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Abstract: In this work, we initially study the strange nonchaotic dynamics of a 

two-degree-of-freedom quasiperiodically forced vibro-impact system. It is shown that 

SNAs occur between two chaotic regions, but not between the quasiperiodic region 

and the chaotic one. Subsequently, we mainly focus on the abundant multistability in 

the system, especially the coexistence of SNAs and quasiperiodic attractors. Besides, 

the coexistence of quasiperiodic attractors of different frequencies, and the 

coexistence of quasiperiodic attractors and chaotic attractors are also uncovered. The 

basins of attraction of these coexisting attractors are obtained. The quasiperiodic 

attractor can transform into a chaotic attractor directly through torus break-up without 

passing through an SNA. The nonchaotic property of strange nonchaotic attractors 

(SNAs) is verified by its maximal Lyapunov exponent, and the strange property of 

SNAs is described by its phase sensitivity, power spectrum, fractal structure and 

rational approximations. 
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1. Introduction 

The dynamical phenomena that we address in this work include strange nonchaotic 

attractors (SNAs), quasiperiodic attractors, and chaotic attractors. The 

quasiperiodically forced vibro-impact system has abundant dynamical behaviors. 

There are no results on the coexistence of SNAs and quasiperiodic attractors in 

vibro-impact systems [1], [2], [3]. Li et al. [1] showed that, a class of 
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quasiperiodically forced piecewise smooth systems have multistability. Shen et al. [3] 

studied coexisting SNAs in a quasiperiodically forced map and found different types 

of routes to coexisting SNAs. In this work, a quasiperiodically forced vibro-impact 

system is studied, and the strange nonchaotic dynamical behaviors of the system are 

studied by numerical methods. We mainly focus on the multistability in this 

nonsmooth system, and find three types of multistability phenomena, especially the 

coexistence of SNAs and quasiperiodic attractors. 

Much research work has been done in theory, numerical simulations and 

experiments of SNAs [4], since Grebogi et al. [5] introduced the concept in 1984. An 

SNA has a fractal structure (like strange chaotic attractors [6], [7]), but it is 

nonchaotic in the dynamical sense [8]. The dynamical mechanisms of SNAs are 

relatively complex, but some mechanisms of SNAs are similar to chaos, such as 

intermittency route [9] and crisis route to chaos [10]. Heagy et al. [11] found that 

SNAs can be generated by the torus-doubling route in a two-frequency parametrically 

driven duffing oscillator. In addition, there are Heagy-Hammel route [11], fractal 

route [12], [13], [14], intermittency route [15], [16], [17], crisis route[18], [19], [20], 

and symmetry breaking route [21] that can generate SNAs.  

The nonchaotic property of an SNA can be verified by numerical methods such as 

Lyapunov exponents and singular continuous power spectrum [11]. The methods of 

phase sensitivity [8], rational approximations [8], and dimensions [22] of attractors 

can be used to characterized the strange property of an SNA. Romeiras et al. [23] 

reported that SNAs have distinctive spectral characteristics, and SNAs can be 

distinguished from chaotic attractors and quasiperiodic attractors by specific 

indicators. Glendinning et al [24] showed that, for a class of quasiperiodic forced 

maps, SNAs exhibit sensitive dependence on initial conditions. Sathish et al. [25] 

showed that, if one uses two square waves in an aperiodic manner as input to a 

quasiperiodically driven double-well Duffing oscillator system, the response of the 

system can produce strange nonchaotic dynamical properties. In fact, the experimental 

distinction between an SNA and a chaotic attractor is still a difficult problem [26]. 

Gopal et al. [27] showed that the 0-1 test was helpful to detect the transition of the 



3 

 

system from quasiperiodic attractors to SNAs or from SNAs to chaotic attractors. 

Many theoretical studies of SNAs mainly focused on skew product maps. Keller 

[28] studied a class of monotone incremental quasiperiodically forced map and 

proved the existence of SNAs. Alsedà et al. [29] generalized the results of Keller to 

unimodal quasiperiodically forced maps. Jäger [30] proved the existence of SNAs in 

quasiperiodically forced circle maps under rather general conditions that can be stated 

in terms of C1-estimates. Li et al. [31] studied the quasiperiodically forced Ricker 

family and analyzed the existence interval of SNAs by combining theoretical and 

numerical methods. Ding et al. [32] showed that, for two-dimensional maps, the SNA 

box-counting dimension is two while the information dimension is one. Fuhrmann et 

al. [33] studied the properties of SNAs created in nonsmooth saddle-node bifurcations 

of quasiperiodically forced interval maps, determined the Hausdorff dimension, and 

the box-counting dimension of SNAs showed that these had distinct values.  

The mechanisms of SNAs are more complex in the nonsmooth systems [1]. Paul et 

al. [34] studied the existence of SNAs in a model of two sinusoidal driven LCR 

dissipative oscillators, established different mechanisms to study SNAs. These 

mechanisms can be interpreted as the nonlinear interaction between quasiperiodic 

signals, which lead to the destruction of quasiperiodic attractors and chaotic attractors, 

and can be transformed into SNAs. Li et al. [35] considered a class of 

single-degree-of-freedom gear dynamical system with quasiperiodic forcing; SNAs 

are shown to exist in the nonsmooth system by numerical methods. The grazing 

bifurcation route was investigated by Zhang and Shen [36], which enriched the 

dynamical properties of SNAs. Because the existence of the grazing bifurcation, the 

attractor becomes a non-piecewise differentiable, turning into SNAs. Shen et al. [37] 

studied a piecewise logical system with quasiperiodic excitation, and pointed out that 

the truncation of border-collision torus-doubling bifurcation can lead to different 

types of SNAs.  

The remaining of this paper is organized as follows. In section 2, we introduce the 

dynamical model which is studied in this work. In section 3, we analyse the SNAs 

between two chaotic intervals and determine the strange property of the attractors. In 
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section 4, we focus on the abundant multistability phenomena in the system. Finally 

in section 5 we conclude our results. 

 

2. The mechanical model 

We consider the following two-degree-of-freedom quasiperiodically forced 

vibro-impact system as shown pictorially in Fig. 1. The equations of motion of the 

system are 

       

     

1 1 1 2 1 2 2 1 2 1 2 2 1

2 2 2 3 2 2 1 3 2 2 2 1

sin cos( ),

sin cos( ),

M X C C X C X K K X K X F X P T Q WT

M X C C X C X K K X K X P T Q WT





          

         
 (1) 

where the piecewise linear function is  

                   

4 1 1

1 1

4 1 1

( )            ,  

( )         0             ,

( )            .

K X B X B

F X B X B

K X B X B

 


   
  

                (2) 

 

Fig. 1. The model of a two-degree-of-freedom vibro-impact system 

The dimensionless form of Eqs. (1) is obtained as following. Let 1 2/ m M M , 

2= / ( 1,3) i iC C i , 2/ ( 1,3,4) j jk K K j , 1 2 2= /M K  , 2 2 2= /W M K ， 

2 2/t T K M , 2 2 2/ 2 / C K M , 2 / 2BK P  , / 2Q P   and 

2 / 2i ix X K P . Then Eqs. (1) can be written as  
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where            
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Let 
1t   and 

2= t  , then Eqs. (3) can be transformed into the following state 

equations, 
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 (5) 

According to Eqs. (3), we select 2  as the angle variable, which yields a 

three-dimensional Poincaré map 

                
 1

1 1 2 2 2

: :

( , , , , )  mod 2 /  0 .x v x v R R S   
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       （6） 

This map has the form 
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 

                 (7) 

where 1f , 2f , 3f  and 4f  are determined from Eqs. (5). In this work, we take 

2 =( 5 1) / 2   as the inverse of the golden ratio. The dynamics of the system in the 

 -axis is ergodic, and the trajectory starting from any initial condition can cover the 
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 -axis densely. If the attractor is non-piecewise differentiable, the attractor is strange. 

 

3. SNAs between two chaotic intervals 

In general, SNAs occur between quasiperiodic and chaotic attractors in parameter 

space [38]. The quasiperiodic attractor can go into an SNA by different routes (such as: 

fractal route, torus-doubling route, intermittency route, crisis route, and others). If the 

parametric region of SNA existence is small, the SNAs evolve into chaotic attractors 

with small change of the system parameter. Here we find that SNAs are present 

between two chaotic intervals. 

3.1 The evolution of SNAs 

We consider the system parameters combination (1) 1 5k , 
3 5k , 

4 30k , 

=0 , 0.05  , 
1 2  , 

3 2  , 1 m , and 0.02  ;   is to be taken as a 

control parameter. The phase diagrams on the planes 
1( , )n nv  and 

1 1( , )n nx v  are 

shown in Fig. 2, where the initial values of the system are 

10 10 20 20 0( , , , , ) (0,0,0,0,0)x v x v   , and the number of iterations is 30,000, discarding 

the first 10,000 iterations and then plotting the next 20,000 ones. For 0.052  , there 

is one frequency curve in the plane 
1( , )n nv , so there is only one invariant torus in the 

plane 
1 1( , )n nx v . Therefore, the system exhibits a one-torus (1T) quasiperiodic attractor, 

as shown in Figs. 2(a) and 2(b). For 0.06  , the parameter passes through the point 

A ( =0.53 ) in Fig. 3(d), and the system goes through torus-doubling (TD) bifurcation. 

There are two frequency curves in the plane 
1( , )n nv , so there are two invariant tori in 

the plane 
1 1( , )n nx v , and the system exhibits a two-tori (2T) quasiperiodic attractor, as 

shown in Figs. 2(c) and 2(d). For 0.061  , the attractor is locally discontinuous and 

unstable, but the maximum Lyapunov exponent is less than 0, and the system still 

exhibits a 2T quasiperiodic attractor, as shown in Figs. 2 (e) and 2(f). When the 

parameter   passes through the point B ( 0.062  ) in Fig. 3(d), the maximum 

Lyapunov exponent will be greater than 0, the system enters into a chaotic state. 



7 

 

When the parameter [0.061  0.062]  ， , the 2T quasiperiodic attractor is directly 

transformed into a chaotic attractor. For 0.065  , the attractor loses smoothness 

completely, and the 2T quasiperiodic attractor becomes a chaotic attractor, as shown 

in Figs. 2(g) and 2(h). The maximum Lyapunov exponent 
max  is 0.042, as shown in 

Fig. 3(a). Fig. 3(d) shows that when the parameter   passes through the point C 

( 0.079  ), the maximum Lyapunov exponent is less than 0. When the parameter 

[0.079  0.0822]  ， , the system exhibits SNAs, as shown in Figs. 2(i) and 2(j). The 

maximum Lyapunov exponent in this interval is less than 0, as shown in Fig. 3(d). For 

0.081  , the maximum Lyapunov exponent max  is 0.011 , as shown in Fig. 3(b). 

After the Lyapunov exponent fluctuates about zero for some time, it eventually 

converges to a negative value, which guarantees the nonchaotic property of the 

attractor. The strange property of the attractor is also verified in Section 3.2, so the 

attractor is SNAs. When the parameter   passes through the point D ( 0.0822  ), 

the system exhibits chaotic dynamics again. Taking 0.09  , the attractor is chaotic, 

and maximum Lyapunov exponent max  is 0.02 , as shown in Figs. 2(k), 2(l) and 

3(c).  

In conclusion, the evolution of the attractor is as follows: 1T quasiperiodic attractor 

  2T quasiperiodic attractor   chaotic attractor   SNA   chaotic attractor. 

Here the SNA appears between two chaotic regions, but not between the quasiperiodic 

region and the chaotic region. 

 

(a)                      (b)                        (c) 
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(d)                       (e)                       (f) 

 

 

(g)                       (h)                       (i) 

 

(j)                       (k)                       (l) 

Fig. 2. The phase diagrams in 1( , )n nv  and 1 1( , )n nx v : (a), (b) 0.052  ; (c), (d) 0.06  ; (e), (f) 

0.061  ; (g), (h) 0.065  ; (i), (j) 0.081  ; (k), (l) 0.09  . 

 

  (a)                             (b) 
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(c)                              (d) 

Fig. 3. The maximum Lyapunov exponent: (a) 0.065  ; (b) 0.081  ; (c) 0.09  ;  

(d) the maximum Lyapunov exponent with   varying. 

 3.2 Determining the strange property of attractors 

3.2.1 Phase sensitivity 

According to the definition of SNA, SNA has the strange property which can be 

characterized by the phase sensitivity; the concept is based on SNA’s sensitive 

dependence to the initial phase [8]. Because SNA is non-piecewise differentiable, 

there are some special bifurcation points, where the derivative value of these 

bifurcation points with respect to the phase is infinite. According to this property, the 

phase sensitivity can be used to explain that the attractor is nonsmooth. The derivative 

of the attractor with respect to phase can be expressed as 

                            ( 1,2,3,4),N i
i

f
S i




 


                     (8) 

where N is the number of iterations. If N

iS  tends to a bounded value for N  , 

the attractor is not strange. If N

iS  tends to be infinite value as N  , the attractor 

is nonsmooth, meaning that the attracter is strange. 

For a small  , we calculate 
0n  satisfying the phase difference 

00 0n      , 

and the derivative of the dynamics with respect to phase can be approximately 

expressed as [35] 

                
0

0

1 0

( ) ( )
 ( 1,2,3,4),

( ) ( )

N n
i iN i

i

k

f k n f kf
S i

k n k  





 
  
  

                (9) 
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where 0k n N  , and ( )if n  denotes the nth iteration of if . The maximum value of 

N

iS  after N iterations, is denoted by 

                            max .N N

i iS                           (10) 

If the number of iterations increases, the value of N

i  also increases. Then, N

iS  tends 

to infinite as N  , and the attractor has infinite derivative with respect to the 

external phase, which indicates that the attractor is strange. 

Let 
0 4182n  , then 0( ) ( ) 0.000672k n k    . Here we take SNAs in Figs. 2(i) 

and 2(j) as an example. For =0.081 , the attractor is an SNA. As the number of 

iterations increases, the value of 
1

N  tends to infinity. For =0.06 , the attractor is a 

2T quasiperiodic attractor. As the number of iterations increases, in this case the value 

of 
1

N  tends to a bounded value, as shown in Fig. 4. The derivate of the attractor with 

respect to phase tends to infinite, indicating the non-differentiability of the attractor. 

 

  Fig. 4. The phase sensitivity of attractors. 

3.2.2 Singular continuous power spectrum 

Continuous and discrete power spectra are present in the dynamical systems [39]. 

When the system is periodic or quasiperiodic, the corresponding power spectrum is 

discrete, which is represented by  -peaks at certain frequencies. For a system that 

undergoes chaotic or random motions, the power spectrum is continuous. However, 

when the system exhibits strange nonchaotic dynamics, the spectrum is a singular 

continuous. The power spectrum is defined as 
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2
lim ( , ) / ,
N

P X N N


                       (11) 

where 

                    2

1

X( , ) .
N

i n

n

n

N x e  


                        (12) 

Singular continuous power spectrum is a mixture of continuous and discontinuous 

spectrum, which reflects the extent of the regularity of the attractor. Because SNAs 

exhibit a dynamical characteristic between regularity and irregularity, this special 

power spectrum is very important for characterizing SNAs. We take SNAs in Figs. 2(i) 

and 2(j), as an example. We compute the discrete Fourier transform ( , )X N  and 

the power spectrum P , as shown in Fig. 5. The power spectrum is continuous with 

many-peaks, indicating that the attractor has strange nonchaotic properties with 

singular continuous power spectrum. 

If the attractor is periodic or quasiperiodic, then 
2 2( , ) ~X N N , and for a chaotic 

attractor, 
2 1( , ) ~X N N . If the attractor is SNAs, then it has the relation [40], [41] 

                        
2

( , ) ~ ,X N N                         (13) 

where 1 2  . Taking SNAs in Figs. 2(i) and 2(j), as examples, we obtain that 

1.78  , as shown in Fig. 6(a). Furthermore, the fractal structure of the trajectories 

in complex (ReX, ImX) plane are demonstrated, as shown in Fig. 6(b). Normally, 

SNAs occurs in the transition region from quasiperiodic attractor to chaotic one, and 

the exponent   is still in the transition region in terms of spectrum analysis. 
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Fig. 5. For 0.081  , the power spectrum. 

 

(a)                                    (b) 

Fig. 6. For 0.081  , (a) the singular continuous spectrum; (b) the fractal structure of  

trajectories in the complex (ReX, ImX) plane. 

3.2.3 Rational approximations 

Many researches show that rational approximation [8] is also a reliable method to 

explain the strange property of SNAs [1]. Taking 2 ( 5 1) / 2   , the ratios of 

Fibonacci numbers 1( /k k kw F F , 1 1k k kF F F   , 1 1F  , 2 1)F   are the 

approximants. Figure 7 shows the structure of the approximation set of an SNA at 

0.081  . For different rational approximants 89/144, 610/987, 4181/6765, and 

10946/17711, the phase diagrams of Poincaré map in the plane 
1 1( , )n nx v  are shown in 

Figs. 7(a), (b), (c) and (d), respectively. For 10 89 /144w  , the order of attractor 

approximation is relatively low, and the shape of SNAs are not yet well-defined. 

Moreover, the number of such attractors is countable; the system exhibits periodic 



13 

 

attractor, as shown in Fig. 7 (a). For 
16 610 / 987w  , as the number of period points 

in the phase plane increases greatly, attractors already exhibit the shape of SNAs, as 

shown in Fig. 7 (b). For 
19 4181/ 6765w   and 20 10946 /17711w  , the approximate 

attractors shown in Figs. 7 (c) and 7(d) well approximate Fig. 2 (j). As the order of 

approximation increases, the number of periodic points also increases, tending to the 

geometric fractal structure of the SNA. When the order k  , it approximates the 

strange nonchaotic property of the quasiperiodically forced system, and the number of 

phase plane points tends to infinity; the structure of attractors is non-piecewise 

differentiable, which is described by the describe the strange property of attractors.  

 

(a) 12 89 /144w                      (b) 16 610 / 987w   

 

(b) 19 4181/ 6765w                 (d) 21 10946 /17711w   

Fig. 7. Rational approximation of the SNA for 0.081   in the plane 
1 1( , )n nx v . 

 

4. Multistability dynamics 
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We take the system parameters combination (2) 
1 5k , 

3 5k , 
4 30k  , =0 , 

0.02  , 
1 2  , 

3 2  , 1 m
, 0.02  , and the parameter   as the control 

parameter. In Fig. 8, the initial value of the blue attractor is 

10 10 20 20 0( , , , , ) (0,0,0,0,0)x v x v   , and the initial value of the red attractor is  

10 10 20 20 0( , , , , ) ( 0.1, 0.1,0,0,0)x v x v     . For [0.029, 0.034]  , the system exhibits 

the multistability phenomena [42], as shown in Fig. 8. For =0.025 , the system has a 

1T quasiperiodic attractor, as shown in Fig. 8(a). For =0.031 , the coexistence of 1T 

quasiperiodic attractor (red orbit) and 2T quasiperiodic attractor (blue orbit) is shown 

in Fig. 8(b). For =0.0325 , 2T quasiperiodic attractor becomes a 3T quasiperiodic 

attractor, and the coexistence of 1T quasiperiodic attractor and 3T quasiperiodic 

attractor is shown in Fig. 8(c). When   is increased to 0.0326, the 3T quasiperiodic 

attractor is transformed into an SNA through the type-I intermittency route, with the 

maximum Lyapunov exponent max 0.00923   , as shown in Fig. 9(a). In this case, 

SNAs generated by type-I intermittency are derived from a saddle-node bifurcation in 

the system. Here a 1T quasiperiodic attractor coexists with an SNA, as shown in Fig. 

8 (d). If the initial value is in the green region, the orbit eventually asymptotes to the 

SNA (blue). If the initial value is in the blue region, the orbit finally asymptote to a 1T 

quasiperiodic attractor (red), as shown in Fig. 10. When parameter   is increased to 

0.033, the SNA evolves into a chaotic attractor, and there is the coexistence of 1T 

quasiperiodic attractor and a chaotic one, the maximum Lyapunov exponent 

max 0.01261  , as shown in Fig. 9(b). For =0.038 , the blue chaotic attractor 

disappears, and only a 1T quasiperiodic attractor remains, as shown in Fig. 8 (f). For 

=0.04 , the system goes through torus-doubling bifurcation, and becomes a 2T 

quasiperiodic attractor, as shown in Fig. 8(g). For =0.0405 , a 2T quasiperiodic 

attractor break-up [43], and the attractor is locally discontinuous and unstable, as 

shown in Fig. 8 (h). For =0.0408 , the 2T quasiperiodic attractor loses smoothness 

completely, evolving into a chaotic attractor, and the maximum Lyapunov exponent 
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max  is 0.00476, as shown in Figs. 8(i) and 9(c). 

Summarizing, the evolution of the multistability with this set of parameters is as 

follows: 1T quasiperiodic attractor   1T quasiperiodic attractor  2T quasiperiodic 

attractor   1T quasiperiodic attractor  3T quasiperiodic attractor   1T 

quasiperiodic attractor  an SNA   1T quasiperiodic attractor  a chaotic attractor 

  1T quasiperiodic attractor   2T quasiperiodic attractor   a chaotic attractor. 

Here, the system exhibits not only the coexistence of the quasiperiodic attractors of 

different frequencies but also that of quasiperiodic attractors and SNAs. In addition, it 

is found that the quasiperiodic attractor does not transition through an SNA, but 

becomes a chaotic attractor directly. 

 

（a） 0.025             （b） 0.031             （c） 0.0325   

 

（d） 0.0326             （e） 0.033             （f） 0.038   

 

（g） 0.04              （h） 0.0405            （i） 0.0408   

Fig. 8. The phase diagrams in 1 1( , )n nx v . 
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(a) =0.0326              (b) =0.033              (c) =0.0408  

Fig. 9. The maximal Lyapunov exponent.  

 

Fig. 10. For 0.0326  , the basins of attraction in the plane 10 10( , )x x . 

Now we take the system parameters combination (3) 1 5k  , 3 5k  , 4 30k  , 

=0 , 0.03  , 1 2  , 3 2  , 1m  , 0.02  , and the parameter   as the 

control parameter. In Fig. 11, the initial value of the blue attractor is 

10 10 20 20 0( , , , , ) (0,0,0,0,0)x v x v   , and the initial value of the red attractor is  

10 10 20 20 0( , , , , ) (0.1,0.1,0,0,0)x v x v   . For [0.0385  0.0407]  ， , the system dynamics 

exhibits multistability. For [0.0379  0.0385]  ， , quasiperiodic attractors with 

different frequencies appear alternately. For 0.035  , the system exhibits 1T 

quasiperiodic attractor, as shown in Fig. 11 (a). For 0.0379  , another 2T 

quasiperiodic attractor appears, and the 1T quasiperiodic attractor (red orbit) coexists 

with the 2T quasiperiodic attractor (blue orbit), as shown in Fig. 11(b). For 0.038  , 
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the 1T quasiperiodic attractor disappears suddenly, and only the 2T quasiperiodic 

attractor persists, as shown in Fig. 11 (c). For 0.0381  , the 2T quasiperiodic 

attractor disappears suddenly, and only the 1T quasiperiodic attractor remains, as 

shown in Fig. 11 (d). For 0.0385  , multistability dynamics occurs again, and the 

1T quasiperiodic attractor coexists with the 2T quasiperiodic attractor, as shown in 

Fig. 11 (e). When parameter   is increased to 0.0405, the 1T quasiperiodic attractor 

evolves into a chaotic one. Here the chaotic attractor coexists with the 2T 

quasiperiodic attractor, and the maximal Lyapunov exponent of the chaotic attractor is 

max 0.00738  , as shown in Figs. 11(f) and 12(a). If the initial value is in the yellow 

region, the orbit eventually asymptotes to the 2T quasiperiodic attractor (blue orbit). If 

the initial value is in the blue region, the orbit eventually asymptotes to the chaotic 

attractor (red orbit), as shown in Fig. 13. When parameter   is increased to 0.041, 

the chaotic attractor disappears, and only 2T quasiperiodic attractor exists, as shown 

in Fig. 11 (g). When the parameter value continues to increase to 0.042, the 2T 

quasiperiodic attractor breaks-up, as shown in Fig. 11 (h). For =0.0428 , the 2T 

quasiperiodic attractor evolves into an SNA, which the maximal Lyapunov exponent 

being max 0.00313   , as shown in Figs. 11(i) and 12(b). For 0.045  , the SNA 

evolves into a chaotic attractor, whose the maximal Lyapunov exponent is 

max 0.0138  , as shown in Figs. 11(j) and 12(c). 

In conclusion, the evolution of multistability dynamics is as follows: 1T 

quasiperiodic attractor   1T quasiperiodic attractor 2T quasiperiodic attractor   

2T quasiperiodic attractor   1T quasiperiodic attractor     1T quasiperiodic 

attractor  2T quasiperiodic attractor   a chaotic attractor  2T quasiperiodic 

attractor   2T quasiperiodic attractor   an SNA   a chaotic attractor. In this 

example, there are not only the coexistence of quasiperiodic attractors with different 

frequencies, but also the coexistence of quasiperiodic attractors and chaotic attractors. 

Finally the quasiperiodic attractor evolves into a chaotic attractor through an SNA. It 

should be noted here that: (1) In the case of a single quasiperiodic attractor, another 

quasiperiodic attractor with different frequency can suddenly be presented, and the 
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coexistence of quasiperiodic attractors with different frequencies occur. (2) For the 

coexistence of quasiperiodic attractors of different frequencies, one of them can 

suddenly disappears. (3) A quasiperiodic attractor may evolve into a chaotic attractor 

directly without passing through an SNA. 

  

(a) 0.035            (b) 0.0379            (c) 0.038       

 

         (d) 0.0381           (e) 0.0385            (f) 0.0405   

 

(g) 0.041              (h) 0.042            (i) 0.0428    

 

 (j) 0.045   

Fig. 11. The phase diagrams in the plane 1 1( , )n nx v . 



19 

 

 

(a) 0.0405            (b) 0.0428           (c) 0.045   

Fig.12 The maximal Lyapunov exponent.  

 

Fig. 13. For 0.0405  , the basins of attraction in the plane 10 10( , )x x . 

 

5 Conclusion 

In general, SNA exists between quasiperiodic attractor and chaotic attractor, but it 

is found in this work that SNA may exist between two chaotic regions. The 

nonchaotic and strange properties of an SNA are characterized by its phase diagrams, 

Lyapunov exponents, phase sensitivity, power spectrum, singular continuous spectrum, 

and rational approximations, and the basins of attraction of the coexisting attractors 

are obtained. It is shown that there are complex multistability phenomena in this 

system, including the coexistence of quasiperiodic attractors of different frequencies, 

the coexistence of quasiperiodic attractor and SNA, the coexistence of quasiperiodic 

attractor and a chaotic attractor. As the system parameter is changed, some 

quasiperiodic attractors do not evolve into SNAs, but directly transform into chaotic 
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attractors by the destruction of tori. 
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