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A B S T R A C T   

A recent development of the Molecular Stress Function constitutive model, the Hierarchical Multi-Mode Mo
lecular Stress Function (HMMSF) model has been shown to fit a large range of rheometrical data with accuracy, 
for a large range of polymer melts. We develop a 3D simulation of the HMMSF model and compare it to 
experimental data for the flow of Lupolen 1840H LDPE through an abrupt 3D contraction flow. We believe this to 
be the first finite element implementation of the HMMSF model. It is shown that the model gives a striking 
agreement with experimental vortex opening angles, with very good agreement to full-field birefringence 
measurements, over a wide range of flow rates. A method to give fully-developed inlet boundary conditions is 
implemented (in place of using parabolic inlet boundary conditions), which gives a significantly improved match 
to birefringence measurements in the inlet area, and in low stress areas downstream from the inlet. Alternative 
constitutive model parameters are assessed following the principle that extensional rheometer data actually 
provides a ‘lower bound’ for peak extensional viscosity. It is shown that the model robustly maintains an accurate 
fit to vortex opening angle and full-field birefringence data, provided that both adjustable parameters are kept 
such that both shear and extensional data are well fitted.   

1. Introduction and background 

The simulation and modelling of viscoelastic melt flows has 
advanced considerably with the introduction of molecularly based 
constitutive models. Earlier models such as the separable KBKZ [1] 
typically gave an accurate response in shear and uniaxial extension, and 
a qualitatively correct response to vortex growth in simulations of 
axisymmetrical abrupt contraction flows. However, this class of model 
typically gave a much less accurate response in planar and equibiaxial 
extension, and also showed a much reduced predictive capability for 
vortex opening angle in simulations of abrupt planar contractions (see 
eg[2].). Explicit molecular considerations were brought into constitu
tive models with models such as the Molecular Stress Function model [3, 
4], the Pom-Pom model [5,6], and the introduction of the Convective 
Constraint Release (CCR) mechanism [7]. The Molecular Stress Function 
(MSF) model uses an energy balance approach to predict viscoelastic 
stresses for a given deformation history, and has been shown to fit a wide 
range of viscometric measurements for long chain branched and linear 
polymers [3,4,8] whilst using only two adjustable parameters. A version 
with a CCR mechanism, the MSF-CCR [4] has also been shown to give a 

good qualitative agreement in 3D simulation, in comparison to 
measured vortex opening angles for an abrupt contraction flow, and 
near-quantitative agreement with full-field stress birefringence mea
surements [9]. 

Many other comparisons have been made between experimental 
data and simulations of other constitutive models that give a realistic 
response in planar extensional flow. Such models include the eXtended 
Pom-Pom (XPP) [10,11], the Double Convected Pom (DHPP) [12], and 
the tube based CCR model of Marrucci & Ianniruberto [13,14]. For these 
models, vortex opening angles were compared with experiment in ref 
[10], full field birefringence was compared in refs [11,13] along with 
laser doppler anemometry, and centreline measurements of birefrin
gence and velocity were compared in ref [12]. The experimental data 
reported in detail in ref [9] provides a particularly demanding test for a 
constitutive model in complex flow since it allows the comparison of two 
quantities that are particularly sensitive to material properties, namely 
vortex opening angles and birefringence, and the data are given across a 
large range of flow rates. 

A recent development of the MSF model, the Hierarchical Multi- 
Mode Molecular Stress Function model (HMMSF) incorporates a 
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dynamic dilution mechanism [15,16] related to the relaxation rates of 
the polymer segments. This model has been shown to give good agree
ment (for both long chain branched and linear polymers) to a wide range 
of viscometric rheological measurements made in shear flow, and in 
uniaxial, planar and equibiaxial extension [16,17,18]. The model again 
uses only two freely adjustable parameters, and has also been shown to 
give rheological predictions that are largely independent of the number 
of relaxation modes employed [15]. Ref [19] compares many constitu
tive models of current interest and shows that avoiding using a 
pre-averaged stretch formulation in a model is crucial to the model 
being able to achieve a good fit to rheometric data with very few (2 or 3) 
adjustable parameters. 

We apply the HMMSF model to the simulation of the same 3D abrupt 
contraction flow of a LDPE melt described in ref [9], and show it gives 
strikingly good agreement with experimental vortex opening angles for 
this flow, with very good agreement to birefringence measurements. 

2. The HMMSF model and parameter estimation 

The Hierarchical Multi-Mode Molecular Stress Function (HMMSF) 
model takes the form: 

τ(t) =
∫t

− ∞

m(t, t’) f 2
i (t, t’) SIA

DE(t, t
’) dt’ (1)  

where τ(t) is the stress at the current time, t, and t′ is any time in the past. 
SIA

DE(t, t’) is the Doi-Edwards stress tensor, using the independent align
ment (IA) assumption, given by 

SIA
DE(t, t’) = 5

〈
u’ u’

u’2

〉

, (2)  

where u′ is the length of a deformed unit vector u′, and 〈…〉 denotes a 
spherical average [16]. m(t, t′) is the memory function between t′ and t, 
and fi(t, t′) is the Molecular Stress Function associated with relaxation 
mode i [16]. The memory function is commonly represented by a 
spectrum of relaxation times, τi, and relaxation moduli, gi, using 

m(t, t′) =
∑

i

gi

τi
e− (t− t′)/τi (3) 

The HMMSF model contains a hierarchical concept whereby the 
shortest relaxation times associated with a polymer have a dilution ef
fect upon the longer relaxation times. This is contained within the 
evolution equation of the Molecular Stress Function: 

∂fi

∂t
= fi(k : S) −

1
α

(
1
τi
+ βCR

)[

(fi − 1)
(

1 −
2
3

w2
i

)

+
2
9
f 2
i

(
f 3
i − 1

)
w2

i

]

.. (4) 

In the evolution equation, k is the velocity gradient tensor (given by 
kij = ∂ui

∂xj
), S is the orientation tensor, and CR is the constraint release 

mechanism. The parameter α has the fixed value of 1 for long chain 
branched (LCB) polymers, or the value of 1/3 for linear polymers. The 
constraint release parameter, β, is adjustable. wi in eq. (4) represents the 
mass fraction of dynamically diluted polymer segments associated with 
a relaxation mode, i. It is calculated from: 

w2
i =

1
GD

∑n

j=1
gj e− τi/τj forτi > τD, (5)  

or 

w2
i = 1forτi ≤ τD (6)  

where τD is the time for the overall relaxation modulus of the polymer to 
relax to the value of the parameter GD. For computational purposes this 
means that w2

i (for each mode i) can be calculated from eq. (5), but must 
then be capped to value 1 if it exceeds that value. 

The constraint release mechanism, CR, is given by 

CR =
1
2

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒A2 : S − A2

1 : S
⃒
⃒

√

. (7)  

A1 and A2 are the first and second Rivlin-Erickson tensors, given by: 

A1
2 = 4D2, (8)  

and 

A2 =
DA1

Dt
+ A1

2 + 2
(
W⋅D+D⋅WT), (9)  

where W and D are the rate of rotation tensor, and the rate of defor
mation tensor respectively, given by W =

(k− kT)
2 and D =

(k+kT)
2 . 

Full details of the underlying theory are given in reference [16]. 
The model has only two freely adjustable parameters, the dilution 

modulus, GD, and the constraint release parameter, β. GD sets the time, 
τD, at which dynamic dilution takes effect [16], and the dynamic dilu
tion of relaxation mode i is the larger the longer the relaxation time τi. 
The overall effect of this on constant rate elongational simulation is to 
moderate the plateau stress value, and also to modify the stress growth 
rate. The stress in constant shear simulation is also moderated by this 
parameter. The constraint release parameter, β, weights the effect of the 
constraint release term, CR. In shear flow the term further limits the 
stress growth, however in purely extensional flows the parameter has no 
effect since the term A2 : S − A2

1 : S is then zero. 
The relaxation spectrum for the memory function for Lupolen 1840H 

was obtained from measurement of the storage and loss moduli (G’ and 
G’’) of the material using a 25 mm parallel plate geometry mounted on 
an Anton Paar MCR501 rheometer at 150 ◦C. Particular attention was 
paid to obtaining results at as low a rate as possible (0.01 rads/s was 
obtained) in order to allow long relaxation times to be included in the 
derived spectrum. The method given in [20] was then used to derive the 
relaxation spectrum, using 8 relaxation times between 1 × 10− 3s and 
3 × 102s, as given in Table 1. 

Reference [20] makes the point that beyond a certain number of 
modes, Ñ, there is little discernible improvement in the least-squares 
error between the measured data points, and predictions from the 
relaxation spectrum; essentially the extra modes are being used to fit 
noise beyond this number. This number Ñ can be identified by plotting 
the least-squares error against the number of modes used, to see where 
the error stops reducing significantly [20]. For our data, least-squares 
error was calculated between 3 and 13 modes and found to stop 
reducing significantly beyond 10 modes, hence the use of 8 modes is not 
excessive for this data. The values of G’ and G’’ predicted by the 
resulting spectrum are compared with the original measurement data in 
Fig. 1, and show excellent agreement. 

To obtain fitting parameters for the HMMSF model for Lupolen 
1840H we first consider the published uniaxial elongational data of 
Sentmanat et al. at 150 ◦C [21]. Fig. 2 shows the published data; it was 
reported in that paper that “necking” was clearly seen during the tests at 
points corresponding to drops in the stress, using video techniques. The 
same figure shows the predictions of the HMMSF model using a value of 

Table 1 
Relaxation spectrum obtained for Lupolen 1840H at 150 ◦C.  

i λi (s) gi (Pa) 

1 1.000E-03 1.187E+05 
2 6.060E-03 6.340E+04 
3 3.672E-02 3.237E+04 
4 2.225E-01 1.663E+04 
5 1.348E+00 6.968E+03 
6 8.170E+00 2.266E+03 
7 4.951E+01 4.147E+02 
8 3.000E+02 2.414E+01  
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GD = 7 × 103 Pa. 
The fit to the elongational data is exceptionally good in terms of 

growth rate, over a large range of elongational rates. The value of GD =

7 × 103 Pa is consistent with taking the experimental data as being a 
“lower bound” of stress [16], as the simulated curves are generally on, or 
just rise closely above, the experimental data. The underprediction of 
strain hardening at the very lowest rates is not surprising since the 
longest time constant used in simulation is 300 s (a limit imposed by the 

minimum rotation rate that could be measured using the rotational 
rheometer), and so the ability to predict strain hardening reduces at 
rates around the inverse of this, giving slight underprediction of strain 
hardening at 0.01s− 1 and strong underprediction at 0.003s− 1. 

Shear viscosity data is required to establish a value for the parameter, 
β. Zatloukal gives steady-state shear viscosity data for Lupolen 1840H at 
180 ◦C, obtained using a capillary rheometer [22]. This data was 
time-temperature shifted to 150 ◦C as described in [9] for comparison 

Fig. 1. G’ and G’’ measured at 150 ◦C, compared with predictions from the derived relaxation spectrum.  

Fig. 2. Comparison of the uniaxial elongational measurements of Lupolen 1840H at 150 C (from [21]) and the HMMSF model with GD = 7 × 103 Pa .  
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with the HMMSF predictions at that temperature. Fig. 3 shows the 
original 180 ◦C data, the experimental data time-temperature shifted to 
150 ◦C, and the simulated steady-state response of the HMMSF model 
using a value of GD = 7 × 103 Pa with β = 0.04 . 

The prediction at 150 ◦C follows the line of the experimental data at 
150 ◦C, albeit with a slight overprediction at the centre rates of the 
graph. It is worth noting that the HMMSF model has been shown to give 
a very close predictive agreement with the transient shear viscosity for a 
large range of LCB and linear polymers (eg [16,17]). 

3. 3-D modelling and implementation of the HMMSF model 

Details of our simulation of the MSF-CCR model for 2D and 
axisymmetric flows are given in ref [23], and details of the extension of 
this implementation to 3D are given in [9]. An outline of this 3D 
simulation method is given here, along with the new details of imple
menting the HMMSF model. 

3.1. Mesh and tracking 

For 3D modelling we used the 27 noded tri-quadratic element giving 
quadratic interpolation of velocity components, and 8-noded tri-linear 
elements giving one order less for pressure. 

In order to calculate the current stress, τ(t), according to eq. (1), it is 
necessary to track a particle backwards in time to any time t′ in the past. 
The Doi-Edwards tensor of eq. (1) can then be calculated from the 
deformation gradient tensor, F(t, t’), which is calculated along the path 
using: 

dF(t, t’)

dt’ = k(t’) F(t, t’), (10)  

where k(t′) is the velocity gradient tensor evaluated at time t’. 
The position of the particle can by progressively tracked back in time 

by successive applications of the kinematic procedure 

x(t′ − δt′) = x(t′) − uδt′ +
δt′2

2

(

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)

,

y(t′ − δt′) = y(t′) − vδt′ +
δt′2

2

(

u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

)

,

z(t′ − δt′) = z(t′) − wδt′ +
δt′2

2
,

(

u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

)

,

(11)  

where u, v and w are the velocity components in the x, y and z directions 
respectively, and δt’ is a small step in historical time. As the tracking 
proceeds, values of the velocity gradient tensor, k, the deformation 
gradient tensor, F(t, t′) and the numerical evaluation of k : S are stored 
for later (repeated) use in integrating the Molecular Stress Functions, fi. 

In 3D there is no streamfunction that can be used to correct small 
errors accumulated by this procedure, however it was shown in [9] that, 
in a comparison for a LDPE in a 2D abrupt contraction flow - both with 
and without streamline correction, there was a maximum difference in 
opening angle of 0.5◦ and a negligible difference in birefringence pat
terns over a large range of flow rates. As the primary experimental 
values being compared in this work are opening angles and birefrin
gence measurements, then the tracking method described is appropriate. 

Fig. 3. Shear viscosity measurements of Lupolen 1840H (from [22]) and the same data after time-temperature shifting to 150∘C, compared with predictions from the 
HMMSF model using GD = 7 × 103 Pa and β = 0.04. 
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3.2. Computation of the Doi-Edwards tensor and the molecular stress 
function 

Once the deformation gradient tensor, F(t, t’) is known, the Doi- 
Edwards tensor with independent alignment assumption, SIA

DE(t, t’), can 
be calculated directly. This can be done very efficiently using Currie’s 
approximation [24], and used in calculating stress through eq. 1. 

The calculation of fi(t, t′) for eq. (1) is structurally different in that, 
having stepped backwards in time to time t’, fi(t, t′) must be calculated by 
integrating eq. (4) forwards in time, starting from a value of fi(t, t′) = 1 at 
time t′. There are many similarities to how the MSF-CCR function is 
integrated in ref [23], but there are two significant differences:  

1 the computation must be performed for each mode, i.  

2 the factor 1
α

(
1
τi
+β CR

)
in eq. (4) can be very large, especially for 

small relaxation times, and so reduced time integration steps are 
needed for stability and accuracy. After experimentation with 
different strategies, limiting the integration time step such that dt′

f2
i (t, t′)/(α τi) < 0.1 proved to be robust and efficient in the simula

tions covered. Note this is an additional limit, in addition to limits 
arising from the adaptive 4th order Runga-Kutta used in performing 
the integration, as described in ref [23]. 

It is computationally very expensive to calculate fi(t, t′) directly at 
every value of t′ stored for the time-integration of eq. (1). Instead we use 
an adaptive point selection method, whereby an initial selection of 
points have fi(t, t′) calculated directly; it is then checked if the calculated 
value at each point can be deduced sufficiently accurately by linear 
interpolation from the two points either side. If so, then linear interpo
lation can be used within that section, or if not then further points must 
have their values of fi(t, t′) computed directly, until linear interpolation 
gives sufficient accuracy. The process continues iteratively until fi(t, t′)
can be calculated by interpolation of calculated points over all sections 
of the history. This adaptive point selection approach gives a very large 
reduction in the time needed to calculate stress. Full details of the 
approach are given in ref [23]. 

Once the Doi-Edwards tensor and corresponding Molecular Stress 
Function are known for each historical point in time, t’, the integration 
of eq. (1) can be accomplished, and the stress at each required point in 
the flow can be ascertained. 

In our implementation the stress is required at all Gauss points within 
each element, a total of 27 points per element using “3-point Gauss” in 
3D elements. 

3.3. Computation of velocity and pressure field 

For an assumed steady-state solution, we require the velocity field 
that produces the stress field given by eq. (1). In addition, for a steady- 
state solution, the stress field must satisfy Cauchy’s equation: 

∇⋅(τ − Ip) = 0, (12)  

where p is pressure, and I is the identity matrix. Using the method of 
[25], velocity is introduced by subtracting notional Newtonian viscous 
stresses from each side of the equation. These viscous stresses are given 
by μ (k + kT), where μ is a viscosity that is related to the low-rate shear 
viscosity of the polymer (see ref [23]), and k is the velocity gradient 
tensor. This leads to 

− ∇.
(
μ
(
k+kT) − Ip

)
= ∇.

(
τ − μ

(
k+kT)) (13) 

The right hand side is a force vector, which can be calculated from 
the stresses arising from an initial flow estimation (typically a Newto
nian solution). The left hand size is a matrix containing pressure and 
velocity components. Solution of this system of equations gives an 
updated solution of the velocity components and pressure. The stress 

values are then recalculated for this new flow field, according to eq. (1), 
and the procedure is iterated until satisfactory convergence is attained. 
In this work we obtained a relative convergence of at least 5 × 10− 4 for 
both velocity and pressure over all flow rates. 

3.4. Computation of stress birefringence patterns 

In order to compare simulated stresses with experimental stress 
birefringence images, the method of Clemeur et al. [12] was used to 
calculate birefringence patterns that would arise from the simulated 
stresses. In this method a Mueller matrix is calculated along a line of 
sight through the polymer. For birefringence seen in the z direction the 
equation is: 

dM(z)
dz

= m(z)⋅M(z), (14)  

where M(z) is the Mueller matrix (initially a 4 × 4 identity matrix), and 
m(z) is a matrix built up from stress components that act normally to z; 
the wavelength of light and the Stress Optical Coefficient, C, are also 
used in the matrix (see [12] for full details of m(z)). The method cal
culates the cosine of the retardation angle, δ, and birefringence stress 
pattern can then be produced by plotting the brightness proportional to 
1 − cos(δ) for comparison to “crossed polarisers” (i.e. where the polar
isers used in experimental birefringence are at 90◦ to one another, which 
gives a dark fringe at zero stress), or proportional to 1 − cos(δ+π) for 
comparison to “uncrossed polarisers, which gives a light fringe at zero 
stress. Additionally there is likely to be some stress ‘history’ within the 
polymer from passing through the extruder; this history is essentially 
unknown, but must contribute some phase shift in birefringence. We 
accommodate this by plotting the brightness proportional to 1 − cos(δ +

θ), where θ is a phase shift. 

4. 3D simulation and comparison with experimental results 

The experimental results, reported in detail in ref [9], were made on 
a 4:1 contraction ratio die with significant 3D effects introduced by a 5:3 
upstream width to height ratio. Measurements were made at extruder 
screw speeds of 5, 10, 15, 25 and 40 rpm. The lower limit was set by 
instabilities in the flow below 5 rpm (this low speed instability has been 
reported many times for experimental contraction flows of LDPE, see 
[26]). The upper limit was set by the strength of the seals of the glass 
windowed die. Vortex opening angles and stress birefringence images 
were recorded at each rate. 

The mass flow rate of the flow at each screw speed was measured 
directly by collecting polymer output and gave rates of 14.4 g/min, 28.8 
g/min, 43.0 g/min, 73.3 g/min and 117.3 g/min, respectively. The 
density of Lupolen 1840H at 150 ◦C has been measured as 780 kg/m3 

[27] which allows the volumetric flow rates, Q, to be determined. From 
these the apparent shear rate, γ̇a, can be calculated using γ̇a =

6Q/W(2h)2, where W is the width of the slit and 2h is the height of the 
slit downstream from the contraction. The corresponding flow rates and 
apparent shear rates are given in ref [9], and are repeated here for 
convenience, in Table 2. 

Fig. 4 shows the mesh used for the simulations, referred to as Mesh- 
1.0. Other meshes are used later in this work for a mesh convergence 

Table 2 
Relationship between mass and volumetric flow rates, and apparent shear rates.  

Screw speed 
(rpm) 

5 10 15 25 40 

Mass flow rate (g 
min− 1) 

14.4 28.8 43.0 73.3 117.3 

Q (m3 s − 1) 3.08 ×
10− 7 

6.15 ×
10− 7 

9.19 ×
10− 7 

1.57 ×
10− 6 

2.51 ×
10− 6 

γ̇a(s− 1) 5.25 10.5 15.7 26.7 42.8  
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study. Symmetry in the y and z planes were used, implemented by 
zeroing the velocities normal to the planes of symmetry. The mesh 
employed 1746 27-noded elements, with a total of 16,315 nodes. 

Fig. 5 compares opening angle from experiment, and those given by 
the HMMSF model. For comparison, results using the MSF-CCR are given 
using the same mesh and same fully-developed boundary conditions (see 
[9]). The reason for showing the MSF-CCR model results is that these are 
the best previous simulation results we are aware of against this set of 
experimental results. 

Earlier work on this simulation problem [9] used a parabolic form for 
the inlet profile. In this work a fully-developed inlet flow is used. The 
simulation starts with a parabolic form, but then progresses towards 
fully-developed inlet boundary conditions by “mirroring back”, to the 
inlet, the flow profile a short distance downstream. In this work the flow 
profile was mirrored back from a line approximately 1.5 elements 

downstream of the inlet; this distance was used as it is equal to several 
node separations and the distance allows the inlet flow to evolve 
significantly towards its fully-developed profile. The total flow rate 
through the inlet was calculated before and after the inlet boundary 
condition changes, and the individual boundary condition velocities 
were corrected by the ratio of these two rates, which prevents any in
cremental drift of overall volumetric flow rate. The strategy used was to 
perform this update every 4th iteration, to allow any associated in
stabilities to settle between changes. The changes to boundary condition 
values progressively became smaller as the inlet approached the true 
fully-developed profile. The update procedure was discontinued after 15 
applications (by which point the changes were negligible) to give fixed 
boundary conditions for the remaining convergence iterations. 

A fully-developed inlet boundary condition is clearly closer to the 
true situation than the parabolic boundary conditions used previously 
(in [9]), and were found to give a notably better match to stress bire
fringence measurements near the inlet and also in low stress areas 
downstream from the inlet. Comparisons of simulated birefringence 
images using fully-developed, and parabolic, inlet boundary conditions 
are shown in Appendix A. Another effect was found to be that the vortex 
opening angles were generally one or two degrees lower than with a 
parabolic inlet profile. This shows that the form of the inlet boundary 
conditions has a significant effect on opening angles, and the more ac
curate fully-developed form is to be preferred to approximations such as 
a 2D parabolic form. The method described above for obtaining the fully 
developed flow is effective, and relatively easy to implement compared 
with a method such as initially solving a 2D cross section of the visco
elastic flow. 

4.1. Opening angles 

Experimentally, vortex opening angles were measured by intro
ducing a small quantity of glass tracer particles into the flow, in 
conjunction with laser sheet lighting on the centre-plane. The vortex 
opening angles were then measured from individual frames of video 
recordings. See ref [9] for details. 

The streamfunction, ψ , defined by ∂ψ
∂y = u and ∂ψ

∂x = − v is valid in 2-D 
and axisymmetric flows, but is not generally valid in 3D flows. However 
as deduced in [9], the streamfunction is valid in the current problem on 

Fig. 4. Surfaces of the 3D Mesh of 27 noded elements using 2 planes of symmetry (top), with section of the mesh in the x-y plane (bottom).  

Fig. 5. Comparison between experimental results and simulation results using 
the HMMSF model (with GD = 7 × 103 Pa and β = 0.04) and the MSF-CCR 
model (with constraint release mechanism CR2 (see ref [9] for full definition 
and context), using a1=0.012 and a2=0.65). Fully developed inlet boundary 
conditions were used in both sets of simulations. 
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the centreplane (where z = 0) only. Hence the streamfunction could be 
calculated on the symmetry plane z = 0, subject to the boundary con
dition that ψ = 0 on the top walls. This streamfunction was used as the 
primary means of measuring opening angle, with confirmation given by 
viewing the vectors on the centre-plane, as was illustrated in ref [9] . 

The experimental opening angles can be seen to rise from approxi
mately 35◦ at the lowest flow rate measured to approximately 38◦ at the 
highest rate. It is useful to recall that the lowest flow rate was limited by 
pulsing of the flow, hence no steady angle could be determined for flows 
below that rate. The HMMSF model matches closely over the full 
experimental range, with a maximum discrepancy of 2◦. It is also 
apparent that the HMMSF, with these parameters, gives a nearly flat 
response once a certain level has been reached (a detailed examination 
shows that the simulated opening angle rises continuously over the 
range of experiment). It is interesting that below the lowest flow rate at 
which a steady opening angle was seen experimentally, the HMMSF rises 
rapidly with flow rate, from Newtonian vortex levels to almost the 

experimental ‘near-plateau’ level. 
The improvement in accuracy over the best previously known re

sults, the MSF-CCR model, can be seen clearly. Improvement can be seen 
both quantitatively in the proximity of simulation and experimental 
values, and qualitatively in the more ‘plateau-level’ nature of the 
opening angles at medium and high rates. 

4.2. Comparison of birefringence results 

As described earlier, birefringence images were reconstructed from 
the stress components of the simulation results using the method of 
Clemeur et al. [12]. As was discussed in ref [9], obtaining a reliable 
value for the Stress Optical Coefficient, C, is notoriously difficult with 
differences of over 40% being reported between different measurement 
methods [28], or when measurements are made over a large range of 
flow rates [12]. We follow the method, as used in ref [9], of choosing a 
value of C to match the number of fringes along the centreline. 

Fig. 6. Comparison between experimental birefringence measurements (left) and computed birefringence resulting from simulation using the HMMSF model (right), 
for a range of flow rates using GD = 7 × 103 Pa and β = 0.04 . 
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Fig. 6 compares experimental birefringence patterns, and the 
reconstructed birefringence from simulation stresses using the HMMSF 
model. At each value of flow rate the initial phase angle, θ, was adjusted 
such that the first clear fringe aligned with experiment, then a value of 
the Stress Optical Coefficient, C, was found such that the number of 
fringes along the centreline matched. The values of C that were obtained 
varied from 1.37 × 10− 9 m2/N at the lowest flow rate to 1.11 ×

10− 9 m2/N at the highest flow rate, showing variation by a factor of 1.23 
over this range. The variation in the apparent optical stress coefficient is 
considered later in this work. There is very good comparison at each 
flow rate for the overall ‘bow’ shape in the converging flow, and also its 
width. Peak stresses occur near the ‘lip’ of the die for both experiment 
and simulation, and the number of birefringence fringes in this feature 
match very accurately, showing a close match of stress levels in this 
complex region using the HMMSF model. Stress relaxation is clearly 
visible along the centreline, downstream of the lip, in both experiment 
and simulation; the close correspondence of fringe position shows a 
good quantitative match between the two. Comparison of these HMMSF 
results with the results given for the MSF-CCR model in ref [9] show 
considerable improvement overall, notably in terms of the overall shape 
of the inlet ‘bows’, as well as the correspondence of peaks around the 
‘lip’. In so far as the vortex size might be judged from birefringence 

patterns, vortex size and opening angle also appear better matched. The 
use of fully-developed inlet boundary conditions is responsible for some 
of the improvement in matching in the low stress areas (such as 
improving the match to the width of the ‘bows’) however high stress 
areas, such as the ‘lip’ peaks are little affected by the change to fully 
developed inlet boundary conditions, so these improvements are clearly 
due to the HMMSF model. The only significant qualitative difference 
between the experimental and simulation results lies in the region 
downstream of the lip peaks, where the ‘stress fangs’ (the areas that 
appear to be convected high stresses from the areas near the lip) are 
more pronounced in experimental results than in simulation results. This 
is examined in more detail later in this work. 

5. Results with larger values of the dilution modulus, GD 

The dilution modulus parameter, GD, was chosen as 7.0 × 103 Pa as 
this was consistent with the ‘lower bound’ that the measured rheological 
data showed. As clear ‘necking’ was seen during the extensional rheo
logical measurements it is entirely possible that the true level of strain 
hardening of the material lies above the point indicated by GD = 7.0 ×

103 Pa. We now investigate behaviour at significantly higher levels of 
strain hardening, using GD = 2 × 104 Pa and GD = 4 × 104 Pa. For each 

Fig. 7. Transient uniaxial extension and steady-state shear viscosity using GD = 2 × 104 Pa with β=0.09 ((a) and (b)), and with GD = 4 × 104 Pa with β=0.13 ((c) 
and (d)), compared with experimental uniaxial measurements (from [21]) and shear measurements (from [22]). 
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of these values a value of β was found to match the rheological shear 
data; the corresponding values were found to be β=0.09 and β=0.13, 
respectively. The comparisons to uniaxial extensional data and shear 
data are shown in Fig. 7 for both of these higher values of GD. 

In Fig. 7, the uniaxial extensional viscosities with increased values of 
GD (sub-plots (a) and (c)) generally rise well above the maximum values 
recorded in the experimental rheological measurements. This seems 
plausible as the maximum stresses recorded experimentally are reported 
to correspond to ‘necking’. The rise-rates are also higher than with GD =

7.0 × 103Pa (see Fig. 2), and fit the data slightly less well at most 
extension rates in both sub-plots (a) and (c). The fit to shear data shows a 
greater rise above the experimental data in sub-plots (b) and (d). This 
evidence, so far, tends to give a slight preference towards the lower 
value of GD. 

Fig. 8 compares the HMMSF model, using all three values of GD 
against the experimental data. The simulation curves follow a similar 
path, with some tendency for the higher values of GD to rise less quickly 
towards the ‘plateau’ level (all 3 sets of simulations give a monotonically 
rising opening angle with apparent shear rate). There is a slight ten
dency for the opening angles at high rates to increase using the higher 
values of GD (with β adjusted to match shear viscosity, accordingly), 
with an approximately 2◦ higher opening angle for GD = 4.0 ×104Pa 
compared to GD = 7.0 × 103Pa. All 3 sets of parameters fit the opening 
angle data well, in comparison to the best previously published results 
using the MSF-CCR model. 

Fig. 9 compares the computed birefringence patterns obtained using 
the highest value of GD studied, GD = 4.0 × 104Pa (with β=0.13), with 
the experimental birefringence patterns obtained at the same flow rates. 
Values of the stress optical coefficient were obtained independently, 
using the same approach as used for GD = 7.0 × 103Pa. The overall 
shapes of the patterns are similar to those obtained earlier, but with 
some detail differences. The patterns using GD = 4.0 × 104Pa show a 
greater tendency towards exhibiting ‘stress fangs’ at the higher rates, in 
keeping with this feature in the experimental data. Less favourably, the 
contours near the ‘lip’ of the contraction correlate fractionally less well 
in this region to those seen experimentally, than those in simulation 
using GD = 7.0 × 103Pa. Perhaps the most significant feature shown by 
Fig. 9 is that a factor of 6 rise in GD gives only a small difference in 
predicted stress birefringence patterns, when the rise in GD is accom
panied by an increase in β to maintain a match to shear viscosity data. 

The values of the Stress Optical Coefficient, C, that were obtained at 
the two extreme values of GD are plotted in Fig. 10. The values showed a 
steady reduction with apparent shear rate for both values of GD. For GD 

= 7.0 × 103Pa the values drop from 1.37 × 10− 9 m2/N at the lowest 

flow rate to 1.11 × 10− 9 m2/N at the highest flow rate; a factor of 1.23 
over this range. For GD = 4.0 × 104Pa the corresponding factor is 1.33. 
The value for GD = 7.0 × 103Pa is lower than for the MSF-CCR, which 
gave corresponding factors of 1.32 and 1.42 for two variants (see [9]), or 
the Double Convected Pom-Pom (DCPP) model which gave a factor of 
approximately 2.29 variation in apparent Stress Optical Coefficient over 
a factor of 10 change in apparent shear rates [12]. For context, a less 
developed viscoelastic model, the Upper Convected Maxwell model, 
varied by a factor of approximately 70 in apparent Stress Optical Coef
ficient over a factor of 10 change in apparent shear rate [12]. 

5.1. Detailed study of birefringence order downstream of the slit 

The experimental results show clear ‘stress fangs’ downstream of the 
peak stress area near the lip of the contraction, which are largely absent 
from the simulated birefringence patterns. To resolve this difference 
more quantitatively, the positions of experimental and simulated fringes 
are plotted in detail at one flow rate (73.7 g/min) in this area. The po
sitions of fringes were determined along lines at several distances from 
the centreline, and parallel to it; this was performed for both the 
experimental birefringence image and the simulated birefringence 
image. The line labelled “0%” is a line exactly along the centreline, the 
line labelled “30%” is a line at 30% of the distance from the centreline to 
the wall and so “90%” is a line very close to the wall. Fig. 11 shows the 
results for a rate of 73.7 g/min using GD = 7.0 × 103Pa and β=0.04 (the 
source image is shown in Fig. 6). 

Fig. 11 shows that the experimental and simulated fringe orders 
along the 0%, 30% and 60% lines match very closely at this rate and 
parameter settings. The match at 60% is interesting as this line passes 
(very approximately) through the centre of the ‘stress fang’. The close 
match shows that the difference in appearance between the measured 
and computed birefringence images is not caused by the simulation 
relaxing stress more quickly. The lines for 90% show the cause of the 
difference in appearance – the experimental birefringence orders drop 
much more quickly than those from the simulation, and this rapid drop 
appears to be the actual cause of the visual ‘stress fangs’. 

Fig. 12 shows the same comparisons, but for simulation results using 
GD = 4.0 × 104Pa and β=0.13 (as shown full field in Fig. 9). The com
parisons along the 0%, 30% and 60% lines are less close than those using 
GD = 7.0 × 103Pa (a tendency found for many other comparisons be
tween the two parameter sets within the paper). The same overall trend 
is seen however, with significantly better matches at 0%, 30% and 60% 
than at 90%. The simulation fringe orders on the 90% line drop slightly 
faster than with GD = 7.0 × 103Pa and β=0.04, giving a slightly stron
ger suggestion of ‘stress fangs’ as seen in Fig. 9. The larger value of β 
seems the probable cause of the faster drop in stress under shear, but 
there remains a marked difference between measured and simulated 
fringes along the line near the wall. 

For both parameter sets, the measured drop rate in fringe order at 
90% distance from the centreline appears very large in comparison to 
drop rates seen at other distances from the centreline, and also in 
comparison to the drop rate of the simulation at this distance. Clearly, 
shear rates near the wall will be higher than at other distances from the 
centreline and this suggests the possibility that the model isn’t 
responding in the same way as the polymer to stretch followed by high 
shear. It is also worth recalling that the stress optical law is regarded as 
“semi-empirical” as it makes assumptions to link stress and birefringence 
[12]. Significant exceptions to the stress optical law have previously 
been demonstrated for high strains in elongational stretch [29, 30]. 
Polymer flowing near the 90% line will have had a history of significant 
stretch followed by high shear, and it is possible that the assumptions the 
stress optical law makes do not hold linearly in that flow regime. 

Fig. 8. Comparison between experimental results and simulation results using 
the HMMSF model with three different sets of (GD, β) parameters. 
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5.2. Parametric study of the effects of GD and β on opening angles 

The opening angles shown in Fig. 8 used different values of GD, with 
β values chosen to match the rheological shear data. It is interesting to 
gauge the effects of parameters without this matching using the β 
parameter. Simulations were performed at 73.7 g/min, centred on GD =

2.0 × 104Pa and β=0.09. Two further simulations were performed at GD 

= 7.0 × 103Pa and GD = 4.0 × 104Pa, while keeping β fixed at 0.09. 

Additionally two further simulations were performed at β=0.04 and 
β=0.13 while keeping GD fixed at 2.0 × 104Pa. The results are shown in 
Fig. 13. 

The point at the centre of Fig. 13 (GD = 2 × 104Pa, β = 0.09) is a 
point that accurately fits the rheological data. The dashed line shows GD 
being varied (keeping β fixed), and the dotted line shows β being varied, 
keeping GD fixed. The ranges used for GD and β are from the highest and 
lowest values used in earlier fits to rheological data. It can be gauged 

Fig. 9. Comparison between experimental birefringence measurements (left) and computed birefringence resulting from simulation using the HMMSF model (right), 
using GD=4.0 × 104Pa and β=0.13. 
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from the diagram that a unilateral factor of 2 increase in GD around this 
range gives an increase of approximately 3◦ in opening angle, while a 
factor of 2 increase in β reduces the opening angle by approximately 3◦. 

The effects of varying GD on extensional viscosity are unchanged 

from those shown in Figs. 2 and 7 (since extensional viscosity pre
dictions are unaffected by β). The effects on predicted shear viscosity can 
be seen in Fig. 14, where GD is fixed at the central value of 2.0 × 104 Pa, 
while β is used at 0.04, 0.09 and 0.13. 

The difference for these 3 values of β at the fixed value of GD are 
fairly slight, requiring the detailed view (inset) to discriminate between 
them clearly. By contrast the same unilateral variation of β at a value of 
GD = 2.0 × 104 Pa gives a more significant variation of over 6◦ in 
opening angle, as can be seen in Fig. 13. 

6. Mesh convergence 

In order to establish the mesh convergence of the method and the 
results, simulations were conducted on meshes of different densities at 
two rates (14.4 g/min and 73.7 g/min) and using two different param
eter sets (GD = 7.0 × 103 Pa with β = 0.04, and GD = 4.0 × 104 Pa 
with β = 0.13). Three new meshes were used: Mesh-0.6, Mesh-0.8 and 
Mesh-1.2. 

The meshes were produced by taking the mesh used for all work to 
this point (Mesh-1.0) and multiplying the number of elements along 
each structured mesh boundary by the factor included in the name of the 
new mesh. So, for example, Mesh-0.6 has 0.6 times as many elements in 
each direction (to nearest integer) as the original mesh, and so has the 
order of (0.6)3 times as many elements in total. Hence there are two 
coarser meshes than the main mesh (Mesh-1.0), and one finer mesh. 

The numbers of elements and nodes in each mesh are given in 
Table 3. 

The variation of opening angle is shown in Fig. 15 for the meshes. 
The variation is shown for two different flow rates and for the two 
different parameter sets. The coarsest mesh (with 536 elements) gives 
opening angles that are approximately 1.5◦ to 2◦ below the other three 
meshes, however the opening angles are seen to be quite settled for the 
three finest meshes, with a maximum variation of 0.2◦ between these 
three. The opening angles appear to be well determined by the mesh 
density of Mesh-1.0 (at 1746 elements). The variation of 0.2◦ that is 
suggested (from comparison of the three finest meshes) is slight to the 
graphical scales of Figs. 5 and 8. 

Fig. 16 compares the birefringence patterns produced using results 
from the main mesh (Mesh-1.0) and the finest mesh (Mesh-1.2). The 
flow rate in each case is 73.7 g/min, and the parameters used are GD =

7.0 × 103 Pa and β = 0.04. Both birefringence images use the same 
value of stress optical coefficient that was used in Fig. 6 (1.18 ×

10− 9m2/N, at 73.7 g/min). The differences are seen to be slight with a 
close match of the peak near the lip, and close correspondence along the 
centreline upstream of the lip. The greatest difference is seen on the 
centreline downstream of the lip, where the stress falls slightly less 
quickly with the finer mesh; this seems likely to be due to a slightly 
modified flow profile due to resolving this narrow section more closely. 
The difference can be judged from Fig. 16 to be a small fraction of a 
fringe separation, and so would only slightly affect the detailed results 
shown in Fig. 11. 

In summary, the convergence study shows that the simulation 
method gives convergence with mesh refinement for both vortex 
opening angles and birefringence, and the results produced by the main 
mesh (Mesh-1.0) differ only in fine detail from those produced by a 
second finer mesh. 

7. Discussion and conclusions 

The HMMSF model gives an exceptionally accurate fit to the uniaxial 
extensional data for Lupolen1840H using the parameter GD set to 7 ×

103 Pa. This is particularly noticeable in the close match to rise rates 
over an extension rate from 0.01s− 1 to 30s− 1. It is noticeably closer than 
the previous best fit of which we are aware, using the MSF-CCR model 
[9] The fit to the available rheological shear viscosity data is also very 

Fig. 10. Apparent (best fit) values of the stress optical coefficient, obtained at 
different apparent shear rates, for the parameter sets (GD=7.0 × 103Pa, 
β=0.04) and (GD=4.0 × 104Pa, β=0.13). 

Fig. 11. Fringe order versus distance downstream of the slit opening (using GD 

= 7.0 × 103Pa and β=0.04) at a rate of 73.7 g/min. 

Fig 12. Fringe order versus distance downstream of the slit opening (using GD 

= 4.0 × 104Pa and β=0.13) at a rate of 73.7 g/min. 
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good, although there is a slight overprediction at ‘mid-range’ values 
around 1s− 1. The HMMSF model has previously been shown to accu
rately fit transient shear viscosity data, and uniaxial, planar and 

equibiaxial extensional data for a large range of polymers including 
several LDPEs and HDPEs, so this overprediction against one data set 
may not be significant. 

Fig. 13. Sensitivity of opening angle to varying GD with constant β, and varying β with constant GD.  

Fig. 14. Comparison of steady-state measured data with HMMSF using GD=2.0 × 104Pa and three different values of β (0.04, 0.09 and 0.13). Inset shows detail 
around 102 s − 1. 
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Adaptation of existing MSF-CCR code to simulate the HMMSF pre
sented no particular difficulties, although careful attention was needed 
on the size of time steps used in calculating the modal molecular stress 
functions, fi(t,t′), as described in the text. The ‘mirroring’ method to give 
a fully developed inlet profile added realism to the simulation, and also 
improved the quality of match between simulated and observed bire
fringence pattern very significantly, particularly in the low stress areas 
near the inlet. Fully developed inlet boundary conditions also had an 
effect on vortex opening angles, general causing a reduction of 1 or 2◦ in 
comparison to a parabolic inlet profile of the same overall flow rate. 

The conspicuous achievement of the model, from a flow simulation 
perspective, is the excellent quantitative match to both the level of 
vortex opening angles, and also to matching the ‘plateau-like’ form of 
the opening angles, as exhibited by the polymer experimentally. This 
can be contrasted with the more gradual rise exhibited by the MSF-CCR 
(as shown in Fig. 5), which is the closest previous simulation of this 
polymer of which we are aware. Further, we are not aware of previous 
3D simulations of any specific polymer giving a comparable close match 
to experimental vortex opening angle over a large range of flow rates. 

The match between experimental and predicted stress birefringence 
pattern is also very good, and slightly better in terms of the overall form 
of the ‘butterfly’ patterns towards the contraction in comparison to the 
results from the MSF-CCR [9]; a significant part of this improvement can 
be attributed to the use of fully-developed inlet boundary conditions. An 
apparent stress optical coefficient was found for each flow rate to match 
the number of fringes along the centreline. Using only this, the number 
of fringes around the lip was found to agree closely with experiment 
when using a value of the parameter GD set to 7 × 103 Pa. The variation 
of apparent stress optical coefficient is of interest as, for GD = 7 ×

103 Pa, it varied by a factor of 1.23 over a factor of 8 change in flow rate. 
There are few papers where the variation of apparent stress optical co
efficient has been studied explicitly, however the current value is 
significantly lower than other values – 1.32 and 1.42 for two variants of 
the MSF-CCR over the same range [9], a factor of 2.29 over a factor of 10 
range of flow rates for the Double Convected Pom-Pom (DCPP) model 
[12], and a factor of 70 change over that same range for the (less 
developed) Upper Convected Maxwell Model [12]. 

The experimental uniaxial extensional data can be viewed as a ‘lower 
bound’ on the strain hardening behaviour of Lupolen 1840H, especially 
as ‘necking’ was observed. The value of GD = 7 × 103 Pa corresponds to 
this lower bound. Higher values of GD were used to give stronger strain 
hardening, whilst the parameter β was increased to maintain a fit to the 
experimental shear viscosity data. Despite quite large increases in GD (a 
factor of approximately 6), the vortex opening angles and birefringence 
patterns change quite slightly when the parameter β was adjusted to 
maintain a fit to shear data. However, there are a number of compari
sons in this work where using GD = 7 × 103 Pa gives a better match to 
experiments than those obtained using higher values of GD (2 × 104 Pa 
or 4 × 104 Pa). These factors are: a better fit to the rate of strain 
hardening in uniaxial extension, a better fit to steady-state shear vis
cosity, a better match to experimental vortex opening angles and a lower 
variation in apparent stress optical coefficient over the range of flow 
rates studied. In view of these factors a value of GD = 7 × 103 Pa can be 
considered to give the best results for this polymer. It is remarkable, 
however, that when GD is altered so much (while modifying β to 
maintain a match to steady-state shear viscosity data) the opening an
gles and stress birefringence actually vary so little from the experimental 
measurements. 

The salient difference between experimental and simulated bire
fringence patterns was the much less pronounced ‘stress fang’ in the 
simulated results. Detailed study showed that the visual effect is pri
marily caused by rapidly falling fringe order near the wall, around the 
lip of the contraction; this rapid fall of fringe order is much less pro
nounced in the simulation. The suggestion is that the difference arises 
because some aspect of polymer flow is not captured by the model. It is 

Table 3 
Element and node numbers in meshes used in assessing mesh dependence.  

Mesh name Number of elements Number of nodes 

Mesh-0.6 536 5499 
Mesh-0.8 990 9537 
Mesh-1.0 1746 16,315 
Mesh-1.2 2814 25,725  

Fig. 15. Variation of simulated opening angles with mesh density for two flow 
rates and two parameter sets. 

Fig. 16. Simulated birefringence patterns using the main mesh (Mesh-1.0) and 
the finer mesh (Mesh-1.2). Both are produced with a stress optical coefficient of 
1.18 × 10− 9m2/N . 
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also worth considering the possibility that the assumptions of the stress 
optical law may not hold in the particular flow regime near the down
stream wall (significant stretch followed by high shear). See Refs. [12, 
29, 30]. 

A ‘unilateral’ approach to changing a parameter was examined to see 
its effect (for example, changing GD but leaving β unchanged). In this 
approach a close fit to the rheological shear viscosity measurement was 
not maintained, and there was a very marked variation in vortex 
opening angles. 

The HMMSF constitutive model has already been shown to accu
rately fit a wide range of polymers (including HDPE, LDPE and LLDPE) 
in a wide range of viscometric measurements, including shear viscosity, 
first and second normal stress differences, and extensional viscosity in 
uniaxial, planar and biaxial extension [16, 17, 18]. In this work it has 
been used in the simulation of a 3D abrupt contraction flow, and shown 
to give an exceptionally good match to experimental vortex opening 
angles and stress birefringence for an LDPE melt. We are not aware of 

any comparable match between simulation and experiment for a 
contraction flow over a large range of flow rates, suggesting that the 
HMMSF model is a very significant step forward for quantitative simu
lation of polymer melt flows. 
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Appendix A. The effect of using fully-developed inlet boundary conditions on birefringence comparisons 

Fully-developed inlet boundary conditions were used in this work, as described in Section 4. Fig. A.1 shows comparisons between the experimental 
and simulated birefringence patterns using parabolic inlet boundary conditions (as used in reference [9]), and using fully-developed boundary 
conditions as used in the current work. The flow rate is 73.7 g/min and the material parameters used were GD = 7.0 × 103 Pa with β = 0.04. A value 
of stress optical coefficient of 1.16 × 10− 9 m2/N was found to match the peak centreline stress using parabolic inlet boundary conditions, which 
differs only slightly from the value found for the fully-developed inlet boundary conditions at this rate (1.18 × 10− 9 m2/N). The match is notably 
better in the low-stress areas near the inlet using fully-developed boundary conditions, particularly when comparing the horizontal positions of the 
fringes. The fringes in the low stress inlet area are also sharper than with the parabolic inlet. We believe this improvement is due to the stress in these 
areas being computed by tracking back along fully-developed paths to a (matching) fully-developed inlet. Using parabolic inlet boundary conditions, 
on the other hand, means there will be an artificial transition from parabolic flow at the inlet to a more developed flow profile downstream, with a 
complex effect on the stress computation. 

Fig. A.1. Comparisons between experimental and simulated birefringence using parabolic inlet boundary conditions (left comparison) and fully-developed inlet 
boundary conditions (right comparison). 
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