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Abstract
Purpose  Burns depth evaluation is a lifesaving task and very challenging that requires objective techniques to accomplish. 
While the visual assessment is the most commonly used by surgeons, its accuracy reliability ranges between 60 and 80% 
and subjective that lacks any standard guideline. Currently, the only standard adjunct to clinical evaluation of burn depth 
is Laser Doppler Imaging (LDI) which measures microcirculation within the dermal tissue, providing the burns potential 
healing time which correspond to the depth of the injury achieving up to 100% accuracy. However, the use of LDI is limited 
due to many factors including high affordability and diagnostic costs, its accuracy is affected by movement which makes 
it difficult to assess paediatric patients, high level of human expertise is required to operate the device, and 100% accuracy 
possible after 72 h. These shortfalls necessitate the need for objective and affordable technique.
Method  In this study, we leverage the use of deep transfer learning technique using two pretrained models ResNet50 and 
VGG16 for the extraction of image patterns (ResFeat50 and VggFeat16) from a a burn dataset of 2080 RGB images which 
composed of healthy skin, first degree, second degree and third-degree burns evenly distributed. We then use One-versus-
One Support Vector Machines (SVM) for multi-class prediction and was trained using 10-folds cross validation to achieve 
optimum trade-off between bias and variance.
Results  The proposed approach yields maximum prediction accuracy of 95.43% using ResFeat50 and 85.67% using 
VggFeat16. The average recall, precision and F1-score are 95.50%, 95.50%, 95.50% and 85.75%, 86.25%, 85.75% for both 
ResFeat50 and VggFeat16 respectively.
Conclusion  The proposed pipeline achieved a state-of-the-art prediction accuracy and interestingly indicates that decision 
can be made in less than a minute whether the injury requires surgical intervention such as skin grafting or not.
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1  Introduction

Skin is the largest body organ constituting ~ 1.5–2.0 m2 for 
an average adult [1]. It serves as a defensive shield against 
foreign intruders, helps in thermoregulation, prevents loss 
of body fluid via evaporative, and helps significantly in the 

production of vitamin D. Skin is composed of three layers: 
epidermis, dermis and hypodermis. The epidermis is the out-
ermost layers that interface the external environment while 
dermis sits between epidermis and hypodermis. These skin 
layers, combined together, provide the aforementioned func-
tionalities. However, skin injuries such burns disrupt such 
barrier thereby subjecting individuals to high risk of infec-
tions and in extreme cases loss of live. Burns injuries are 
caused by several mechanisms such as thermal, electrical, 
radiation and chemical [2]. Burns that affect epidermal layer 
are referred to as superficial or first-degree burns, and the 
common example is sunburn which can heal with no medical 
intervention within seven days due to proliferation and dif-
ferentiation of keratinocytes from basal epithelial cells [1]. 
Deep burns such as second-degree and third-degree burns 
are distinguishable from epidermal burns by their charac-
teristics (pain, capillary refill and colour-red/pink, white). 
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Second-degree burn includes superficial partial-thickness 
(SPT) burns and deep partial-thickness (DPT) burns. SPT 
are characterized by pain and capillary refill and involves 
both epidermis and papillary dermis while DPT burns 
extend to reticular dermis and adnexal structures. Third-
degree burns (also referred to as full-thickness burns) affect 
all the epidermal and dermal layers and extend to subcutane-
ous adipose tissue, muscles and bones.

Patients with a second degree burn, specifically DPT, and 
third-degree burn require immediate and effective assess-
ment for early recovery. These injuries take substantial 
lengthy hospitalization and have the high risk of subjecting 
patients to hypertrophic scars (HTS). However, burn depth 
assessment has been challenging task for clinicians. Assess-
ment by experienced clinicians is highly subjective due to 
lack of standard guideline with accuracy ranging between 
60 and 80% [1, 3], which prompted the need for a better 
alternative modality.

Other objective techniques have been proposed for burns 
depth assessment. Knowing the depth of burn injury gives 
crucial information regarding the expected recovery time 
(healing time). These proposed objective methods include 
the use of Laser speckle imaging, spatial frequency domain 
imaging and laser doppler imaging [4]. Laser speckle imag-
ing (LSI) has the capability to assess the perfusion rate over 
a wide area, easy to interpret the produced perfusion map by 
clinicians. A map area that shows high perfusion rate simply 
means vasculature is undamaged and the burn area is likely 
to heal without any medical intervention while low perfusion 
rate basically means damaged tissue and may require quick 
surgical intervention [4]. However, the accuracy is time-
dependent with optimum performance at 48–72 h after burn 
occurrence while inaccurate and inconclusive before 48 h 
[5]. LDI is a non-invasive tool first used for burns examina-
tions by Niazi et al. [6] that scans tissue surface using mono-
chromatic laser beam and gets reflected by moving blood 
cells. The extent of reflection correlates with the severity 
of the damaged tissue, where high reflection corresponding 
to the high perfusion rate and indicates very shallow burns 
while deeper burn wounds are determined by low perfusion 
rate (with low reflection) because there is lesser blood circu-
lation as a result of blood vessels been damaged by the burn 
injury. LDI remains the prominent tool and widely accepted 
for burns examination today with additional advantage of 
scanning wide area of up to 50 cm by 50 cm, unfortunately 
the cost of the equipment is high with an estimated cost of 
£50,000 [7–9], it is cumbersome, it requires high expertise 
to operate, it is slow where a scan takes up to 1 or 2 min. 
Laser speckle contrast imaging (LSCI) is a recent objective 
technique for measuring microcirculation non-invasively 
that shorten the scanning time to about 200–1000 ms com-
pared to LDI [8, 10], and less sensitive to patient movement 
artifacts. Despite its performance and advantages over LDI, 

its usage has limited application on burn evaluation and 
achieve accuracy of approximately 95% from day 3 after 
injury [10–12].

Towards the end, this proposed research provides alter-
native burn depth evaluation using deep learning features 
to objectively predict those burns that that require surgical 
intervention and those that do not. In summary, the contribu-
tions of this research are outlined below:

•	 We introduce ResFeat50 and VggFeat16, image features 
extracted from ImageNet pretrained models, ResNet50 
and VGG16, respectively, to predict human skin burns 
healing times and Support Vector Machines as a predic-
tor.

•	 We provide an in-depth analysis regarding features with 
strong discriminatory patterns and made based on their 
robustness and computational time comparison between 
ResFeat50 and VggFeat16.

•	 We provide performance comparison of our proposed 
study with the existing published works. Our approach 
and results achieved a significant performance improve-
ment

The rest of the paper is organized as follows: in the next 
section, we briefly discuss related works and Sect. 3 presents 
methodology. In Sect. 4, we present experimental results, 
Sect. 5 presents discussion of the results and Sect. 6 con-
cludes the paper.

2 � Literature

The use of Convolutional Neural Networks (CNN) for clas-
sification tasks has widely been adopted in different applica-
tion domains such as face recognition [13, 14] and disease 
detection [15]. Their adoption was due to their capability to 
capture rich generic discriminatory features at different lev-
els. It was proposed in a study by authors in [16] to discrimi-
nate whether a given human skin image is burnt or healthy. 
This was facilitated using pretrained CNN features, specifi-
cally ResNet101 model was used, due to deficient datasets. 
The datasets are all RGB images and pre-processed by 
resizing them to a standard input size of ResNet101 model. 
Thereafter, the extracted features were fed into support vec-
tor machines and trained using tenfold cross validation. This 
approach recorded a near perfect classification accuracy of 
99.5%.

Another study referenced [17] lamented a challenge if 
the deep learning model is to be trained from scratch using 
limited dataset. Alternatively, the study opted for transfer 
learning for deep feature extraction, an approach known 
as off-the-shelf feature extraction. Two pretrained residual 
network models, ResNet101 and ResNet152, were used for 
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features extraction to discriminate between burn wounds 
and pressure ulcer injuries and support vector machines 
was trained for the classification via the use of tenfold cross 
validation. ResNet152 features proved to have more strong 
discriminatory patterns from the images in which support 
vector machines recorded 99.9% accuracy.

Study referenced [18] proposed another binary classifica-
tion of burns using deep neural network features and support 
vector machinesthe. In this study, three deep CNN models 
were used; two of the models (VGG16 and VGG19) were 
training on ImageNet database to categorize 1000 different 
objects and the other model was trained to recognize human 
faces (VGGFace). In nutshell, all the three pretrained CNN 
model were used for feature extraction and then support vec-
tor machines as classifier,a. Results show that 98.75% and 
97.56% using VGG16 and VGG19 features respectively, 
while achieving 95.20% on VGGFace. Finally, the authors 
lamented that high accuracy recorded by ImageNet models 
can be attributed to the fact that the weights of those models 
were able to learn from a diverse representation of features.

Similarly, the study referenced in [19] proposed a binary 
classification of burns and healthy skin using fine-tuning 
approach. A pre-trained ImageNet deep learning model (i.e. 
ResNet50) was adopted and modified the top layers. Two 
different datasets from two ethnicities were used; Africans 
and Caucasians. The dense layers of the ResNet50 model 
were removed and replaced with new layers, these layers 
were then trained using features from the base layers of 
the ResNet50. Recognition accuracy of 97.1% on African 
images and recorded classification accuracy of 99.3% on 
Caucasian images. The authors attributed lack of good rec-
ognition accuracy for the African subjects due to poor qual-
ity of the images.

A study by [20] proposed an automated diagnostic pro-
cess to classify burn wounds. In this study, discrimination 
of burn images and injured skin (pressure ulcer and skin 
bruises) was conducted. The study invoked two transfer 
learning approaches due to insufficient datasets; fine-tuning 
which involves modifying top layers of deep learning model, 
and on the other hand training support vector machines 
using features extracted by the pre-trained deep learning 
model. Three pre-trained models, including ResNet50 with 
50 stacked convolution layers, ResNet101 contained 101 
stacked convolution layers and ResNet152 containing 152 
stacked convolution layers were employed and compared. In 
the end, Training support vector machines with ResNet152 
features recorded the best classification accuracy of 99.96% 
with area under the curve (AUC) of 99.99%. Fine-tuning 
requires considerable database size.

For burn depth recognition, few numbers of studies used 
machine learning techniques. For example, SPT, DPT and 
full-thickness burns were classified using machine learning 
in a study referenced [21]. Total of 164 images acquired, and 

all were converted into L*a*b* colour space. Prior to fea-
ture extraction, relevant regions of interest were segmented, 
discrete wavelet transforms (DWT) was used to specifically 
extract texture features and principal component analysis 
(PCA) was additionally used to reduce the dimensionality 
of the features. The best classification accuracy achieved 
was via the use of simple logistic regression which recorded 
73.2%.

Discriminating burns depth using machine learning was 
also reported in a study by [22]. The aim is to provide a 
reliable diagnostic technique to deduce whether a sustained 
burn injury requires surgical intervention or not because 
early determination of right treatment choice can shorten 
the healing time. 74 RGB images were transformed into 
L*a*b* colour space and extract certain features: hue, hog, 
chroma, kurtosis and skewness. Thereafter, support vector 
machine was trained and achieved a classification accuracy 
of 82.43%, with precision, recall and F1-score of 82%, 88% 
and 85% respectively.

In another study [23] using 450 burn images, the study 
was proposed to discriminate different categories of burn 
depths. These images were transformed into YCbCr colour 
space and resized into 120 × 120 pixels. In each category of 
burn wounds (first, second and third degrees) there are 150 
images representing each category. Thereafter, the authors 
segmented regions of interest, and used deep CNN archi-
tecture to classify the images based on their specific feature 
of interest (colour and texture) with classification accuracy 
of 79.4%.

3 � Materials and Methods

In this section, data acquisition and preparation are pre-
sented. Proposed system architecture for the discrimination 
of the classes of burn injuries is quantitatively explained 
and presented.

3.1 � Data Acquisition

In this study, we gathered the datasets used for the experi-
ment from both internet search and hospital. Those obtained 
from the internet are mainly first degree (1DB) burns 
(mostly sunburn images), and these are injuries that can heal 
in less than 7 days on their own without any complicated 
assessment. While the deeper wounds which include Second 
degree burns and third-degree burns were acquired ethically 
from Bradford Teaching Hospitals United Kingdom. These 
images are from different parts of the body, some from upper 
limbs, lower limbs, back, face and neck.
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3.2 � Ground Truth Definition

In order to train a machine learning algorithm, specifi-
cally in supervised approach, there is an absolute need to 
annotate the available data effectively by specialists. This 
annotation process was facilitated using LDI device to label 
the burn depth regions effectively. LDI measures disrup-
tion of the blood flow in the blood vessels and the speed of 
the blood flow indicates how deep the burn wound is. High 
reduction of dermal blood flow is observed if the wound is 
deeper due to the damaged blood vessels [24]. LDI produces 
a colour map of the wound; red/yellow areas indicating high 
perfusion rate particularly for superficial epidermal and 
superficial dermal burns, green indicating low(moderate) 
perfusion rate for deep dermal burn, and blue colour indi-
cating very low perfusion rate for full thickness burn. The 
different burn depth were labelled by experts after patients 
were assessed using the LDI device. Thereafter, regions of 
interest were extracted out corresponding to the following 
categories: second degree burns (2DB) that heals between 
14 to 21 days and third-degree burns (3DB) that heal after 
21 days. The definition of the ground truth made the spe-
cialist is displayed in Table 1 and sample of the dataset is 
depicted in Fig. 1. Note that, 2DB and 3DB images are het-
erogeneous, which means some pixels in 2DB contain 3DB 
feature and some in 3DB contain 2DB features and its very 
fiddficult, if not impossible, to crop out each patch. Doing 
so will result to a very smaller image with poor resolution. 
In order to deal with this situation, we established a simple 
criteria. This criteria states that:

•	 a given image is 2DB if such depth constitute not less 
than 80% of the total depth area

•	 a given image is 3DB if such depth constitute not less 
than 80% of the total depth area

 3.3 � Data Augmentation

Deep CNN are data-hungry algorithms that require enor-
mous data to be trained and learn from. Most at times 
these data are not sufficiently available particularly in medi-
cal field due to either privacy concern or lack of experts 
for the data annotation. One of the available and the most 
applied method to overcome data deficiency is data augmen-
tation [25]. Data augmentation involves different processes 

of transforming original data to produce new instances of 
same nature with different spatial orientations. These pro-
cesses include rotation, random cropping, zooming, channel 
shifting, whitening and flipping. The size of the database 
was enlarged using two of such transformation processes 
(rotation and flipping). Rotation involves rotating the images 
with various degrees such as 45o,−45o and 75o . Flipping 
mirrored or flipped the given image vertically or horizon-
tally. The information of the enlaged database is presented 
in Table 2.

3.4 � Choice of a Feature Extractor

Deep CNN are fee-forward neural network containing mul-
tiple hidden layers interconnected with each other. Train-
ing deep CNN requires repetitive adjustment of parameters 
such as weights, biases and activations in order to produce 
a satisfying output.

Generally, CNN can be trained in three different ways 
[26]: training from scratch which requires a lot of hyper-
parameters tweaking. Hyperparameters tweaking includes 
adjusting the CNN topology, how the neurons in the net-
work are interconnected, number of network layers, number 
of neurons in each layer, the activation function to be used 
and a lot more. It is also important to note that, training a 
CNN from scratch requires enormous data which is often a 

Table 1   Defined ground truth datasets

Depth  < 7 days 14–20 days  > 21 days

1DB 163 0 0
2DB 0 450 0
3DB 0 0 130

Fig. 1   Showing dataset samples

Table 2   Augmented datasets

Depth  < 7 days 14–20 days  > 21 days

1DB 520 0 0
2DB 0 520 0
3DB 0 0 520
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very challenging task. The second way of deploying CNN 
is fine-tuning which involves transferring the weights of 
learned layers from an existing network to a new network. 
Thirdly, CNN can be used as off-the-shelf feature extractor 
so that strong discriminatory features can be extracted and 
subsequently used those features to train a different machine 
learning classifier. Due to simplicity, lack of enough data 
and computational resources to train CNN from scratch, we 
opted to use the latter approach for feature extraction. There 
are several pre-trained CNN models available for off-the-
shelf feature extraction such as AlexNet, GoogleNet, VGG-
Net and ResNet.

Therefore, two pre-trained ImageNet CNNs (VGG16 and 
ResNet50) are used for feature extraction in this study. The 
choice was inspired by the fact that CNN models trained 
on multiple data categories have strong generic information 
that can be used on the fly for image feature representation 
[18, 20, 27].

3.4.1 � Image Pre‑processing

Prior to feature extraction, all images must conform to stand-
ard input requirement of the feature extractor, as such we 
made sure they are resized to a standard size corresponding 
to the input specification of the feature extraction model. 
Both ResNet50 and VGG16 has same input size configura-
tion of accepting input data of size 224 × 224, and this is the 
only pre-processing performed before passing the images 
for pattern extraction.

3.4.2 � Feature Extraction Using VGG16

VGG16 was developed by Visual Geometry Group research 
teams at Oxford University and was trained on ImageNet 
database in 2014 [28, 29]. VGG16 has a total of 37 layers; 13 
of them are convolution layers as illustrated in Fig. 2, and the 
remaining layers consist of mixed of pooling, activation and 
fully connected layers. VGG used smaller filter size of 3 × 3 
throughout the network and has proved to be computation-
ally efficient compared to large filter size used in AlexNet 
and is considerably deep to learn more complex patterns. 
Since CNN layers learn different types of features as the data 
propagates down through the network; the lower layers learn 
low-level features while the deeper layers learn high-level 
or more abstract features, the first fully connected layer was 
used to collect the generic features denoted as VggFeat16..

3.4.3 � Feature Extraction Using ResNet50

ResNet50 is one of the Residual Network (ResNet) mod-
els by Microsoft Research Asia, the winner of ImageNet 
Large Scale Visual Recognition Challenge in 2015 [30]. The 
model is stacked with 50 convolution layers, including a 
fully connected layer with 1000 neurons. Though increasing 
the network depth to a certain limit leads to degradation of 
accuracy and overfitting problems, ResNet has overcome 
these problems via the use of identity mapping as illus-
trated in Fig. 3. Instead of learning direct mapping xtoy, y 
is reframed into y = �(f (x) + x) where σ is a non-linearity 
function, this enables it to grow deeper achieved outstanding 
performance [31]. This impressive breakthrough inspired the 
idea of using ResNet50 to pull out abstract image patterns 
denoted as ResFeat50 in this paper. ResFeat50 were col-
lected at the last year before the classification year.
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Fig. 2   Illustration of VGG16 model architecture
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3.5 � Feature Rescaling

Most at times data are composed of attributes with varying 
scales, when such data are rescaled, machine learning algo-
rithms benefit greatly and perform remarkably well, and it is 
also useful for optimization algorithms [32]. As such, after 
the features extraction we applied rescaling process, often 
referred as normalization and the features are rescaled into 
the range of 0 and 1.

3.6 � Choice of a Classifier (Predictor)

We used linear support vector machines (SVM), a super-
vised machine learning algorithm widely used for binary 
classification [33]. When the number of observations and 
their corresponding labels are given, SVM works by finding 
a separating boundary (optimum separating hyperplane) in 
the given feature space, so that each instance is placed in a 
different semi-space and trying to maximize the distance 
separating them thereby minimizing misclassification errors 
[34, 35].

The SVM can be represented as the linear combination 
of features designated as x, multiplied by weights � as pre-
sented in Eq. (1):

where � and x є Rd , d is the size of the space, and b is 
the noise or bias. Depending on which side the samples are 
located with respect to the hyperplane, Eq. (2) and Eq. (3) 
define the scenarios for the two classes.

(1)f (x) = �
T + b = 0

(2)𝜔
Txi + b > 0, for yi = 1, i = 1,… , n

(3)𝜔
Txi + b < 0, for yi = −1, i = 1,… , n

Interestingly, SVM can also be tweaked to solve problem 
of more than two classes. one of the methods of classify-
ing multiple classes using SVM is One-versus-One (OVO) 
[36] classification strategy which we adopted in this study. 
Using OVO, the number of classes ( Nc ) are broken down 
into multiple binary classification problem. When dealing 
with multiple classes, the number of binary classifiers pro-
duced using OVO strategy is defined by Eq. (4):

Evaluating SVM performance was carried out using one 
of the most famous evaluation techniques, a cross-validation 
(CV) [37]. This technique works by splitting the whole data-
sets into K equal folds. K-1 folds are then used to train the 
SVM and the withheld fold used for testing. The process is 
repeated until each fold out of the K-folds gets chance to be 
used as testing split. At the end of the runs, the accuracy of 
the SVM is obtained by averaging the performance meas-
ures across all folds. The most commonly used values for 
K are 3,5,7, and 10, in this study we used K = 10. One of 
the benefits of training a classifier using CV is to mitigate 
overfitting problem.

4 � Experimental Results

In this section, two experiments conducted to discriminate 
the four classes of images is presented. SVM is trained using 
the two deep image patterns (ResFeat50 and VggFeat16). 
Discriminating the different degree of burns here will ren-
der vital information to burn surgeons and other health 
practitioners whether there shall be a need for a patient to 
undergo surgical intervention or just wound dressing. Pre-
dicting burn image as 1DB indicates a burn that can heals 
in first seven days after injury and does not require surgery. 
Predicting burn as 2DB indicates an burn that may require 

(4)Number of binary problems =
Nc

(

Nc − 1
)

2

Fig. 4   Experimental set-up
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surgery and takes a bit long time to heal, normally can take 
up to 2–3 weeks, while a burn predicted to be a 3DB can 
take more than three weeks to heal and requires surgery the 
most. Note that, early assessment can help in shortening the 
healing time if the necessary intervention is provided Fig. 4 
depicts the experimental set-up.

We then used an error matrix [35], which is a multi-
dimensional table use for visualizing classifier performance. 
It shows a combination of actual values and predicted values, 
this enables to determine whether the classifier has predicted 
individual instances belonging to each class accurately or it 
has performed erroneously. Confusion matrix displayed in 
Tables 3 and 4 show the predicted outputs using ResFeat50 
and VggFeat16 respectively.

Target (actual) classes are represented as columns as 
shown in Table 3 which presents SVM’s performance using 
ResFeat50, while the rows values represent predicted classes 
by the classifer. Out of the 520 healthy skin (HS) images, 
499 were classified accurately, 6 were misclassified as 2DB, 
15 were misclassified as 3DB while none was misclassified 
as 1DB. Out of the 520 1DB images, none was misclassi-
fied as HS, 11 were misclassified as 2DB images, 6 were 
misclassified as 3DB and 503 were accurately classified as 
2DB. For the 2DB images, 5 were misclassified as HS, 27 
misclassified as 1DB, 8 misclassified as 3DB while 480 were 
accurately classified. Lastly, out of the 520 3DB images, 
503 were accurately classified, 11 misclassified as 2DB, 2 
misclassified as 1DB and 4 misclassified as HS.

Similarly, Table 4 presents the classification output of 
SVM using VggFeat16. Out of the 520 HS images, 482 were 
classified accurately, 15 were misclassified as 2DB, 5 were 
misclassified as 3DB while 18 were misclassified as 1DB. 
Out of the 520 1DB images, 15 were misclassified as HS, 

13 were misclassified as 2DB images, 29 were misclassified 
as 3DB and 468 were accurately classified. For the 2DB 
images, 11 were misclassified as HS, 32 misclassified as 
1DB, 98 were misclassified as 3DB while 379 were accu-
rately classified. Lastly, out of the 520 3DB images, 458 
were accurately classified, 46 misclassified as 2DB, 9 mis-
classified as 1DB and 7 misclassified as HS.

Comparateively, ResFeat50 contains more discriminatory 
features which led to the SVM performance more effective 
on those features. In general, 95 misclassifications by the 
classifier on ResFeat50 while on VggFeat15 there are 298 
misclassifications. About 62 out of 520 patients with 3DB 
may be subjected to unnecessary delay if VggFeat16 were 
used to assessment, and 17 out of 520 with 3DB could per-
haps be subjected to unnecessary delay if ResFeat50 was 
used for the assessment.

4.1 � Performance Evaluation Metrics

In order to evaluate the performance of the prediction, there 
is need to interpret the values obtianed in the Tables 3 and 4. 
These evaluation measuresare based on the following param-
eters: True Positives (TP), True Negatives (TN), False Posi-
tives (FP) and False Negatives (FN) [38, 39]. Accuracy is 
on of those metrices that gives the general performance of 
the classification.

4.1.1 � Accuracy

This determines the classifier’s correctness in predicting 
actual classes correctly as the Eq. 5 provided. This gives 
the accurate prediction of the whole classifier.

4.1.2 � Recall

This measure is the ability of the classifier to predict each 
individal class correctly. Recall (or sensitivity) gives the 
accurate prediction of individual class by the classifier. 
Equation (6) provdes mathematical formula for determin-
ing recall:

In this scenario, FN can include all predictions made by 
classifier to other classes belongng to a particular class in 
question and TP stands for the correct prediction of that 
class. This can also be interpreted as

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)Recall =
TP

TP + FN

Table 3   Predicted output using ResFeat50 

Target

Predicted HS 1DB 2DB 3DB

HS 499 0 6 15
1DB 0 503 11 6
2DB 5 27 480 8
3DB 4 2 11 503

Table 4   Prediction output using VggFeat16 

Target

Predicted HS 1DB 2DB 3DB

HS 482 18 15 5
1DB 15 463 13 29
2DB 11 32 379 98
3DB 7 9 46 458
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4.1.3 � Precision

this measure determines the fractions of relevant or true 
instances predicted by the classifier, and its mathematically 
expressed in Eq. (7):

So, the above equation can simply be interpreted as

4.1.4 � F1‑score

This metric combines both recall and precision and presents 
the two as a single measure. It is simply a harmonic mean of 
the two metric measures (recall and precision) as provided 
in Eq. (8).

Recall =
True positives

Total actual positives

(7)Precision =
TP

TP + FP

Precision =
True positives

Total predicted positives

Table 5 ptovides the overall accuracy of the two differ-
ent experiments, SVM predicted more accuractely using 
ResFeat50 achieving 95.43% than VggFeat16 with 85.67%. 
Tables 6 and 7 provide performance evaluation values using 
both VggFeat16 and ResFeat50 respectively. SVM per-
formed better with ResFeat50 than VggFeat16. 

The results in Tables 6 and 7 are depicted in Figs. 5 and 
6 respectively for good visualization. Both Fig. 5 and Fig. 6 
show that 2DB injuries are also difficult to assess using 
machine learning techniques, but the perormance is impree-
sive and better than experienced health specialist.

5 � Discussion of Results

Long hospitalization (LH) is an unpleasnt experience that 
subjects both patients and their families which can leads to 
further burn management complications such as increase in 

(8)F1 − score =

(

2

Recall−1 + Precision−1

)

Table 5   Classification accuracy

Features Accuracy (%) Time(sec)

VggFeat16 85.67 147.9
ResFeat50 95.43 39.1

Table 6   Performance metrics using VggFeat16

Precision Recall F1-score

HS 0.94 0.93 0.93
1DB 0.89 0.89 0.89
2DB 0.84 0.73 0.78
3DB 0.78 0.88 0.83

Table 7   Performance metrics using ResFeat50

Precision Recall F1-score

HS 0.98 0.96 0.97
1DB 0.95 0.97 0.96
2DB 0.94 0.92 0.93
3DB 0.95 0.97 0.96
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hospital cost. LH can also be attributed to treatment delay 
due to lack of adequate objective assessment techniques 
and lack of access to proximity burn centres. Our proposed 
pipeline has successfully achieved an impressive predcition 
accuracy of those burn wounds that can heal within a week 
with no medical intervention required, within two to three 
weeks and those that can heal in more than three weeks.

We obtained impressive results using VggFeat16, the 
classifier recorded recall of 93%, 89%, 73% and 88% for 
HS, burns healing with no required hospital management 
(1DB), burns healing withi two to three weeks (2DB) and 
burns taking longer time to heal (3DB) which in extreme 
cases will require skin grafting respectively. Similarly, the 
precision achieved by the classifier on HS is 94%, 89% 
for 1DB, 84% for 2DB and 78% for 3DB while f1-score 
on each of the class precited are 93% for HS, 89% for 
1DB, 78% for 2DB and 83% for 3DB. The prediction 
was succesfully carried out in approximately 148 s (less 
than 3 min) which ultimately suggests that using machine 
learning techniques as aiding tools to evaluate burn 
wounds can facilitate decision-making as early as pos-
sible thereby minimising chances of subjecting patients 
to long hospital delay.

Similarly, using ResFeat50, the classifier’s prediction 
is more precise achieving recall of 96% for HS compared 
to 93% using VggFeat16, 97% for 1DB compared to 89% 
using VggFeat16, 92% for 2DB compared to 73% using 
VggFeat16 and 97% for 3DB compared to 88% using 
VggFeat16. Similarly, precision recorded by the classi-
fier using ResFeat50 has surpassed the precision recprded 
by the classifier using VggFeat16 as presented in Table 7. 
Moreover, F1-score using ResFeat50 are 97%, 96%, 93% 
and 96% for HS, 1DB, 2DB and 3DB respectively. In 
orderf to find out the trade-off between accuracy and 
computational time, the classifier is more accurate and 
efficient using ResFeat50 with computational time of 
approximately 39 s (less than a minute).

The VggFeat16 has 4096 feature vectors while Res-
Feat50 has 2048 feature vectors which were used in train-
ing the classifier bu the robustness of the classifier is 
more efficient using ResFeat50 than VggFeat16 despite 
the later having more feature vectors. This simply indi-
cates that ResFeat50 carries strong dicriminatory features 
than VggFeat16. It is also worth noting that ResNet50 
has perhaps contains more discriminating attributes than 
VggFeat16 due to number layers for the feature extraction. 
Figure 5 provides the F1-score performance comparison 
of the two feature set predicted by the classifier.

Studies in the literature used very deficient databases, 
the authors in [21] reported 73.2% accuracy on datasets of 
164 images and all images were in L*a*b* colour space 
with the application of PCA for dimensionality reduc-
tion on texture features. Study in [22] reported overall 

accuracy of 82.43% using 74 images in L*a*b* colour 
space, another study in [23] reported a discriminatory 
accuracy of 79.4% using colour and texture features and 
DCNN as a classifier on a database of 450 images. In this 
proposed study, we used 1560 RGB burn images along 
with 520 healthy skin images thereby achieving state-
of-the-art discriminatory accuracy of 95.43%. Though 
the comparison might not be realistic since in this study, 
a completely different database was used in this study 
because access to the databases used by studies in the 
literature was unsuccessful (Fig. 7).

6 � Conclusion

This study provides an automated process for predicting 
burns healing times which by similitude refers to burn 
depths prediction using machine learning. We evaluated the 
performance of using deep off-the-shelf features via the use 
of One-versus-One SVM so solve a multi-class problem, 
specifically predicting burn depths. The useful discrimi-
natory features were extracted from the images using pre-
trained ResNet50 and VGG16 models.

Proposed approach achieved 85.67% prediction accu-
racy on VGG16 features (VggFeat16) while ResNet50 fea-
tures (ResFeat50) recorded a maximum and state-of-the-art 
prediction accuracy of 95.43%. The result indicates aiding 
burn management in hospitals using the proposed method 
has the potential of minimizing both under-estimation and 
over-estimation which is heavily associated with traditional 
approach (clinical evaluation). Our result obviously shows 
that chances of under-estimating those burn wounds that 
may require surgery or skin grafting can be minimized sig-
nificantly, while those that do not require surgery may not 
be subjected to unnecessary management thereby incurring 
additional complications and cost.
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This study has recorded some misclassifications that 
mostly ocuured between 2 and 3DB. This is attributed to 
the heterogeneity of the datasets. Most of the images con-
tain mix of superficial dermal and full-thickness wound. 
Similarly, misclassification between HS and 3DB is due to 
similarity of some instances, some 3DB images look white 
and leathery. Moreover, poor illumaination of some images 
contributed to the classification error involving 1DB.

Our result is not without limitation, it’s obvious that 
there is still room for improving the efficacy to minimise 
the classification errors further using a larger sample size 
and to specifically discriminate between the two categories 
of burns that made up of 2DB. 2DB is composed of SPT 
and DPT burns. In most cases, deep partial thickness burns 
are the actual category of dermal burn wounds that require 
surgery. Furthermore, estimating the affected body surface 
area is clinically important, such will provide a useful hint to 
determine the size of the skin needed perhaps if skin grafting 
is inevitable.
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