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Abstract

Rationale: Longitudinal modeling of current wheezing identified
similar phenotypes, but their characteristics often differ between
studies.

Objectives: We propose that a more comprehensive description
of wheeze may better describe trajectories than binary
information on the presence/absence of wheezing.

Methods: We derived six multidimensional variables of wheezing
spells from birth to adolescence (including duration, temporal
sequencing, and the extent of persistence/recurrence). We applied
partition-around-medoids clustering on these variables to derive
phenotypes in five birth cohorts. We investigated within- and
between-phenotype differences compared with binary latent class
analysis models and ascertained associations of these phenotypes
with asthma and lung function and with polymorphisms in asthma
loci 17q12–21 and CDHR3 (cadherin-related family member 3).

Measurements and Main Results: Analysis among 7,719
participants with complete data identified five spell-based wheeze
phenotypes with a high degree of certainty: never (54.1%),

early-transient (ETW) (23.7%), late-onset (LOW) (6.9%),
persistent (PEW) (8.3%), and a novel phenotype, intermittent
wheeze (INT) (6.9%). FEV1/FVC was lower in PEW and INT
compared with ETW and LOW and declined from age 8 years to
adulthood in INT. 17q12–21 and CDHR3 polymorphisms were
associated with higher odds of PEW and INT, but not ETW or
LOW. Latent class analysis- and spell-based phenotypes appeared
similar, but within-phenotype individual trajectories and
phenotype allocation differed substantially. The spell-based
approach was much more robust in dealing with missing data,
and the derived clusters were more stable and internally
homogeneous.

Conclusions: Modeling of spell variables identified a
novel intermittent wheeze phenotype associated with
lung function decline to early adulthood. Using
multidimensional spell variables may better capture wheeze
development and provide a more robust input for phenotype
derivation.
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Wheeze in most children remits by school
age but in others may persist, with or without
periods of remission. Over the past decades,
a substantial effort has been devoted to
understanding the heterogeneity of
childhood wheezing illness, using both
hypothesis-driven approaches, in which
phenotypes are specified a priori based on
clinical insights (1), and data-driven
approaches, which incorporate a variety of
multivariate statistical and machine learning
methodologies (2). The latter have largely
used latent class modeling, such as latent
class analysis (LCA), in which repeated
information of wheeze presence is used to
uncover the temporal patterns over a
specified time interval (3–15). These different
symptom patterns may indicate distinct
causes and biological mechanisms (16, 17),
and their discovery may facilitate stratified
treatment (18). However, to facilitate the
identification of genetic associates and

underlying mechanisms, phenotypes should
be internally homogeneous and consistent
between different populations and studies.

The number of phenotypes reported in
previous analyses that used LCA varied by
study, but four were identified in all cohorts
(19): never or infrequent wheeze (NWZ),
early-transient (ETW), late-onset (LOW),
and persistent wheeze (PEW). Some analyses
identified one or two further “intermediate”
phenotypes (3, 4, 20), whichmostly arose
from transient or late-onset patterns (21).
However, although phenotypes in different
studies are usually designated with the same
name, they often differ in temporal
trajectories, distributions within a
population, and associated risk factors (19,
22). These differences are in part a
consequence of the sample size and the
timing and frequency of data collection (21).
Furthermore, the confidence with which
individuals are assigned to a phenotype varies
across phenotypes, and a substantial number
of children in such analyses are classified
imprecisely (e.g., individuals with identical
wheeze patternsmay be assigned to different
phenotypes, or individual trajectories may
not followwheeze patterns suggested by the
phenotype label [13, 21, 23]).

We propose that within-class
heterogeneity and inaccurate allocation of
individual children may, in part, be
responsible for a lack of consistent
associations of discovered phenotypes with
risk factors (24) and may adversely impact
the ability to identify phenotype-specific
genetic associates and underlying
mechanisms. We hypothesize that
incorporating a more comprehensive
description of wheeze may better describe
wheeze trajectories and derive more within-
phenotype homogeneity to facilitate a better
understanding of their differing etiology. To
address our hypothesis, we drew on research
in other fields, specifically the “spells”
approach pioneered in the social sciences
research on poverty dynamics (25–28), to
move from the point prevalence of current
wheeze to a dynamic approach that takes
into account the duration of wheezing spells,
their temporal sequencing, and the extent of
persistence and recurrence (further details

can be found in the online supplement). To
this end, we first developed a set of
multidimensional variables to describe more
comprehensively the temporal variation of
wheeze and then applied a clustering
approach based on the partition-around-
medoids (PAM) algorithm (29) on these
variables. We then investigated variation
within and between phenotypes from binary
(LCA) and indicator-based (PAM)models to
ascertain whether we achieved increased
within-phenotype homogeneity and
investigated the associations of the derived
clusters with early-life factors and asthma-
related outcomes in adolescence. Finally, we
tested the hypothesis that phenotypes
defined using this approach have distinct
genetic associates by investigating their
associations with the known asthma loci
(17q12–21 and CDHR3).

Methods

Study Design, Setting, and
Participants
The Study Team for Early Life Asthma
Research (STELAR) consortium (30) brings
together five UK population-based birth
cohorts: ALSPAC (Avon Longitudinal Study
of Parents and Children) (31), Ashford (32),
IOW (Isle of Wight) (33), and SEATON
(Aberdeen) (34) cohorts, and the MAAS
(Manchester Asthma and Allergy Study)
(35). The cohorts are described in detail in
the online supplement. All studies were
approved by research ethics committees.
Informed consent was obtained from
parents, and study participants gave their
assent or consent when applicable. Data were
harmonized into the web-based knowledge
management platform to enable joint
analyses (30).

Data Sources and Definition
of Variables
Validated questionnaires were completed
on multiple occasions from infancy to
adolescence (23). The cohort-specific time
points and sample sizes are shown in
Table E1 in the online supplement. For the
analyses of pooled data, we defined epochs
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wheeze data into a set of
multidimensional variables better
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multidimensional variables of
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wheezing illness, including a novel
intermittent phenotype associated
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phenotypes are underpinned by
unique mechanisms and
genetic associates.
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based on the data availability at shared time
points across cohorts: infancy (0.5–1 yr);
early childhood (2–3 yr); preschool to
early school (4–5 yr); middle childhood
(8–10 yr); and adolescence (14–18 yr) (23).
For each child, we derived six wheeze
variables:

1. Age of the first episode.
2. Age of the last recorded episode.
3. Total number of separate records over

the observation period.
4. Duration of the longest spell based on

the number of consecutive records of
wheeze.

5. Total number of separate wheeze
spells.

6. Spell type: a categorical variable
defined as 0 = no wheeze, 1 = single
spell, and 2 = intermittent spells
(defined as at least two
nonconsecutive spells of wheeze of
any length).

An illustrative example of the derivation
of the variables is shown in Table E2.

We performed spirometry in
adolescence in all cohorts and ALSPAC and
MAAS on at least three follow-ups from
school-age to early adulthood.We recorded
FEV1 and FVC and expressed data as
z-scores for each population.

Skin testing was performed in early to
midschool-age in all cohorts and on six
follow-ups in MAAS. The definitions of all
variables can be found in the online
supplement.

Statistical Analysis
We analyzed pooled data from
participating cohorts. Figure E1 provides
an overview of the analytical steps. A
detailed description is provided in the
online supplement.

Wheeze phenotypes from infancy to
adolescence from six derived variables. To
derive longitudinal wheeze patterns
captured by the multidimensional
variables, we used the PAM (29) algorithm
coupled with the Wishart distance for
mixed data (36), initially among 7,719
participants with complete data on
wheezing at all five time points. To
investigate whether our findings were
influenced by missing data, we adopted
the framework of Basaga~na and colleagues
(37), which integrates multiple
imputations (38) into cluster analysis, and

applied it to data of 15,848 participants
with at least two observations.

Comparison of wheeze phenotypes
derived using binary LCA and spell PAM
approaches. We first repeated analyses
from our previous study, which used
LCA to identify five wheeze phenotypes
in the same 7,719 participants (never or
infrequent, preschool remitting,
midchildhood remitting, persistent, and
late-onset) (23), and assigned
participants to phenotypes according to
the maximum posterior probability. We
then compared the within-class
homogeneity of both models. We checked
the stability of cluster allocations using the
adjusted Rand index (39) and plotted the
magnitude of transitions of phenotype
membership between models using
alluvial plots.

Association of spell-based PAM
phenotypes with early-life risk factors and
clinical outcomes in adolescence. We used
multinomial logistic regression to ascertain
early-life associates of each PAM phenotype
and examine their relationship with doctor-
diagnosed asthma and asthmamedication
use in adolescence; results are reported as
relative risk ratios with 95% confidence
intervals (CIs). Associations with lung
function (z-scores for FEV1, FVC, and
FEV1/FVC adjusted for height, age, and sex)
were investigated using linear regression.
Models were adjusted for potential
confounders, including maternal history of

asthma, maternal smoking, and low
birth weight.

Genetic associates of spell-based PAM
phenotypes. We investigated the
association of derived clusters with
17q12–21 SNPs (Table E3) and
CDHR3 SNP rs6967330 (40). We selected
one representative 17q12–21 SNP per
linkage disequilibrium block, leaving
rs7216389, rs4795408, and rs3894194 in
the final analysis. We tested the additive
model using multinomial
logistic regression.

Results

Characteristics of the
Study Population
Of 7,719 children with complete data on
wheezing, 50.4% were male. At the
follow-up in adolescence, 12.9% had
current asthma, and 11.4% reported
using asthma medication. Demographic
characteristics are shown in Table E4
and wheeze prevalence in Table E5. The
prevalence of current wheeze decreased
from 22.8% in infancy to 13.7% in
adolescence.

Wheeze Phenotypes Obtained
Using Six Derived Variables and
PAM Algorithm
A five-cluster solution was selected as the
optimal based on statistical fit (Figure E2).
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Figure 1. Trajectories of five wheeze classes were obtained with the partition-around-medoids
algorithm: percentage of participants with reported wheezing in each time interval in the five
cohorts. ETW=early transient; INT= intermittent; LOW= late onset; NWZ=never wheeze;
PEW=persistent.
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After inspection of trajectories for each
cluster (Figure 1), the clusters
(phenotypes) were characterized as
1) NWZ (54.1%); 2) ETW (23.7%);
3) LOW (6.9%); 4) PEW (8.3%); and
5) INT wheeze (6.9%). The same five-class
structure was evident when we
modeled each cohort separately
(Table E6), and the optimal solution
was stable to changes in sample size
(Table E7).

Impact of missing data on cluster
derivation. Detailed analysis is shown
in the online supplement. The optimal
solution from the model using 15,848
individuals with at least two
observations was very similar to that
from 7,719 participants with complete
data (Table E8). Children were assigned
to clusters with a high degree of
certainty (Table E9). There was a very
high agreement between phenotype

assignment of individual children when
using complete or imputed data
(adjusted Rand index = 0.94); only 195 of
7,719 (2.5%) children changed
phenotype allocation (Figure E3).

Comparison of Wheezing Phenotypes
Derived Using Binary LCA and Spell
PAM Approaches
Figure E4 shows latent classes (phenotypes)
identified by LCA. Phenotypes derived
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Figure 2. (A–D) Comparison of internal homogeneity of wheezing phenotypes derived using the spells partition-around-medoids (A and B)
and binary latent class analysis approaches (C and D) among 7,719 subjects with complete data on wheezing from infancy to adolescence.
(B and D) Plots are multidimensional heatmaps that show the density of the distribution of each of the six derived variables, each of which is
represented as a row. The scale of the variables (quantitative and categorical) is shown at the bottom of the plot. The segments in the top bar
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using the two methods among the same
7,719 participants appeared very similar,
and four appeared identical (NWZ, ETW,
PEW, and LOW) (Figures 1 and E4).
However, the within-phenotype structure
differed substantially (Figure 2). For
example, in PAM-NWZ, no participants
reported wheezing at any time point
(Figure 2A), whereas in LCA-NWZ, 10%
reported occasional wheezing (Figure 2C).
In PAM-ETW, no participants reported
wheezing after age 10 years, and nobody in
PAM-LOWwheezed before age 8;
in contrast, in the LCA-ETW class,
8% reported wheeze up to age 18 years,
and wheeze before age 10 was present
among 42% in LCA-LOW.

Figures 2B and 2D and Table E10 show
the distribution of wheeze variables between
phenotypes from the two approaches. In
PAM-LOW, the earliest observed age of
wheeze onset was 7 years later than in LCA-
LOW. PAM-PEW only contained children
with a long single spell of wheeze, whereas
subjects in the LCA-PEW also had
intermittent spells.

We further investigated the differences
between individual allocations to PAM and
LCA phenotypes for all 32 possible wheeze

sequences across the five time points
(Table E11). We did not observe any
inconsistencies across cohorts in the PAM
model (i.e., the same sequences were always
assigned to the same cluster). In contrast,
children with identical sequences were
assigned by LCA to different phenotypes
(e.g., “0–1-0–1-0” was assigned to three
different LCA phenotypes, whereas PAM
spell-based analysis always assigned this
sequence to the INT phenotype).

Figure E5 shows differences in
individual assignment to PAM and LCA
phenotypes. One-quarter of subjects
transitioned to a different phenotype.
Higher stability was observed for ETW
and LOW (.70%) but was relatively poor
in the PEW (60%). Children in the PAM-
INT cluster transitioned from all LCA
phenotypes.

Finally, we applied the PAM algorithm
to the binary current wheeze variable (yes or
no) to investigate whether the algorithm or
the transformation to spell-based variables
gave rise to homogeneous phenotypes.
A five-cluster solution was optimal; however,
the clusters resembled LCA phenotypes
(with no INT wheeze) and were structurally
internally muchmore heterogeneous than

phenotypes obtained using the derived
variables (Figure E6). Therefore, it is likely
that the derived variables were, primarily, the
precursor for deriving more homogeneous
phenotypes.

Association of Spell-based
Phenotypes with Early-Life Risk
Factors and Asthma-related Outcomes

Family history, early-life factors, and envi-
ronmental exposures. Univariable analyses
are shown in Table E12. Table E13 shows the
results of multivariable logistic regression
models. Males had a higher risk of
developing PEW, ETW, and INT, but not
LOW.Maternal asthma and parental
smoking were associated with all four
clusters. Low birth weight was associated
with ETW, INT, and PEW (with the
strongest association with PEW) but not
with LOW.

Asthma. Compared with NWZ, all four
wheeze clusters were associated with a higher
risk of asthma diagnosis and medication use
in adolescence (Table 1). The associations
were strongest for PEW and weakest for
ETW (e.g., the risk of using asthma
medication was approximately 14-fold

Table 1. Associations of Wheezing Phenotypes with Asthma-related Outcomes in Adolescence

Associations with
Asthma in Adolescence*

Associations with Lung
Function in Adolescence*

Current†

Asthma
Asthma
Ever

Current†

Asthma
Medication

Asthma
Medication Ever

z-Scores
for FEV1

‡
z-Scores for

FVC‡
z-Scores for
FEV1/FVC

‡

Never wheeze Reference Reference Reference Reference Reference Reference Reference

Early transient 2.44
(1.84 to 3.24)

4.00
(3.45 to 4.63)

1.96
(1.48 to 2.58)

3.31
(2.92 to 3.75)

–0.103
(–0.19 to –0.02)

–0.014
(–0.10 to 0.07)

–0.151
(–0.24 to –0.07)

P value <0.0001 <0.0001 <0.0001 <0.0001 0.021 0.748 <0.0001

Intermittent 27.06
(20.44 to 35.84)

22.77
(18.23 to 28.44)

17.34
(13.17 to 22.84)

18.47
(15.21 to 22.43)

–0.168
(–0.29 to –0.05)

0.054
(–0.06 to 0.17)

–0.379
(–0.49 to –0.27)

P value <0.0001 <0.0001 <0.0001 <0.0001 0.005 0.37 <0.0001

Persistent 37.72
(29.13 to 48.85)

48.34
(38.47 to 60.74)

26.78
(20.90 to 34.32)

38.97
(32.15 to 47.24)

–0.326
(–0.45 to –0.20)

0.079
(–0.05 to 0.21)

–0.707
(–0.83 to –0.59)

P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.221 <0.0001

Late onset 35.44
(27.30 to 46.00)

17.8
(14.58 to 21.73)

16.78
(12.96 to 21.72)

22.32
(18.26 to 27.27)

–0.003
(–0.13 to 0.13)

0.159
(0.03 to 0.29)

–0.302
(–0.43 to –0.18)

P value <0.0001 <0.0001 <0.0001 <0.0001 0.959 0.015 <0.0001

Results are from a multinomial logistic regression using children with at least twoobservations on wheeze (reference class: never wheeze) using
weighted membership probabilities. Weights derived from probabilities of class membership across 10 imputation samples from the partition-
around-medoids model. Results are reported as adjusted odds ratios with 95% confidence intervals. Bold figures indicate statistically significant
differences at P , 0.05.
*Models adjusted for maternal history of asthma (recruitment), maternal smoking (recruitment), and low birth weight.
†Available at the latest follow-up (18 years in Isle of Wight, 16 years in the Manchester Asthma and Allergy Study, 15 years in Aberdeen,
15 years in Ashford, and 15 years in the Avon Longitudinal Study of Parents and Children).
‡Sex-, age-, and height-adjusted SD units.
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higher for PEW than ETW). Variability in
the proportion of asthmatics by spell-based
phenotype and the proportion of subjects
with asthma diagnosis in adolescence in each
phenotype is shown in Figure 3; of note,
5.7% of children with asthma diagnosis in
adolescence never reported wheezing.

Allergic sensitization. All phenotypes
were associated with sensitization in early
school-age (Table E13), with the magnitude
of risk being higher for PEW and LOW.
Trajectories of sensitization from infancy to
adolescence in MAAS were almost identical

in PEW, INT, and LOW and differed from
those in NWZ and ETW (Figure 4) (i.e.,
highly concordant longitudinal sensitization
patterns were associated with different
wheeze phenotypes). In general, wheeze
preceded sensitization in PEW and INT
clusters, whereas sensitization preceded
wheeze in LOW.

Lung function. FEV1/FVC in
adolescence was lower in all four wheeze
phenotypes compared with children who
never wheezed, with those in PEW
having the lowest lung function,

markedly lower compared with NWZ
(z-score, 20.71; 95% CI [20.83 to
20.59]; P, 0.0001) (Table 1). FVC was
similar across clusters. Longitudinal lung
function was available in 6,729, 4,567,
and 3,749 participants at ages 8, 15, and
24 years, respectively, in ALSPAC, and
790, 801, 630, and 504 participants at
ages 8, 11, 16, and 20 years, respectively,
in MAAS. FEV1/FVC was significantly
lower in all wheeze phenotypes
compared with NWZ throughout the
follow-up (Figure 5) and was consistently
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Figure 3. (A and B) The proportion of study participants with asthma diagnosis in adolescence in each partition-around-medoids wheeze
phenotype (A) and the proportion of subjects with asthma diagnosis in adolescence belonging to each partition-around-medoids phenotype (B).
ETW=early transient; INT= intermittent; LOW= late onset; NWZ=never wheeze; PEW=persistent.
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lower in PEW and INT compared with
ETW and LOW (Table E14). FEV1/FVC
declined from age 8 years to
early adulthood in INT, but not
other phenotypes.

Association between Spell-based
Phenotypes and Genetic Variants in
17q12–21 and CDHR3
Subjects of White European ancestry
(9,655) had genotyping data and were
included in the meta-analysis of genetic
associations. Figure 6 shows forest plots
of the associations for representative
SNPs. Subgroup-level P values are
presented in Table E15. We found
strong evidence of an association

between all 17q12–21 SNPs and PEW.
INT was also associated with 17q12–21
SNPs. However, we found little evidence
of an association between 17q12–21
SNPs and ETW and LOW.

We found strong evidence of an
association between CDHR3 SNP rs6967330
and PEW (odds ratio, 1.45; 95% CI
[1.03–2.04]) and INT (odds ratio, 1.40; 95%
CI [1.04–1.89]), but there was no association
with ETW and LOW clusters.

Discussion

We applied a framework that focused on
wheezing spells to describe the temporal

patterns of wheeze from infancy to
adolescence. Our results suggest that this
approach better captures wheeze
development than the presence or absence
of wheezing alone and provides a more
robust input for data-driven phenotype
derivation. It is much more robust in
dealing with missing data, and the derived
clusters are stable and internally
homogeneous. Our spell-based analysis
applied to data from five population-based
birth cohorts identified a novel wheezing
phenotype, intermittent wheeze, to which
�7% of participants were assigned.
FEV1/FVC trajectory from school-age to
physiological peak in early adulthood
showed consistently diminished lung
function in all four wheeze phenotypes
determined using the spell-based approach
compared with never wheezers, and in
persistent and intermittent compared with
transient-early and late-onset wheezing.
Lung function declined from age 8 years to
early adulthood in intermittent, but not
other phenotypes. Finally, associations with
17q12–21 and CDHR3 SNPs differed
across wheezing phenotypes, and carriers
of risk variants had significantly increased
risk for persistent and intermittent, but not
of transient or late-onset wheeze.

Wheezing phenotypes developed
using spells appeared more clinically
intuitive than those derived based on wheeze
presence or absence. For example, no
subjects in spell-based ETW reported
wheezing after age 10 years, and nobody in
LOWwheezed before age 10 years; in
contrast, in the LCA-ETW, some children
reported wheeze to age 18 years, and early-
life wheeze was reported in some individuals
assigned to LCA-LOW. In spell-based LOW,
the earliest observed age of wheeze onset was
7 years later than in LCA-LOW.

Within-class heterogeneity may
dilute associations with biomarkers,
genetic variants, and environmental
factors. Therefore, for such analyses,
phenotypes derived using data-driven
methods should be homogenous, and
individual patterns of symptoms within
each phenotype should be distinct from
individuals in other subgroups. Our
previous LCA showed that a substantial
number of children are classified
imprecisely using binary information on
wheeze, particularly when an individual’s
posterior probability of assignment is less
than 0.80 (21). Similarly, a recent US
study that derived wheeze phenotypes
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Figure 5. (A and B) Lung function trajectories from early school-age to early adulthood in
Manchester Asthma and Allergy Study (A) and Avon Longitudinal Study of Parents and
Children (B). ETW=early transient; INT= intermittent; LOW= late onset; NWZ=never wheeze;
PEW=persistent.
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Figure 6. (A–D) Forest plots of associations of 17q12–21 SNPs (A–C) and CDHR3 (cadherin-related family member 3) (D) with partition-around-
medoids wheeze clusters. ALSPAC=Avon Longitudinal Study of Parents and Children; CI =confidence interval; DL = DerSimonian–Laird method
for estimating between-study variability; IOW= Isle of Wight; MAAS=Manchester Asthma and Allergy Study; OR=odds ratio;
SEATON=Aberdeen; STELAR=Study Team for Early Life Asthma Research.
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using LCA found that one-third of
subjects had a posterior probability of less
than 0.80 (13). Our current analysis
demonstrates that when using the binary
representation of wheeze, some wheeze
patterns are not assigned to phenotypes
with high precision, and consequently,
individuals with the same longitudinal
wheezing patterns can be assigned to
different phenotypes. The intermittent
patterns contributed to substantial within-
class heterogeneity when using binary
data in both LCA and PAMmodels. Once
the spell approach isolated these
intermittent patterns, ETW, LOW, and
PEW were more internally homogeneous,
and a novel INT cluster emerged.

Our previous analysis in the same
study population showed that data
imputation has a major impact on the
assignment of individual participants to
different phenotypes in LCA (e.g., �40%
of children switched from early-onset
middle-childhood remitting to PEW from
the model with complete data to that with
imputed data [23]). In contrast, in the
current study, there was a remarkably
high agreement between the assignment of
individuals into clusters when using
complete or imputed data, and only 2.5%
of children changed phenotype. This is of
key importance for longitudinal studies in
which data missingness is inevitable and
for genetic analyses in which a large
sample size is essential.

The important question as to
whether different longitudinal wheezing
phenotypes are underpinned by unique
pathophysiological mechanisms has been
asked by Koppelman and Kersten (41)
in an editorial following the recent
finding from the CREW consortium,
which investigated the association of
17q12–21 SNPs with LCA-derived
phenotypes (13). In this study, contrary
to the hypothesis of differential genetic
associations of different wheeze
phenotypes, associations between
multiple 17q12–21 SNPs were similar for
all LCA phenotypes, suggesting that all
wheezing phenotypes have shared
genetic origin in relation to this locus
(13). In contrast, we found a clear
differential association of genetic
markers between phenotypes derived
using spell-based variables. We found no

association of the SNPs in this locus
with transient and late-onset wheezing,
and our results do not support the
notion that the 17q locus should be
considered a “wheezing locus.”

Both 17q21 locus and CDHR3 are
linked to differential susceptibility to
infection by rhinoviruses (42, 43), and
our data suggest that such susceptibility
is common and important for early-
onset nontransient phenotypes (both
persistent and intermittent). However,
most children who wheeze in early life
stop wheezing by school-age (�2/3 in
our dataset, all of whom clustered to
spell-based ETW), and known genetic
markers of susceptibility to rhinoviruses
were not apparent in this group. This is
consistent with recent data showing that
even among children with severe
recurrent preschool wheeze, �50% had
no evidence of either inflammation or
infection in their lower airways (44). It
is possible that diminished lung function
in early childhood (as suggested by the
seminal study from the Tucson cohort
[45] and indirectly confirmed in one of
our cohorts [46, 47]) is associated with
poor growth in early childhood (48) or
specific genetic susceptibility (49, 50)
and is a principal cause of early-onset
transient wheezing, whereas
susceptibility to viruses may contribute
to persistence and exacerbations. We
cannot exclude that the immune
response to other viruses (such as
respiratory syncytial virus) may also be
important in ETW (51). Our data also
suggest that LOW (which in the current
analysis started after age 10 yr) in most
children may not be associated with
susceptibility to viruses but is
predominantly an allergic airway disease,
as suggested by the analysis of the
pattern of in vitro immune responses to
viruses (52). In these individuals,
allergen exposure may be the principal
contributor to severity and exacerbations
(53). However, it is important to
emphasize that all wheeze phenotypes
were associated with diminished lung
function in adolescence and early
adulthood, with the greatest impairment
in PEW and INT. This is a precursor of
chronic obstructive pulmonary disease
(54–56), early all-cause mortality (57),

and early-onset cardiovascular,
respiratory, and metabolic comorbidities
(58).

We found that 5.7% of children with
asthma diagnoses in adolescence belonged
to the NWZ group (and a similar
proportion to the ETW group). This
emphasizes the heterogeneity of doctor-
diagnosed asthma at the population level
and the fact that children with other
respiratory symptoms such as cough (even
in the absence of wheezing) are diagnosed
as being asthmatic.

One limitation of our study is that
the population is not ethnically diverse.
In addition, early-life pulmonary or
airway function tests were not
performed, which limits the inference to
the potential role of premorbid lung
function. We also acknowledge that our
study was not able to investigate the
relationship between wheeze treatment,
disease severity, and patterns of wheeze
spells. With respect to genetic analyses,
further investigations are needed at a
genomewide level to help distinguish
mechanisms of early-life wheeze and
subsequent asthma.

In conclusion, our data are consistent
with the notion that in addition to shared
pathophysiology, distinct wheezing
phenotypes are underpinned by unique
mechanisms and genetic associates.
Modeling using multidimensional
variables of wheezing spells identified a
stable and consistent architecture of
wheezing illness, including a novel
intermittent phenotype associated with
early lung function decline to early
adulthood. We suggest that the
transformation of binary data into a set of
multidimensional variables may better
capture the temporal characteristics of
wheeze development and may provide a
more robust input for phenotype
derivation.�
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