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Abstract 
 

Risk-based inspection (RBI) screening assessment is used to identify equipment that makes a significant contribution to the system’s total risk of 

failure (RoF), so that the RBI detailed assessment can focus on analyzing higher-risk equipment. However, due to its qualitative nature and high 

dependency on sound engineering judgment, screening assessment is vulnerable to human biases and errors, and thus subject to output variability 

and threatens the integrity of the assets. Moreover, screening assessment is deemed time-consuming and makes great demands on effort. This 

paper attempts to tackle these challenges by utilizing a machine learning approach to conduct screening assessment. A case study using a dataset 

of RBI assessment for three onshore and four offshore oil and gas production and processing units is provided, to illustrate the development of an 

intelligent system, based on a machine learning model for performing RBI screening assessment. The best performing model can achieve overall 

accuracy and precision of 92.33% and 84.58%, respectively. Additionally, a comparative analysis between the performance of the intelligent 

system and the conventional RBI screening assessment is performed to examine the benefits of applying machine learning approach in the RBI 

screening assessment. The result shows that the application of machine learning approach potentially improves the quality of the conventional 

RBI screening assessment output by reducing output variability and increasing accuracy and precision. The machine learning model should be 

complemented by human intelligence, so that it can refine the insights provided by the machine intelligence. 
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1 Introduction 
 

Equipment failure is one of the major causes of unexpected and undesirable events (e.g. hydrocarbon discharges, fire, and 

explosions) in the oil and gas industry [1]. Technical malfunction is commonly caused by inadequate assessment and control of the 

assets’ technical integrity, which leads to the inability to control degradation rate and, ultimately, the release of hazardous substances 

from the pressure-containing envelopes [2]. To prevent the occurrences of equipment breakdown and to maintain the integrity of 

the assets, inspection has been used to ensure all equipment in the production and processing facility is fit-for-service. However, it 

is not cost-effective to apply fully comprehensive inspection to all equipment, considering the complexity and the quantity of 

equipment in a production and processing facility. Risk-based inspection (RBI) is typically performed to find the optimum 

inspection plan that can improve the safety and reliability of the production and processing facility in an effective and efficient 

manner.  

RBI is an element of technical integrity management (TIM), which is associated with efforts to sustain the ability of physical 

assets to perform the required functions effectively and efficiently without harming personnel and the environment [3]. RBI uses 

equipment risk of failure (RoF) to prioritize inspection, thus allowing the organization to focus inspection resources on equipment 

with a high RoF. There are two types of assessment in the RBI methodology: screening and detailed assessment. Screening 

assessment is performed prior to detailed assessment, in order to identify equipment in the system that makes a considerable 

contribution to the system’s total RoF [4]. This allows detailed assessment efforts to focus on higher-risk items; thus, resources 

(e.g., time and labors) can be utilized in a more effective and efficient manner [5].  

Despite providing considerable benefits to the overall RBI process, screening assessment has a qualitative nature and high 

dependency on sound engineering judgment, which makes it vulnerable to human biases and errors, and thus subject to appraiser-

to-appraiser output variation [6]. The research conducted by Geary [7] shows that qualitative assessment, based on subjective 

judgment and a limited amount of data and information, causes considerable variation in the assessment outputs. This variation can 

be threatening to the integrity of the assets, causing under-inspection of higher-risk equipment and over-inspection of lower-risk 

equipment [7]. Additionally, qualitative analysis is deemed time-consuming and makes great demands on effort [8]. While 

performing a screening assessment is not mandatory in RBI methodology, omitting it may generate more expensive and laborious 

RBI detailed assessments. 

This paper attempts to address the aforementioned challenges by transferring and reusing the information and knowledge 

generated from past RBI detailed assessments as the references for conducting RBI screening assessment. RBI detailed assessment 

uses a more quantitative approach that has less dependency on subjective judgment and is less prone to human biases and appraiser-

to-appraiser output variation. The premise is that, by transferring and reusing knowledge and information from past RBI detailed 

assessments, the subjectivity inherent in RBI screening assessment can be reduced. Knowledge transfer between activities/projects 

is deemed essential because it can reduce uncertainties and eliminate past failures and errors [9]. Furthermore, knowledge transfer 

and reuse can drive a leaner overall RBI assessment process by creating an uninterrupted flow of value-added information that 

alleviates the challenges involved in eliminating knowledge regeneration (i.e., the inability to acquire and reuse knowledge from 

past endeavors that generate non-value-added activities in the form of ‘reinventing the wheel’) and thus reducing the lead time of 

the corresponding activity [10, 11].  

Hoppmann, et al. [12] suggest the utilization of explicit documentation such as a database and checklists to facilitate the transfer 

and reuse of legacy knowledge. While firms have applied the practice of recording and documenting past projects files and lessons 
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learned in repositories, knowledge assets are still disregarded and abandoned [13]. Storing data and information without 

transmission and dissemination throughout the organization will not leverage knowledge assets, as it only creates worthless islands 

of isolated knowledge [14]. Ward and Sobek II [13] argue that data, information, and knowledge of past projects/activities are 

discarded due to lack of learning culture in the organization, insufficient time to reflect on and synthesize the generated knowledge, 

and lack of understanding of how to convert data and information into actionable knowledge. Additionally, the complexities inherent 

in data and information [15] create high barriers to the entry, retrieval, updating, and reuse of the knowledge and lead to the tendency 

to neglect knowledge transfer [11]. 

In this study, machine learning is proposed as the mechanism to implement the transfer and reuse of knowledge in the RBI 

screening assessment. The study of machine learning focuses on the development of computational techniques to mechanize the 

acquisition of  knowledge from experience [16]. Langley and Simon [16] state that “Machine learning aims to provide increasing 

levels of automation in the knowledge engineering process, replacing much time-consuming human activity with automatic 

techniques that improve accuracy or efficiency by discovering and exploiting regularities in data”. Bose and Mahapatra [17] argue 

that the evolution of the machine learning approach has attempted to reduce/eliminate the costly and laborious knowledge-

engineering process involved in the development of knowledge-based systems. Accordingly, machine learning systems are capable 

of converting data and information into knowledge and enable cost-effective exploitation of knowledge resources [18]. 

Consequently, machine learning facilitates knowledge transfer and reuse by lowering the barriers to the entry, retrieval, and updating 

of legacy knowledge.  

Based on the argument above, the key objectives of this study are to demonstrate the application of machine learning approach 

for performing RBI screening assessment. A case study, using a dataset of RBI detailed assessment for three onshore and four 

offshore oil and gas production and processing units, is provided to illustrate the development of an intelligent system, based on a 

machine learning model for performing RBI screening assessment. Additionally, the benefits of applying machine learning approach 

in the RBI screening assessment compared to the conventional RBI screening assessment are examined through a comparative 

analysis.  

The remainder of the paper is structured as follows. The second section provides a brief literature review on the RBI methodology 

and the current application of machine learning in inspection and diagnostic subjects. The third section elaborates the research 

methodology. The fourth section provides the results and analysis. Finally, the fifth section concludes the paper. 

 

 

2 Related Work 
 

2.1 Risk-based inspection 
 

RBI assessment is a methodology for achieving a cost-effective inspection plan and ensuring regulatory and corporate 

compliance. RBI has profound applications in the chemical and oil and gas industries. For instance, RBI methodology has been 

applied to optimize in-service inspection of H2S-based process plants [19]. Seo, et al. [20] and Kamsu-Foguem [21] utilize RBI 

assessment to determine the current RoF of subsea pipelines and to estimate the remaining life of the pipelines. The RBI 

methodology has also been used to develop an optimal inspection and repair strategy for structural systems [22].  

The notion of using RoF as a measure to optimize inspection resources was proposed in the late 1980s [19]. In fact, the RBI 

methodology emerged from the Risk-Informed In-Service Inspection (RI-ISI) methodology [23], which has been prominent in the 

nuclear industries and in power plants [24, 25]. Generally, the objective of RI-ISI methodology is analogous with that of the RBI 

methodology: to prevent unnecessary inspections by prioritizing the inspection activities based on RoF [26]. In RI-ISI methodology, 

the degradation potential and the consequence of failure for each component in the system are assessed [27]. Subsequently, the 

components are ranked, based on the evaluated RoF, to determine which components the inspection resources should be 

concentrated on [26].  

Despite its various applications, the main purpose of the RBI methodology is the same across industries and types of equipment: 

to focus the available inspection resources on the higher-risk components, such that the optimum inspection plan can be achieved 

(i.e., preventing under-inspection of higher-risk components and over-inspection of lower-risk components). A generic RBI 

methodology is shown in Figure 1. RBI starts with the identification of data requirements. The typical data needs may include, but 

are not limited to: design, fabrication, and construction documents; process and operating condition records; historical inspection 

and maintenance records; hazard analysis, material selection, and corrosion engineering records; cost and project engineering 

documents [5]. 

      

 
Figure 1 Generic RBI methodology [5] 

 



The risk assessment process aims to prioritize equipment based on equipment RoF, thus allowing an organization to focus its 

inspection efforts on high-risk equipment and preventing over-inspection of low-risk equipment [28]. RoF in RBI is defined as the 

product of probability of failure (PoF) and consequence of failure (CoF). PoF is evaluated based on the variables that influence the 

failure rate of the equipment, such as type of degradation mechanism, degradation rate, operational conditions, equipment design, 

previous inspection effectiveness and results, and equipment age. In general, degradation mechanisms in RBI assessment include 

general/localized thinning, stress corrosion cracking, corrosion under insulation, brittle fracture, embrittlement, and fatigue [8]. CoF 

is assessed based on the factors that impact the magnitude of hazards in the event of hydrocarbon release, such as type of substance 

contained in the equipment and process conditions. RBI considers four categories of consequence effect: personnel safety and health 

impact, environmental impact, production losses, and facility repair costs [9].  

The results of PoF and CoF assessment are then combined and represented in a risk matrix to communicate the risk assessment 

outputs. Higher-risk equipment shall be given higher inspection priority than lower-risk equipment; i.e., higher-risk equipment 

needs more frequent inspection and/or more rigorous inspection techniques, to reduce the RoF [29]. The risk acceptance level is 

normally used to determine whether the inspection planning can reduce the equipment RoF to an acceptable level [5]. Inspection 

does not reduce RoF by mitigating the degradation mechanisms but by reducing the uncertainties regarding equipment condition, 

under the assumption that the organization will act properly based on the inspection results [5]. Risk mitigation activities are required 

if inspection activities do not effectively reduce the equipment RoF. This is normally the case where the equipment has low PoF 

and high CoF. As inspection can only diminish PoF level, mitigation (e.g., implementing integrity operating window, upgrading 

hazard detection system, etc.) is required to reduce the RoF.   

In most processing systems, a significant portion of the system’s total risk is accumulated in a relatively small percentage of the 

total equipment [5]. Therefore, screening assessment is conducted prior to detailed assessment, to identify equipment that makes a 

considerable contribution to the system’s total RoF [4], such that the detailed assessment focuses only on higher-risk items [5]. This 

allows engineering resources (e.g., time and labor) to be utilized in a more effective and efficient manner [5]. A simplified qualitative 

analysis is typically performed for the screening assessment. Qualitative analysis relies more on a higher level of engineering 

judgment and requires less data than a more quantitative approach. It provides a simplistic approach that can generate quick, but 

less detailed, results. However, it is more dependent on skilled personnel with a high level of knowledge of the facility being 

analyzed.  

Based on the knowledge of installation history and degradation mechanisms, along with sound engineering judgment, the 

significance of PoF and consequence CoF are determined, typically by using the risk matrix shown in Figure 2a. Generally, low-

risk equipment (i.e., equipment with negligible PoF and insignificant CoF) do not to undergo a detailed assessment, as minimum 

surveillance and corrective maintenance are deemed sufficient to sustain the operations [4]. Meanwhile, medium-risk and high-risk 

equipment shall be assessed further by the detailed assessment method. Detailed assessment has a more quantitative approach that 

utilizes a more rigorous and systematic risk calculation model and requires more detailed data input. Furthermore, quantitative 

analysis typically utilizes sophisticated software that generates quantitative insights regarding the equipment RoF, which are less 

subjective, as they depend less on engineering judgment and intuition. 

 

 
Figure 2 (a) Risk matrix for RBI screening assessment and (b) an overview of inspection planning process in RBI [4] 

 

2.2 Application of machine learning in inspection and diagnostic 
 



Numerous researches have been carried out to examine the application of machine learning techniques in the area of inspection 

and diagnostic in the oil and gas industry. El-Abbasy, et al. [30] developed models based on regression analysis to help oil and gas 

pipeline operators in evaluating the condition of the pipelines and planning the inspection, maintenance, and refurbishment of the 

pipelines, based on regression analysis. Several general and operational features of the pipelines, such as pipeline age, diameter, 

coating condition, metal loss, crossings, free spans, operating pressure, and cathodic protection, are included. The output of the 

model is the overall pipeline condition, scaled from 0 to 10, with 0 being the worst and critical condition and 10 the perfect and 

excellent condition. The models achieved an average validity score above 96%. El-Abbasy, et al. [31] built the improvement of the 

models developed in [30] by using neural network (NN), instead of regression analysis, as the learning algorithm. The average 

validity score of the models was improved to 97.40%. Similar models were constructed by El-Abbasy, et al. [32], based on regression 

analysis, NN, and decision tree methods to assess the condition of unpiggable oil and gas pipelines. The unpiggable pipeline models 

have a slightly lower performance than the piggable pipeline models, with an average validity score of between 87% and 96%.   

Layouni, et al. [33] used the combination of pattern-adapted wavelets and NN to detect, locate, and estimate the size of metal 

loss in oil and gas pipelines, based on the magnetic flux leakage (MFL) technique. This approach achieves a depth-prediction 

accuracy of 80%, with certainty of less than ±1% for noiseless signals and ±10% to ±13% for noisy signals [33]. A similar system 

was developed by Mohamed, et al. [34], who applied wavelet transform technique and Adaptive Neuro-Fuzzy Inference Systems 

(ANFIS) to identify and estimate metal loss in oil and gas pipelines, based on the MFL signals. At the error tolerance of ±1%, ±5%, 

and ±10%, the ANFIS model achieved 11%, 48%, and 71% defect-depth prediction accuracy [34]. Carvalho, et al. [35] utilized NN 

to classify pipeline weld defects, based on the MFL signals, with the classification accuracy of the proposed model reaching 71.70%. 

Abdulla and Herzallah [36] used multiple model NN to determine the occurrence of leakage in oil and gas pipelines, based on inputs 

of inlet pressure, outlet pressure, and outlet flow signals. The multiple model NN has better performance than the single model NN, 

shown by the reduction in the validation error from 6.06% to 0% and the reduction in testing error from 3.5% to 1.1%[36]. 

Zadkarami, et al. [37] utilized NN to detect, locate, and evaluate the severity of leakage occurrence in oil and gas pipelines, based 

on the negative pressure wave (NPW) signals. The proposed model was able to attain 91.89% of the correct classification rate [37].  

Wenhui, et al. [38] developed a deep neural network (DNN) model to automatically detect the existence of defects in the weld 

region from x-ray images. A maximum classification accuracy of 91.84% was obtained from the proposed model [38]. Vilar, et al. 

[39] constructed an automatic detection system to detect and discern five types of defects in the weld region (i.e., no defect, slag 

inclusion, porosity, longitudinal crack, and transversal crack) from radiographic images of welded joints. The system uses image 

processing techniques (i.e., noise reduction, contrast enhancement, thresholding, and labelling), before applying feature extraction 

and ANN for weld classification [39]. A similar system was developed by Kumar, et al. [40], who also used image processing 

techniques (i.e., RGB to grey conversion, region of interest (ROI) selection, noise reduction, and contrast enhancement), feature 

extraction (i.e., grey level co-occurrence matrix) and ANN, to classify nine type of weld flaws (i.e., gas cavity, lack of penetration, 

porosity, slag inclusion, crack, lack of fusion, worm hole, undercut, and non-defect) from digitized radiographic images. The system 

achieved classification accuracy of 86.10% [40]. Meanwhile, Mirapeix, et al. [41] built an arc-welding defect detection and 

classification system, based on principal component analysis (PCA) and ANN, using the plasma spectra captured from the welding 

process as the input.  

Besides the oil and gas sector, the healthcare sector has significantly used machine learning to help in diagnosing various 

diseases. Chen, et al. [42] developed convolutional neural network (CNN) models for risk prediction of cerebral infarction disease, 

with the prediction accuracy of the proposed models reaching 94.8%. Onan [43] utilized the fuzzy-rough nearest neighbor algorithm, 

consistency-based feature selection, and fuzzy-rough instance selection for medical diagnosis of breast cancer. The proposed models 

attained a promising classification accuracy of 99.71% [43]. Similar models were developed by Asri, et al. [44], who used support 

vector machine (SVM), decision tree, Naïve Bayes (NB), and k-nearest neighbors (k-NN) to predict and diagnose breast cancer risk. 

Their models obtained prediction accuracy of 97.13% [44]. Polat and Güneş [45] developed a system that combines PCA and ANFIS 

to diagnose diabetes disease, with the classification accuracy of the developed system achieving 89.47%. Das, et al. [46] proposed 

a neural network ensemble method for diagnosing heart disease, which achieves 89.01% prediction accuracy.  

Despite significant efforts to apply machine learning techniques in the area of inspection and diagnostic, there is no existing 

study that discusses the application of machine learning techniques in the subject of RBI assessment. Hence, this paper tries to cover 

that gap by presenting the utilization of the machine learning approach for classifying equipment RoF in RBI screening assessment. 

The aforementioned research show that the developed machine learning models can yield satisfactory predictive performance for 

inspection- and diagnostic-related tasks, and RBI assessment is not an exception.  

 

 

3 Research Methodology 
 

As mentioned in Section 1, one of the main objectives of this study is to develop an intelligent system for performing RBI 

screening assessment based on a machine learning approach, to facilitate knowledge transfer and the reuse of past RBI detailed 

assessments. The intelligent system task is to determine whether the equipment has low or high/medium RoF (as described in 

Section 2.1), based on several features related to design and operational conditions, in order to justify whether the equipment is 

required to undergo detailed assessment. In a machine learning domain, this type of task is called a supervised classification problem. 

Given a set of observations with a set of independent variables (i.e., input features) and a dependent variable (i.e., output feature), 

supervised learning aims to create a set of rules that can be used to assign and predict the dependent variable of new observations 

[47]. The steps required to develop the intelligent system are shown in Figure 3. Each step is discussed individually in the following 

subsections.  

Moreover, to examine the benefits of applying machine learning approach in the RBI screening assessment compared to the 

conventional RBI screening assessment, a comparative analysis between the performance of the developed machine learning 

classifier with human appraisers is performed. 



 
Figure 3 The steps for developing the intelligent system 

 

In this study, standard MacBook Pro (8GB 1867 MHz LPDDR3 memory, 2 GHz Intel Core i5 processor, 250 GB of flash 

storage, and Mac OS X as operating system) with Python 3.6 (with the necessary packages such as NumPy, Pandas, and Scikit-

learn) and Jupyter Notebook are used.  

 

3.1 Dataset descriptions 
 

The dataset was acquired from an RBI detailed assessment project conducted for three onshore and four offshore oil and gas 

production and processing units, comprising over 200 pressure vessels and 3000 piping lines. A total of 1581 instances are contained 

in the dataset. The number of instances in the dataset is fewer than the original number of pressure vessels and piping tags because 

each instance represents a group of piping and pressure vessels with similar characteristics (e.g., similar operating 

pressure/temperature, fluid containment, dimensions, etc.). Henceforward, the term ‘instance’ is also used to refer to the piping and 

pressure vessels assessed in the dataset.  

The anatomy of the dataset is shown in Table 1. The listed features in the dataset can be divided into two groups: input and 

output/target features. Input features are variables that are entered by users and are sourced from the basic data of equipment as well 

as operational history and characteristics. Output features are variables that are influenced by the input features and generated as 

the results of risk assessment steps. The output features in this dataset were computed by RBI assessment software, based on API 

581 RBI detailed assessment methodology [48].  

 
Table 1 Some features contained in the dataset 

 

Type Feature examples 

In
p
u

t 
fe

at
u

re
s 

Design characteristics 

Component type, equipment diameter, material of 

construction, furnished thickness, design code, corrosion 

allowance, commissioning date, post-weld heat treatment, 

weld joint efficiency, insulation type, etc. 

Operational characteristics 

Operating pressure, operating temperature, dead leg, 

fluid containment, steam out, fluid phase, type of external 

environment, heat tracing, etc. 

Damage mechanism 

characteristics 

Damage type, damage susceptibility, external damage 

type, thinning type, corrosion rate, etc.  

Inspection characteristics 

Inspection date, type of inspection, external damage 

inspection effectiveness, internal damage inspection 

effectiveness, etc. 

O
u

tp
u
t 

fe
at

u
re

s PoF assessment results  Damage factors, PoF value, PoF category, etc. 

CoF assessment results CoF value, CoF category, etc. 

RoF results Risk category, financial risk, etc. 

 

3.2 Feature selection 
 

Feature selection involves the process of choosing a subset of pertinent features, required for use in the model construction [49]. 

Feature selection aims to eliminate irrelevant and redundant features that degrade the speed and accuracy of the predictive model 

and to gain an understanding regarding how the data are generated [50].  

There are three categories of methodologies that are commonly utilized in the feature selection process: filters, wrappers, and 

embedded solutions [51]. Filter methods are performed based on a proxy (e.g., Pearson correlation, significance test, etc.) rather 

than a machine learning algorithm to evaluate a set of features [51]. Due to their effectiveness in computation time, filter methods 

are suitable for use when the dimensionality of the data is high [52]. Wrapper methods use a machine learning algorithm to select 

the best subset of features [53]. Each subset in the space of all possible subsets of features is used to train the model under 

consideration, which is then tested on a validation dataset [53]. The subset that yields the best predictive power is selected [54]. 

Wrapper methods typically generate better predictive models than filter methods, but they can be computationally expensive, 

especially when the data dimensionality is high [52]. Embedded methods integrate a feature selection step as a part of the training 

process. Embedded methods generally have a more efficient process than wrapper methods because they eliminate the need to 

retrain every single subset of features being examined [54].   

The three types of feature selection mentioned above are data-driven approaches and implemented when the domain knowledge 

is insufficient or unavailable to select the appropriate features [51, 54]. When the nature of a problem is well-understood, domain 

knowledge can be used as a feature selection method to describe the relationship among features and to avoid data overfitting [55-



57].  Guyon and Elisseeff [54] suggest constructing a set of features in an ad hoc manner if sufficient domain knowledge is available. 

As the nature of problems in RBI assessment is well established, domain knowledge can be used. Expert knowledge and engineering 

standards and codes related to RBI assessment (e.g., API 580 [5], API 581 [48], and DNV-RP-G101[4]) can be utilized as the 

guidance for selecting the features. 
In this study, a systematic feature selection is performed by the combination of domain knowledge and data-driven approach. Filter method is 

selected as the data-driven approach because it is independent of the learning algorithm [58]. The complete feature selection process used in 

this study is shown in  

Figure 4. 

 

 

 
 

Figure 4 Feature selection process used in the study 

 

The preliminary selection attempts to remove duplicate features and features with missing values. A feature is considered a 

duplicate if it contains the same information as another feature. Missing values can occur for a number of reasons (e.g., unrecorded 

data, data corruption, etc.). In this study, features that contain missing values are excluded, to prevent errors in the learning 

algorithms.  

Subsequently, knowledge-based feature selection is performed. Features that cause information leakage and require intensive 

data gathering and assessment are removed. Information leakage happens when the training dataset contains features that the model 

is trying to predict. To prevent information leakage, features that are generated as part of the RBI assessment outputs (i.e., output 

features) are not selected as the input features. Considering the simplistic nature of RBI screening assessment, features that require 

intensive data gathering and assessment are removed. For instance, some features contained in the dataset (i.e., damage mechanism- 

and inspection-related features) are generated as the results of RBI detailed assessment, making them unsuitable as input features, 

due to heavy pre-assessment and pre-computation.  

Then, filter methods are used for removing zero-variance/near-zero-variance features and multicollinear features. Zero-

variance/near-zero-variance features are variables that are nearly identical and constant among instances in the dataset, making them 

uninformative, with little effect on the computations [59]. In this study, a zero-variance/near-zero-variance feature is defined as a 

feature with a frequency ratio (i.e., the frequency of the most prevalent value to the frequency of the second most prevalent value 

[59]) greater than 10. Additionally, multicollinearity among features is eliminated, due to its detrimental effect on the model 

generalizability [60]. To identify multicollinearity, a correlation matrix is constructed to compute the Pearson correlation coefficient 

between two features. Pairwise features that have a correlation coefficient larger than 0.5 are identified. Then, the feature within the 

pair that has a higher average correlation coefficient with the other features is removed [59].  

For output feature, risk category is selected, based on the aim of RBI screening assessment: to determine whether particular 

equipment has a low or high/medium RoF. Risk category contains information regarding the qualitative risk level of the equipment 

(i.e., low, medium, medium-high, or high), which is adequate to represent the system’s objective. Table 2 shows the complete list 

of input and output features to be included. 

 
Table 2 Input and output features used in the intelligent system 

 
Input features Output feature 

• Material of construction • Insulation type 

Risk category 

• Component type • Operating pressure 

• Equipment diameter • Operation temperature 

• Commissioning date • Fluid containment 

• Post-weld heat treatment • Corrosion allowance 

 

3.3 Data pre-processing 
 

Data pre-processing is performed to extract and integrate data from different sources, to transform raw data into a readable and 

understandable format, and to cleanse cluttered and noisy data [61]. Raw data are generally incomplete, inconsistent, and contain 

many errors; data pre-processing ensures that the data are prepared for further processing. Typical data pre-processing procedures 

are [62]: 

• data cleaning: includes filling in empty values, correcting data format, removing unnecessary features, resolving inconsistencies, 

and identifying and removing outliers; 

• data integration: merging data from multiple databases; 

• data reduction: reduces the volume of data without sacrificing the quality of the analytical results; 

• data transformation: includes smoothing, aggregation, generalization, normalization, and attribute construction. 

In general, minimum data cleaning is required for the given dataset. Minor data format correction is performed to transform 

numerical features’ values (e.g., operating pressure and operating temperature) from string-type to float-type, to enable the 

manipulation of numerical data. Data integration is needed, as the original dataset is separated into seven workbooks. Feature 



selection (Section 3.2) is a part of data reduction, which shrinks the dimensionality of the dataset, while attempting to minimize the 

loss of information [52].  

A data transformation process that is performed on the dataset is generalization, which reduces the number of distinct values in 

a certain feature by replacing low-level feature values with higher-level values [63]. Generalization is performed to avoid 

undergeneralization, which causes a certain feature to be uninformative and unhelpful in refining the predictive power of the model 

[62]. The decision regarding how high a feature should be generalized is a subjective matter [62]. Attribute generalization threshold 

control, which limits the number of distinct values in a feature, is commonly applied to prevent undergeneralization [62, 64]. The 

threshold for the number of distinct values in a feature normally ranges from 2 to 8, and the determination of the threshold value 

should be based on expert judgment [62]. In this study, the threshold value, which is set to 7, is applied to categorical features.  

Four features are generalized: fluid containment, material of construction, insulation type, and risk category. The fluid 

containment feature is generalized and transformed into three values (i.e., non-hydrocarbon, light hydrocarbon, and heavy 

hydrocarbon) that represent three types of fluid that give different magnitudes of CoF and RoF. The material of construction feature 

is generalized and transformed into four distinct values (i.e., carbon steel, SS316L, 22Cr, and aluminum) that represent higher level 

of abstraction in material type concept hierarchy. These four values represent material types that have different levels of resistance 

to various degradation mechanisms and, thus, have a distinctive impact on the PoF and RoF levels. The insulation type feature is 

generalized into none and insulated, which indicates whether equipment is insulated or not. The presence of insulation influences 

the type of damage mechanism that occurs on the equipment and thus impacts the PoF and RoF levels.   

For the risk category feature, generalization is conducted in accordance with the objective of RBI screening assessment. The 

risk category from the original dataset contains the PoF and CoF classification of each item of equipment (see Figure 2a). As 

mentioned in Section 3, the goal of the model is to classify whether particular equipment is in the 1A risk category (i.e., low risk) 

or not (i.e., medium/high risk). Thus, the risk category feature value is transformed to low class (i.e., 1A risk level) or medium/high 

class (i.e., higher than 1A risk level). In other words, the RBI screening assessment is essentially a binary classification task. From 

the dataset, 375 of the instances (23% of the total instances) are in the low-risk category, while the remaining 1206 instances (77% 

of the total instances) are in the medium/high class. The complete list and details of feature generalization are shown in Table 3. 

 
Table 3 Generalization of features 

 

Features 
Number of 

distinct values 
Original values Transformed values 

Fluid 

containment 
160 

Water; heating medium; closed 

drain liquid; fuel gas; diesel; 

re-compressor gas; cold 

separator liquid; etc.  

Non-hydrocarbon; light 

hydrocarbon; heavy 

hydrocarbon 

Material of 

construction 
42 

SA106; SA516; SA333; 

SS316L; API5L; SA179; 

SA283; SA36; A790;  

SA789; SA182; SB209; etc. 

Carbon steel; SS316L; 

22Cr; aluminum 

Insulation 

type 
8 

None; calcium silicate; mineral 

wool; asbestos; fiberglass; 

foam glass 

None; insulated 

Risk 

category 
25 

1A; 2A; 3B; 4C; 5D; 2C; 5E; 

5B; 3C; etc.  
Low; medium/high 

 

The other data transformation that is performed on the dataset is attribute construction, which is the addition of new features, 

constructed using the dataset original set of features. In this study, the equipment age feature is added and computed by subtracting 

the RBI assessment date with the commissioning date feature. The commissioning date feature itself is not included as one of the 

model input features, replaced by the equipment age feature.  

All non-ordinal categorical features (i.e., material of construction, equipment type, post-weld heat treatment, insulation type, 

and fluid containment) with 𝑁 values are converted into 𝑁 − 1 dummy variables, in order to enable machine learning algorithms to 

process these features [65]. Moreover, the values of all input features are standardized such that they will have the properties of 

standard normal distribution [66]. Standardization is essential, as the input features have values with different ranges and units [67]. 

Standardization makes all input features contribute proportionally to the final outputs and causes the optimization algorithm to 

converge faster than without standardization [65].    

 

3.4 Algorithm selection 
 

As mentioned in Section 3.3, RBI screening assessment is essentially a supervised classification problem with binary output 

feature values (i.e., low risk and high/medium risk). There is a wide range of machine learning techniques that can solve binary 

classification problems. A set of binary classification techniques is selected and each of them is compared to determine the algorithm 

that yields the best results. Six established classifiers are selected: logistic regression (LR), support vector machines (SVM), k-

nearest neighbors (k-NN), gradient boosting decision trees (GBDT), AdaBoost (AB), and random forests (RF). LR, SVM, and k-

NN are single classifiers, while GBDT, AB, and RF are ensemble classifiers. A brief explanation of each classifier is presented in 

the following subsections.   

 



3.4.1 Logistic regression 

 

LR uses the logistic regression function, which measures the relationship between input and output features, in order to estimate 

the probability of instances belonging to certain classes [68]. In the case of RBI screening assessment, let us assume that 𝑦 = 1 if 

the instance has low risk and 𝑦 = 0 if the instance has high/medium risk. If 𝑝 = Probability(𝑦 = 1|𝐱) and 𝐱 is a column matrix of 

n input features, then the logistic regression function can be defined as follows: 

 

logit(𝑝) = log (
𝑝

1 − 𝑝
) = 𝛼 + 𝛽𝑇𝐱     (1) 

 

where 𝛼 is the intercept from the linear regression function and 𝛽𝑇 is a vector of regression coefficients [69]. A complete description 

regarding the LR algorithm can be seen in [70].  

 

3.4.2 SVM 

 

In a two-class classification problem, the basic principle of SVM is to separate a given set of binary labeled instances, which are 

represented as points in a feature space, with an optimal hyperplane (i.e., a subspace that gives the greatest margin of separation 

between the two classes) [71]. SVM can perform non-linear classification by applying the kernel technique, which implicitly 

transforms the input into a higher-dimensional feature space in order to find a non-linear decision boundary in the original feature 

space [71]. Consider a set of training instances 𝐱𝑖 (𝑖 = 1, 2, … , 𝑁) that are vectors in a space 𝐱𝑖 ∈ 𝑅𝑛 and belong to two separate 

classes 𝑦𝑖 ∈ {0, 1}; the hyperplane that separates these two classes is: 

 
𝑓(𝐱) = 𝑤𝑇 ⋅ Φ(𝐱) + 𝑏 = 0    (2) 

 

where  𝑤𝑇  is a vector normal to the hyperplane, 𝑏 is the bias, and  Φ: 𝑅𝑛 → 𝑅𝑚 is the feature map that transforms the input feature 

space into a higher-dimensional space, such that the instances can be linearly separable [72]. The values of 𝑤 and 𝑏 are optimized 

such that classification error is minimized. A comprehensive explanation about SVM is provided in [73]. 

 

3.4.3 k-NN 

 

k-NN performs classification by measuring the similarity of two or more instances [74]. The decision rule of k-NN is quite 

simple: the membership of an unclassified sample point is the same as the membership of a set of k nearest classified points. 

Euclidean distance is the most common metric for measuring the similarity between two instances and is used in this study. The 

Euclidean distance between points 𝐱𝑖 and 𝐱𝑗 is defined as follows [69]: 

 

𝑑(𝐱𝑖 , 𝐱𝑗) =  ‖𝐱𝑖 − 𝐱𝑗‖ = √(𝐱𝑖 − 𝐱𝑗)
𝑇

⋅ (𝐱𝑖 − 𝐱𝑗)     (3) 

 

k-NN is also called a ‘lazy learner’ because the training data are simply stored to be compared with unclassified data points, 

instead of being used to construct a generic function for classification [75]. Cover and Hart [76] provide a comprehensive description 

of k-NN. 

 

3.4.4 Gradient boosting decision trees 

 

GBDT creates an ensemble of “weak” decision trees (i.e., learning algorithms that have better accuracy than a simple guess), by 

sequentially constructing a decision tree based on the residuals of the entire ensemble generated so far [77]. GBDT improves the 

predictive power of the ensemble through incremental minimization of errors in each iteration of new decision tree construction 

[69]. GBDT model has the following generic form [78]: 

 

𝐹(𝐱) =  ∑ 𝛽𝑗

𝑀

𝑗=1

ℎ𝑗(𝐱)     (4) 

 

where ℎ𝑗(𝐱) is the individual decision tree generated in each sequence and 𝛽𝑗 is the coefficient calculated by the gradient boosting 

algorithm. A complete description of GBDT is given by [77] and [78].  

 

3.4.5 AdaBoost 

 

The AB approach starts with finding a weak classifier and fitting it to a subset of training data in order to generate a new classifier 

[77]. These steps are performed iteratively with an emphasis on the subsets of training data that are not well modeled (i.e., 

misclassified) by the previously generated classifiers [79]. This ensemble of classifiers is then combined into a model that generally 

has better accuracy than a single classifier. Let 𝐱 be a column matrix of n input features and {ℎ𝑡(𝐱)|𝑡 = 1, 2, … , 𝑇} be a set of weak 

classifiers that are generated in 𝑇 rounds; the combined classifier is [77]: 

 



𝐻(𝐱) = sign (∑ 𝛼𝑡ℎ𝑡(𝐱)

𝑇

𝑡=1

)     (5) 

 

where 𝛼𝑡 is the importance measure of weak classifier ℎ𝑡(𝐱). 𝛼𝑡 is calculated by the following function: 

 

𝛼𝑡 =  
1

2
ln (

1 − 𝑟𝑡

𝑟𝑡
)     (6) 

 

where 𝑟𝑡 is the error of weak classifier ℎ𝑡(𝐱). As the error becomes smaller, the importance of a weak classifier becomes greater. A 

comprehensive description regarding AB can be seen in [80].  

 

3.4.6 Random forests 

 

RF is a type of ensemble learning that works, based on the premise that a multitude of classifiers performs better than a single 

classifier [81]. RF comprises a collection of decision trees that are constructed using a random subset taken independently and with 

replacement from the original dataset [82]. Classification is made by casting a vote from each tree and aggregating these votes to 

determine each instance’s class through majority voting. The utilization of an ensemble of decision trees reduces the risk of 

overfitting to the training dataset [68]. A comprehensive explanation of RF is provided in [83].  

 

3.5 Nested cross-validation 
 

Stratified nested cross-validation (CV) is a technique used for model selection and evaluation. Model selection is fundamentally 

a means to optimize the classifier by tuning its corresponding hyperparameters. Meanwhile, model evaluation is comprised of a 

procedure to approximate the performance of the classifier, based on the selected hyperparameters. Varma and Simon [84] report 

that nested CV is able to produce an unbiased estimate of the classifier’s error.  

 

 
 

Figure 5 Model selection and evaluation using nested CV (adapted from [85]) 

 

The workflow of nested CV is given in Figure 5. Nested CV starts by randomly splitting the dataset into training and test folds. 

In this paper, 4-fold outer CV is used for model evaluation purposes. A training set from each outer CV fold is split again into 

training and test folds to conduct inner CV for model selection purpose. In other words, a training set from each outer CV fold has 

its own inner CV. The inner CV is essentially a grid search, which is a method of hyperparameter optimization through exhaustive 

searching of a manually specified subset of hyperparameter values. Four-fold inner CV is utilized to assess the performance of the 

classifier for all possible combinations of hyperparameter values. The combination of hyperparameters that gives the best precision 

is retained. The logic for selecting precision as the metric for choosing the best combination of hyperparameter values is given in 

Section 3.6.  

A limited number of values for each hyperparameter is selected, as it is unfeasible to try the entire range of possible values. The 

hyperparameter value range for each classifier is discussed as follows: 

• For LR, default hyperparameters are used. 

• SVM – Three hyperparameters are considered for optimization: (1) kernel type, (2) C, which controls the trade-off between 

simplicity of the decision boundary and correct classification of training instances, and (3) gamma, which defines how far the 

influence of a single training instance reaches [68]. Four kernel types are tested: linear, sigmoid, polynomial, and RBF (Radial 

Basis Function). Value range with exponentially growing sequence of [10-5, 10-3, 10-1, 10, 100] and [10-7, 10-5, …, 104] are 

assessed for C and gamma, respectively [86].  

• k-NN – The number of neighbors is the hyperparameter to be tuned in k-NN [68]. The value range of [1, 10], with a spacing 

between values, is assessed for the number of neighbors.  

• GBDT – There are two key hyperparameters that should be tuned in GBDT: (1) learning rate, which decreases the correction 

contribution of each tree, and (2) maximum depth of the individual regression estimators, which limits the number of nodes in 



the tree [68]. A value range of [0.1, 1], with 0.1 as the distance between two adjacent values, is assessed for learning rate. For 

maximum depth, a range of [1, 5] with a spacing between values is examined.   

• AB – Two hyperparameters are required to be tuned in AB: (1) learning rate, which shrinks the correction contribution of each 

classifier, and (2) the number of classifiers, which limits the construction of classifiers during boosting. For learning rate, the 

value range of [0.1, 1], with 0.1 as the distance between two adjacent values, is examined. The value range of [10, 50, 100, 250, 

500, 1000] is evaluated for the number of estimators.  

• RF – Two hyperparameters need to be examined: (1) the number of trees in the forest and (2) the number of features used to 

grow each tree [69]. For the number of trees, the value range of [10, 50, 100, 250, 500, 1000] is evaluated, while the range of 

[2, 32], with 2 as the spacing between values, is examined for the number of features.  

After optimal hyperparameters are found, the classifier is trained by using the training set of the outer CV folds. In machine 

learning, training can be understood as the process of finding and extracting patterns in the data to generate rules for generalizing 

the data [16]. It can also be defined as the process of learning the relationship between input features and output features to make a 

predictive model, based on the inferred relationship [74]. Thus, it is necessary for the training set for having known output and input 

features to be fed to the learning algorithm. Then, the test set of the outer CV folds is used to evaluate the generalizability of the 

trained model to unseen data. The evaluation is performed based on certain metrics, which are discussed in Section 3.6. The nested 

CV is repeated 10 times, to obtain a more reliable performance estimation and comparison [87]. The data is reshuffled in each 

iteration; thus, the model is trained and tested on different splits of the dataset.  

Because each classifier will undergo 4-fold nested CV with 10 iterations, there will be 40 values of evaluation metric per 

classifier. To summarize the performance of the classifier for each evaluation metric, the following equation is defined:  

 

𝐸𝑀̅̅̅̅̅ =  
1

10
∑ (

1

4
∑ 𝐸𝑀𝑗

(𝑖)

4

𝑖=1

)     (7)

10

𝑗=1

 

 

where 𝐸𝑀𝑗
(𝑖)

 is the evaluation metric value of the 𝑖-th fold and the 𝑗-th iteration for a classifier,  𝐸𝑀̅̅̅̅̅ is the average of classifier 

evaluation metric values across all folds and iterations (i.e., the average value of an evaluation metric).  

Besides assessing the average value of evaluation metrics, it is important to observe the stability of classifier performance on 

different cuts of the dataset. A box-and-whisker plot is used to examine the statistical dispersion of evaluation metrics’ value for all 

classifiers on all folds and iterations.  

 

3.6 Evaluation metrics 
 

It should be noted that different evaluation metrics emphasize different aspects of a classifier’s performance. Therefore, the 

objectives of the evaluation should be clearly defined to enable appropriate selection of metrics that correctly represent the aspects 

to be examined.  

Before discussing evaluation metrics, it is necessary to clarify that, in a binary classification problem, the output of the model is 

either positive or negative. In this study, a low-risk class is defined as positive, while a medium/high-risk class is defined as negative. 

A confusion matrix can be used as the representation of the decision made in a binary classification problem (see Figure 6a). A 

confusion matrix has four elements: True positives (TP) are instances that are correctly classified as positive; false negatives (FN) 

are positive instances that are wrongly classified as negative; false positives (FP) are negative instances that are incorrectly labeled 

as positive; and true negatives (TN) are instances correctly labeled as negative [88]. From these elements, commonly used evaluation 

metrics for binary classification models can be defined, as shown in Figure 6b.  

 

 
Figure 6 (a) Confusion matrix and (b) its corresponding evaluation metrics 

 

Accuracy is selected, as it can provide insight regarding the overall performance of the classifier in predicting unseen instances. 

However, the dataset used in this paper consists of instances with unbalanced class distribution (see Section 3.3). In addition, the 

cost of misclassifying medium/high-risk items as low risk (i.e., false positive) is higher than incorrectly classifying low-risk items 

as medium/high risk (i.e., false negative). Misclassification of medium/high-risk items into a low-risk class may cause under-

inspection (i.e., the allocation of inspection below the minimum requirement), which can be hazardous to the overall system 

integrity. Incorrectly classifying low-risk items into a medium/high-risk class will not do any harm with regard to the technical 

integrity of the system, except that the cost of inspection may rise. While an accuracy score is appropriate for observing the general 

performance of the classifier, it has severe limitations with respect to skewed class distribution [89] and different misclassification 

cost [90].  

Precision and recall can be used to tackle the inherent limitations of accuracy. Precision and recall are metrics with single-class 

focus, which enable performance measurement with an emphasis on an individual class, while addressing class imbalance [90]. Due 



to the high cost of making a false positive decision in RBI screening assessment, precision has significant importance, as it measures 

the ability of the classifier to make a correct positive prediction. Precision addresses the question: “Among all positive predictions, 

what is the probability of them being correct?” However, a classifier with a high precision score does not necessarily imply a good 

prediction model, as it may indicate that the classifier misses numerous positive instances in the dataset. Thus, recall is used to 

complement precision by measuring the ability of the classifier to discover instances with a positive class. Recall addresses the 

question: “Of all items that belong to a positive class, what fractions does the classifier correctly detect as positive?” 

Besides accuracy, precision, and recall, the area under the curve (AUC) of the receiving operating characteristics (ROC) is also 

utilized for evaluating the performance of the classifiers. ROC is a graphical plot that provides an illustration of the trade-off between 

the true positive rate and the false positive rate at various decision boundaries [69]. The true positive rate is synonymous with recall. 

The basic notion of ROC is that the behavior of a classifier throughout the decision boundary can be observed, given that it generates 

a score (typically in the interval of 0 to 1) on every instance, rather than binary labels [90]. The decision boundary is used to 

determine whether a specific instance belongs to a positive or negative class. AUC is basically a single scalar value to quantify the 

ROC curve for more convenient comparative analysis [91]. An advantage of using ROC curve and AUC is that they are insensitive 

to class distributions and misclassification cost [90]. Additionally, ROC and AUC provide a way to assess a classifier, without 

relying on the selection of a decision boundary. 

As precision decreases, recall increases, and vice versa. Therefore, it is important to apprehend the precision of a particular 

classifier at all possible values of recall. To acknowledge this, average precision (AP) is computed as a metric that indicates the 

average precision score at all recall values [92]. Similar to ROC and AUC, AP can provide information regarding the precision of 

a particular classifier, without relying on the selection of a decision boundary. 

 

3.7 Comparative analysis of classifiers 
 

In order to demonstrate the difference in performance between classifiers and to select the best performing model, pairwise 

comparisons are performed for all evaluation metrics mentioned in Section 3.6. To determine whether the observed difference in 

each evaluation metric is statistically significant or simply due to chance, randomization tests are performed. A randomization test 

is a type of non-parametric test because it is independent from any assumptions regarding the underlying distribution of the test 

statistics [93]. The advantage of this test is that any metrics can be used as the test statistic, regardless of the underlying distributions 

of the observations [93, 94]. Under the null hypothesis, the two classifiers are not really different, and the observed empirical 

difference occurs purely by chance.  

In this paper, a randomization test is performed based on Good [93]. The test statistic is defined as the difference in average 

value of an evaluation metric between two classifiers. First, the values of the metric produced by the two classifiers are concatenated. 

Each classifier will have 10 values for each evaluation metric, as the results of nested CV with 10 iterations (see Section 3.5). These 

values are then randomly rearranged, and the test statistic based on the new arrangement is computed. This procedure is repeated 

10,000 times. Then, a comparison is made between the test statistics calculated from the randomized and non-randomized 

observations. The p-value is calculated as the proportion of times that the test statistic of the randomized observations is more 

extreme than the one generated by the non-randomized observations. A significance level of 0.01 ( = 0.01) is used for this test. If 

the p-value is less than , this indicates that the difference in a metric average value between two classifiers is unlikely to be due to 

chance, and, thus, the null hypothesis can be rejected. Mlxtend [95], a python library for data science tasks, is used to conduct the 

randomization test.  

The applicability and generalizability of the result of this comparative analysis to the other RBI assessment datasets depends on 

how the datasets are generated. The dataset used in this study is generated from API 581 RBI detailed assessment methodology. If 

the datasets are produced by the same methodology, the result of the comparative analysis in this study can be applicable and 

generalized to select the optimum classifier for applying machine learning approaches to RBI screening assessment. 

 

3.8 Comparative analysis of the best performing classifier and human appraisers 
 

It is stated in Section 1 that the conventional RBI screening assessment is vulnerable to human biases and appraiser-to-appraiser 

output variation due to its qualitative nature and high dependency on sound engineering judgment. RBI assessment is performed by 

a team of engineers that have experience in materials science, risk assessment, mechanical engineering, and process engineering 

[5]. Each engineer normally takes a portion of the facilities to be assessed individually. However, the conventional RBI screening 

assessment is vulnerable to human biases and appraiser-to-appraiser output variation due to its qualitative nature and high 

dependency on sound engineering judgment. This variability can be detrimental to the quality of the output.  

It is argued that the machine learning approach of RBI screening assessment can reduce the subjectivity inherent in the 

assessment. To demonstrate this, a comparative analysis between the performance of a machine learning classifier with human 

appraisers is performed. Three human appraisers who have related experience in performing RBI and integrity assessment are 

selected. The number of years of related experience for each appraiser is shown in Table 4.   

 
Table 4 Human appraisers’ number of years of related experience 

 
 Number of years of experience 

1st Appraiser 10 

2nd Appraiser 5 

3rd Appraiser 7 

 

In practice, there is only one classifier needed to assess all instances in the facility under consideration because of the scalability 

of the machine learning classifier. However, to create a fair comparison with the human appraisers, three machine learning classifiers 



are used. These classifiers are created based on the best performing model as described in Section 3.7. Basically, these classifiers 

are identical to each other because they are trained by using the same features, algorithm, and dataset.  

Each appraiser and classifier assess the same instances and perform the assessment individually. Not all instances in the dataset 

are included in the comparative analysis because of the time and intellectual effort required to perform manual RBI screening 

assessment. Therefore, twenty instances from the dataset are selected randomly for the purpose of the comparative analysis. The 

same set of features used by the machine learning algorithm (see Section 3.2) is given to the appraisers as the basis of the assessment. 

In addition, process flow diagrams of the oil and gas production and processing units being assessed are given to the appraisers to 

provide references regarding the production and processing flow.  

The appraiser-to-appraiser output variation is evaluated by using the following equation [96]: 

 

Appraiser − to − appraiser variation =  
Total number of times classification for all not concur

Total number of classification
     (8) 

 

The importance of evaluating appraiser-to-appraiser variation is to discover a bias due to appraisers and to learn if different 

appraisers generate inconsistent results [96]. Additionally, accuracy, precision, and recall metric are used to compare the 

performance of the machine learning classifier and human appraisers. The description about accuracy, precision, and recall metric 

is given in Section 3.6. 

 

 

4 Results and Analysis 
 

4.1 Comparative analysis of classifiers 
 

Table 5 shows the average value of evaluation metrics for all classification models. LR shows reasonable performance in terms 

of accuracy (88.30%), recall (75.71%), and AUC (91.21%), but it has a relatively low score in precision (75.34%) and AP (77.32%), 

compared to the other classifiers. SVM has the lowest accuracy (84.89%) and recall (49.26%) of all the classifiers. Although SVM 

has better precision (79.64%) than LR, its AP score (74.75%) is worse than that of LR. k-NN produces a comparable score of 

accuracy (87.47%) with LR and SVM. k-NN performs better than SVM in terms of precision (82.36%) and recall (60.11%), but it 

has the worst AUC (88.62%) and AP (70.38%) amongst all the other classifiers.  

Ensemble classification techniques (i.e., GBDT, AB, and RF) generally produce better results than single classifiers (i.e., LR, 

SVM, and k-NN). GBDT, RF, and AB have the top three accuracies (92.33%, 92.18%, and 89.65%, respectively), AUC (97.07%, 

96.33%, and 94.12%, respectively), and AP (91.05%, 88.56%, 81.37%, respectively) among all the classifiers. GBDT and RF are 

also the top two performers with regard to precision (84.58% and 85.21%, respectively) and recall (82.96% and 81.33%, 

respectively).  

 
Table 5 The average value of evaluation metrics for all classification models 

 

Classifier Accuracy (%) Precision (%) Recall (%) AUC (%) AP (%) 

Single Classifier 

LR 88.30 75.34 75.71 91.21 77.32 

SVM 84.89 79.64 49.26 89.60 74.75 

k-NN 87.47 82.36 60.11 88.62 70.38 

Ensemble Classifier 

GBDT 92.33 84.58 82.96 97.07 91.05 

AB 89.65 80.66 74.31 94.12 81.37 

RF 92.18 85.21 81.33 96.33 88.56 

 

Box-and-whisker plots (Figure 7) are utilized to assess the statistical dispersion of the classifiers’ performance on all folds and 

repetitions. SVM has the highest accuracy score dispersion, while RF has the lowest accuracy score dispersion. The other classifiers 

have comparable accuracy score dispersion. 

In general, the value of precision has more spread than the value of accuracy for all classifiers. SVM has the least stable precision 

score among all classifiers, as it has the tallest box plot appearance. The other classifiers have a comparable spread of precision 

score. SVM clearly has the highest recall score dispersion, compared to that of the other classifiers. The remaining classifiers have 

similar recall score dispersion.  

Despite some outlier points, the AUC score of GBDT and RF has less variance than that of the other classifiers, due to the 

compactness of both its interquartile range and whiskers. SVM and k-NN are the models with the greatest AUC score dispersion. 

GBDT and RF have the least AP score dispersion while SVM and AB have the greatest AP score spread.  

Overall, SVM is the least stable model because, comparatively, it has high variance in all metrics. All other classifiers have 

comparable variance on accuracy, precision, and recall metrics. GBDT and RF have the lowest dispersion in AUC and AP metrics.  

Table 6 summarizes the paired difference and the corresponding p-value between two classifiers for all evaluation metrics. It 

can be inferred that most of the differences between pairs of classifiers are statistically significant for all evaluation metrics. 

However, a few exceptions are found, where the difference between classifiers is not robust (denoted by bold typeface in Table 6). 

LR - AB, LR - k-NN, SVM - AB, and AB - k-NN pairs are statistically insignificant in only one evaluation metric, while SVM - k-



NN pair is statistically insignificant in two evaluation metrics. The most apparent one is the GBDT - RF pair, whose paired difference 

in accuracy, precision, and recall is not statistically significant.   

In general, the ensemble techniques consistently outperform the non-ensemble techniques in all evaluation metrics. The research 

on empirical performance of various classifiers conducted by Zhang, et al. [68] produces similar results, of which RF and GBDT 

yield the best classification accuracy on several datasets. This is not surprising, given the inherent characteristic of ensemble learning 

that improves the generalizability and robustness of the classifier [77]. The superiority of ensemble techniques may also be due to 

the characteristic of the input features: five out of ten input features have a discrete/categorical nature. All ensemble classifiers 

examined in this paper are constructed based on information-based learning (i.e., decision trees), which is better in terms of handling 

discrete/categorical features [97]. Among the ensemble techniques, AB is the least preferred because it performs the worst in all 

metric categories and has the highest performance dispersion. It is difficult to select the preferred classifier between GBDT and RF, 

due to the marginal performance disparity between them, the lack of robustness in their performance difference, and their analogous 

performance dispersion. GBDT is slightly preferred because it outperforms RF in all evaluation metrics, except precision. Moreover, 

GBDT is faster in both training and testing running time than RF [68].   

Despite the excellent prediction performance of ensemble methods, they have three inherent drawbacks [97]. First, ensemble 

classifiers have higher storage requirement than single classifiers. The storage size increases as the number of classifiers in a single 

ensemble expands. Second, ensemble classifiers are computationally expensive, due to the need to process multiple classifiers. 

Consequently, ensemble classifiers tend to have slow training time efficiency [68]. Third, the involvement of multiple classifiers 

reduces the comprehensibility of the ensemble classifiers [97]. These disadvantages are more prominent as the size of the dataset 

becomes larger.        

It should be noticed that there is no single classifier that works best on all datasets [98]. Despite using the same dataset, if the 

data pre-processing and setting are different (e.g., different selection of input features and different features’ transformation), the 

performance of each classifier may change. In the case of RBI, the type of assessment used (e.g., qualitative, semi-quantitative, or 

quantitative), the type of system being analyzed (e.g., offshore/onshore, downstream/upstream), and the type of methodology used 

(e.g., API, DNV, etc.) may influence the selection, as well as the performance, of the classifiers.  

 
 

Figure 7 Box plots for (a) accuracy, (b) precision, (c) recall, (d) AUC and (e) AP from 10 iterations of nested CV 

 



Table 6 Paired difference and p-value between two classifiers for all evaluation metrics 

 

Model pair 

Accuracy (%) Precision (%) Recall (%) AUC (%) AP (%) 

Paired 

difference 
p-value 

Paired 

difference 
p-value 

Paired 

difference 
p-value 

Paired 

difference 
p-value 

Paired 

difference 
p-value 

LR - SVM   3.41 < 0.001 -4.30 < 0.001  26.45 < 0.001   1.61 < 0.001     2.57    0.005 

LR - GBDT -4.03 < 0.001 -9.24 < 0.001   -7.25 < 0.001 -5.86 < 0.001  -13.73 < 0.001 

LR - AB -1.35 < 0.001 -5.32 < 0.001    1.40   0.348  -2.91 < 0.001    -4.05 < 0.001 

LR - k-NN  0.83 0.014 -7.02 < 0.001  15.59 < 0.001  2.59 < 0.001     6.94 < 0.001 

LR – RF -3.88 < 0.001 -9.87 < 0.001   -5.62 < 0.001 -5.12 < 0.001 -11.24 < 0.001 

SVM - GBDT -7.44 < 0.001 -4.94 < 0.001   -33.7 < 0.001 -7.47 < 0.001    -16.3 < 0.001 

SVM - AB -4.76 < 0.001 -1.02   0.378 -25.05 < 0.001 -4.52 < 0.001    -6.62 < 0.001 

SVM - k-NN -2.58 < 0.001 -2.72   0.019 -10.85 < 0.001  0.98   0.043      4.37 < 0.001 

SVM - RF -7.29 < 0.001 -5.57 < 0.001 -32.07 < 0.001 -6.73 < 0.001   -13.81 < 0.001 

GBDT - AB  2.68 < 0.001  3.92 < 0.001    8.65 < 0.001  2.95 < 0.001      9.68 < 0.001 

GBDT - k-NN  4.86 < 0.001  2.22    0.007  22.85 < 0.001  8.45 < 0.001    20.67 < 0.001 

GBDT - RF  0.15   0.568 -0.63    0.401   1.63    0.122  0.74    0.002     2.49 < 0.001 

AB - k-NN  2.18 < 0.001 -1.70    0.041 14.20 < 0.001  5.50 < 0.001   10.99 < 0.001 

AB - RF -2.53 < 0.001 -4.55 < 0.001  -7.02 < 0.001 -2.21 < 0.001   -7.19 < 0.001 

k-NN - RF -4.71 < 0.001 -2.85 < 0.001 -21.22 < 0.001 -7.71 < 0.001 -18.18 < 0.001 

 

4.2 Comparative analysis of the best performing classifier and human appraisers 
 

Table 7 shows the assessment results generated by the machine learning classifier and the human appraisers. It can be seen that 

there are some variations of output from one human appraiser to the other. The appraiser-to-appraiser variation score shown in Table 

8 asserts that the human appraisers generate inconsistent outputs due to the qualitative and subjective nature of the assessment [6]. 

Meanwhile, the machine learning classifiers have zero appraiser-to-appraiser variation score because they produce identical outputs. 

Hence, the utilization of machine learning classifier potentially eliminates appraiser-to-appraiser variation by removing the influence 

of subjective judgment from the assessment. The classifier is trained based on the results of RBI detailed assessment, which use a 

quantitative approach and has less dependency on subjective judgment [5].  

 
Table 7 The assessment results based on the human appraisers and the machine learning classifiers 

 

Instance 

Number 

Prediction 

Actual 

output 

Human Machine classifier 

1st 

Appraiser 

2nd 

Appraiser 

3rd 

Appraiser 

1st 

Appraiser 

2nd 

Appraiser 

3rd 

Appraiser 

#1 M/H M/H L M/H M/H M/H M/H 

#2 M/H M/H M/H M/H M/H M/H M/H 

#3 M/H M/H M/H M/H M/H M/H M/H 

#4 L L L M/H M/H M/H M/H 

#5 M/H M/H M/H M/H M/H M/H M/H 

#6 L M/H L M/H M/H M/H M/H 

#7 M/H M/H M/H M/H M/H M/H M/H 

#8 M/H M/H M/H M/H M/H M/H M/H 

#9 L M/H L L L L L 

#10 M/H M/H L M/H M/H M/H M/H 

#11 M/H L M/H M/H M/H M/H M/H 

#12 L L L L L L M/H 

#13 M/H M/H M/H M/H M/H M/H M/H 

#14 M/H L M/H M/H M/H M/H M/H 

#15 M/H M/H L M/H M/H M/H M/H 

#16 L M/H L L L L L 

#17 M/H M/H L M/H M/H M/H M/H 

#18 L L M/H L L L L 

#19 M/H M/H M/H M/H M/H M/H M/H 

#20 L M/H L M/H M/H M/H M/H 



     Note: M/H = Medium/high risk, L = Low risk  

 
Table 8 Appraiser-to-appraiser variation score 

 
 Appraiser-to-appraiser variation 

Human appraisers 0.55 

Machine learning classifiers 0.0 

 

Table 9 summarizes the accuracy, precision, and recall score for the human appraisers and the machine learning classifiers. The 

scores for machine learning classifiers are aggregated into a column because they generate identical scores. It can be seen that the 

machine learning classifiers outscore human appraisers in all evaluation metrics. The machine learning classifiers only misclassify 

one instance and are able to achieve 95% accuracy, 75% precision, and 100% recall. Meanwhile, the best human appraiser achieves 

80% accuracy, 42.8% precision, and 100% recall. Based on these results, the application of machine learning approach potentially 

improves the quality of the RBI screening assessment outputs.  

 
Table 9 The accuracy, precision and recall metric score for the human appraisers and the machine learning classifiers 

 

Evaluation metric 1st Appraiser 2nd Appraiser 3rd Appraiser 
Machine learning 

classifiers 

Accuracy 80.0% 70.0% 55.0% 95.0% 

Precision 42.8% 20.0% 20.0% 75.0% 

Recall 100.0% 33.3% 66.6% 100.0% 

 

 

However, even the best machine learning model generated in this study cannot achieve perfectly accurate and precise predictions. 

Thus, pure dependency on machine learning models in RBI screening assessment is not recommended, considering the high cost of 

misclassification. Similarly, relying only on human judgment is also not advised as it has its own set of biases and errors [99]. A 

mixture of machine and human intelligence is needed, such that the inductive learning can be complemented by the tacit knowledge 

of human workers. It is believed the inclusion of human intelligence can refine the insights provided by the machine intelligence 

[100]. This is in line with the concept of jidoka (or autonomation), derived from the Toyota Production System (TPS), which can 

be translated as automation with a “human touch” [101].  

The proposed scheme to combine machine and human intelligence in the RBI screening assessment is presented in Figure 8. 

First, all instances in the dataset are assessed by the machine learning classifier. Then, the subsequent action depends on the 

classification results that the classifier makes. As explained in Section 3.6, the cost of misclassifying medium/high-risk instances as 

low risk (i.e., false positive) is greater than the cost of misclassifying low-risk instances as medium/high risk (i.e., false negative). 

The instances that are discerned as high/medium risk by the machine learning classifier are directly included in the RBI detailed 

assessment. While the possibility of misclassifying these instances exists, this will not do any harm with regard to the technical 

integrity of the system. In other words, the classification made by the classifier for the high/medium risk instances are generally 

agreed upon. Meanwhile, the instances that are classified as low risk are intervened by re-assessing them using sound engineering 

judgement and additional data (if necessary). The consideration to re-assess these low risk instances comes from the significance 

consequence of misclassifying medium/high-risk instances into low risk class, which may cause under-inspection (i.e., the allocation 

of inspection below the minimum requirement) and lead to the deterioration of the overall system integrity. The re-assessment 

provides an opportunity for engineers to use their experience and tacit knowledge to find irregularities in the results generated by 

the machine learning classifier.  

The proposed scheme is expected to reduce the volume of instances that are needed to be evaluated by the engineers. In this 

case, the machine learning approach has not completely automated the RBI screening assessment process, but it provides the 

foundation to reduce the effort and time in evaluating instances and becomes the basis for the subsequent engineering evaluation.  

 

 
 

Figure 8 A scheme to combine machine and human intelligence in the RBI screening assessment 

 

5 Conclusion 
 

This paper attempts to develop an intelligent system, based on a machine learning approach, to facilitate knowledge transfer and 

reuse and to reduce the human biases and errors and appraiser-to-appraiser output variation inherent in the conventional RBI 

screening assessment. A machine learning approach enables the reduction of the costly and laborious knowledge-engineering 

process involved in the development of knowledge-based systems. A case of the screening phase of RBI assessment is used to 



demonstrate the knowledge transfer and reuse mechanism by the machine learning approach. The dataset used in this study was 

acquired from an RBI assessment conducted on three onshore and four offshore oil and gas production and processing units, 

comprising over 200 pressure vessels and 3000 piping lines.  

Six machine learning algorithms are selected and compared, to determine the best performing model. Ten iterations of 4-fold 

nested CV are performed for model selection and evaluation. The result of the study shows that ensemble techniques (i.e., GBDT, 

RF, and AB) perform better than single classifiers (i.e., LR, SVM, and k-NN). Among the ensemble classifiers, AB is the less 

preferred, as it performs the worst of all ensemble techniques. It is challenging to choose the preferred classifier between GBDT 

and RF, due to marginal performance disparity between them, lack of robustness in their performance difference, and their analogous 

performance variability. GBDT is slightly preferred because it outperforms RF in all evaluation metrics, except precision. Despite 

their excellent prediction performance, ensemble techniques are computationally more expensive and less comprehensible than 

single classifiers.  

Additionally, a comparative analysis between the performance of the best performing machine learning model and the 

conventional assessment (i.e., manual assessment) is performed to examine the benefits of applying machine learning approach in 

the RBI screening assessment. It is shown that the application of machine learning approach eliminates appraiser-to-appraiser 

variation by removing the influence of subjective judgment from the assessment. The machine learning model also has better 

performance than the conventional assessment in terms of accuracy, precision, and recall score. It is recommended that the intelligent 

system based on machine learning should be complemented by human intelligence, so that it can refine the insights provided by the 

machine intelligence.  

Further research should be conducted to incorporate other classification techniques (e.g., artificial neural networks and XGBoost, 

voting classifier, etc.) that have the potential to improve the predictive strength in the case of RBI screening assessment. A future 

study should be performed on the utilization of a machine learning approach, to tackle multiclass classification in the RBI detailed 

assessment. 
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