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Developing sensitive and reliable methods to distinguish normal and abnormal brain states is a key neuroscientific 

challenge. Topological Data Analysis, despite its relative novelty, already generated many promising applications, 

including in neuroscience. We conjecture its prominent tool of persistent homology may benefit from going be- 

yond analysing structural and functional connectivity to effective connectivity graphs capturing the direct causal 

interactions or information flows. Therefore, we assess the potential of persistent homology to directed brain 

network analysis by testing its discriminatory power in two distinctive examples of disease-related brain con- 

nectivity alterations: epilepsy and schizophrenia. We estimate connectivity from functional magnetic resonance 

imaging and electrophysiology data, employ Persistent Homology and quantify its ability to distinguish healthy 

from diseased brain states by applying a support vector machine to features quantifying persistent homology 

structure. 

We show how this novel approach compares to classification using standard undirected approaches and original 

connectivity matrices. In the schizophrenia classification, topological data analysis generally performs close to 

random, while classifications from raw connectivity perform substantially better; potentially due to topographi- 

cal, rather than topological, specificity of the differences. In the easier task of seizure discrimination from scalp 

electroencephalography data, classification based on persistent homology features generally reached comparable 

performance to using raw connectivity, albeit with typically smaller accuracies obtained for the directed (ef- 

fective) connectivity compared to the undirected (functional) connectivity. Specific applications for topological 

data analysis may open when direct comparison of connectivity matrices is unsuitable - such as for intracranial 

electrophysiology with individual number and location of measurements. While standard homology performed 

overall better than directed homology, this could be due to notorious technical problems of accurate effective 

connectivity estimation. 
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. Introduction 

The general idea that mathematical approaches from geometry and

lgebraic topology can provide powerful tools and methods for the un-

erstanding of complex data is fairly recent (see, e.g., ( Carlsson, 2009;

delsbrunner et al., 2002; Frosini, 1990; Zomorodian and Carlsson,

005 )) and has lead to the birth and advancement of a completely

ew research branch, Topological Data Analysis (TDA). This is a fast

rowing and promising field at the intersection of Data Analysis, Alge-

raic Topology, Computational Geometry, Machine Learning and Statis-
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ics. Its main advantage is the possibility to analyse data by looking

t its shape and underlying geometric structures arising from high-

imensional relations; this goal is achieved by providing a strong math-

matical framework and manageable quantitative tools such as homol-

gy theory ( Hatcher, 2000; Munkres, 1984 ). The structure of the data

s then qualitatively and quantitatively assessed in the form of topolog-

cal features (e.g. connected components, voids, tunnels or loops). This

pproach has been already widely applied and finds nowadays applica-

ions in many science domains dealing with various complex systems

 Chazal and Michel, 2017; Wasserman, 2018 ). 
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The human brain and its dynamical activity represents one of the

rchetypal examples of complex systems. Indeed, due to both the intri-

ate nature of the structure of connections of its constituent units, as

ell as the highly nonlinear and potentially chaotic dynamics within

ach of these units, it is rightly considered a suitable target example

ystem for application of such complex system methodology. In partic-

lar, the study of the complex patterns of brain network topology has

ecome a flourishing areas of research since the 2000 ′s ( Bullmore and

porns, 2009 ). 

There are three main approaches to assess the interactions between

rain regions: structural, functional, and effective connectivity ( Friston,

994; Friston, 2011; Park and Friston, 2013 ). Structural connectivity is

he pattern of physical connections between the considered brain re-

ions, while functional and effective are based on neuronal activity sig-

als. Functional connectivity is defined as the stochastic dependence

etween remote neurophysiological events and provides thus a non-

irectional (symmetric) measure of brain interactions. On the contrary,

he effective connectivity is defined as the direct influences that one

egion exerts over another. 

The most frequently used measure of functional connectivity is the

linear) Pearson correlation, which provides an accurate functional con-

ectivity estimate for functional magnetic resonance imaging data under

ommon processing settings ( Hlinka et al., 2011 , Hartman et al., 2011 ).

ne of the applications in clinical neuroscience is the characterization of

unctional brain alterations in various diseases. The classification power

f FC has been reported for schizophrenia ( Lynall et al., 2010 ), multi-

le sclerosis ( Zurita et al., 2018 ), epilepsy ( Liao et al., 2010 ), and many

ther brain diseases and states. On the other hand, effective connectiv-

ty, while in principle more informative with respect to the underlying

ynamics since it specifies the direct influences among the brain re-

ions, is more scarcely applied in practice, presumably since it is also

uch harder to estimate and the methods thus typically can handle only

maller networks ( Smith, 2012 ). While there are many competing meth-

ds for estimation of effective connectivity offering different trade-off

etween advantages and drawbacks ( Valdes-Sosa et al., 2011 ), there is

 general agreement that if estimated well, they would provide valuable

xtra information on top of functional connectivity ( Smith, 2012 ). 

While a connectivity matrix characterizes only the strengths of all

air-wise interactions, more complex characterizations of the whole net-

ork as well as specific nodes thereof can be provided. This can be done

y application of graph-theoretical tools to the graph constructed by us-

ng the connectivity matrix as an adjacency matrix ( Telesford et al.,

011 ). However, the graph-theoretical analysis of brain connectivity

uffers from multiple technical difficulties. One of them is that the clas-

ical approach requires applying a threshold to select which connections

re relevant, i.e., strong enough to constitute an edge in the graph. There

re multiple heuristics to deal with the threshold selection or even gen-

ralization of many graph metrics to weighted graphs, however no single

ptimal solution is available. Among other attempts Gallos et al. (2012) ,

 very attractive way to side-step the problem and consider all possible

hresholds at once, without losing any information, is thus offered by

lready established methods of TDA, such as Persistent Homology. 

Persistent Homology (PH) is one of the main tools adopted in TDA and

s a multi-scale adaptation of the classical homology theories studied in

lgebraic Topology. It allows a computation of the persistent topolog-

cal features of a space at all different resolutions (here: densities of

he thresholded connectivity graph), while revealing the most essen-

ial ones. In the PH-approach to complex networks, instead of focus-

ng on a single thresholded graph, one analyses a family of simplicial

omplexes indexed by a (filtration) parameter, by considering all the

ossible thresholds at once. 

Based on a robust mathematical theory and being stable with respect

o small noise perturbations ( Cohen-Steiner et al., 2007 ), PH has pro-

ided a novel qualitative and quantitative tool to study complex data (in

he form of either point clouds, time series or connectivity networks). Its

se has already been reported in many different fields: in neuroscience
2 
nd neurological disorders ( Lee et al., 2011b ), in endoscopy analysis

 Dunaeva et al., 2016 ), angiography ( Bendich et al., 2014 ), pulmonary

iseases ( Brodzki et al., 2018 ), finance ( Gidea, 2017 ), fingerprint clas-

ification ( Giansiracusa et al., 2019 ), image classification ( Dey et al.,

017 ), to name few applications. The pipeline involving Persistent Ho-

ology in network analysis usually starts by considering (undirected,

eighted) graphs as input. However, in many real world examples as in

he study of effective connectivity, the input graphs are also equipped

ith a richer structure on the edges, namely the direction from the

ource node to the target. As directed graphs theoretically hold more

nformation than their undirected counterparts (see e.g., Section 3.4 ),

n extension of the PH pipeline to asymmetric networks might pro-

ide a more refined family of invariants. Some novel approaches have

lready been proposed in this direction by Masulli and Villa (2016) ,

eimann et al. (2017) , Chowdhury and Mémoli (2018) , Turner (2019) ,

ktas et al. (2019) , Lütgehetmann et al. (2020) , although not yet widely

dopted; notably the early applications include the analysis of brain

tructural connectivity networks ( Reimann et al., 2017 ). 

The developments in the fields of brain connectivity analysis and

DA call for their combined utilization. Many attempts have been done

n this direction, for reviews see ( Lee, 2019; Phinyomark et al., 2017;

olo et al., 2018 ). In this work, with the aim of investigating the promise

f applications of topological analysis to effective connectivity net-

orks, we provide a pioneering example of such endeavour for the task

f classifying altered brain states in several settings, while we assess the

mprovement provided by these methodologies in contrast to dealing

ith the connectivity directly, or applying the TDA approach to func-

ional connectivity data only. 

To this end, we construct functional and effective connectivity ma-

rices (in short, FC and EC) derived from brain activity time series; these

re obtained by two most common functional neuroimaging modal-

ties – (intracranial) electroencephalography ((i)EEG) and functional

agnetic resonance imaging (fMRI) – using two prominent examples

f disconnectivity-related brain diseases: epilepsy and schizophrenia.

or epilepsy, for a group of patients, we distinguish between ictal and

re-ictal connectivities. For schizophrenia, we classify patients from

he matching neurotypical controls. Following previous approaches Lee

t al. (2011b, 2012) ; Merelli et al. (2016) ; Stolz et al. (2018) , we cal-

ulate the persistent homology of the (directed) filtrations associated to

he brain functional (or effective) connectivity networks, and compute

he associated PH-features (further referred to as directed persistent ho-

ology ). In order to quantify their informative power, we apply a state-

f-art classifier (a support vector machine, SVM), with the task to distin-

uish between healthy and diseased brain states. We use a range of most

ommon quantitative PH features, namely Persistence Landscapes (PL)

ubenik and D ł otko (2017) , Persistence Images (PI) Adams et al. (2017) ,

ersistent Entropy (PE) Rucco et al. (2014) and Carlsson Coordinates (CC)

dcock et al. (2013) . We compare the results with those obtained, under

he same tasks, by a naive (SVM) classification applied to the FC and EC

atrices directly. 

The directed homology pipeline followed in this work was intro-

uced in Reimann et al. (2017) with applications in the study of the

tructural and functional connectivity in rat brain slices. This was also

he first, and the only one known to the authors, application of this ap-

roach in neuroscience. 

Note that while the application of directed persistent homology anal-

sis to human brain effective connectivity is novel, it builds upon the

ools and ideas developed and applied recently in the field. For ex-

mple, the undirected variants of the TDA features have been shown

o be promising in applications to Alzheimer ( Kuang et al., 2019b;

achauri et al., 2011 ), ASD ( Wong et al., 2016 ), depression ( Khalid et al.,

014 ), Parkinson ( Garg et al., 2016 ), or in the study of childhood stress

 Chung et al., 2014 ). The first work, applying PH-methods to brain net-

orks constructed by using Pearson correlation is due to Lee (see Lee

t al., 2011b; 2012 ) in the case of patients affected by ADHD. Among

revious approaches in epilepsy, a persistent homology analysis has
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een already reported in ( Merelli et al., 2016 ), where (weighted) PE

s employed in order to detect the transition between the pre-ictal and

ctal states, or in ( Piangerelli et al., 2018; Wang et al., 2015 ), where a

lassification analysis in epilepsy, based on PLs and PE, has used differ-

nt filtrations (sublevel-based or lower star filtrations). In ( Choi et al.,

014 ), a study of the epileptic abnormality is given in rat models. Within

chizophrenia applications, the only analysis applying methods from

DA is, to the authors knowledge, the work ( Stolz et al., 2018 ). To pro-

ide more insight into the promises and pitfalls of the application of

irected persistent homology analysis of brain (effective) connectivity,

he current study goes beyond a single method application, and pro-

ides comparisons with the application of (standard) persistent homol-

gy of undirected networks, as well as with the application of machine

earning directly to the input connectivity matrices. This, together with

ackling three types of neuroimaging data across two brain different

ysconnectivity conditions, namely through an easier classification task

f ictal versus pre-ictal brain states, and a more compelling one, between

chizophrenia patients and healthy controls, should provide a richer pic-

ure concerning the challenges of TDA application to brain connectivity

ata analysis. 

Our key observation is that standard TDA applied to effective con-

ectivity is in principle able to discriminate diseased from healthy brain

tates, comparably to (previously used combinations of) TDA applied to

unctional connectivity. However, in many practical situations such as

e demonstrate in the results section for the application to schizophre-

ia classification, the use of raw functional connectivity features is ad-

antageous. This may be due to topographical, rather than topolog-

cal, specificity of the particular changes related to schizophrenia –

hese topographically (regionally/spatially) specific changes are natu-

ally picked up by classifiers using the raw functional connectivity ma-

rices; while the topological methods effectively ignore the spatial in-

ormation, as they are invariant with respect to permutation of nodes –

 fact that may be commonly overlooked when considering the applica-

ions. However, in yet another scenarios, the direct connectivity compar-

son is not straightforwardly applicable, such as for inter-subject anal-

sis of intracranial electrophysiology recordings in epilepsy, not only

ue to potentially different spatial location of the brain alterations, but

lso due to the technical challenge of inter-individual differences in the

umber and location of the measurement sites. 

With the idea that the topological pipeline may suffer from hetero-

eneous subject biases, a probable cause of lower general performances,

e have also introduced an alternative methodological pipeline reduc-

ng the underlying heterogeneity. We observe that this variation of the

ipeline shows a remarkable increment of the performances in the TDA-

pproach, when applied to the EEG dataset. 

The paper is structured as follows. In Section 2 we recall the defi-

ition of directed Persistent Homology. In Section 3 , we describe our

ipeline and the common featurizations adopted in the classification

asks; we report our results in Section 4 . In Section 5 , we discuss our con-

ributions. In the Appendix A , we review some mathematical concepts

n more detail, including simplicial complexes, filtrations and (persis-

ent) homology groups. Appendix B and Appendix C provide additional

etails concerning the data selection and processing. We conclude with

ome additional results ( Appendix D ) and a statistical comparison of PH

ersus DPH ( Appendix F ). 

. Persistent homology of directed networks 

In this section, following Reimann et al. (2017) and

ütgehetmann et al. (2020) , we review the classical notions of

implicial complexes and persistent homology groups adapted to the

irected framework, keeping always in mind the directed networks as

he application example. The main objects in this context are directed

raphs, and as in the context of undirected graphs, starting from a

irected network we will construct suitable simplicial complexes,

ltrations and persistent homology groups. We assume that the reader
3 
s familiar with these classical general concepts in the undirected case

reviewed for convenience in Appendix A ); we refer to Zomorodian and

arlsson (2005) and to Otter et al. (2017) for an introduction of

ersistent Homology with an eye towards applications. 

A graph 𝐺 = ( 𝑉 , 𝐸) , where 𝑉 denotes the set of its vertices and 𝐸 the

et of its edges, is a directed graph if every edge 𝑒 = ( 𝑣 0 , 𝑣 1 ) is given by

n ordered pair of distinct vertices 𝑣 0 (the source of the edge) and 𝑣 1 (the

arget). For a given pair of vertices 𝑣 0 and 𝑣 1 , both edges ( 𝑣 0 , 𝑣 1 ) and

 𝑣 1 , 𝑣 0 ) are allowed, but loops, i.e., edges of type ( 𝑣, 𝑣 ) , are not. A higher

imensional generalization of directed graphs is given by the notion of

irected simplicial complexes (see Def. Appendix A.1 for the classical

efinition of simplicial complexes): 

efinition 2.1. An ordered simplicial complex Σ = { 𝜎𝛼} 𝛼 on a vertex set

 is a non-empty family of finite ordered subsets 𝜎𝛼 ⊆ 𝑉 with the prop-

rty that, if 𝜎 belongs to Σ then every ordered subset 𝜏 of 𝜎 (ordered

ith the natural order induced by 𝜎) belongs to Σ. 

In analogy with the notation used for simplicial complexes, the el-

ments of an ordered simplicial complex of cardinality 𝑑 + 1 are called

- simplices . We say that an ordered simplicial complex Σ has dimension

if all its simplices have cardinality at most 𝑑 + 1 . For example, every

irected graph ( 𝑉 , 𝐸) is a 1-dimensional ordered simplicial complex on

he set of vertices 𝑉 and, if 𝑉 is the set {0 , … , 𝑛 } , then the collection of

ll the ordered subsets of 𝑉 is an 𝑛 -dimensional ordered simplicial com-

lex. When 𝑛 = 1 and 𝑉 = {0 , 1} , the ordered simplicial complex given

y the ordered subsets of 𝑉 is nothing but the directed graph with ver-

ices 0 and 1 and ordered edges (0,1) and (1,0). 

In the context of undirected graphs, there are various ways to con-

truct associated simplicial complexes; one of the most established ones

s given by the clique complex, where one builds the simplicial com-

lex associated to a graph 𝐺 by using the combinatorial information

f its cliques (see Ex. Appendix A.3 ). Following the analogy with this

lassical construction, from a given directed graph 𝐺 we will construct

n ordered simplicial complex by using the combinatorial information

iven by the ordered cliques of 𝐺, as we now explain. Recall that a 𝑘 -

lique in an unordered graph 𝐺 is a complete subgraph on 𝑘 vertices.

ikewise, if 𝐺 = ( 𝑉 , 𝐸) is a directed graph, then an ordered 𝑘 -clique of 𝐺

s a 𝑘 -tuple ( 𝑣 1 , … , 𝑣 𝑘 ) of vertices of 𝐺 with the property that the pair

 𝑣 𝑖 , 𝑣 𝑗 ) is an ordered edge of 𝐺 for every 𝑖 < 𝑗. We observe that in an

rdered clique there is a source vertex, 𝑣 1 , having only out-edges, and

 target vertex, 𝑣 𝑘 , having only in-edges. For example, in the following

raph on 𝑉 = {0 , 1 , 2 , 3} : 

we have only one ordered 3-clique (in addition to

he 1- and 2-cliques), i.e., the clique corresponding to the complete sub-

raph (0,1,2) on the vertices 0, 1 and 2. Observe that the subgraph on the

ertices 1, 2 and 3, although being a 3-clique for the underlying undi-

ected graph, is not an ordered 3-clique as there is no common source or

arget (it is, in fact, a cycle). For a given directed graph, we can construct

n ordered simplicial complex by considering the collection of all the di-

ected cliques (see the analogous construction of Ex. Appendix A.3 ): 

efinition 2.2. The directed flag complex 𝑑𝐹 𝑙 ( 𝐺 ) associated to a directed

raph 𝐺 is the ordered simplicial complex whose 𝑘 -simplices are all the

rdered ( 𝑘 + 1) -cliques of 𝐺. 

Observe that the vertices and edges of a directed graph 𝐺 are exactly

he 1- and 2-cliques of 𝐺, and that every directed graph is contained in

ts associated directed flag complex. For example, if 𝐺 is the directed

raph on 𝑉 = {0 , 1 , 2} , with edges (0 , 1) , (1 , 2) and (0,2), then there is only

ne directed 3-clique, (0,1,2), and the associated directed flag complex
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Fig. 1. Pipeline of the main analysis. From the time series, we estimate the 

connectivity matrix, based on which build a weighted graph. After estimating 

Persistent Homology (PH) of the graph, we get Persistent Diagram (PD), that is 

represented by different features (Persistent Landscape PL, Persistent Image PI, 

Persistent Entropy PE, Carlsson Coordinates CC) for classification. Finally, clas- 

sification based on PH features is compared with classification using matrices 

itself. 

 

 

 

 

 

 

 

 

t

3

 

w

3

 

w  

d  

I  

w  

i  

C  

t  

w  

2  

i  

m  

S  

t  

r  

t  

i  

p  

s  

m  

t  

0  

w  

o  
𝐹 𝑙 ( 𝐺 ) consists of the same vertices and edges of 𝐺, together with the

-simplex (0,1,2) corresponding to the unique directed clique: 

In order to study persistent homology groups, once we have a

uitable notion of simplicial complexes, we need filtrations of sim-

licial complexes. A filtration of ordered simplicial complexes con-

ists of a nested sequence of increasing ordered simplicial complexes

see also Def. Appendix A.4 ). Various filtrations are generally pos-

ible. In Ex. Appendix A.5 we review the clique filtration and in

x. Appendix A.6 the Rips filtration, an instance of the clique filtra-

ion (see Remark Appendix A.7 ) for undirected graphs. In the context

f directed graphs, we construct filtrations using the directed flag com-

lexes, as the natural extension of the clique filtration to the directed

ontext. To be more precise, if ∅ ⊆ 𝐺 0 ⊆ ⋯ ⊆ 𝐺 𝑛 = 𝐺 is a family of di-

ected subgraphs of a directed graph 𝐺, then the sequence 

⊆ 𝑑𝐹 𝑙( 𝐺 0 ) ⊆ ⋯ ⊆ 𝑑𝐹 𝑙( 𝐺 𝑛 ) = 𝑑𝐹 𝑙 ( 𝐺 ) (2.1)

f directed flag complexes 𝑑𝐹 𝑙( 𝐺 𝑖 ) is a filtration of 𝑑𝐹 𝑙 ( 𝐺 ) . 
In our applications, we first consider a weighted directed graph 𝐺,

.e., a directed graph for which every edge is given a numerical weight.

or each weight 𝑤 𝑖 we define the directed graph 𝐺 𝑖 as the (directed) sub-

raph of 𝐺 with same vertices of 𝐺 and only those edges corresponding

o the weights 𝑤 of 𝐺 with 𝑤 ≤ 𝑤 𝑖 (note that at this level the weights

orrespond already to a distance, rather than similarity matrix, see also

x. Appendix A.5 ). The weights 𝑤 𝑖 of 𝐺, sorted in the increasing or-

er, induce a sequence of directed subgraphs of 𝐺, hence a filtration

f directed flag complexes 𝑑𝐹 𝑙( 𝐺 𝑖 ) . Generally speaking, in order to ex-

end it to a filtration of directed flag complexes one has to choose a

eighting function also on the directed simplices (hence on the ordered

liques) extending the weights given on the edges. We use the intu-

tive maximum weighting function (the default in the software Flagser

ütgehetmann et al. (2020) ), associating to an ordered simplex the max-

mal weight across all its edges. See Lütgehetmann et al. (2020) or the

ocumentation at https://github.com/luetge/flagser for details on other

ossible weighting functions. 

Once a filtration of (ordered) simplicial complexes is given, one can

pply the classical homology methods for obtaining Persistent Homol-

gy groups, barcodes and Persistence Diagrams (see Appendix A.2 for a

eview). We will briefly refer to the Persistent Homology of the filtra-

ion of directed flag complexes associated to a weighted directed graph

s its directed Persistent Homology (shortly denoted by DPH). 

. Methods 

In the analysis of brain connectivity networks, we use Persistent Ho-

ology features as input for classification by an SVM classifier. The steps

f the pipeline include (see also Fig. 1 ): 

1. Data : we use scalp and intracranial EEG (of epileptic patients) and

fMRI (of schizophrenia patients and healthy controls) data in the

form of multi-variate time series; 

2. Graphs : for each dataset we construct (functional and effective)

connectivity graphs by calculating Pearson correlation and Granger

Causality respectively; see Section 3.2 . 

3. Topology : from the graphs we construct appropriate filtrations

of simplicial complexes (see Section A.1 and Section 2 ). In

particular, we have constructed the Vietoris-Rips filtration (see

Ex. Appendix A.6 ) associated to the FC graph and the filtration of

directed flag complexes associated to the directed EC graph (see

Eq. (2.1) ). 

4. Homology : we compute the Persistent Homology of the given fil-

trations (PH for undirected and DPH for directed graph), getting
4 
their persistence Betti numbers (corresponding to the number of con-

nected components for dimension 0 and to the number of loops for

dimension 1, the two most common settings in the literature); see

also Appendix A.2 . 

5. Machine Learning : from persistence Betti numbers, we get the fea-

tures (vectors of real numbers) and apply a suitable classifier (SVM)

to both the FC or EC graphs, and to the features (in particular, the

Persistence Landscapes, Persistent Images, Carlsson Coordinates and

Persistent Entropy ( Section 3.5 ). 

As a variation of this pipeline, we add an additional cleaning step in

he case of EEG and iEEG datasets as described in Section 3.6 . 

.1. Dataset 

We use two prominent types of neuroimaging data in combination

ith two examples of pathological brain dynamics: 

.1.1. fMRI data (Schizophrenia) 

We analyse the dataset that consists of fMRI recordings of 90 patients

ith a schizophrenia diagnosis and 90 healthy controls. Functional MRI

ata were collected with a 3T MR scanner (Siemens; Magnetom Trio) at

nstitute of Clinical and Experimental Medicine in Prague. Participants

ere informed about the experimental procedures and provided written

nformed consent. The study design was approved by the local Ethics

ommittee of the Institute of Clinical and Experimental Medicine and

he Psychiatric Center Prague. 𝑇 2 ∗ -weighted images with BOLD contrast

ere acquired with voxel size 3 ×3×3 mm 

3 and TR/TE parameters of

000/30ms. As anatomical reference the T1-weighted high-resolution

mage was used (TR/TE/TI = 2300/4.6/900 ms, voxel size = 1 ×1×1

m 

3 ). Initial data preprocessing was done using FSL routines (FMRIB

oftware Library v5.0, Analysis Group, FMRIB, Oxford, UK) and CONN

oolbox (McGovern Institute for Brain Research, MIT, USA). Functional

ealignment and unwarping, slice-timing correction, structural segmen-

ation into white matter and cerebrospinal fluid and structural normal-

zation to the MNI space were done using CONN’s default preprocessing

ipeline (defaultMNI), as well as functional normalization to the MNI

pace, outlier detection, and smoothing with 8mm kernel size. The esti-

ated amount of motion in the subjects was generally satisfactory, with

he average framewise displacement between subsequent volumes being

 . 13 ± 0 . 08 mm (mean ± std across subjects). Six head-motion parameters

ith their first order temporal derivatives and five principal components

f white-matter and cerebrospinal fluid time-series were regressed out

https://github.com/luetge/flagser
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o suppress measurement artifacts. Furthermore, to remove possible sig-

al drift, time-series were linearly detrended and filtered by band-pass

lter [0.009-0.08Hz]. See Kopal et al. (2020) and Oliver et al. (2019) for

etailed prepocessing description. To extract the time series for further

nalysis, the brains spatial domain was divided into 90 non-overlapping

egions of interest (ROIs) according to the AAL atlas; from each ROI we

xtract one BOLD time series by averaging the time series of all voxels

n the ROI. 

.1.2. EEG data (Epilepsy) 

We analyse both scalp and intracranial electroencephalography EEG

ata: 

Scalp EEG data. We use EEG recordings from pediatric subjects

ith intractable seizures, collected at the Children’s Hospital Boston.

he data are available at https://physionet.org/content/chbmit/1.0.0/ ,

rom the publicly open dataset Physionet . We analyse EEGs belonging to

8 subjects, with 23 scalp electrodes. In particular, we included patients

ith typical epileptic event of length between 20 and 120 s. The set of

elected patients is provided in Appendix B . After isolating the epileptic

vent according to labels in the patient’s summary file, we also consider

on-epileptic records, chosen randomly from the database (we extract

egments of the same length as the seizure segments). In total, we use

02 ictal and 102 interictal data segments, the same amount of ictal

nd preictal parts for every particular subject. Sampling frequency is

56Hz, no special preprocessing is applied except for a band-pass filter

1-70Hz], notch filter at 50Hz, and removal of global signal for every

ata segment separately. 

Several seizure recordings are available for each subject. Therefore,

o avoid dependence between samples and any potential biases due to

ifferent numbers of seizure recordings available, for each subject we

verage all the connectivity matrices for ictal (interictal) periods. Thus,

he dataset for the analysis consists of two connectivity matrices per

ubject (one ictal and one inter-ictal). For the additional analysis us-

ng a modified pipeline ( Section 3.6 ) we used a slightly modified data

election, which is described in Appendix B . 

Intracranial EEG data. We use the anonymized dataset of 16 pa-

ients of the epilepsy surgery program of the Inselspital Bern, freely

vailable at http://ieeg-swez.ethz.ch/ , with no further preprocessing

mplemented. The intracranial electroencephalography (iEEG) record-

ngs belong to 16 patients with pharmacoresistant epilepsies collected at

he Sleep-Wake-Epilepsy-Center (SWEC) of the University Department

f Neurology at the Inselspital Bern and the Integrated Systems Laboratory

f the ETH Zurich. Each recording consists of 3 min of preictal segments,

he ictal segment (ranging from 10 s to 1002 s), and 3 min of postictal

ime. In this work we only consider the recordings corresponding to the

rst 30 s of the first seizure as the ’ictal’ data, and the 30 s segment

tarting 1 min before the first seizure start as our ’preictal’ data. 

For every patient we use the first minute of interictal data for estima-

ion of baseline connectivity, which is later subtracted from both ictal

nd preictal connectivities. 

.2. Connectivity networks 

In order to estimate the brain networks we use both a symmetric

Functional Connectivity, Section 3.2.1 ) and an asymmetric approach

Effective Connectivity, Section 3.2.2 ): 

.2.1. Functional connectivity 

To obtain the functional connectivity network, we cross-correlate the

ime-series described in Section 3.1.2 and Section 3.1.1 . Let 𝑁 be the

umber of brain regions in the AAL atlas or number of electrodes in

calp EEG, then the 𝑁 ×𝑁 matrix 𝐴 = ( 𝐴 𝑖,𝑗 ) is defined using Pearson

orrelation between the time series corresponding to nodes 𝑖 and 𝑗. In

ine with previous literature (Lee et al., 2011b, Section 3), (Merelli et al.,

016, Section 3), (Stolz et al., 2018, Section 2.2) , all entries of 𝐴 that

re not significant at 𝛼 = 0 . 05 are set to 0, along with all negative values
5 
f functional connectivity. Below, we refer to this method as masked

unctional Connectivity (masked FC) . 

.2.2. Effective connectivity 

The effective connectivity is quantified by the pairwise Granger

ausality ( Barnett and Seth, 2013 ); furthermore, edges corresponding

o links that do not show statistically significant causal effect (by means

f the FACDA algorithm ( Ko ř enek and Hlinka, 2020 )) have their weight

et to zero. In the following we refer to this method as masked Effective

onnectivity , or more concisely, as masked EC . We use pairwise Granger

ausality instead of multivariate Granger Causality (which controls for

ll the other variables) to reach more robust estimates. Indeed, in the

ultivariate approach a greater number of parameters has to be es-

imated, potentially leading to less accurate estimates ( Hlinka et al.,

013 ). 

.3. Persistent homology computation 

We analyse persistent homology groups of both the directed and

ndirected networks. We refer to Appendix A for a review of PH. When

ot otherwise specified, the persistent homology computations shown

n the article refer to calculations implemented in dimension 1, that is

etection 1-dimensional holes; we refer to Appendix D for the corre-

ponding results using the dimension 0 features, corresponding to the

etection of connected components); homology groups are computed

ver the commonly used base field 𝔽 2 (see Def. Appendix A.8 ). 

.3.1. PH of undirected networks 

The undirected network constructed in Section 3.2 is a weighted

raph. As explained in Ex. Appendix A.5 , by sorting the weights in an in-

reasing or decreasing order, we get a filtration of simplicial complexes,

he WRCF. Equivalently, one can construct the associated Vietoris-Rips

ltrations (see Ex. Appendix A.6 ). As the implementation of the WRCF

an be computationally demanding, in this work we follow the second

pproach: we construct the quasi-metric space ( 𝑋 , 𝑑 ) associated to the

atrix 𝐴 (the matrix 𝐴 being constructed as described in the previ-

us subsection) with underlying space 𝑋 given by the vertices of the

eighted graph and quasi-distance 𝑑 ( 𝑖, 𝑗 ) ∶= 1 − 𝐴 ( 𝑖, 𝑗) . We then con-

truct the Vietoris-Rips filtration associated to this metric space and

ompute the associated PH and persistence diagrams. The computation

f the associated Persistent Homology has then been implemented with

he python library Ripser ( Tralie et al., 2018 ). 

.3.2. PH of directed networks 

The directed network presented in Section 3.2.2 provides a weighted

irected graph, hence a directed flag complex as explained in Section 2 .

or consistency with the undirected case, we first rescale the matrix 𝐴

ia a linear map 𝐴 ↦ 𝐴 to span the interval [0,1] and then apply the

ransformation 𝑥 ↦ 1 − 𝑥 to use the matrix 1 − 𝐴 , getting a positive ma-

rix where the lowest values represent the strongest connections. We

onsider the sequence of directed graphs sorted with the increasing or-

er of the weights (of 1 − 𝐴 ). We extend the weights to the simplices

f the induced flag complexes by giving to a simplex 𝜎 the maximum

alue across the weights of its edges. We then compute the associated

ersistent homology groups. 

.4. Why DPH? A motivational example with VAR processes 

In this subsection we elucidate why an extension of the persistent

omology techniques to direct networks is theoretically more fruitful

han the classical PH approach on undirected networks. We assume that

he reader is familiar with the concept of VAR ( 𝑝 ) (vector autoregressive)

rocesses (see Lutkepohl (2007) for a general overview). 

Let 𝑋 be a VAR (1) process of the form 

 = 𝐴𝑋 + 𝑒 
𝑡 𝑡 −1 𝑡 

https://physionet.org/content/chbmit/1.0.0/
http://ieeg-swez.ethz.ch/
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Fig. 2. Left: PH of correlation matrix 𝐶𝑜𝑟𝑟 ( 𝑋 , 𝑋 ) . Right: PH of correlation matrix 𝐶𝑜𝑟𝑟 ( 𝑌 , 𝑌 ) . 
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here 𝑋 𝑡 is an 𝑛 -dimensional random vector, 𝐴 is a 𝑛 × 𝑛 matrix of (real)

oefficients and 𝑒 𝑡 is a white noise with 0 mean and covariance Σ; we

ay that the process 𝑋 is generated by the matrix 𝐴 . 

Without loss of generality, we assume that 𝑋 is stable (meaning that

he matrix 𝐴 has eigenvalues smaller in module than 1), has 0 mean and

he variance Σ is the identity matrix Σ = 1 . Then, the matrix sequence

 𝐴 𝑖 } 𝑖 ∈ℕ is absolutely summable and the covariance matrix of 𝑋 (that is

 stable process, hence stationary) can be written as 

ar ( 𝑋) = (1 − 𝐴𝐴 𝑡 ) −1 (3.1)

here 𝐴 𝑡 denotes the transpose of the matrix 𝐴 . 

The correlation matrix of the process 𝑋 depends only on its covari-

nce matrix Var ( 𝑋) = Cov ( 𝑋, 𝑋) , whereas the associated effective con-

ectivity depends upon the generating matrix 𝐴 (for simplicity, we use

he matrix A directly here as the EC). 

In order to document the extra richness of the directed version of

H, we consider two different VAR (1) processes 𝑋 and 𝑌 generated by

wo matrices 𝐴 and 𝐵 with different topological structure but the same

ovariance matrix Cov(X , X) = Cov(Y , Y) . These two processes share the

ame correlation matrix (used in the definition of FC), hence the associ-

ted (standard/undirected) PH will not distinguish them. However, as

he associated EC matrices differ, the directed PH might be able to dis-

inguish the aforementioned processes. We now document this using a

imple low dimensional example. 

The problem reduces to finding topologically different matrices 𝐴 ,

 , such that 𝐴𝐴 𝑡 = 𝐵 𝐵 𝑡 (this can be achieved by choosing an suitable

rthogonal matrix 𝑄 , and by setting 𝐵 ∶= 𝐴𝑄 . As a specific example, we

et: 

 ∶= 

1 
4 

⎛ ⎜ ⎜ ⎝ 
0 1 2 
1 0 1 
2 1 0 

⎞ ⎟ ⎟ ⎠ 
, 𝑄 𝜑 ∶= 

⎛ ⎜ ⎜ ⎝ 
cos ( 𝜑 ) sin ( 𝜑 ) 0 
− sin ( 𝜑 ) cos ( 𝜑 ) 0 

0 0 1 

⎞ ⎟ ⎟ ⎠ 
et 𝜑 = 𝜋∕3 and 𝐵 = 𝐴𝑄 𝜑 . The eigenvalues of 𝐴 and 𝐵 are smaller in

odule than 1 and the generated VAR (1) processes are stable, more-

ver, clearly 𝐴𝐴 𝑡 = 𝐵 𝐵 𝑡 , hence, they have the same covariance matrix

y Eq. (3.1) , and as a consequence, the correlation matrices of 𝑋 and 𝑌 

ave same persistent homology groups (see Fig. 2 ). On the other hand,

hen applied to the generating matrices 𝐴 and 𝐵, DPH is able to distin-

uish the two processes (see Fig. 3 ), proving the advantage of DPH in

istinguishing a larger class of processes. 

We point out here that we cannot apply PH directly on 𝐵, as 𝐵 is

n asymmetric matrix. However, PH could indeed be in principle ap-

lied to the matrix 𝐴 that is symmetric; however, it provides a different

omology structure than the application of DPH. In particular, the per-

istent homology groups associated to 𝐴 are concentrated in dimension

, whereas DPH(A) has non-trivial homology classes in dimension 1 and

 as well as in dimension 0 (see Fig. 4 ). 
6 
.5. Featurizations of persistent homology 

Persistent homology groups can be visualized by using Persistence

iagrams as birth-death planar representations ( Section A.2 ). In order

o apply a SVM classifier, we derive four most commonly used vectoriza-

ions, or featurizations, from the persistence diagrams: Persistence Land-

capes, Persistence Images, Carlsson Coordinates and Persistent Entropy.

n this way we get input real-valued vectors amenable to the classifier.

e proceed by illustrating the definitions of these topological features.

.5.1. Persistence landscapes (PL) 

Persistence landscapes have been introduced in order to perform PH-

ased statistical analysis by Bubenik and D ł otko (2017) . For a birth-

eath interval ( 𝑏, 𝑑) , where 𝑑 is a finite value, the function 𝑓 ( 𝑏,𝑑) ∶
 → ℝ 𝑡 ↦ max ( min ( 𝑡 − 𝑏, 𝑑 − 𝑡 ) , 0) represents a triangle-shaped func-

ion over ( 𝑏, 𝑑) . Let {( 𝑏 𝑖 , 𝑑 𝑖 )} 𝑖 ∈𝐼 be a (finite) collection of birth-death

ntervals. Let 𝑘 − max ({ 𝑎 𝑖 } 𝑖 ) denote the 𝑘 th maximum value of a finite

amily of real numbers { 𝑎 𝑖 } 𝑖 . 

efinition 3.1. The persistence landscape of the set of birth-death coor-

inates {( 𝑏 𝑖 , 𝑑 𝑖 )} 𝑖 ∈𝐼 is the family of functions 𝜆 = ( 𝜆𝑘 ∶ ℝ → ℝ ) 𝑘 ∈ℕ , where

𝑘 ( 𝑡 ) ∶= 𝑘 - max 𝑖 ∈𝐼 ( 𝑓 ( 𝑏 𝑖 ,𝑑 𝑖 ) ( 𝑡 )) . 

Observe that the functions 𝜆𝑘 ( 𝑡 ) are piece-wise linear and that they

re identically 0 when 𝑘 is bigger than the cardinality |𝐼| of the birth-

eath pairs. See Fig. 5 for an example of persistence landscape associated

o a persistence diagram. 

We follow the same method as Yesilli et al. (2019) to perform ML

nalysis on the set of persistence landscapes. Let  = ( 𝐷 𝑝 ) 𝑝 ∈𝑃 be a set

f persistence diagrams ( e.g, each diagram 𝐷 𝑝 is the PD associated to a

ingle brain network, at a fixed dimension). For every such persistence

iagram 𝐷 𝑝 , let 𝜆( 𝑝 ) = { 𝜆( 𝑝 ) 
𝑖 
} 𝑖 ∈ℕ be the associated PL. Let 𝐾 ⊆ ℕ be a

xed subset of indices of ℕ ; for every 𝑘 ∈ 𝐾 consider the collection of

unctions { 𝜆( 𝑝 ) 
𝑘 
} 𝑝 varying with the index 𝑝 (and fixed 𝑘 ). 

By definition, for every 𝑘 and 𝑝 , the map 𝜆
( 𝑝 ) 
𝑘 

∶ ℝ → ℝ is a piecewise

inear function. Then, it has a set of critical points { 𝑥 ( 𝑝 ) 
𝑘,𝑖 
} 𝑖 , i.e., those

oints at which the function 𝜆
( 𝑝 ) 
𝑘 

changes its direction. Let 𝑧 ( 𝑘 ) be the

ector of ℝ 

𝑛 whose entries consist of all the critical points { 𝑥 ( 𝑝 ) 
𝑘,𝑖 
} 𝑖,𝑝 as-

ociated to the functions 𝜆
( 𝑝 ) 
𝑘 

, at 𝑘 fixed; the entries of 𝑧 ( 𝑘 ) are sorted in

ncreasing order, without repetitions. 

For every chosen 𝑘 ∈ 𝐾, we have constructed a vector 𝑧 ( 𝑘 ) depend-

ng only on the critical points of the 𝑘 th functions of the PLs. The fea-

ure vector, input of the classifier, associated to the diagram 𝐷 𝑝 in de-

ree 𝑘 , is then the evaluation vector { 𝜆( 𝑝 ) 
𝑘 
( 𝑧 ( 𝑘 ) 
𝑗 
)} 0 ≤ 𝑗≤ |𝑧 ( 𝑘 ) |. See the work of

hazal and Michel (2017) for further details. In our work, we choose
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Fig. 3. Left: DPH of the matrix 𝐴 . Right: DPH of the matrix 𝐵. 

Fig. 4. Left: PH of the matrix 𝐴 . Right: DPH of the matrix 𝐴 . 

Fig. 5. Left: persistence diagram (sample EEG data). Right: graphical representation of the related persistence landscape. 
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he set 𝐾 ⊆ ℕ to be 𝐾 = {1} to capture the landscape containing infor-

ation about the most persistent holes; hence, the analysis reported in

ection 4 uses the first landscapes { 𝜆𝑝 1 } 𝑝 . 

.5.2. Persistence images (PI) 

An efficient and stable vector representation of persistent ho-

ology is given by the so called Persistence Images introduced by

dams et al. (2017) . We start with a persistence diagram 𝐷 =
( 𝑏 𝑖 , 𝑑 𝑖 )} 𝑖 ∈𝐼 , a subset of ℝ 

2 as depicted in the example Fig. A.8 and ap-

ly the transformation 𝑇 ∶ ℝ 

2 → ℝ 

2 sending a birth-death pair ( 𝑏 , 𝑑 ) to
𝑖 𝑖 

7 
he birth-persistence pair ( 𝑏 𝑖 , 𝑝 𝑖 ) ∶= ( 𝑏 𝑖 , 𝑑 𝑖 − 𝑏 𝑖 ) . Let 𝐷 𝑘 ∶ ℝ 

2 → ℝ be the

ormalized gaussian centered at ( 𝑏 𝑘 , 𝑝 𝑘 ) and with standard deviation 𝜎,

.e., 

 𝑘 ( 𝑥, 𝑦 ) ∶= 

1 
2 𝜋𝜎2 

𝑒 −[( 𝑥 − 𝑏 𝑘 ) 
2 +( 𝑦 − 𝑝 𝑘 ) 2 ]∕2 𝜎2 . 

As set by default in line with Adams et al. (2017) , we choose a spe-

ific non-negative weighting function 𝑊 ∶ ℝ 

2 → ℝ that is zero along the

orizontal axis, continuous, and piece-wise differentiable, in particular

 function depending only on the second coordinate: if 𝑝 is the maxi-
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Fig. 6. Left: Persistence diagram of example subject. Right: the associated PI, with domain grid [0 , 𝑏 max ] × [0 , 𝑝 max ] . 
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al possible persistence, 𝑊 ( 𝑥, 𝑦 ) is set to 0 if 𝑦 ≤ 0 , 1 if 𝑦 ≥ 𝑝 and 𝑦 ∕ 𝑝
etween 0 and 1. 

We associate to the persistent diagram 𝐷 a function 𝜌 ∶ ℝ 

2 → ℝ de-

ned as weighted combination of gaussians: 

( 𝑥, 𝑦 ) ∶= 

∑
𝑖 ∈𝐼 
𝑊 ( 𝑥, 𝑦 ) 𝐷 𝑖 ( 𝑥, 𝑦 ) . 

et 𝑏 max and 𝑝 max be the maximum birth and maximum persistence

cross the births and persistences appearing in a diagram, i.e., 𝑏 max ∶=
ax 𝑖 ( 𝑏 𝑖 ) and 𝑝 max ∶= max 𝑖 ( 𝑑 𝑖 − 𝑏 𝑖 ) . After choosing a grid of the domain

0 , 𝑏 max ] × [0 , 𝑝 max ] , we compute the integral ∫ 𝜌( 𝑥, 𝑦 ) 𝑑 𝑥𝑑 𝑦 at each pixel-

ox of the grid-domain. This gives a discretization of the surface image

f 𝜌( ℝ 

2 ) , hence a matrix of values which is our persistence image. See

ig. 6 for an example of the output. 

For a family of persistence diagrams, one can define a mean PI of the

ersistence images associated to the PDs in the family. As each single

I is a matrix of real values, the mean PI of the family is defined as the

atrix given by the element-wise average of the matrices. However, this

rings a technical issue, as we describe: 

emark 3.2. To construct the PIs, we have used the MATLAB code that

ccompanies the paper by Adams et al. (2017) . Given a Persistence Di-

gram, one has to set parameters such as the resolution, the probability

ensity and the weighting function. However, as already observed in

Stolz et al., 2018, Section 3.3) , in order to compute the mean PI for a

amily of persistence diagrams, there is an additional pair of values to

e chosen: the pair of maximum birth and maximum persistence. We

et these values to the maximum across all subjects to achieve unbiased

lassification results. Note that an alternative group-specific normaliza-

ion was reported to provide better classification results ( Stolz et al.,

018 ), but in fact provides artificially inflated accuracy due to intro-

ucing group-specific bias; a topic that would be covered in more detail

n a separate methodological report. 

.5.3. Carlsson coordinates (CC) 

Another useful featurization method is given by the so-called Carls-

on Coordinates (Adcock et al., 2013, Sec. 4.1.2 & 4.2.2) . The method is

ased on an approach from algebraic geometry. For every persistence

iagram 𝐷 = {( 𝑏 𝑖 , 𝑑 𝑖 )} 𝑖 ∈𝐼 in the form of birth-death coordinates, we con-

truct five vector features as follows. Let 𝑝 𝑖 = 𝑑 𝑖 − 𝑏 𝑖 be the life associated

o ( 𝑏 𝑖 , 𝑑 𝑖 ) and let 𝑝 𝑀 

be the maximal death time 𝑑 𝑀 

∶= max 𝑖 ( 𝑑 𝑖 ) . Follow-

ng Adcock et al. (2013) , we consider the following coordinates: 

 1 ( 𝐷) ∶= 

∑
𝑖 𝑏 𝑖 𝑝 𝑖 ; 𝑓 2 ( 𝐷) ∶= 

∑
𝑖 𝑝 𝑖 ( 𝑑 𝑀 

− 𝑑 𝑖 ); 
 3 ( 𝐷) ∶= 

∑
𝑖 𝑏 

2 𝑝 4 ; 𝑓 4 ( 𝐷) ∶= 

∑
𝑖 𝑝 

4 ( 𝑑 𝑀 

− 𝑑 𝑖 ) 2 . 
𝑖 𝑖 𝑖 

8 
orover, following (Yesilli et al., 2019, Sec. 4.4) , we add a fifth coor-

inate 𝑓 5 ( 𝐷) ∶= max 𝑖 ( 𝑝 𝑖 ) taking into account the maximal reached per-

istence. As suggested in (Adcock et al., 2013, Sec. 4.2.2) , we normalize

he coordinates 𝑓 1 , … , 𝑓 4 by a scale factor 1∕ 𝑁 , where 𝑁 is the number

f the birth-death pairs in the persistence diagram. 

.5.4. Persistent entropy (PE) 

Our last feature is Persistent Entropy , a topological adaptation of

hannon entropy in the context of persistent homology ( Rucco et al.,

014 ), i.e., a number that measures the information encoded in the per-

istent homology groups (at a given dimension). 

Let  be a filtration of a simplicial complex Σ (see Def. Appendix A.4 )

nd 𝐷 = {( 𝑏 𝑖 , 𝑑 𝑖 )} 𝑖 ∈𝐼 the set of birth-death coordinates associated to PH

n dimension 𝑘 . For every 𝑖 ∈ 𝐼 let 𝑝 𝑖 ∶= 𝑑 𝑖 − 𝑏 𝑖 be the 𝑖 th persistence. 

efinition 3.3. The persistent entropy 𝐸( 𝐵) associated to 𝐷 is the num-

er 𝐸( 𝐷) ∶= − 

∑
𝑖 ∈𝐼 𝑠 𝑖 log ( 𝑠 𝑖 ) where 𝑠 𝑖 = 𝑝 𝑖 ∕ 𝑆 𝐷 and 𝑆 𝐷 = 

∑
𝑖 ∈𝐼 𝑝 𝑖 . 

.6. Controlling for inter-individual variability in electrode placement 

In real-world scenarios, a substantial variability in the estimated

unctional or effective connectivity networks between subjects can be

ue to confounding purely anatomical differences, or spatial misalign-

ent of the observed locations. In an experimental situation with re-

eated measurements from the same subject, the design may potentially

llow suppressing this inter-individual variability by data preprocess-

ng. In particular in iEEG data, a problem of data inconsistency across

ubjects arises, as every patient has his/her own unique position of elec-

rodes (the implantation) that depends on the particular clinical require-

ent. Such implantation defines the basic structure of the connections

etween the recorded brain regions and, as a consequence, iEEG con-

ectivity matrices can not even be directly compared between subjects

ecause of the different data structure and the different sizes. 

While this problem is much alleviated in scalp EEG with standardized

lectrode number and placement, inter-individual differences in brain

nd head anatomy may still cause some inter-individual variability in

EG connectivity that may obscure intra-individual variability reflecting

he brain state dynamics of interest. 

Working with the basic topological features rather than with the ma-

rix directly should help to sidestep this problem. However this may not

erfectly resolve the issue, as the geometry of the patient’s data may still

e systematically biased by the individual structure of electrode implan-

ation and anatomy. Therefore, before performing the classification task,

e add two steps of data cleaning to the general pipeline. 

The first step - used to decrease the influence of implantation on the

opology - is directly applied to the connectivity matrices computed by
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he procedure described in Section 3.2 . The EEG and iEEG data contain

pileptic (ictal) and non-epileptic (preictal and interictal) segments as

escribed in Section 3.1.2 . In both cases, apart from the ictal and im-

ediately preictal segments, we estimate the connectivity within the

learly interictal segments, which in the following we refer to as the

aseline connectivity . This baseline connectivity is subtracted from both

he preictal and ictal connectivities to provide correction for the con-

ounding inter-individual variability. 

The second step in the data cleaning aimed to further control for

nter-subject variability is performed after the feature computation and

efore applying the classification tasks. For each topological feature and

atient, we consider the vector consisting of all the realizations of the

opological feature across conditions (i.e. all the classified segments for

hat subject). We compute the mean and remove it from the whole vec-

or of feature values: this gives a final vector with null mean for every

atient and feature that has inter-individual biases accounted for, and

an be used in the classification tasks. 

.7. Classification 

To perform the classification (based on a set of features for each

ubject), we apply a linear support vector machine (SVM) that constructs

 hyperplane in high-dimensional space on a training set of points. This

yperplane is then used for the classification of testing points. 

We train a SVM classifier based on the topological features of

ection 3.5 . We have chosen the SVM as it is the state-of-art method

hen deep learning can not be applied due to insufficient sample size.

ndeed, other models and classifiers could have been used, for example,

 random forest approach instead of the SVM. A comparison of these

ethods employed in classification tasks on persistent homology of FC

albeit in autism rather than schizophrenia) has been recently provided

y Rathore et al. (2019) , where the methods have shown to achieve

imilar performances. 

Evaluation of the classifier accuracy is made with the leave-two-out

rocedure on paired samples. In the following, when dealing with the

pileptic datasets, by a “data point ” we mean (the functional/effective)

onnectivity matrix characterizing particular brain activity (ictal or

nter-ictal) ; when working with the schizophrenia dataset, “data points ”

re the single subject connectivities. For each dataset, we train the

lassifier on the set consisting of all the data points excluding both

he tested sample and its matching counterpart. A similar approach

as been used, for instance, in the studies by Castro et al. (2011) ,

ikolas et al. (2018) and Rubin-Falcone et al. (2018) . To be more pre-

ise, for the epileptic datasets, for every tested connectivity, we exclude

ts match from the opposite type of activity (ictal/inter-ictal). For the

chizophrenia data, for every tested subject, one subject from the oppo-

ite group was excluded, in order to keep groups of the same size. For all

atasets, presented in the main text, such across-participants leave-two-

ut procedure was performed. In the supplementary, we also present

nalysis of EEG data, where classification was performed within-subject

n selected subjects with high number of measured seizures, here always

 matched pair of ictal and inter-ictal segment from the same recording

s removed. 

.8. Software 

In the construction of effective connectivity networks we have used

he software companion of Barnett and Seth (2013) for the computa-

ion of Granger Causality and of Ko ř enek and Hlinka (2020) for the

onstruction of the mask (see Section 3.2.2 ). For the calculations of

ersistent homology groups of undirected networks we have used the

ython library Ripser Tralie et al. (2018) . For the computation of persis-

ent homology of the directed graphs, we have used the library Flagser

y Lütgehetmann et al. (2020) (via the python API reference pyflagser

f the Giotto-tda Tauzin et al. (2020) , version v 0.2.0.), with the default
9 
ettings. For computing the PIs, we have used the software that accom-

anies the paper of Adams et al. (2017) ; we set the variance of the Gaus-

ians to 0.0001 and keep all the other parameters as by default. The

air maximum birth/maximum persistence is computed across all the

nstances (see Remark 3.2 ). For the calculation of PLs, we use our own

ATLAB implementation of (Bubenik and D ł otko, 2017, Algorithm 1) .

or the implementation of support vector machine classifier, we use the

ATLAB function fitcsvm . When otherwise specified, we use the default

ettings of the declared functions. 

. Results 

The aim of the paper is to assess the applicability of (directed)

ersistent homology methods to brain functional/effective connectivity

nalysis. We have focused on two prominent neurological applications:

pileptic seizure detection (using EEG data, both scalp and intracranial)

nd classification of schizophrenia/healthy brain states (using fMRI

ata). We follow the pipeline described in Section 3 : for each subject,

e first calculate the functional connectivity graph ( Section 3.2.1 ) and

he effective connectivity directed graph ( Section 3.2.2 ), hence the as-

ociated Vietoris-Rips filtration (Ex. Appendix A.6 ) and the filtration

f directed Flag complex (Def. 2.2 ), respectively; we then compute the

ersistent homology groups of the obtained filtrations as described in

ection 3.3 . We encode the PH information in the form of Persistence

iagrams, that we use to compute the associated topological features PL,

I, CC and PE. Here we potentially substract individual feature mean to

ontrol for electrode placement bias as described in Section 3.6 (this is

ot applicable to the fMRI data where the classification is only between

ubjects). We finally apply the SVM classifier (see Section 3.7 ). We com-

are the obtained classification results with those achieved by using the

ame SVM classification method applied to Functional Connectivity (FC)

in the undirected case) and to (masked) Effective Connectivity (EC) (in

he directed approach). The results are shown in the subsections below.

ote that for the results obtained on the iEEG data, a direct comparison

ith the naive FC/EC approach is not possible, because of different size

nd position of patient’s implantations. 

We proceed by illustrating our results in the group analysis of the

MRI (schizophrenia) data first, of the group analysis of scalp EEG

epilepsy) data afterwards (following the classical pipeline first, and the

lternative pipeline later), and we conclude with the analysis of the iEEG

epilepsy) dataset. The persistent homology computations shown in the

ollowing subsections refer to calculations in dimension 1 and we refer

o Appendix D for the corresponding results in dimension 0. 

.1. First dataset: fMRI - Schizophrenia 

In this first analysis, we present the results of a classification using

he fMRI time series of 90 healthy subjects and of 90 schizophrenia pa-

ients (see Section 3.1.1 ). We report the results in Table 1 . 

We observe that the topologically-based classifications are close to

andom (with accuracy around 0.5) in both the directed and undirected

pproach. Hence, the schizophrenia patients are not topologically dis-

riminated from the healthy subjects, although the FC-classification is

elatively successful (with accuracy 0.79). In this case, the classification

ask based on the EC matrix itself did not achieve good results (accuracy

.57, close to the performances of the directed topological features). 

.2. Second dataset: scalp EEG - Epilepsy 

Following the same pipeline as in the previous example, we present

ow a classification analysis concerning a different disease (epilepsy)

nd a different type of data (EEG). We use for this analysis the EEG

ecordings described in Section 3.1 . 

Our analysis of epileptic brain states is divided in the two cases re-

orted below: we first assess a classification by the basic approach as

pplied to the fMRI data, as described in Section 4.2.1 . Subsequently
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Table 1 

Schizophrenia: group analysis, 90 patients 

plus 90 healthy controls. SVM classification 

results using FC, EC and the topological fea- 

tures PL, PI, CC, PE in dimension 1 with undi- 

rected approach (PH) or directed approach 

(DPH). Acc stands for Accuracy, Sns for Sen- 

sitivity and Spc for Specificity . 

Features Acc Sns Spc 

EC naive 0.57 0.54 0.60 

FC naive 𝟎 . 𝟕𝟗 0.74 0.83 

PL (DPH) 0.44 0.39 0.50 

(PH) 0.48 0.49 0.47 

PI (DPH) 0.49 0.44 0.53 

(PH) 0.56 0.59 0.52 

CC (DPH) 0.34 0.18 0.51 

(PH) 0.61 0.57 0.64 

PE (DPH) 0.54 0.67 0.41 

(PH) 0.56 0.46 0.67 

Table 2 

Epilepsy: group analysis, 18 subjects. SVM 

classification results using FC, EC and the 

topological features PL, PI, CC, PE in dimen- 

sion 1 with undirected approach (PH) or di- 

rected approach (DPH). Acc stands for Accu- 

racy, Sns for Sensitivity and Spc for Specificity . 

Features Acc Sns Spc 

EC naive 𝟎 . 𝟖𝟑 0.72 0.94 

FC naive 0.78 0.72 0.83 

PL (DPH) 0.50 0.50 0.50 

(PH) 0.50 0.44 0.56 

PI (DPH) 0.47 0.44 0.50 

(PH) 0.64 0.50 0.78 

CC (DPH) 0.44 0.78 0.11 

(PH) 0.69 0.67 0.72 

PE (DPH) 0.53 0.44 0.61 

(PH) 0.33 0.39 0.28 
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Table 3 

Epilepsy: EEG group analysis (with varia- 

tion) 18 subjects. SVM classification results 

using the topological features PL, PI, CC, PE 

in dimension 1, with undirected approach 

(PH) or directed approach (DPH). Acc stands 

for Accuracy, Sns for Sensitivity and Spc for 

Specificity . 

Features Acc Sns Spc 

EC naive 0.44 0.56 0.33 

FC naive 0.89 0.78 1.00 

PL (DPH) 0.58 0.44 0.72 

(PH) 0.75 0.72 0.78 

PI (DPH) 0.86 0.89 0.83 

(PH) 0.83 0.83 0.83 

CC (DPH) 0.61 1.00 0.22 

(PH) 𝟎 . 𝟗𝟐 0.94 0.89 

PE (DPH) 0.89 0.89 0.89 

(PH) 0.06 0.06 0.06 

Table 4 

Epilepsy: iEEG analysis, 16 subjects. SVM 

classification results using the topological 

features PL, PI, CC, PE in dimension 1, with 

undirected approach (PH) or directed ap- 

proach (DPH). Acc stands for Accuracy, Sns 

for Sensitivity and Spc for Specificity . 

Features Acc Sns Spc 

PL (DPH) 0.50 0.56 0.44 

(PH) 0.62 0.69 0.56 

PI (DPH) 0.62 0.62 0.62 

(PH) 0.66 0.69 0.62 

CC (DPH) 0.78 0.81 0.75 

(PH) 0.84 0.87 0.81 

PE (DPH) 0.69 0.69 0.69 

(PH) 𝟎 . 𝟖𝟕 0.87 0.87 

fi  

t

4

 

t  

p  

I  

r  

a

 

a  

T  

p

 

i  

f  

m  

d  

d  

d

4

 

S  

s  

c  

r  

r

e report (in Section 4.2.2 ) the results of the analysis carried on the

ame dataset but involving the additional cleaning steps described in

ection 3.6 . 

.2.1. EEG analysis - default approach 

In this analysis, we compare the functional and effective connectiv-

ty networks associated to the ictal and to the inter-ictal periods. We

onsider 18 subjects; each subject has both ictal and interictal data seg-

ents. For details, see Section 3.1.2 . We apply the SVM classifier to

he masked EC directed graphs, to the masked FC undirected graphs

nd to the topological features PL, PI, CC and PE obtained by the PH

omputation on both the obtained networks. We report the achieved

lassification values in Table 2 . 

The results show that the classifications based on the topological

eatures perform again close to random, even though both the raw EC-

ased and raw FC-based classification are quite effective (with accuracy

f 0.83 and 0.78). Therefore, when applied to both the functional and

he effective connectivity networks and when compared with the results

chieved by the raw matrices, we do not see any advantage in using the

opological features. 

However, we conjectured that the low performance of the persistent

omology approach may be due to its high sensitivity to baseline inter-

ubject variability in the connectivity structure. Indeed, when applied

o the discrimination of ictal and interictal states within a single subject,

DA provides good results, comparable in some cases to those achieved

y EC or FC itself, see Appendix C . Therefore, further supported by this

uccessful within-subject application, in the following group analysis we
10 
rst attempt to correct for the inter-subject variability, before applying

he classifier. 

.2.2. EEG Analysis: Alternative approach 

In order to reduce the inter-subject variability of the EEG dataset, in

he following group analysis we apply further cleaning steps to the main

ipeline, following the methodological details described in Section 3.6 .

n this analysis we use the same dataset as in Section 4.2.1 . The obtained

esults, in dimension 1, are shown in Table 3 ; we refer to the Appendix,

nd in particular to Table D.9 , for further results in dimension 0. 

We now see, in Table 3 , that both DPH and PH achieve on aver-

ge good performances, with around 70 percent accuracy on average.

he directed and undirected method are comparable to FC, whereas EC

erforms close to random. 

The results shown in Table 2 and in Table 3 suggest that the clean-

ng steps help at increasing the performance of the classification tasks

rom persistent homology features; on the other hand, the better perfor-

ances could also be due to some specific properties of the considered

ata. Finally, we have applied the alternative pipeline to a different

ataset, namely to epileptic seizure classification in intracranial EEG

ata. 

.3. Third dataset: iEEG - Epilepsy 

In our last analysis, we use the iEEG dataset described in

ection 3.1.2 . As in the previous section, in order to reduce the inter-

ubject variability, we apply the cleaning steps of Section 3.6 before

omputing the homology features and the classification. The obtained

esults, are shown in Table 4 and we refer to Table D.9 to additional

esults in dimension 0. 
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The results show that good classification performances in the detec-

ion of the brain alterations have been achieved, e.g., with values of 0.94

or PE (in dimension 0, see Table E.11 ) and 0.87 obtained by PE in di-

ension 1. These are comparable to the results obtained in the alterna-

ive pipeline for scalp EEG data analysis of Section 4.2.2 and the single

ubject analysis presented in Appendix C and consolidate the idea that

he cleaning step procedures may help in the analysis of brain state de-

ection via TDA. out here that, in this case, a direct comparison with the

erformances of the connectivity matrices across subjects via FC/EC is

ot applicable due to interindividual differences in the electrodes num-

er and placement. 

For the sake of completeness, we report in Table E.11 in the appendix

lso other detailed results of this last analysis, such as employing the full

not-masked) matrices as well and further 0-dimensional features. 

. Discussion 

In this work we have investigated the employment of a directed ex-

ension of persistent homology to classification tasks of disease-related

lterations of brain connectivity from neuroimaging data in the case of

wo typical brain connectivity alterations, namely an easy task classi-

cation between ictal and pre-ictal states, and a more difficult task of

lassification between schizophrenia patients and healthy controls. The

esults of the classification of ictal from inter-ictal effective connectivity

ave provided a proof of principle that the directed persistent homol-

gy approach allows extracting features that carry relevant information

bout the underlying brain state in a real-world setting. However, the

ailure at the schizophrenia classification task pointed to limitations of

he approach. There are several factors that play role here. First, the

esults of the ’naive’ classification using directly the raw connectivity

atrices suggest, that it might be that in the case of the fMRI schizo-

renia classification task, the estimated effective connectivity (unlike

unctional connectivity) might have not contained or retained sufficient

nformation to reliably distinguish the patients from the control. In gen-

ral, effective connectivity aims for richer information concerning the

ystem than functional connectivity (in particular the direction, and in

rinciple the full information about the causal interactions, that can be

onsidered the primary object that gives rise to the secondary statistical

ependences captured by the functional connectivity). However, effec-

ive connectivity pays for that with higher difficulty of estimating it reli-

bly. This may thus also partially explain why even in the seizure classi-

cation tasks, the PH approach typically demonstrated similar or better

lassification performance than the DPH approach, although among the

nalyses, both situations appear: PH performing better than DPH and

ice versa. Indeed, it seems that the most important factor that influ-

nces the performances of the classifier is the dataset. We refer to the

ppendix, Section Appendix F for a more detailed discussion of the sta-

istical comparison of the two pipelines, containing permutation-based

ests of the classification performances against the null hypothesis of

andom class assignment, and testing the hypotheses of the EC versus

he FC-based classifiers with corresponding feature selection. 

As mentioned earlier, the results generally suggest that the naive

lassifications based on functional or effective connectivity generally

erform similarly or better than the topologically-based ones. The better

erformances of FC/EC on the top of TDA might be due to various rea-

ons, including potentially a lower sensitivity of Persistent Homology to

mall localized variations of the absolute values of the input adjacency

atrices: small variations of the metric properties of relatively small

ubgraphs, like the distances associated to a subset of nodes and repre-

ented by the entries of the adjacency matrix, are loosely distinguished

y the associated topological features, but the same variations are better

aptured by classification methods based on the full raw matrices. This

s amplified in the heterogeneous group-studies; in Appendix C , we re-

ort an analysis of the EEG epileptic data restricted to the single subjects

howing better performances than the group-studies. Driven by the idea

hat TDA methods would be more effective when tested on more homo-
11 
eneous data, in the second part of our analysis on the EEG datasets, we

ave introduced further steps in the data processing and cleaning (see

ection 3.6 ). A theoretically preferable procedure would require to use

he covariance matrices instead of the correlations, because satisfying

inearity properties and carrying more biological information, but this

ould involve numerical complications. We observe that, when follow-

ng this variation of the pipeline, both our computations on the EEG

nd iEEG data achieve slightly better performances, suggesting that the

leaning procedures may in fact be of importance in the analysis of these

ata. 

Another observation concerns the field of applicability of the per-

istent homology: for some datasets (as for iEEG data), a classification

nalysis based on the raw FC/EC matrices can not be undertaken. This

s because the analysis assumes fixed number and position of the signal

ources, an assumption clearly not fulfilled by the placement of the in-

racranial electrodes in different subjects. Although under some circum-

tances homogenous resampling might be attempted (such as averaging

f signals within anatomical regions), investigations like those shown on

he iEEG data might be the natural field of application of TDA within

euroimaging. We note here that other measures such as raw FC/EC

ith some dimension reduction or indeed other methods not using con-

ectivity at all are likely to provide similar or even higher classification

erformance than that achieved by the current combinations of connec-

ivity and persistent homology features, as the seizure network dynam-

cs are indeed commonly quite different from the inter-ictal period. We

efer readers interested in this particular classification task to a recent

eview by Siddiqui et al. (2020) , however noting that for a range of the

eviewed studies, only the best performing classifier is reported, and the

ccuracies might therefore be generally inflated. 

Due to richness of the available methodologies, we necessarily had

o limit our investigation by making some specific choices. Among the

eneral advantages of PH over more classical methods, PH does not de-

end upon the choice of a threshold. However, it does depend on the

hoice of the filtrations used and simpler graph filtrations (see, e.g.,

ee et al. (2011a) ) may also be employed as input of PH instead of

he more general Rips/clique filtration. Although both the graph and

ips/clique filtrations lead to the same features in dimension 0 (as the

umber of connected components of the graphs and of the associated

implicial complexes is the same), this is not true in higher dimensions.

n fact, the 𝑛 -dimensional features obtained by using the graph filtration

re 0 for every 𝑛 ≥ 2 , whereas, due to the presence of higher-order sim-

lices, when using the Rips/clique filtration non-trivial 𝑛 -dimensional

oles may arise. In this work we have used the more general clique fil-

ration, that in principle provides additional information due to the pres-

nce of higher-order simplices; however this does not necessarily mean

hat the classifiers will be able to use this information efficiently; how-

ver, we have not provided a comparison with other filtrations. Among

ther specific choices, for instance, many more featurizations of per-

istent homology are available in the literature, and we thus decided

o focus only on some of the more common. Among other examples,

ernel methods are also prominent, and we report some kernel-based

lassifications in Appendix D . The results reported in Section 4 and in

he Appendix, refer to computations using features in dimension 0 and

; we have also computed the persistent homology groups in higher di-

ensions, but, due to the size of our datasets, the Betti numbers were

ypically zero (and always zero from dimension 3 higher), so we did not

nclude them in the report. It is an open question whether, for larger

atasets, the higher Betti numbers can be effectively used for reaching

etter classifications. 

Moreover, there is the choice of potentially discarding the weak

potentially noise-related) links from consideration. Among prior stud-

es analysing functional connectivity networks through persistent

omology methods, some set statistically insignificant correlations

with 𝑝 -values greater than 0.05) to 0 (see Merelli et al. (2016) ;

tolz et al. (2018) ) and others do not (see Lee et al. (2011b, 2012) ;

athore et al. (2019) ). The results reported in this work refer to connec-
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ivity networks with links surviving significance threshold of 𝛼 = 0 . 05 ,
ut either approach can be equivalently undertaken; for sake of com-

leteness, we report in Table D.7 the results obtained by using the full EC

r FC matrix (from which we compute the distance matrix by the trans-

ormation 1 − | ⋅ |) and a comparison of the performances, showing that

he performance does not substantially depend on the choice of these

asks. For consistency with the undirected approach, in our study of

he effective connectivity networks we introduce a similar masking ap-

roach: we first build the (pair-wise) Granger Causality graph associated

o the brain data and then we set to 0 the connections in the network

arked as dependent by applying the FACDA algorithm ( Ko ř enek and

linka, 2020 ). Table D.7 shows that also in the case of the effective

etwork, masking does not change the results substantially. 

Another specific choice is the use of the SVM rather than other clas-

ifier. As mentioned in the Methods section, SVM is a relatively stan-

ard method of choice for similar data situations, used also previously

n similar context Rathore et al. (2019) ; Stolz et al. (2018) , although a

lethora of alternatives exist. As with most classification tools, the per-

ormance of SVM might be adversely affected by high dimensionality

f input data. However, except for PL and, potentially, PI, all the other

DA features that we have used are low-dimensional, in particular in

omparison to the number of features in the naive approach that uses

he full connectivity matrix as its input. 

In order to study effective connectivity networks from a topologi-

al point of view, there are two approaches: one can either construct

n undirected graph from the directed effective connectivity network

hence losing some information) and then apply the usual PH pipeline

r one can use a suitable directed version of PH. To the best of our

nowledge, this is the first attempt at employing the latter, directed PH

pproach to analyse effective connectivity. However, this approach has

een foreseen in a recent perspective paper by Lee (2019) , suggesting

hat causal connectivity methods are to be examined and applied for

lassification of diseases. 

To summarise, we have shown that the (directed) persistent homol-

gy approach can be applied to brain functional/effective connectivity,

btaining in some cases good performances. However we suggest that

 due caution in the use of TDA and of these featurizations should be

aken, in line with very recent critical results on TDA based on functional

onnectivity in the literature Ellis et al. (2019) ; Rathore et al. (2019) . 

. Conclusion 

In this work we have shown that in principle the directed exten-

ion of persistent homology can be successfully applied to classification

f disease-related alterations of brain connectivity from neuroimaging

ata. However, cautious direct comparison to the performance of stan-

ard (undirected) persistent homology features as well as to the use of

he raw effective (or functional) connectivity matrices for the same clas-

ification task suggests that there are important challenges to be over-

ome to fully utilize the theoretical promise of the topological data anal-

sis. We conclude that tackling the identified real-world neuroimaging

hallenges such as topographical versus topological specificity of the

rain alterations, inter-individual biases and homogeneous versus het-

rogeneous sampling situations, would be necessary in order to firmly

stablish TDA also in the particular field of neuroimaging as a pragmatic

ool. 
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ppendix A. Background: Topological Data Analysis 

Topological Data Analysis is a recent and active research field of

pplied algebraic topology, whose main goal is to study the struc-

ure of datasets by means of topological frameworks. Among the tools

f TDA maybe the most common is nowadays Persistent Homology,

hose definition is based on the mathematical ideas of simplicial com-

lexes, filtrations and homology . In this section we present a brief

verview on this subject, we describe these concepts in the sections

ection A.1 and Section A.2 below (referring to Otter et al. (2017) ;

omorodian and Carlsson (2005) for a mathematical introduction and

o Horak et al. (2009) ; Petri et al. (2013) for further studies of Persistent

omology with applications to complex networks). 

1. Simplicial complexes 

Simplicial complexes are combinatorial mathematical objects that

eneralize (in higher dimensions) the classical definition of graphs.

oughly speaking, a simplicial complex is a space built by assem-

ling together points, edges, triangles, tetrahedra and, more generally,

igh dimensional polytopes (in topology called simplices). We refer to

unkres (1984) for more details. 

efinition A.1. Let 𝑉 be a set. An (abstract) simplicial complex on 𝑉 is

 collection Σ = { 𝜎𝛼} of finite non-empty subsets 𝜎𝛼 of 𝑉 such that: 

i) for each 𝑣 ∈ 𝑉 , { 𝑣 } belongs to Σ; 

ii) if 𝜎 ∈ Σ and 𝜏 ⊆ 𝜎, then 𝜏 ∈ Σ. 

The elements 𝜎𝛼 of a simplicial complex Σ are called simplices of Σ and

f 𝜎𝛽 is a subset of a simplex 𝜎𝛼 , then we say that 𝜎𝛽 is a face of 𝜎𝛼 . The

imension of a simplex 𝜎 is one less its cardinality, i.e., if 𝜎 = { 𝑣 0 , … , 𝑣 𝑘 }
hen dim 𝜎 = 𝑘 , and we say that 𝜎 is a 𝑘 -simplex. The 0-simplices { 𝑣 } ∈ Σ
re called the vertices of the simplicial complex Σ. We will write 𝑉 (Σ)
or the set of vertices of Σ; with abuse of notation, we will make no

istinction between the element 𝑣 ∈ 𝑉 and the vertex { 𝑣 } ∈ 𝑉 (Σ) . 
In this work we consider only finite simplicial complexes, so that the

amily Σ = { 𝜎𝛼} is finite. The dimension of the simplicial complex Σ is

he maximal dimension across all its simplices. 

bservation. Definition Appendix A.1 is rather abstract. However, one

an always geometrically realize an (abstract) simplicial complex as a

eometric subspace of ℝ 

𝑛 . A 𝑘 -simplex 𝜎 = { 𝑝 0 , … , 𝑝 𝑘 } can be geomet-

ically depicted as the convex hull of 𝑘 + 1 geometrically independent

oints 𝑝 0 , … , 𝑝 𝑘 in ℝ 

𝑘 +1 . For example, a 0-simplex is a point, a 1-simplex

s depicted as a segment (a convex hull of its two endpoints, which are

gain 0-simplices). Likewise, a 2-simplex is geometrically understood as

 triangle, and so on. Roughly, for geometrically depicting a simplicial

omplex, one realizes each of its simplex as a subspace of ℝ 

𝑛 and then

lues them to each other along common faces. See Fig. A.7 for an ex-

mple of geometric realizations of different simplicial complexes (there

enoted by Σ0 , … , Σ5 ). 

xample A.2. Recall that a graph 𝐺 is a pair 𝐺 = ( 𝑉 , 𝐸) given by a set

 of vertices and a set 𝐸 ⊆ 𝑉 × 𝑉 of edges, where an edge is identified

y the couple ( 𝑣, 𝑤 ) of its distinct endpoints (so we do not allow multiple

dges or loops). Hence, a graph is a simplicial complex whose vertex set

s 𝑉 and the 1-simplices are the edges of 𝐺. 

If Σ and Σ′ are simplicial complexes, a simplicial map Σ → Σ′ be-

ween them is a function 𝑓 ∶ 𝑉 (Σ) → 𝑉 (Σ′) sending vertices of Σ to ver-

ices of Σ′, with the property that, if the vertices 𝑣 , … , 𝑣 span a simplex
0 𝑛 
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Fig. A1. Example of a filtration of simplicial complexes. At each step we add some edges, and when we find a 3-clique we fill it in with a (coloured) 2-simplex. 

Fig. A2. Persistence diagram associated to a filtration 

of simplicial complexes. Each dot represents the birth- 

death of a 𝑘 -dimensional hole. The bottom right trian- 

gular segment is empty because the death of a persis- 

tent homology class can not be lower than its birth. 
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= { 𝑣 0 , … , 𝑣 𝑛 } of Σ, then also the vertices 𝑓 ( 𝑣 0 ) , … , 𝑓 ( 𝑣 𝑛 ) span a sim-

lex of Σ′; observe that the image of 𝜎 can be a simplex of Σ′ of smaller

imension. Examples of simplicial maps arise from inclusion. For ex-

mple, if Σ is contained in Σ′ (as subfamily) then the inclusion Σ ⊆ Σ′

efines a map of simplicial complexes (sending the simplices of Σ to the

ame simplices seen in Σ′. In this case we say that Σ is a subcomplex

f Σ′. Having maps between simplicial complexes preserving the struc-

ures is an important ingredient in developing the theory of filtrations

nd persistent homology (see the sections below). 

xample A.3 (Clique complex) . A graph 𝐺 is a 1-dimensional simplicial

omplex (as its simplices are at most of dimension 1); recall that an 𝑛 -

lique is a complete subgraph of 𝐺 on 𝑛 vertices. The clique complex 𝐺̂

ssociated to 𝐺 is the simplicial complex constructed as follows: 

1. its 0- and 1-simplices are the vertices and edges of 𝐺; 

2. for every ( 𝑛 + 1) -clique with vertices { 𝑣 0 , … , 𝑣 𝑛 } in 𝐺 we add the

𝑛 -simplex 𝜎𝛼 = { 𝑣 0 , … , 𝑣 𝑛 } on the same vertices. 

For example, if 𝐺 is a complete graph on 3 vertices, then its clique

omplex is nothing but a simplicial complex consisting of a 2-simplex
13 
ogether with all its faces. Observe that the dimension of the clique com-

lex depends on the dimension of the maximal cliques of 𝐺. The embed-

ing of 𝐺 into 𝐺̂ sending the vertices and edges of 𝐺 to the respective 0

nd 1-simplices of 𝐺̂ is a map of simplicial complexes. 

We are ready to recall the definition of filtration of a simplicial com-

lex Σ: 

efinition A.4. A filtration  (of a simplicial complex Σ) is an indexed

equence of subcomplexes of Σ

 ∶ Σ0 ⊆ ⋯ ⊆ Σ𝑁 = Σ

uch that for every 𝑖 ≤ 𝑗, the simplicial complex Σ𝑖 is contained in Σ𝑗 . 

We will only consider finite filtrations of simplicial complexes (so

hat the chain of simplicial complexes in the definition is finite). The

et of indices in the definition of a filtration is usually given by positive

atural numbers, but it can also be a more general set, like the positive

eal numbers (see, e.g., Example Appendix A.6 ). A figurative illustration

f a filtration (with clique complexes) is given in Fig. A.7 . 
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We conclude the subsection with two prominent examples of filtra-

ions: the weight rank clique filtration (WRCF) Petri et al. (2013) associ-

ted to a weighted graph and the VietorisRips filtration associated to any

nite subset of a metric space. 

xample A.5 (WRCF) . Let 𝐺 be a weighted graph and let ( 𝑤 𝑖 ) 0 ≤ 𝑖 ≤ 𝑁 be

he increasing sequence of all the weights of 𝐺 (i.e., 𝑤 0 is the minimal

eight, 𝑤 𝑁 the maximal and 𝑤 𝑖 < 𝑤 𝑖 +1 ). For the 𝑖 th weight 𝑤 𝑖 construct

he simplicial complex Σ𝑖 as follows: 

1. consider the subgraph 𝐺 𝑖 ⊆ 𝐺 with the same vertices of 𝐺 and only

those edges of 𝐺 with corresponding weight 𝑤 such that 𝑤 ≤ 𝑤 𝑖 ; 

2. Σ𝑖 ∶= 𝐺̂ 𝑖 is the clique complex of 𝐺 𝑖 (see Ex. Appendix A.3 ). 

It is easy to see that Σ𝑖 is contained in Σ𝑖 +1 and that the sequence

⊆ Σ0 ⊆⋯ ⊆ Σ𝑁 = Σ is a filtration. Analogously, by sorting the weights

n the decreasing order, one obtains another filtration, where the graph

 𝑖 is defined by keeping only the edges of 𝐺 with weight 𝑤 ≥ 𝑤 𝑖 . 

xample A.6 (VietorisRips filtration) . Let ( 𝑋 , 𝑑 ) be a metric space and

be a finite subset of 𝑋, endowed with the induced metric. In applica-

ions, the set 𝑆 can be a set of data-points in ℝ 

𝑛 or a set of measurements

ith a notion of distances between them. The VietorisRips complex of 𝑆

t scale 𝑡 ≥ 0 is the simplicial complex: 

 𝑅 𝑡 ( 𝑆) = {∅ ≠ 𝜎 ⊆ 𝑆 ∣ 𝑑𝑖𝑎𝑚 ( 𝜎) ≤ 𝑡 } 

here the 𝑑𝑖𝑎𝑚 ( 𝜎) ∶= sup { 𝑑( 𝑥, 𝑦 ) ∣ 𝑥, 𝑦 ∈ 𝜎} is the diameter of 𝜎 (we

oint out here that different definitions, considering a maximal distance

f 2 𝑡 instead of 𝑡 can be found in the literature; we follow the definition

sed in Tralie et al. (2018) to be consistent with Section 3.8 ). Observe

hat every such 𝜎 represents a simplex of dimension |𝜎| − 1 . If 𝑡 ≤ 𝑡 ′ then

 𝑅 𝑡 ( 𝑆) ⊆ 𝑉 𝑅 ( 𝑆) 𝑡 ′ and the resulting filtration 𝑉 𝑅 ( 𝑆) of the simplicial

omplexes 𝑉 𝑅 𝑡 ( 𝑆) , with 𝑡 varying in ℝ ≥ 0 , is called the VietorisRips filtra-

ion of 𝑆. 

emark A.7. Observe that the two constructions in

x. Appendix A.5 and in Ex. Appendix A.6 are equivalent, if one

onsiders metric spaces ( 𝑋 , 𝑑 ) associated to weighted graphs 𝐺 (with

espect to an increasing ordering of the weights), with underlying space

given by the nodes of the graph 𝐺 and distance 𝑑( 𝑥, 𝑦 ) between 𝑥 and

 defined as the weight corresponding to the edge ( 𝑥, 𝑦 ) . 

2. (Persistent) homology and persistence diagrams 

Persistent Homology (PH) Edelsbrunner et al. (2002) ;

omorodian and Carlsson (2005) is one of the main tools in TDA

nd one of the first applications of Algebraic Topology to Data Analysis,

ntroduced in Carlsson (2009) . Persistent Homology is a topological

nvariant whose definition is based on the mathematical concept of

omology groups. 

It is robust to noise and stable with respect to small perturbations of

he inputs (Cohen-Steiner et al., 2007, Section 3.1) ; moreover, calcula-

ions can be easily achieved by using many software options (in MAT-

AB, Python, C++, R, Java) Otter et al. (2017) . Its constituents, the ho-

ology groups, are classical algebraic invariants of topological spaces.

he number of connected components, loops (1-dimensional holes),

oids (2-dimensional holes), tunnels and higher dimensional holes are

xamples of such invariants. A technical comprehensive definition of

omology groups is outside of the scope of the present work. In the fol-

owing, we will only sketch some ideas, but the interested reader can

nd more details in Hatcher (2000) ; Munkres (1984) . We conclude the

ection with the definition of persistent homology groups and persis-

ence diagrams. 

Let 𝑘 be a natural number. The 𝑘 th homology group 𝐻 𝑘 (Σ) associated

o a simplicial complex Σ (see Def. Appendix A.1 ) can be thought of as

he set (group, module or vector space) of 𝑘 -dimensional holes in Σ; the

lements of 𝐻 ∗ (Σ) are called homology classes . To be more precise, let

 be the field with two elements (i.e., 0 and 1, with sum and product
2 

14 
nherited from the usual sum and product of real numbers, reduced mod

) and let 𝐶 𝑝 (Σ) be the free 𝔽 2 -vector space whose basis consists of the

et of 𝑝 -simplices of Σ: elements of 𝐶 𝑝 (Σ) are formal combinations 𝑎 0 𝜎0 +
 + 𝑎 𝑛 𝜎𝑛 of 𝑝 -simplices 𝜎0 , … , 𝜎𝑛 of Σ with coefficients 𝑎 𝑖 in 𝔽 2 . For every

 ≥ 1 we define the map 

 𝑝 ∶ 𝐶 𝑝 (Σ) → 𝐶 𝑝 −1 (Σ) , 𝑑 𝑝 ( 𝜎) ∶= 

∑
𝜏⊆𝜎,𝜏∈𝐶 𝑝 −1 (Σ) 

𝜏

y sending a 𝑝 -simplex 𝜎 to a formal sum of all its ( 𝑝 − 1) -faces. The map

 0 is defined as the zero map. As the composition 𝑑 𝑝 ◦𝑑 𝑝 +1 = 0 is the zero

ap, the image of 𝑑 𝑝 +1 in 𝐶 𝑝 (Σ) is contained in the kernel of 𝑑 𝑝 ; these are

oth 𝔽 2 -vector spaces and the quotient ker ( 𝑑 𝑘 )∕ Im ( 𝑑 𝑘 +1 ) of vector spaces

s well-defined. We can now formally define the homology groups of the

implicial complex Σ (with 𝔽 2 -coefficients): 

efinition A.8. Let Σ be a simplicial complex and 𝑘 ≥ 0 a natural num-

er. The 𝑘 th homology group 𝐻 𝑘 (Σ) of Σ

 𝑘 (Σ) ∶= ker ( 𝑑 𝑘 )∕ Im ( 𝑑 𝑘 +1 ) 

s defined as the quotient of the kernel of the map 𝑑 𝑘 with the image of

 𝑘 +1 . 

The group 𝐻 𝑘 (Σ) is in fact a 𝔽 2 -vector space and its dimension (over

 2 ) called the 𝑘 th Betti number 𝛽𝑘 (Σ) of Σ. More general definitions are

ossible, with arbitrary fields 𝔽 or with the integers ℤ as coefficients. We

efer to Hatcher (2000) ; Munkres (1984) for more detailed descriptions

f homology groups. 

The number of 𝑘 -holes of (the geometric realization of) a simplicial

omplex Σ corresponds to the 𝑘 th Betti number 𝛽𝑘 (Σ) associated this way

o Σ. In fact, Betti numbers give (a measure of) the number of “indepen-

ent ” holes or loops in Σ, i.e., holes that can not be shrunk continuously

o a point. The 0th Betti number 𝛽0 represents the number of connected

omponents, the 1-st Betti number 𝛽1 is the number of independent loops

nd the 2-nd Betti number 𝛽2 gives the number of 2-dimensional voids.

xample A.9. If 𝑋 is a point, then 𝑋 has a single connected component

nd no loops or higher dimensional holes. Its Betti numbers 𝛽𝑛 ( 𝑋) are

 for every 𝑛 > 0 , except for 𝛽0 ( 𝑋) which is 1. The 0th Betti number of

wo points is 2 (2 connected components) and 0 in higher dimensions.

n the other hand, if 𝑋 is a 2-dimensional sphere, then 𝑋 has a 2-

imensional hole, represented by the void internal to the sphere. We

et 𝛽0 ( 𝑋) = 𝛽2 ( 𝑋) = 1 and 𝛽𝑛 ( 𝑋) = 0 otherwise. Observe that 𝛽1 ( 𝑋) is
lso 0 as every loop on the sphere can be continuously shrunk to one

oint. 

One of the most useful theoretical properties of homology is given by

ts functoriality: for every simplicial map 𝑓 ∶ 𝑋 → 𝑌 of simplicial com-

lexes and for every 𝑘 in ℕ , we also get a linear map 𝐻 𝑘 ( 𝑓 ) ∶ 𝐻 𝑘 ( 𝑋) →
 𝑘 ( 𝑌 ) : 

 ∶ 𝑋 → 𝑌 ↦ { 𝐻 𝑘 ( 𝑓 ) ∶ 𝐻 𝑘 ( 𝑋) → 𝐻 𝑘 ( 𝑌 )} 𝑘 ∈ℕ (A.1)

atisfying some additional compatibility properties; we avoid to spell

hem out here and we refer to Hatcher (2000) for the details. This turns

ut to be of great importance when dealing with more than one single

implicial complex. 

As we have seen, the 𝑘 th homology group 𝐻 𝑘 (Σ) is associated to a sin-

le simplicial complex Σ. Likewise, persistent homology groups are de-

ned for a filtration of simplicial complexes, as we now explain. By the

unctoriality described in Eq. A.1 , if  ∶ ∅ ⊆ Σ0 ⊆ ⋯ ⊆ Σ𝑁 = Σ is a fil-

ration of simplicial complexes (see Def. Appendix A.4 ), then, for every

 , we get a sequence 0 → 𝐻 𝑘 (Σ0 ) → ⋯ → 𝐻 𝑘 (Σ𝑁 ) = 𝐻 𝑘 (Σ) of homology

roups and morphisms between them. Let 𝑘 be fixed; then, for every pair

f indices 𝑖 and 𝑗 between 0 and 𝑁 , the composition of maps of simplicial

omplexes Σ𝑖 → ⋯ → Σ𝑗 induces a map 𝑓 
𝑖,𝑗 

𝑘 
∶ 𝐻 𝑘 (Σ𝑖 ) → 𝐻 𝑘 (Σ𝑗 ) between

he homology groups of Σ𝑖 and Σ𝑗 . 

efinition A.10. Edelsbrunner et al. (2002) For 𝑖 < 𝑗, the 𝑘 th persistent

omology group 𝐻 

𝑖,𝑗 

𝑘 
(  ) of the filtration  ∶ ∅ ⊆ Σ0 ⊆⋯ ⊆ Σ𝑁 = Σ is the
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Table C.5 

Epilepsy: single subject analysis. SVM classification of 

ictal and interictal data corresponding to 3 patients: 

CHB06, CHB15, CHB24. For each patient, the classifi- 

cation uses masked FC, masked EC or the topological 

features PL, PI, CC and PE with undirected approach 

(PH) and with directed approach (DPH). Acc stands for 

Accuracy, Sns for Sensitivity and Spc for Specificity . 

Patient Features Method Acc Sns Spc 

CHB06 EC (DPH) 0.95 0.90 1.00 

FC (PH) 𝟏 . 𝟎𝟎 1.00 1.00 

PL (DPH) 0.65 0.80 0.50 

(PH) 0.60 0.70 0.50 

PI (DPH) 0.75 0.60 0.90 

(PH) 0.75 0.80 0.70 

CC (DPH) 0.80 1.00 0.60 

(PH) 0.85 0.90 0.80 

PE (DPH) 0.75 0.60 0.90 

(PH) 0.95 0.90 1.00 

CHB15 EC (DPH) 0.78 0.80 0.75 

FC (PH) 𝟎 . 𝟗𝟑 0.90 0.95 

PL (DPH) 0.48 0.40 0.55 

(PH) 0.50 0.50 0.50 

PI (DPH) 0.60 0.55 0.65 

(PH) 0.68 0.70 0.65 

CC (DPH) 0.63 0.70 0.55 

(PH) 0.45 0.50 0.40 

PE (DPH) 0.48 0.05 0.90 

(PH) 0.30 0.30 0.30 

CHB24 EC (DPH) 0.70 0.90 0.50 

FC (PH) 0.90 0.90 0.90 

PL (DPH) 0.65 0.60 0.70 

(PH) 0.85 0.80 0.90 

PI (DPH) 0.65 0.80 0.50 

(PH) 0.80 0.70 0.90 

CC (DPH) 0.75 0.80 0.70 

(PH) 0.60 0.50 0.70 

PE (DPH) 0.55 0.40 0.70 

(PH) 𝟎 . 𝟗𝟓 0.90 1.00 
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mage of the induced map 𝑓 
𝑖,𝑗 

𝑘 
∶ 𝐻 𝑘 (Σ𝑖 ) → 𝐻 𝑘 (Σ𝑗 ) . The 𝑘 th persistent Betti

umbers 𝛽
𝑖,𝑗 

𝑘 
( 𝐹 ) are the ranks of the persistent homology groups 𝐻 

𝑖,𝑗 

𝑘 
( 𝐹 ) .

The intuition behind the definition of persistent homology groups

s that homology classes (the 𝑘 -dimensional holes) can appear and dis-

ppear at different stages of the filtration steps, due to changes in the

opology of the simplicial complexes across the filtration. A persistence

omology class (i.e., an element) of 𝐻 

𝑖,𝑗 

𝑘 
(  ) represents a 𝑘 -dimensional

ole of Σ𝑖 surviving across all the filtration steps between the index 𝑖 and

ndex 𝑗. The filtration indices at which a 𝑘 -dimensional hole first appears

nd first disappears are called its birth and death . Persistent homology

akes (mathematically) clear the idea of appearing and disappearing of

igh dimensional holes; it keeps track of all these topological changes

ith the persistence Betti numbers. 

We can visualize the information provided by persistent homology

roups and persistent Betti numbers by constructing a planar diagram

alled Persistence Diagram (PD), stably with respect to the input data

ohen-Steiner et al. (2007) . A persistent homology class born at time 𝑏

nd that died at time 𝑑 is represented in the diagram by the pair ( 𝑏, 𝑑)
see Fig. A.8 ). Classes that persist until the end are usually depicted in

he persistent diagram as dying at infinity (or at any other index bigger

han the maximum filtration one). Note that there are no points below

he diagonal because the death value of a hole is always bigger than its

irth value. 

In a persistence diagram it is then visually clear the measure of how

ong a homology class persists: the farther from the diagonal, the higher

he persistence. In the standard interpretations, short-living classes (so,

ith representing dots close to the diagonal) are interpreted as noise,

nd only long-persistence classes represent important features of the

ltration. 

ppendix B. EEG data: Subject selection 

In our analysis of epileptic brain states we have used the data avail-

ble at https://physionet.org/content/chbmit/1.0.0/ , from the publicly

pen dataset Physionet . We have analysed EEG recordings belonging to

8 selected subjects: chb01-05, chb07, chb09, chb10, chb12, chb14,

hb17-24 except chb18_01, chb19_01. 

For the variation of the main pipeline, we have used the following

les: chb01_03, chb02_16+, chb03_01, chb04_05, chb05_06, chb07_12,

hb09_06, chb10_12, chb12_06, chb14_11, chb17a_03, chb18_29,

hb19_28, chb20_13, chb21_19, chb22_20, chb23_06, chb24_04. For

hose, we always use the first seizure (the first 30 s of it) and two 30-

econd segments preceding it: [ − 3m: − 2m 30s] for baseline connectivity,

nd [-1min:-30sec] for preictal connectivity estimation. Detailed proce-

ure is described in Section 3.1.2 , in Intracranial EEG data description.

ppendix C. EEG data: single subject analysis 

In this supplementary, we assess the efficiency of PH and DPH on sin-

le subjects brain state alteration classification, in contrast to the group

nalysis reported in the main paper in Section 4.2.1 . 

In the single-subject analysis, we consider the data collected from

he patients CHB06, CHB15 and CHB24 (from the same database, we

ave chosen the patients with higher number of seizures). 

For every patient, we consider segments with epileptic seizures and

nterictal data of corresponding length: 10 ictal plus 10 interictal record-

ngs for the patient CHB06, 20 plus 20 for the patient CHB15 and 10

lus 10 for the patient CHB24. We then apply the same pipeline as in

he group analysis. 

From the accuracy results, shown in Table C.5 , we observe that the

lassification performances associated to single patients, based on topo-

ogical features out of the directed and undirected approach, achieve

etter results (on average about 0.75, 0.60 and 0.70 for CHB06, CHB15

nd CHB24, respectively) than in the inter-subject analysis. 
15 
Topological features may not achieve great performances in het-

rogenous group-wise classification settings (compare the results with

hose in Table 2 ), but they are more informative when applied to more

pecific datasets. 

ppendix D. Supplementary results 

In a parallel exploratory analysis to that presented in the main

ext, we have applied small variations of the pipeline described in

ection 3 and/or computed different features. In this supplementary we

how the results obtained following the main pipeline applied on the

MRI and EEG datasets, using either kernel methods (see Appendix D.1 ),

he full matrices (as apposed to the masked ones, see Appendix D.2 , or

he 0-dimensional features (as opposed to the 1-dimensional features,

ee Appendix D.3 ). 

1. Kernel methods 

Our main analysis has been based on Persistence Images, Persis-

ence Landscapes, Persistence Images, Carlsson Coordinates and Persis-

ent Entropy, but many other topological features to analyse datasets

re available. Among others, kernel-based methods provide some flexi-

le choices. As there is not a standard persistence kernel approach, we

ave decided to analyse this feature separately. We follow the kernel-

ased method introduced by Reininghaus et al. (2015) and apply the

VM classification on the (masked) FC and EC networks, following the

ipeline in Section 3 . We report the results in Table D.6 , from which we

an see that they are comparable to those achieved by the other features

eported in the main text of the work. 

https://physionet.org/content/chbmit/1.0.0/
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Table D.6 

SVM kernel-based classification of func- 

tional and effective connectivity networks 

(both masked) using undirected approach 

(PH) or directed approach (DPH) (in dimen- 

sion 1), respectively. Epil denotes the EEG 

epilepsy data for the group analysis, CHB06, 

CHB15 and CHB24 denote single epilep- 

tic patients and schizo denotes the fMRI 

schizophrenia data. Acc stands for Accuracy, 

Sns for Sensitivity and Spc for Specificity . 

Data Method Acc Sns Spc 

Schizo EC (DPH) 0.51 0.57 0.46 

FC (PH) 0.62 0.67 0.57 

Epil EC (DPH) 0.53 0.39 0.67 

FC (PH) 0.61 0.67 0.56 

CHB06 EC (DPH) 0.80 0.90 0.70 

FC (PH) 0.85 0.80 0.90 

CHB15 EC (DPH) 0.43 0.50 0.35 

FC (PH) 0.58 0.70 0.45 

CHB24 EC (DPH) 0.55 0.60 0.50 

FC (PH) 0.75 0.70 0.80 

Table D.7 

Full FC vs masked FC; full EC vs masked EC. Epil denotes the 

EEG epilepsy data for the group analysis, CHB06, CHB15 and 

CHB24 denote single epileptic patients and schizo denotes the fMRI 

schizophrenia data. The FC/EC masks are discussed in Section 3.2 . 

Features refer to the topological features of Section 3.5 ; naive de- 

notes the classification method applied to the original matrices. 

Data Feature Full-FC Masked-FC Full-EC Masked-EC 

Schizo CC 0.59 0.61 𝟎 . 𝟓𝟗 0.34 

PE 0.58 0.56 0.55 0.54 

PI 0.52 0.56 0.48 0.49 

PL 0.53 0.48 𝟎 . 𝟓𝟗 0.44 

naive 𝟎 . 𝟖𝟎 𝟎 . 𝟕𝟗 0.54 𝟎 . 𝟓𝟕 
Epil CC 0.56 0.69 0.58 0.44 

PE 0.56 0.33 0.61 0.53 

PI 0.58 0.64 0.33 0.47 

PL 0.36 0.50 0.31 0.50 

naive 𝟎 . 𝟖𝟏 𝟎 . 𝟕𝟖 𝟎 . 𝟖𝟗 𝟎 . 𝟖𝟑 
CHB06 CC 𝟏 . 𝟎𝟎 0.85 0.70 0.80 

PE 0.80 0.95 0.60 0.75 

PI 𝟏 . 𝟎𝟎 0.75 0.65 0.75 

PL 0.95 0.60 0.60 0.65 

naive 𝟏 . 𝟎𝟎 𝟏 . 𝟎𝟎 𝟏 . 𝟎𝟎 𝟎 . 𝟗𝟓 
CHB15 CC 0.28 0.45 0.58 0.63 

PE 0.48 0.30 0.48 0.48 

PI 0.50 0.68 0.63 0.60 

PL 0.73 0.50 0.65 0.48 

naive 𝟎 . 𝟗𝟑 𝟎 . 𝟗𝟑 𝟎 . 𝟗𝟓 𝟎 . 𝟕𝟖 
CHB24 CC 0.90 0.60 0.65 𝟎 . 𝟕𝟓 

PE 𝟏 . 𝟎𝟎 𝟎 . 𝟗𝟓 0.60 0.55 

PI 0.75 0.80 0.40 0.65 

PL 0.95 0.85 0.70 0.65 

naive 0.80 0.90 𝟎 . 𝟖𝟓 0.70 
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Table D.8 

SVM classification with 0-dimensional topological fea- 

tures, for the masked FC and EC. Epil denotes the EEG 

epilepsy data for the group analysis, CHB06, CHB15 and 

CHB24 denote single epileptic patients and schizo de- 

notes the fMRI schizophrenia data. Features (CC) and 

(PE) refer to the topological features of Section 3.5 , (ker- 

nel), (AUC) and (IPF) are additional features discussed 

in the text. 

Data Features Method Acc Sns Spc 

Schizo CC EC (DPH) 0.52 0.30 0.73 

FC (PH) 0.49 0.51 0.47 

PE EC (DPH) 0.49 0.19 0.80 

FC (PH) 0.49 0.62 0.37 

kernel EC (DPH) 0.53 0.30 0.77 

FC (PH) 0.53 0.59 0.47 

AUC EC (DPH) 0.49 0.70 0.28 

FC (PH) 0.55 0.56 0.54 

IPF EC (DPH) 0.45 0.62 0.28 

FC (PH) 0.38 0.19 0.57 

Epil CC EC (DPH) 0.47 0.50 0.44 

FC (PH) 0.53 0.61 0.44 

PE EC (DPH) 0.33 0.00 0.67 

FC (PH) 0.53 0.72 0.33 

kernel EC (DPH) 0.42 0.50 0.33 

FC (PH) 0.53 0.67 0.49 

AUC EC (DPH) 0.44 0.50 0.39 

FC (PH) 0.56 0.61 0.50 

IPF EC (DPH) 0.53 0.78 0.28 

FC (PH) 0.56 0.50 0.51 

CHB06 CC EC (DPH) 0.75 0.70 0.80 

FC (PH) 1.00 1.00 1.00 

PE EC (DPH) 0.70 0.80 0.60 

FC (PH) 0.95 1.00 0.90 

kernel EC (DPH) 0.75 0.80 0.70 

FC (PH) 1.00 1.00 1.00 

AUC EC (DPH) 0.65 0.70 0.60 

FC (PH) 1.00 1.00 1.00 

IPF EC (DPH) 0.80 0.90 0.70 

FC (PH) 1.00 1.00 1.00 

CHB15 CC EC (DPH) 0.30 0.20 0.40 

FC (PH) 0.58 0.55 0.60 

PE EC (DPH) 0.60 0.55 0.65 

FC (PH) 0.58 0.50 0.65 

kernel EC (DPH) 0.50 0.40 0.60 

FC (PH) 0.38 0.55 0.20 

AUC EC (DPH) 0.58 0.45 0.70 

FC (PH) 0.58 0.75 0.40 

IPF EC (DPH) 0.63 0.55 0.70 

FC (PH) 0.50 0.20 0.80 

CHB24 CC EC (DPH) 0.70 0.70 0.70 

FC (PH) 0.95 1.00 0.90 

PE EC (DPH) 0.60 0.60 0.60 

FC (PH) 1.00 1.00 1.00 

kernel EC (DPH) 0.75 0.90 0.60 

FC (PH) 1.00 1.00 1.00 

AUC EC (DPH) 0.50 0.60 0.40 

FC (PH) 1.00 1.00 1.00 

IPF EC (DPH) 0.50 0.60 0.40 

FC (PH) 1.00 1.00 1.00 
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2. Full versus masked connectivity networks 

An additional analysis has been driven by the question whether clas-

ification tasks, based on masked matrices associated to (un-)directed

etworks (see Section 3.2 ), achieve different results when applied to

he full matrices. We compare in Table D.7 full and masked-based clas-

ification results; the results suggest that the masking does not have a

ystematic detrimental effect on the analysis outcomes. 

3. 0-Dimensional Features 

In this analysis carried out on both EEG and fMRI data, we

ocus on 0-dimensional topological features. We use the features
16 
arlsson Coordinates (CC), Persistent Entropy (PE) and the ker-

el feature of Reininghaus et al. (2015) . Additionally, we in-

estigate the 0-dimensional features Area Under the Curve (AUC)

racia-Tabuenca et al. (2019) and Integrated Persistence Feature (IPF)

uang et al. (2019a) , as both have shown to provide good differentia-

ions when applied to attention-deficit/hyperactivity disorder (ADHD)

nd Alzheimers disease, respectively. We show in Table D.8 the results

n the fMRI (schizophrenia) dataset and on the scalp EEG (epilepsy)

ata; we present in Table D.9 the results in dimension 0 for both the

calp EEG and intracranial iEEG datasets, when using the alternative

pproach discussed in Section 4.2.2 and Section 4.3 . 
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Table D.9 

SVM classification with 0-dimensional topological 

features, for the masked FC and EC. Epil EEG and 

Epil iEEG denote the EEG epilepsy data for the group 

analysis for the scalp and intracranial data, respec- 

tively. Features (CC) and (PE) refer to the topologi- 

cal features of Section 3.5 , (kernel), (AUC) and (IPF) 

are additional features discussed in the text. Reported 

the undirected approach (PH) or directed approach 

(DPH). Acc stands for Accuracy, Sns for Sensitivity and 

Spc for Specificity . 

Data Features Method Acc Sns Spc 

Epil 

EEG 

PE (DPH) 0.44 0.44 0.44 

(PH) 𝟏 . 𝟎𝟎 1.00 1.00 

CC (DPH) 0.83 0.83 0.83 

(PH) 0.92 0.89 0.94 

Epil 

iEEG 

PE (DPH) 0.62 0.62 0.62 

(PH) 𝟎 . 𝟗𝟒 0.94 0.94 

CC (DPH) 0.59 0.56 0.62 

(PH) 0.81 0.81 0.81 
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Table E.10 

Epilepsy: EEG analysis with variation, full report. SVM clas- 

sification with 0-dimensional and 1-dimensional topological 

features, for the full/masked FC and full/masked EC derived 

features associated to the EEG dataset, following the variation 

of the pipeline. The features (CC) and (PE) refer to the topo- 

logical features of Section 3.5 , (kernel), (AUC) and (IPF) are 

additional features discussed in the appendix. 

Feature Full-FC Masked-FC Full-EC Masked-EC 

Dim 

0 

AUC 0.94 𝟏 . 𝟎𝟎 0.61 0.67 

IPF 0.89 𝟏 . 𝟎𝟎 0.67 0.67 

PE 0.89 𝟏 . 𝟎𝟎 0.61 0.44 

CC 0.94 0.92 0.31 0.83 

kernel 0.92 0.92 0.50 0.53 

Dim 

1 

PI 0.86 0.83 0.58 0.86 

PE 0.33 0.06 0.50 0.89 

PL 0.83 0.75 0.56 0.58 

CC 𝟎 . 𝟖𝟔 0.92 0.75 0.61 

kernel 0.83 0.81 0.69 0.86 
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ppendix E. Variation on EEG and iEEG dataset: the complete 

eport 

We report here the full analysis based on the variation of the pipeline

as described in Section 3.6 ) in the case of the EEG/iEEG recordings. In

he results of Section 4.2.2 and Section 4.3 , we have only shown the

lassification results based on the masked FC and on the masked EC

atrices (see Section 3.2 ). For the sake of completeness, we show below

n Tables E.10 and E.11 the results achieved by the topological features

L, PI, PE, CC (see Section 3.5 ), kernel (introduced in Appendix D.1 ),
17 
nd by the features AUC and IPF (as in the previous section), in both

imension 0 and dimension 1 and for Full-FC, Masked-FC, Full-EC and

asked EC. 

ppendix F. Comparison of PH and DPH classification 

A direct comparison between the PH and DPH performances is not

traightforward given the number and intricate depeendence of the clas-

ification tasks. In Fig. F.9 , we present a scatter-plot where each point

epresents a classification of one of the datasets using one particular

DA feature (vector). The X-coordinate shows the classification accu-

acy obtained with DPH (computed on EC), and the Y-coordinate shows
Fig. F.9. Scatter plot of classification accuracy 

reached using PH and DPH pipelines. 
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Fig. F.10. A. Uncorrected 𝑝 -values for significance of classifications using FC(PH) pipeline. Null hypothesis: FC(PH)-based accuracy is random. Alternative: FC(PH)- 

based accuracy is higher than random. B. Uncorrected 𝑝 -values for significance of classifications using EC(DPH) pipeline. Null hypothesis: EC(DPH)-based accuracy is 

random. Alternative: EC(DPH)-based accuracy is higher than random. C. Uncorrected 𝑝 -values for comparison of classifications using FC(PH) and EC(DPH) pipeline. 

Null hypothesis: accuracy of classifiers are the same. Alternative hypothesis: FC(PH)-based accuracy is higher. D. Uncorrected 𝑝 -values for comparison of classifi- 

cations using FC(PH) and EC(DPH) pipeline. Null hypothesis: accuracy of classifiers are the same. Alternative hypothesis: EC(DPH)-based accuracy is higher. Naive 

classification for the iEEG dataset is not possible due to different matrix sizes across subjects. 

Table E.11 

Epilepsy: iEEG analysis, full report, following the variation 

of the pipeline. SVM classification with 0-dimensional and 1- 

dimensional topological features, for the full/masked FC and 

full/masked EC derived features. The features (CC) and (PE) 

refer to the topological features of Section 3.5 , (kernel), (AUC) 

and (IPF) are additional features discussed in the appendix. 

Feature Full-FC Masked-FC Full-EC Masked-EC 

Dim 

0 

AUC 𝟏 . 𝟎𝟎 0.87 0.62 0.12 

IPF 𝟏 . 𝟎𝟎 0.94 0.75 0.69 

PE 𝟏 . 𝟎𝟎 0.94 0.75 0.62 

CC 0.87 0.81 0.25 0.59 

kernel 0.87 0.87 0.53 0.50 

Dim 

1 

PI 0.81 0.66 0.59 0.62 

PE 0.37 𝟎 . 𝟖𝟕 0.50 0.69 

PL 0.78 0.62 0.47 0.50 

CC 𝟎 . 𝟖𝟕 0.84 0.62 0.78 

kernel 0.75 0.50 0.62 0.56 
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he corresponding PH (computed on FC) results. Different datasets are

arked with different colours. 
18 
We observe that, in some cases, PH and DPH are comparable - shown

y the points laying close to the diagonal; in other cases, PH seems to

ork better - upper triangle points. The cloud around (0.5,0.5) corre-

ponds to results close to random for both input matrices, mainly for the

chizophrenia and group epilepsy studies. 

To statistically evaluate the two approaches, we present in

ig. F.10 the results of permutation tests. Firstly, we assess the classifi-

ation significance of both pipelines, PH- and DPH-based, by permuting

he obtained labels of data points. By repeating this 500 times (500 per-

utations) we get a distribution of random classifications; we use accu-

acy as the test statistic, to compute the 𝑝 -value for the null hypothesis

hat the accuracy of our classifier is not distinguishable from random.

orresponding (uncorrected) 𝑝 -values can be found in Fig. F.10 , top sub-

anel. 

For the comparison between the DPH- and PH-based classifications,

e performed another permutation test. Now, for every tested dataset

nd TDA feature, we work with pairs of vectors: labels for the classifier

hat we get from PH and from DPH. For every data point, we either flip

he corresponding coordinate between these vectors, or leave it with

qual probability. In this way, we generate surrogates representing the

ssumption “there is no difference between the PH and DPH approach
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erformance ”. We test the mentioned null hypothesis against two al-

ernatives: PH is better than DPH, and DPH is better than PH. For that

e use test statistic given by the accuracy of PH minus the accuracy of

PH, concentrating on its high positive and negative values for testing

he mentioned two alternative hypotheses, respectively. Corresponding

uncorrected) 𝑝 -values can be found in Fig. F.10 , bottom subpanel. 

From the Fig. F.10 it seems that the most important parameter, in-

uencing classification, is the dataset. For our datasets, schizophrenia,

pilepsy on a group level and patient CHB15 are those where the TDA

ccuracies are most random (not the same for the naive approaches). In

he other cases, both PH and DPH seem to work better than random. We

resent uncorrected 𝑝 -values since due to the complexity of dependen-

ies it is difficult to choose an appropriate multiple testing correction.

oth the TDA features and datasets are not independent, so it is dif-

cult to compute the degrees of freedom for the correction. However,

he number of significant classifications for both PH and DPH is clearly

ubstantially higher than the expected 5% of false positives; so, gener-

lly, we can conclude that both pipelines work in favorable conditions.

urthermore, testing the “PH is better than DPH ” alternative, seems to

rovide a larger number of significant classifications, which would sug-

est that generally PH performs better than DPH. 
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