κmicro

h +
√

κmicro
εmicro

)(y − h) in 
F (37)

U p = ∇p

2μ

−h2 + 2κmicro

h +
√

κmicro
εmicro

√
κmicro

εmicro
e

√
εmicro
κmicro

y − κmicro

μ
∇p in 
P (38)

where ∇p is the pressure gradient in the domain. Analytical solution was established by using the Beavers-Joseph condition 
on interface Fluid/Porous domain, which describes the velocity profile at the interface as:

du

dy
= α

κmicro
(U f − U p) (39)

where α is a constant which depends on the porous medium (here α was taken as α = √
εmicro). A mesh convergence 

analysis has been performed using a porous medium which is assumed to have a micro-porosity εmicro = 0.99 and a micro-
permeability κmicro=1 × 10−9 m2. The code is run until the flow reached the steady state.
15



Fig. 14. Velocity profile for different grid, κmicro = 1e − 9 m2, εmicro = 0.99.

Fig. 14 shows the velocity profiles along Y axis for different grid size. It can be seen that the results become mesh 
independent for enough fine mesh.

Velocity profiles have been computed using a grid 400 × 400 for different porous medium. Results are presented in 
Fig. 15.

This figure emphasises the continuity of the tangential velocity at the interface between porous and fluid domain, for 
different magnitude of micro permeability κmicro. It shows also the ability of the code to deal with Stokes or Darcy flow 
without any distinction.

4.5. 2D cavity lid driven flow

The problem considered here is the well documented benchmark case of the lid-driven cavity flow to test the proposed 
method and the implementation in 2D. A porous domain is placed at the bottom of the cavity to allow the analysis of the 
coupled flows in porous and fluid domains. Velocity profiles at x/L = 0.5 and at y/L = 0.5 are compared with the numerical 
results obtained [54].

A scheme of the test problem configuration is shown in Fig. 16. The computational domain was 1 mm square and the 
top wall moving to the right at a velocity ux = 0.1 m.s−1, leading to a Reynolds Number of Re = 100. The bottom and two 
vertical walls are non-slip boundaries. A 200 × 200 uniform mesh was used for computation.

Fig. 17 compares velocity profiles in the cavity (without porous media) with results given by [55]. We can see that the 
velocity profiles computed in the cavity are in good agreement with data proposed by [55].

Figs. 18 and 19 present velocity vectors and streamlines, and pressure distribution in the cavity for different positions of 
the fluid-porous interface. It can be seen the behaviour of the flow at the interface fluid/porous media and how the flow 
develops in the porous media.

These different cases show the strong ability of the code to deal with Stokes and Darcy-Brinkman flow indifferently and 
that the same formulation works for the Stokes and the Darcy problems. These tests show also the behaviour of the velocity 
distribution in cases where interface is tangential or normal to the flow direction. As discussed above, the use of the right 
stabilisation parameter and a sufficient mesh resolution allow to ensure the right behaviour of the velocity distribution. The 
pressure distribution computed is less sensible to these parameters, and shows a strong stability and accuracy.

5. 3D grayscale simulations: materials, methods and result

Digital Rock Physics (DRP) uses the absorption of X-ray to obtain 3D grayscale micro-CT images. Each ‘voxel’ value 
corresponds to a measure of linear-absorption coefficients, which for a porous medium depends on the porosity and the 
composition of the solid matrix.

The samples used in this work were found in [56] which contains a set of 11 sandstone plugs from Kocurek Industries: 
Bandera Gray, Parker, Kirby, Bandera Brown, Berea Sister Gray, Berea Upper Gray, Berea, Castlegate, Buff Berea, Leopard and 
Bentheimer. In this work, we use a Berea sandstone sample obtained from a larger block. The cylindrical sample (height = 30 
mm, radius = 5 mm) was obtained by using high-resolution 3D X-ray microtomography. The image processing is explained 
in [57].
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Fig. 15. Velocity profiles along Y axis compared with analytical values.

Fig. 16. Geometry and Boundary condition for Cavity flow.
17
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Fig. 17. Computed flow velocity at cross sections of y/L = 0.5 and x/L = 0.5, Re = 100.

Step 1: The micro-CT images were divided into subsets containing 10003 cubic voxels and converted from 16-bit to 8-bit 
grayscale. An enhancement filter to equalise the contrast across multiple images have been applied. For each data set, 
the cumulative sum of grey level intensity were plotted. Only the grayscale level for which the cumulative histogram is 
under 99.8% were considered and mapped the remaining grayscale levels to the [0, 255] interval.
Step 2: To reduce image noise, on each data set a 3D non-local means filter were executed using a smoothing factor of 
1 and automatically estimated sigma parameters.
Step 3: With the filtered grayscale image, we perform a three-phase segmentation approach to identify the micro-porous 
phase by using two threshold I p and Is:
– if 0 ≤ Grayscale ≤ I p we consider pore space
– if I p < Grayscale < Is we consider microporous region
– if Is ≤ Grayscale ≤ 255 we consider solid space

The threshold values have to be chosen carefully, since better spatial resolution and variations in the threshold value 
for binarisation have been reported to change the estimated permeability significantly [58]. Two algorithms, multi-level 
Otsu algorithm and two step watershed algorithm, were proposed to determine these threshold values [59]. Kang et al. 
[58] proposed a procedure based on gray-level histogram of the micro-CT images and the experimentally measured power 
spectral density (PSD). Soulaine et al. [2] used the iterative growing-region algorithm to find these two thresholds. Sok et al. 
[60] used active contour method to perform this segmentation. Noiriel et al. [61] mentioned that for a bi-modal histogram, 
such as presented in Fig. 20, a good estimation of I p is the arithmetic mean of the two values for which frequency is 
maximum. However they noted that better estimates of the threshold values are obtained by visual inspection. There are no 
clear guidelines for choosing a threshold. Although is a practical way to use histogram to find threshold values, often visual 
inspection combined with user experience and expertise is a more robust technique.

In this work, Is was calculated by using the Isodata method available in Fiji, which led to Is = 59 for the sample 
considered. I p was found using visual inspection of the image slices on Fiji, which led to I p = 49. Finally, the fractions 
of the different phases are: 74.65%, 21.78%, and 3.57% for the solid, macro-porosity, and micro-porous phases respectively. 
Soulaine et al. [2] used a Berea sandstone found similar values for the three phases.

Micro-porosity field

Once the three phases segmentation is completed, the solid structure is mapped by the micro-porosity field, εmicro, 
which varies between 0 to 1 and corresponds to the void fraction in each voxel. If εmicro = 1, the voxel contains void only, if 
εmicro = 0, the cell is entirely composed of solid mineral. Intermediate values (0 < εmicro < 1) denote micro-porous regions 
whose characteristic length scale is below the voxel size [2]. The micro-porosity field is mapped as followed,

εmicro =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 I ≤ I p (apparent pore voxel)

Is−I
Is−I p

I p < I < Is (gray voxel)

0 I ≥ Is (apparent solid voxel)

(40)
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Fig. 18. Velocity vectors and streamlines in the cavity for different positions of the fluid-porous interface, Re = 100, Porous media, εmicro = 0.9, κmicro =
1 × 10−11 m2).

with I the grayscale intensity.

Relation between porosity and permeability

From the micro-porosity field εmicro, the micro-permeability field κmicro can be calculated. One of the most well known 
relations between micro-porosity εmicro and micro-permeability κmicro is the Kozeny-Carman (KC) relation [2,58] which 
estimates the micro-permeability κmicro as,

κ−1
micro = 180

d2

(1 − εmicro)
2

ε3
micro

(41)

where d is the characteristic length, which presents the grain size. This relation serves as an appropriate model since verifies 
relation (3). In the absence of additional information, d is associated with the voxel size.

Mesh generation

In the proposed model, the mesh derives naturally from the micro-CT images. A cell of the uniform computational grid 
corresponds to a voxel of the micro-CT images. Thus, the cell length is imposed by the micro-CT images resolution. Given 
L. Balazi Atchy Nillama, J. Yang and L. Yang Journal of Computational Physics 457 (2022) 111033
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Fig. 19. Pressure distribution in the cavity for different positions of the fluid-porous interface, Re = 100, Porous media, εmicro = 0.9, κmicro = 1 × 10−11 m2).

Fig. 20. Distribution of Grayscale Value.
20



L. Balazi Atchy Nillama, J. Yang and L. Yang Journal of Computational Physics 457 (2022) 111033
previous considerations about the importance of mesh resolution at interface between regions with different permeability, 
we estimate that a micro-CT image with a resolution of the order of the micrometer (which is generally the case) is fine 
enough. Sometimes, according the case, a mesh refinement by splitting each voxel of the micro-CT images into several cells 
of the computational grid or a micro-CT images with smaller resolution will be required.

In the proposed method velocity and pressure are defined on the nodes, while the porosity values, derived from micro-
CT images, are defined on the cells centre. We assume that the value of the porosity at one node is equal to the average of 
the porosity values of the cells surrounding it (four cells in 2D and 8 cells in 3D).

Computational settings

To compute the flow, Soulaine et al. [13] proposed to consider the solid rock as a porous media with a very small 
permeability. It was shown that no-slip boundary conditions can be reproduced at the solid walls if the permeability of the 
porous region is small enough [14]. This method is computationally expensive. In our work, to make the proposed method 
valid all over the computational domain, i.e. in the free and the solid regions and to save computational power, the cells 
describing solid regions are not computed. The boundary conditions at the pore-solid interface are set to be non-slip (zero 
normal and tangential velocity) boundary conditions [1,2].

A pressure difference, �P , is imposed on the inlet and outlet sides of the sample for the simulation. Non-slip boundary 
conditions are applied on the remaining faces [62]. The transient behaviour depends on the initial condition. We applied 
initial conditions:

u(x, t = 0) = 0

p(x, t = 0) = �P
x

L
(42)

with u the velocity, p the pressure, �P the pressure gradient magnitude and L the domain size. The fluid is assumed to be 
water with dynamic viscosity μ = 1.0 × 10−3 Pa.s and the density is ρ = 1.0 × 103 kg.m−3, the pressure drop is set to be 
1.0 Pa.

Calculation of permeability

The effective permeability tensor κ = κi j is calculated by using the Darcy equation:

κi j = J iμ

∇ P j
i, j = x, y, z (43)

where J i is the flowrate in the ith direction and ∇ P j is the pressure gradient in the jth direction.
J is computed:

J i = 1

V


∫



uid
 i = x, y, z (44)

where 
 is the whole sample considered, V
 is the whole volume of the sample and ui the flow velocity in the ith direction. 
Usually, permeability κ is expressed in Darcy with 1 Darcy = 9.869 × 10−13 m2.

MPI parallelism

MPI parallelism was used by decomposing the domain in several subdomains according a 3-dimensional Cartesian grid. 
The division was done in such way that each subdomain created contains almost the same number of cells to allow a 
good load balance. Fig. 21 and Fig. 22 illustrate the decomposition of a 3-dimensional domain with a 3 × 3 × 3 grid (27 
subdomains).

Influence of micro-porosity

To investigate the influence of micro porosity on pore-scale flow simulations, a sub sample of size 1503 was extracted 
from the entire sample and segmented into three different phases: void, solid, and micro porous. In this subdomain, the 
fractions of the different phases are: 81.8%, 15.6%, and 2.4% for the solid, macro-porous, and micro-porous phases respec-
tively.

Fig. 23 shows the maps of micro-porous regions of the considered segmentation. It can be seen that the micro-porous 
regions are located around the pore spaces. The micro-porous regions allow to increase the size of the pore-throats or allow 
to connect pore spaces that were initially isolated. The micro-porous region is assumed to have the same micro-porosity 
εmicro. The micro-permeability κmicro associated is estimated using the Kozeny-Carman relation (41).
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Fig. 21. Schematic description of a 3-dimensional domain decomposition using 27 subdomains (3 × 3 × 3 Grid), numbered from 0–26.

Fig. 22. Schematic representation of the MPI communications for the process of rank 0 in a 3 × 3 × 3 grid (27 subdomains).

Table 1
Summary of simulation results for different micro-porosity values.

εmicro 0 0.25 0.5 0.75 0.9 1

κmicro (mD) 0 0.79 14.2 192 2080 ∞
κxx 289 338 373 405 435 462

Several simulations are performed for εmicro ranging from 0 to 1. For these two extremes, the computed permeability 
is 289 and 462 mD, respectively. These two limit values of εmicro denote specific situations, whereby the micro-porous 
phase is identified as fully solid (εmicro = 0) or fully void (εmicro = 1). Table 1 presents the computed permeability, κxx for 
different values of the micro-porosity εmicro. As expected, κxx increases when the micro-porosity increases in the micro-
porous region. The results clearly show that the computed absolute value computed depends a lot on the segmentation. 
Different segmentation can lead to computed permeability up to 50% larger or smaller. For this subsample, the permeability 
value obtained when the micro-porosity is distributed and proportional to the gray level lies between the bounding values 
and was estimated to be 394 mD. It can be seen that even for a micro-porous region that represents 2.4% of the total 
volume, its influence on the computed permeability is not negligible. Fig. 24 shows the convergence history and time steps 
required. Compared with standard implicit solver, it requires more iterations steps but less memory. From the practical point 
of view, these approaches will be attractive for the image simulation 5003 − 10003, which can be handled in a workstation.
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Fig. 23. Map of the micro-porous regions for subsample (black = solid, yellow = void, green = micro-porosity).

Fig. 24. Computed Permeability with homogeneous micro-porous region.
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Table 2
Properties of the subsamples considered.

Size Solid (%) Macro-porosity (%) Micro-porosity (%)

Subsample 1 5003 79.2 18.4 2.4

Subsample 2 5003 79.5 18.0 2.5

Table 3
Effective Permeability Kxx (mD) computed.

εmicro = 0 εmicro = 1 εmicro based on Grayscale

Subsample 1 400 597 519

Subsample 2 369 564 485

Fig. 25. Computed Permeability.

Results with the use of a distributed micro-porosity field

The situation presented above allows to emphasise well the influence of micro-porous region on the computed per-
meability. But considering the same micro-porosity εmicro in the entire rock sample is not realistic. In general, the micro-
porosity field takes values that are heterogeneously distributed in the rock. In this section, the micro-porosity field, εmicro, 
is defined with the gray level of the micro-CT images using the relation (40). The micro-permeability κmicro associated is 
estimated using the Kozeny-Carman relation (41) (Table 3). We have extracted different subsamples of size 5003 whose 
properties are summarised in Table 2.

These simulations show that although this Berea Sandstone contains only 2% of micro-porosity, its influence on computed 
permeability is already significant. A higher impact is expected for complex multi-scale rocks such as carbonates that are 
likely to present a high ratio of micro-porosity (up to 10%), shown in Fig. 25.

Fig. 26 displays the micro-porosity distribution, the velocity–magnitude distribution and the pressure field in the void 
space taken in the flow direction. Fig. 26a shows that micro-porous region (in blue) allows to widen or linked macro-porous 
region (in red) allowing the development of the velocity and pressure field in these regions.

Influence of the subsample considered

In this section we compare the influence of the domain size considered. For this we consider two concentric subsamples 
of size 5003 and 8003 respectively (see Fig. 27 and Table 4).

For the sub-sample 3, the effective permeability computed based on grayscale is 559 mD, while for the sub-sample 2, 
the effective permeability computed based on grayscale is 485 mD. The results show clearly that the sample considered is 
not homogeneous. It shows the difficulty to determine a right representative element of volume (REV) of the whole rock 
field. However, all simulations done were consistent with computed permeability varying around 400-500 mD.

In this work, the computational grid was directly derived from the micro-CT images (voxel grid and computational grid 
are the same) and we assumed that the resolution of the micro-CT images used was fine enough to provide accurate re-
sults. However, it is known that the permeability computations of micro-CT images are very sensitive to the image and 
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Fig. 26. Plot of the simulation results for Subsample 1 (5003), slice 250 × 250 in the flow direction.
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Fig. 27. Whole domain (10003) in blue and the 2 subsamples considered: subsample 2 (5003) in red and subsample 3 (8003) in green.

Table 4
Properties of the subsamples considered.

Size Solid (%) Macro-porosity (%) Micro-porosity (%)

Subsample 2 5003 79.5 18.0 2.5

Subsample 3 8003 78.4 19.0 2.6

mesh resolutions. Indeed, as noted by [19] the cell size has to be of the order of 
√

κmicro to resolve the transition zone 
at the interface, where the flow changes drastically. Further work has thus to be done to assess the permeability accuracy 
dependence with the mesh resolution. For example, [63] investigated on the effects of image resolution and numerical reso-
lution on computed permeability using FEM pore-scale simulations. They show how changes in computed permeability are 
affected by image resolution (which dictates how well the pore geometry is approximated) versus grid or mesh resolution 
(which changes numerical accuracy). Their results show that performing grid coarsening on the FEM mesh caused a reduc-
tion in computed permeability. However, they noted that in their case this effect was related to tightening of the pore space 
rather than loss of numerical accuracy. They concluded that a due attention must be paid to the quality of the images that 
are provided for running pore-scale simulations. The quality of these images is one of the most important factors affecting 
the quality of the simulation results. It might be a good practice to generate images with different resolutions and check 
the influence of image resolutions on the results. For a given image, it would be great to carry out the simulations using 
different computational grids and check the dependence of the results on it.

Only one a Berea sandstone sample is assessed. This kind of rock is known to contain a low fraction of sub-voxel porosity, 
but its influence on permeability computation is already significant [2]. A higher impact is expected for complex multi-scale 
rocks such as carbonates that are likely to present a higher ratio of micro-porosity, and hence that may display a significant 
fraction of sub-voxel porosity, even when the samples are scanned with high resolution [64,65].

6. Conclusions

We proposed a new method to solve the Navier-Stokes-Brinkman system on grayscale micro-CT images. The method was 
based on a fully explicit stabilised finite element solver for the Navier-Stokes-Brinkman flow in which the Darcy term was 
treated implicitly to avoid time stepping stability restriction. This novel algorithm shows excellent efficiency and numerical 
stability especially near the interface of fluid-porous region where large velocity/pressure gradient can be observed. The 
proposed model has been benchmarked by several well-known 2-dimensional cases and the influence of the stabilisation 
parameter and the grid size have been studied.

We solved the 3-dimensional grayscale micro-CT images up to 8003 using hybrid OpenMP/MPI implementation. The 
explicit node–based algorithm is ideal for image-based calculation. The memory cost of this algorithm is low due to the 
trilinear continuous velocity space and matrix-free implementation. We used the model to estimate absolute permeability 
on micro-CT images of a Berea Sandstone. The influence of micro-porosity has been studied on the effective permeability 
computed. It has been shown that even a small fraction of micro-porous regions has a significant impact on the effective 
permeability computed.
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