
Improving classification of ballistic,
non-cooperative radar targets

Master’s Thesis in Applied Computer Science

Frode Tennebø

January 31, 2022
Halden, Norway

www.hiof.no





Abstract

The defence industry is often regarded as being conservative with long development times
and stringent validation criteria for implementing new technologies. Hence, machine
learning (ML) is not widely adopted in this area - at least not publicly. In this thesis, we
will investigate several ML methods to classify ballistic, non-cooperating projectiles,
which can be used in weapon locating radar (WLR) systems, and compare these results
with Saab’s original and proprietary non-ML algorithms, to improve the classification
performance.

Working with the defence industry or with defence products is often an exercise in
balancing the ethical issues involved against the goals one wishes to achieve. We have, as
part of this work, also considered some of the ethical implications in potentially improving
the performance of WLR systems and used autonomous weapons systems (AWS) as an
analogue.

The data was provided by and is proprietary to Saab. The filtered dataset usable for
our research consists of 2 259 unique radar tracks, just over 1 % of the total tracks available,
with a total of 189 125 individual radar plots.

We have compared two proprietary Saab algorithms with the ML algorithms support
vector machine (SVM), k-nearest neighbour (k-NN), artificial neural network (ANN), C5.0
and XGBoost, with a focus on the latter. We conclude that for our best XGBoost model
using hyper-parameter optimised plot features to classify into six projectile classes, the
accuracy increases from 0.852 to 0.984.

Keywords: Machine learning, ML, decision trees, time series classification, projectile
classification, non-cooperating radar target classification, artillery.

i





Acknowledgements

The author is employed by Saab Technologies Norway AS, a subsidiary of Saab AB in
Sweden, a global defence and security corporation, and would like to thank them for
the opportunity to use their proprietary data in this research. Thanks also go to Håkan
Warston, who has been the supervisor from Saab AB for this work.

Apart from providing the data and supervision, Saab has not contributed to this
research and cannot be held responsible for any errors or misjudgements by the author.

Also, thanks to Kåre Stavnes, Terje Sparre Olsen and the late Andreas Mattsson for
insight and advice early in the process of this master’s thesis.

I would also like to thank my supervisor Marius Geitle from Østfold University College,
who have pushed me and provided invaluable support and inspiration throughout this
project.

Finally, special thanks go to my family for their patience.

iii





Contents

Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

Listings xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 General radar principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Weapon locating radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Artillery weapons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Machine learning in radar applications . . . . . . . . . . . . . . . . . . . . . 26
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Ethics 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Ethics in military applications . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Ethical questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Methods 37
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Results 43
5.1 Synthetic track features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Complete track plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Partial track plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Hyper-parameter optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



vi CONTENTS

6 Discussion 51
6.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Challenges and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusion 69

8 Glossary 71

Bibliography 73



List of Figures

2.1 The general working principle of a radar . . . . . . . . . . . . . . . . . . . . 8
2.2 A basic radar system block diagram . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The search pattern of a WLR . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Tracking of a single projectile . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Calculating the POO and POI using radar plot information . . . . . . . . . 12
2.6 Simplified SVM exampled . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Simplified k-NN example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Graphical representation of an artificial neuron . . . . . . . . . . . . . . . . 19
2.9 A model of an ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.10 Example of three RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11 Recursion in RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Interaction between radar, C2 and weapon system . . . . . . . . . . . . . . 30

5.1 Interval plot of all results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Development in accuracy over time using partial track plots . . . . . . . . . 47
5.3 Development in CI of accuracy over time using partial track plots . . . . . . 47

6.1 Development in accuracy for GL and GH over time using partial track plots 61
6.2 Development in CI of GL and GH accuracy over time using partial track plots 61
6.3 Variation in feature importances over time using partial track plots . . . . . 63

vii





List of Tables

2.1 Example of typical limits of firing elevation and firing velocity . . . . . . . . 13
2.2 Examples of typical ranges of some parameters for various projectile types . 14

4.1 Number of tracks distributed by projectile class . . . . . . . . . . . . . . . . 38
4.2 Accuracy for Saab’s generation 1 and 2 algorithms . . . . . . . . . . . . . . 38
4.3 Confusion matrix for Saab’s generation 1 classifier . . . . . . . . . . . . . . 39
4.4 Confusion matrix for Saab’s generation 2 classifier . . . . . . . . . . . . . . 39
4.5 Number of plots distributed by projectile class . . . . . . . . . . . . . . . . . 40

5.1 Summary of the best results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Accuracy of all results using track data . . . . . . . . . . . . . . . . . . . . . 44
5.3 Accuracy of XGBoost using plot data compared to using track data . . . . . 46
5.4 Accuracy of XGBoost using increasing number of plots . . . . . . . . . . . . 48
5.5 Example of PBT schedule for XGBoost . . . . . . . . . . . . . . . . . . . . . 48
5.6 Accuracy from XGBoost hyper-parameter optimised with PBT . . . . . . . 49

ix





Listings

1.1 Pseudo-code example of a man-made decision tree for projectile classification 3
6.1 Example of a decision tree generated by C5.0 . . . . . . . . . . . . . . . . . 53
6.2 Example of a booster tree generated by XGBoost for ML . . . . . . . . . . . 54
6.3 Example of a booster tree generated by XGBoost for MH . . . . . . . . . . 55
6.4 Example of a booster tree generated by XGBoost for GL . . . . . . . . . . . 56
6.5 Example of a booster tree generated by XGBoost for GH . . . . . . . . . . . 57
6.6 Example of a booster tree generated by XGBoost for RL . . . . . . . . . . . 58
6.7 Example of a booster tree generated by XGBoost for RH . . . . . . . . . . . 59
6.8 Feature usage in C5.0 using track features . . . . . . . . . . . . . . . . . . . 59
6.9 Feature importances from XGBoost using track features . . . . . . . . . . . 59
6.10 Feature importances from XGBoost using complete track plots . . . . . . . 60
6.11 Example of a booster tree generated by XGBoost for RH using plot features 62

xi





Chapter 1

Introduction

"Now the reason the enlightened prince and the wise general
conquer the enemy whenever they move and their achievements
surpass those of ordinary men is foreknowledge."

— Sun Tzu, The Art of War

Artillery weapons1 have been used in armed conflicts since the invention of gunpowder.
They are a category of weapons that consists of a barrel where explosives are used to
fire a projectile towards a target. They come in various sizes, firepower and modes of
operation. They are typically further divided into rockets, artillery guns and mortars.
Common is that after the projectile has left the barrel2 it follows a ballistic trajectory.
The advantage of these types of weapons, both for offence and defence, is that they can
be fired from a relatively safe location within own territory and hit targets within enemy
territory, over 70 km away [1]. However, depending on the precision of intelligence and
the weapons themselves, they can also cause collateral damage. Their effectiveness has in
recent times been brutally illustrated in the battle of Zelenopillya in Ukraine in July 2014,
where Russian artillery took out most of Ukraine’s mechanised brigades in less than three
minutes [2].

Hence, the detection and location of enemy artillery fire, known as weapon locating
(WL), has been an important military task since the invention of artillery weapons. During
World War One, apart from visually seeing the launch site, the point of origin (POO), flash
detection or flash spotting of the artillery piece was used. This method required multiple
forward observers spread out geographically who communicated individual results back
to a command post which could then perform triangulation [3]. This technique is time-
consuming and somewhat error-prone as it required and still requires that forward observers
are close enough to see the flash of the weapon, possibly beyond enemy lines, putting them
dangerously close to the enemy. It also requires the different observers to report on the
same piece, which can be challenging in a battle situation.

Impact crater analysis [4] is another method that can also be performed where the
direction of the impact crater will show the direction of the weapon. This method is
potentially even more dangerous than flash spotting since soldiers performing this task
will need to be quite close to the crater to perform the analysis. Around the same time as

1Some literature also refer to these collectively as ballistic weapons, indirect fire or just RAM (for
rocket, artillery, mortar).

2Or when the propellant has stopped burning for rocket artillery.

1



2 Chapter 1. Introduction

flash spotting came sound ranging [5, 3] where the sound of the explosion from the artillery
piece is detected from several "listeners" and triangulated. This can be performed in a
more timely manner than the other methods, and has since been automated and is also
used today as a passive system. The drawback of sound ranging is that propagation of
sound depends on the topology and the technique is limited by the speed of sound, which
in some cases means that the projectile impacts before the sound of the firing reach the
detector, even though the projectile can follow a longer, ballistic path than the sound.
This situation changed with the invention of the radar3.

A radar is a system that uses radio waves4 to detect objects in the air, potentially also
in space, or on the surface of the earth. A weapon locating radar (WLR) is a dedicated
and specialised radar system that can detect and track5 artillery projectiles and estimate
the POO, launch site, and point of impact (POI), impact site, while the projectile is still
in the air. Based on these estimations, directions are provided for effective counter-battery
fire and timely warnings are given to own troops [6].

One important part of this process is projectile classification; determining what type
of ammunition is used, typically either of rocket, artillery, mortar (RAM). This
information can then be used in the ballistic calculation of POO and POI and to identify
the weapon type, also called weapon classification. This information is ultimately used
for warning, threat evaluation of the hostile battery and tactical and strategic evaluation
of the capability of the opposing force.

This work will explore methods of projectile classification using machine learning (ML)
and compare them with Saab’s existing, proprietary algorithms. The rest of this chapter
describes the motivation and research questions for this work.

1.1 Motivation

Several manufacturers of WLR systems exist. One of these is Saab, which has been
developing WLR capabilities since the late 1980s, first (as Ericsson) in the dedicated
WLR-radar ARTHUR, originally as a joint effort between the armed forces of Norway
and Sweden [7], in several generations, and also in the GIRAFFE AMB surveillance radar
family [8] and other radar systems.

ARTHUR has been delivered in multiple generations with steady improvements in
performances. This also includes the projectile classification algorithm, which comes in
two major generations: Generation 1, which only classifies in the main projectile types,
either rocket, artillery gun or mortar, and generation 2, which also extends the classification
further with light and heavy calibres6, into each of mortar light (ML), mortar heavy (MH),
gun light (GL), gun heavy (GH), rocket light (RL) and rocket heavy (RH).

To fire an artillery projectile at a target, the firing geometry of the different artillery
weapons, typically firing elevation (also called quadrant elevation) and firing velocity (also
called muzzle velocity), is used to direct the shot. This information is normally found in
ballistic tables, tables of various parameters used to adjust each type of weapon based on

3Originally an acronym for radio detection and ranging
4Electromagnetic radiation with wavelengths longer than infrared light.
5Tracking is the process of predicting the next potential position of an object, commanding the radar

to "see" in that direction and correlating the following detection with a previous detection.
6Calibre is the diameter of the gun barrel and hence the diameter of the ammunition/projectile,

indicating the projectile’s potential impact force.



1.1. Motivation 3

external requirements and properties like distance to shot, ammunition to use, wind and
temperature. Today, some artillery systems calculate this automatically for each round
based on sensor information and the required POI.

One force’s firing parameters are naturally not available to the other force receiving
the incoming round. Instead, they rely on some sort of WL capability, e.g. a WLR, to
estimate the firing geometry and potentially other information about the projectile. These
features can then be used in a classification algorithm, similar to the simplified early Saab
algorithm in Listing 1.1. Here selected features, based on domain knowledge, are checked
against constants derived from a priori knowledge of weapon characteristics, e.g. from
the aforementioned shooting tables. When the type of the projectile is determined this
information can be used to estimate the POO and POI based on a ballistic model of the
projectile type.

Listing 1.1: Pseudo-code example of a man-made decision tree for projectile classification. Here
the specific projectile type will be classified as either rocket gun mortar or unknown based on the
features firing elevation firing velocity and RCS.

i f f i r i n g_e l e v a t i o n <= C_FIRING_ELEVATION_LIMIT then
i f f i r i n g_v e l o c i t y <= C_VELOCITY_LIMIT_UNKNOWN then

p ro j e c t i l e_type := UNKNOWN;
e l s i f f i r i n g_v e l o c i t y <= C_VELOCITY_LIMIT_ARTILLERY then

p ro j e c t i l e_type := ARTILLERY;
else

i f r c s <= C_RCS_LIMIT_ROCKET then
p ro j e c t i l e_type := ARTILLERY;

else
p ro j e c t i l e_type := ROCKET;

end i f ;
end i f ;

else
i f f i r i n g_v e l o c i t y <= C_VELOCITY_LIMIT_MORTAR then

p ro j e c t i l e_type := MORTAR;
else

p ro j e c t i l e_type := ARTILLERY;
end i f ;

end i f ;

Saab has for many years recorded data from live firings. Each recording consists of
several radar settings, tactical information, environmental information like weather data
and multiple individual radar measurements, sampled several times every second, together
with their respective tracking prediction for zero, one or more tracks. All information is
recorded in human-readable form in regular files called track files. Radar measurements
include measured azimuth, elevation, radial velocity, range, signal strength and signal-to-
noise ratio (SNR)7 and some features to control the measurement. Additionally, for each
track, some features are estimated for the overall track and included in the recording.
These synthetic features include the estimated firing elevation and velocity, coordinates
for POO, POI and projectile classification, to mention a few.

These files can be from a few seconds up to several minutes long and are used for
retrospective analysis of radar performance. They will also be used for our research.

7SNR is the ratio of the power from the returned signal relative to the current noise level as measured
by the radar



4 Chapter 1. Introduction

However, there are several challenges with this data. Firstly, many of the track files
do not have truth data associated with them or the recorded truth data is not correct.
Secondly, the measurements can be inaccurate or incorrect. To use these track files as
a benchmark for our research, their validity and correct weapon classification need to
be determined through investigation of historic firing trial plans and evaluation reports,
interviewing key people involved in the trials and finally a manual vetting of any remaining
track files.

In practice, the simplified classification approach described above has not given as good
results as desired. Some of the problems with this approach are:

• There is a large variety in projectiles, calibres and weapon systems. It is unrealistic
to obtain data for all possible projectile types.

• Even with a priori knowledge, it is not unlikely that other features than the ones
already used by Saab can give better results.

• The boundaries for the limits of these features may be overlapping, which means
that the order of evaluation can determine the result. Therefore, a more complex
algorithm could give better results.

• The firing elevation and firing velocity are estimated from the radar track based on
an initial “guess” of the projectile type. The later in the trajectory of the projectile
it is detected and tracked, the harder it is to get a correct “guess” and hence correct
estimation which in turn could give incorrect classification.

• Measurements are influenced by the environment the radar operates in, including,
but not limited to, electronic disturbances, precipitation, atmospheric temperature
gradient and wind conditions. Estimated firing elevation and firing velocity might
therefore be inaccurate.

• The number of combinations of geometries in three dimensions is very large. The
classification needs to take this into account.

The goal of this research, by potentially utilising more features from the radar, either
measured or synthetic, is to achieve improved projectile classification performance.

Determining the correct projectile type is important for several reasons:

• Accuracy of POO and POI are improved (the error ellipse is decreased). This means
that for hostile fire, impact warnings can be issued earlier and more specifically, with
fewer false warnings, potentially saving lives.

• The projectile type is closely linked to the weapon type, and correct determination
of the weapon type can give intelligence about hostile forces and their deployment,
giving a tactical advantage.

• The countermeasures towards a POO can be used more sparingly, saving time,
resources and potentially minimising collateral damage such as civilian lives.

• Timely countermeasures can also reduce the effectiveness of hostile weapons,
potentially also saving lives [9].

• It is conceivable that the result from the classification can be used to detect false
targets, e.g. birds or planes, thereby avoiding undesired alarms and the use of
countermeasures.

1.2 Research questions

Firstly, we want to see how well ML can classify our data:



1.2. Research questions 5

RQ 1 How good accuracy can be achieved using machine learning techniques compared to
Saab’s original algorithms?

Secondly, since the original algorithm uses synthetic features, we want to compare
measured features with synthetic features:

RQ 2 How can measured features improve the classification power?

Thirdly, we are also interested in how early we can expect good enough results from
the projectile classification:

RQ 3 How does the accuracy of the classification evolve over time for a track?





Chapter 2

Background

"The bomb may have ended the war but radar won it."
— Louise Brown, A Radar History of World War II: Technical

and Military Imperatives

This chapter will cover general radar theory and principles as well as the specifics of
artillery weapons and WLR. In addition, an introduction to machine learning (ML),
various ML techniques and theory as well as existing work related to ML in radar
applications before summing up.

2.1 General radar principles

Radar is a collective term used for several technologies which use electromagnetic (EM)
waves in the radio spectrum, typically 100 MHz to 100 GHz, to detect and locate objects.
Depending on the objective of the radar, whether its purpose is to detect close proximity
pedestrians or other vehicles in modern cars, weather patterns in the different layers of the
atmosphere, planes at long range, tactical ballistic missiles at even longer ranges or sea
vessels, to mention just a few applications, various technological compromises are made.
The general working principle is depicted in Figure 2.1.

The various wavelengths have different physical qualities. In general, higher frequencies,
which results in shorter wavelengths for a given antenna size, give better angular resolution,
but will also suffer more atmospheric attenuation and hence a shorter range for a given
output power. However, this higher resolution gives more accurate angle measurements
which in turn translates to a longer range. Shorter wavelengths also mean that the antenna
can be smaller which impacts the physical size and weight of a system, which are important
attributes for mobile systems. However, a bigger antenna in relation to the wavelength,
means more power and better directionality which again gives better performance. Hence,
designing a radar becomes an exercise in weighing multiple compromises against each other
to optimise for the objectives of the specific radar.

There are several ways of classifying radars in use today which reflects the difference
in usage. Below is a non-exhaustive list of physical and functional properties that defines
a radar.

• Frequency band; e.g. S-, C-, X- and Ku-band.
• Continuous-wave vs. pulse-Doppler.

7



8 Chapter 2. Background

Figure 2.1: The general working principle of a radar where the radar sends an electromagnetic
pulse and the target reflects an echo back to the radar. Image source: Encyclopædia Britannica.

• Fixed antenna for sector coverage vs. rotating for 360° coverage.
• Mobile vs. stationary platform.
• Passive vs. active radars, where the former does not have a transmitter, but depends

on ambient EM illumination, while the latter combines a transmitter and receiver.
• Geospatial configuration; mono-static, bi-static or multi-static where the transmitter

and receiver have varying degrees of co-location.
• Primary vs secondary, where the former predominantly deals with non-cooperating

targets and the latter requires an active transponder in a cooperating target that is
interrogated by the radar.

• Surveillance radar vs. tracking radar, where the former usually covers more volume
searching for objects while the latter attempts to actively predict and follow objects.

• Passive electronically scanned, with a single, powerful transmitter, or active
electronically scanned, with multiple, smaller transmitters.

In a setting where we have non-cooperative targets using a primary surveillance
radar (PSR) the process of identifying a target is called non-cooperative target
recognition (NCTR). We will continue this chapter by describing a typical monostatic
passive electronically scanned array (PESA) radar before describing in more detail a
WLR.

2.1.1 Monostatic passive electronically scanned array radar

A monostatic radar consists of a few basic components: a transmitter, which also makes it
an active radar, an antenna, a receiver and some processing capability. The basic working
principle is illustrated in Figure 2.2. If an object is within the propagation path of the
radio wave it will reflect some of this energy back to the antenna where it will be fed to the
receiver. If the receiver can discern this echo from the background noise, it has a detection
that is processed into a plot. Depending on the type of radar, the state of the signal and
other factors, additional detections are needed for the processing capability to establish a
track. A track, in turn, is a series of plots that the radar determines are associated with
the same physical object.



2.1. General radar principles 9

Duplexer Antenna

Transmitter

ReceiverProcessor

Figure 2.2: A basic radar system block diagram: The duplex unit switches between the transmitter
and receiver, which handles signals to and from the antenna, while the processor works on the
received data.

However, a detection is not necessarily from a target. If a signal is above the background
noise and not from a target of interest for the radar, this signal is called clutter. Different
types of clutter exist in different environments, e.g. precipitation, birds, windmills, traffic
or the ground or sea. Clutter in one setting can be a target in a different setting, e.g. birds
in the field of radar ornithology, or rain in a weather radar system. To avoid spending
resources on clutter, most radars have clutter maps and other technologies to suppress
or filter unwanted clutter as early in the processing chain as possible. What remains of
detections from a primary radar after all filtering is performed are often referred to as
non-cooperating radar targets.

The physical limitations of a radar are given by the radar equation in Equation (2.1).

R4 =
PttpGtGrλ

2σ

(4π)3Pmin
, (2.1)

Where:
R = distance from the transmitter to the target
Pt = peak transmitter power
tp = transmit pulse length
Gt = gain of the transmitting antenna
Gr = gain of the receiving antenna
λ = transmit wavelength
σ = radar cross-section, or scattering coefficient, of the target
Pmin = minimum detectable signal

The higher the numerator or the lower the denominator, the longer the detectable
range can be expected. The signal path starts with the transmitter transmitting a pulse
with peak power Pt (watts) for a length of tp (seconds) at a wavelength of λ (meters).
For a monostatic PESA antenna, the transmitter and receiver gain can often be
considered equal and shortened to G2 (dBm). The amount of echo returned from a target
is directly proportional to its radar cross-section (RCS), σ (m2). The constant 4π shows
that the transmitted and received energy scatter uniformly in the shape of a sphere and
the third power relates to the transmitting antenna, the scatter from the object itself and
the receiving antenna1. The sensitivity of the receiver to discern signals from the

1Even though the transmitting and receiving antenna is physically the same antenna, losses happen in



10 Chapter 2. Background

background is Pmin, and since the power of a signal scales with the square of the range R
in both directions the range term is R4.

The processing unit will then take the signals from the receiver unit, separate detections
and produce plots for transmission to a display system or external command and control
(C2) system. Each plot typically consists of measured properties like 3D position, radial
velocity and SNR, but can also include features used to control the measurement. From
this, other parameters like speed, acceleration and direction are calculated. A series of
correlated plots identified to belong to a single target, a track, might be produced by the
processing unit - or sometimes this is done in the C2.

A radar is not a perfect instrument and hence does not measure perfectly. It is
influenced by the environment it operates in and is sensitive to noise from processes
around it. The actual measurement will vary with properties of the target, e.g. variations
in RCS over time, and can in addition be ambiguous depending on the radar technology
used. In other words: a combination of stochastic noise and systematic errors is
constantly introduced to the measurements.

An air surveillance radar typically manages the entire volume of 360° horizontally and
potentially up to 90° vertically while a tracking radar manages a smaller volume. Often, a
surveillance radar has some tracking capability and a tracking radar has some surveillance
capability, and in some specialised cases, a surveillance radar can queue a tracking radar.
The available energy budget must be divided into searching this volume for new targets
and possibly tracking existing targets. There are several ways to expend this energy budget
and the search pattern is usually proprietary from vendor to vendor, radar to radar and
task to task. The data extracted from this process is normally forwarded to a C2 system
or presented to an operator for further processing or decision making.

This was a very brief introduction to general radar principles. For a more in-depth
understanding of the operation of radars, we refer to dedicated books on this topic like
Heimish Meikle’s Modern radar systems [10].

2.2 Weapon locating radar

For a brief history of early weapon locating radar history with a discussion of some of the
issues involved when designing a WLR, Firefinder, a Radar Forty Years in the Making, by
William Fishbein [9] is recommended. It is mostly based on US history, but notes that the
English were first to detect projectiles in combat using radar in February 1942. Since then,
many countries have developed domestic WLR capabilities, both for own use and export.
Besides USA and Norway/Sweden, these countries include Poland [11], India [12], a joint
effort between Germany and France [13] and Israel [14] among others.

The purpose of a WLR is to find hostile artillery weapons and warn for incoming
artillery impacts. These weapons fires projectiles that follow a ballistic trajectory.
Therefore it is possible to estimate the projectile’s POO and POI from measurements of
a section of the ballistic trajectory, using ballistic models. Since RAM projectiles are
typically fired from a position on the surface of the earth, either land or sea, the
projectiles will first be visible for the WLR when they emerge somewhere over the
horizon as seen by the radar. Hence a WLR has a predictive and defined search pattern
where only a limited sector above the horizon needs to be searched. There is therefore no

both directions.



2.2. Weapon locating radar 11

need to search 90° vertically nor is there usually a need to search 360° horizontally since
the area of interest will be in a specific direction past the enemy front line. This is
illustrated in Figure 2.3.

Figure 2.3: The search pattern of a WLR (in yellow) shows that a sector of the horizon is searched.
This typically happens several times every second to detect projectiles emerging over the horizon.
To avoid ground clutter, the search is performed slightly above the actual horizon. Image source:
Saab.

When it has acquired a potential projectile, tracking is performed for as long as
necessary or for as long as the projectile is visible for the radar. This is illustrated in
Figure 2.4.

If or when enough points have been gathered and they are of good enough quality,
a numerical parameter estimation, typically using a statistical inference method like a
relatively simple loss function like least squares, or more complex methods like maximum
likelihood estimation (MLE), is performed to fit the radar measurements to a ballistic
model. The model can include various degrees of freedom, but as a minimum firing velocity,
position and velocity vector, as well as a drag estimate at some point in the trajectory,
must be determined. This information can then be used to calculate POO and POI, as
illustrated in Figure 2.5.

For a mass-point model for trajectory calculation, the differential equation to solve
can look like the one given in Equation (2.2). One component, adrag, is dependent on the
projectile type since the drag through the air is strongly dependent on the size and shape
of the projectile, mode of stabilisation in flight, as well as the current velocity. But at the
time of detection, this information is unknown to the radar system, hence it is important
to identify the correct projectile type to select the best model to get a good estimation of
POO and POI [15].

dv

dt
= agravity + aCoriolis + adrag(v), (2.2)



12 Chapter 2. Background

Figure 2.4: The tracking (in red) of a single projectile after it has been detected. A WLR can
typically track several projectiles simultaneously while continuing the search procedure described
in Figure 2.3. Image source: Saab.

Predicting
impact area

Figure 2.5: The calculation of the POO (far) and POI (near) is performed using the radar plot
information of the track. Image source: Saab.



2.3. Artillery weapons 13

where:
t = time
v = velocity
agravity = standard gravity (9.80665 m/s²)
aCoriolis = Coriolis acceleration component
adrag = projectile type dependent drag acceleration component

In principle, the drag component can be measured by the radar given high enough
accuracy of the measurements and that a sufficient portion of the trajectory has been
measured. Since this is often not possible to obtain directly, we still need to determine
this differently. One mechanism for doing this is to first guess the projectile type and then
estimate an initial firing elevation and firing velocity based on the drag model. Based on
this, a prediction of the projectile type is done, see Listing 1.1 for a simplified algorithm,
and the estimation of firing elevation and firing velocity is performed once more based on
the predicted projectile type if it differs. Typical values for elevation and velocity limits
are presented in Table 2.1.

Table 2.1: Example of typical limits of firing elevation (vertical) and firing velocity (horizontal)
for different projectile types. Note that for low firing elevation and high firing velocity, there are
some ambiguities as to which projectile type it can be.

> 45° Mortar Mortar Gun Gun
Firing

elevation > 0° Unknown Gun Gun Rocket
(gun)

> 0 m/s > 175 m/s > 350 m/s > 600 m/s
Firing velocity

However, if we can classify the projectile type before the model fitting is performed,
this second estimation is superfluous.

2.3 Artillery weapons

Mortar, also called infantry weapon, is a highly mobile and lightweight weapon using
projectiles (also called shells) with fins, of relative low calibre. Mortar projectiles are
usually fired at >45° elevation angle at sub-sonic speeds. A gun, also called Howitzer, field
or conventional artillery or just cannon, uses spin stabilised projectiles and is usually of a
higher calibre than mortar. It uses a wide variety of firing geometries which can give short
to medium range. Rocket artillery is normally fin stabilised, and usually of the same or
higher calibre than gun artillery, but are usually longer in size as the back of the rocked is
filled with propellant. Rockets are also usually fired at <45° elevation angle with a short,
accelerating burn phase reaching a high maximum speed after around two seconds. This
means that they have a longer range, but also means that they are not ballistic until the
burn phase ends. All of these three main projectile types can be grouped into two calibre
groups each; light and heavy. For simplicity, they are referred to as ML, MH, GL, GH,
RL and RH for mortar light and heavy, gun light and heavy and rocket light and heavy
respectively.

The flight time can be anywhere from a few seconds for some mortars weapons to several
minutes for some rockets and guns. It is therefore imperative to get good measurements



14 Chapter 2. Background

as early as possible to get good accuracy at POO and thus good enough accuracy to warn
at POI.

Examples of ranges for some potential classification parameters can be seen in Table 2.2.
Some of these must be inferred from measurements, like RCS2, others can be calculated,
like firing velocity, while yet others, like calibre, can only be inferred by a combination of
other parameters. As can be seen, the ranges are overlapping and hence the classification
problem is more complex than what Table 2.1 suggests.

Table 2.2: Examples of some typical ranges of potential parameters for various projectile types.
However, plenty of variation exists. RCS values are not disclosed here for proprietary reasons.

Mortar Gun RocketParameter Light Heavy Light Heavy Light Heavy
Calibre (mm) 35-81 81-120 50-122 122-220 60-200 200-950
Firing velocity (ms ) 150-300 150-350 300-750 350-850 650-1000 750-1050
Firing elevation (°) 55-80 55-80 15-40 15-40 15-40 15-40
RCS (m²) WND WND WND WND WND WND

In some cases, a track is not associated with real weapons fire. This is called a false
target and can also be produced by clutter, even with a clutter map that attempts to cancel
this as early as possible in the processing chain. However, we can use the confidence level
of the projectile classification to flag a track as a false target and hence remove it later in
the chain.

2.4 Performance metrics

To evaluate the relative performance of our experiments we need to establish suitable
metrics.

Accuracy is one of the most used ranking metrics for classification performance. It is
defined as the ratio between correct predictions and all predictions [16], see Equation (2.3).

accuracy =
correct prediction

total number of predictions
. (2.3)

Specifically, for a binary classification problem the equation becomes:

accuracy =
true positives+ true negatives

true positives+ true negatives+ false positives+ false negatives
. (2.4)

Often, the complement, the misclassification rate or error rate, is used:

error rate =
incorrect prediction

total number of predictions
, (2.5)

which gives:

accuracy = 1− error rate. (2.6)
2RCS is the ratio of power per unit area reflected toward a receiver divided by the power per unit area

that was incident on the target. A radar receiver does not directly measure RCS but can infer its value
from measurements of signal strength and range applying the radar equation.



2.4. Performance metrics 15

More formally:

accuracy = 1− err, where err = 1

N

N∑
i=1

L(yi, f(xi)), (2.7)

where N is the number of data points, L is some loss function, e.g. squared error
loss for a regression problem, xi and yi are samples from our data, (X,Y), and f is the
prediction function.

Another term which is used together with the performance metric is the standard
deviation (SD), often also just denoted σ:

σ =

√√√√ 1

N

N∑
i=1

(L(yi, f(xi))− err)2. (2.8)

We can then calculate the confidence interval :

CI = x± z σ√
n
, (2.9)

where x is the n mean value, z is the confidence level constant and n is the number of
samples.

However, accuracy can also easily mischaracterise the predictive performance,
particularly when used with unbalanced datasets [17].

Area Under the Curve of the Receiver Operating Characteristics (AUC ROC), or simply
AUC, is the metric that is derived from calculating the ROC space and describes the
miscalculation cost. The ROC space is in turn defined by the false positive rate vs. true
positive rate:

ROC =
1− specificity
sensitivity

, (2.10)

while varying the decision threshold. Hence AUC has been suggested as a better
measure than accuracy [18].

Specificity and sensitivity are for a binary classification defined as

specificity =
true negatives

true negatives+ false positives
, (2.11)

and

sensitivity =
true positives

true positives+ false negatives
. (2.12)

In other words, the ratio of correct predictions of "no signal" and "signal" respectively.
However, more recent research has suggested that AUC is not a good classification measure
for small datasets [19] and that it has other significant problems in model comparison [20]
[21].



16 Chapter 2. Background

2.5 Machine learning

Machine learning is a subfield of computer science and information processing that "aims
to give computers the ability to learn without being explicitly programmed" [22]. The
start of this field can be traced back to Alan Turing’s paper Computing machinery and
intelligence [23] where he addressed the problem of “thinking machines” and also proposed
an experiment which today is known as the Turing test. He proposed that this machine
should not attempt to simulate the adult mind, but start by simulating a child and then
teaching and evolving it to an adult, which is very close to how most ML algorithms work
today.

ML algorithms are often divided into groups based on common characteristics.
Marsland divides them into four groups based on their learning paradigms [24]:

• Supervised learning: Based on a training set of examples where the correct
responses are provided, the algorithm generalises to respond mostly correct to all
possible inputs.

• Unsupervised learning: Correct responses are not provided, but instead, the
algorithm tries to identify similarities between the inputs so that inputs that have
something in common are categorised together.

• Reinforced learning: The algorithm gets told when the answer is wrong, but does
not get told how to correct it. It has to explore and try out different possibilities
until it works out how to get the answer right.

• Evolutionary learning: Computer models are made to evolve, using the idea of
fitness, similar to how biological organisms adapt and evolve to improve their survival
rates in their environment.

However, evolutionary learning is often seen as a group of optimisation methods instead
[25]. Goodfellow et al. [16] focus on how the algorithms experience the training data during
the learning process and as such do not include evolutionary learning as one of the main
groups.

The purpose of most ML algorithms is to be able to predict the future of a process
based on historical data of the same process, discover patterns in data or maximise the
performance of a process. Multiple algorithms have emerged over time depending on the
specific problem to solve, the amount and type of the data, the state of the research at the
time of a specific algorithm’s introduction, to name a few factors.

Both regression and classification problems can be solved by ML algorithms. They
range from simple linear models, like linear regression, more complex non-linear models
like artificial neural network (ANN) and support vector machines, and tree and rule-based
models like random forest, again to name just a few algorithms [26].

Instead of using just one algorithm for the entire problem, a common technique is to
combine several models in various ways to obtain better predictive performance, which
is called ensemble methods. Some common types of ensembles are bagging, boosting and
stacking. They work by adjusting the dataset or combining learners [16].

Our problem is a classification problem involving time-series data that have truth data,
hence we will use supervised learning algorithms like the non-linear models support vector
machine (SVM), k-nearest neighbour (k-NN) and ANN and tree-based models like C5.0
and XGBoost. Temporal sensitive algorithms like long short-term memory (LSTM) [27]
and gated recurrent unit (GRU) [28] will also be considered during our research.



2.5. Machine learning 17

2.5.1 Support vector machines

In a traditional classification problem, any classification algorithm attempts to select a
separation based on the accuracy of the classifier. This is illustrated in Figure 2.6 (a)
where there is an infinite number of linear partitions to perfectly classify the data.

Support vector machine (SVM) attempts to define the best partition by defining a
metric called margin, which describes the distance between the partition and the closest
training set point, and then maximises this metric [26]. This is illustrated in Figure 2.6
(b).

This example is a linear problem. Most problems will be more complex and hence
require higher dimensionality of the partition function, a hyperplane. SVM belongs to a
group of methods called kernel methods, and by using an appropriate kernel, SVM can
map the data onto the desired space. Non-linear kernels will produce non-linear classifiers.

(a) Infinite linear boundaries (b) SVM maximum margin boundary

Figure 2.6: Simplified exampled of infinite partitions of a completely separable dataset (a) and
on an SVM trained on the two classes with a linear optimal hyperplane and maximum margins
(b). Samples on margins are called support vectors. (a) was adapted from (b). Source of (b):
Larhmam3.

2.5.2 k-nearest neighbours

Instead of a hyperplane dividing the feature space, like in SVM, k-NN looks at the k
neighbour vectors which have the lowest distance metric from the training set to a new
sample. The predicted class of the new sample is the class with the highest probability
based on those neighbours [26], illustrated in Figure 2.7.

There are many distance metrics possible. One of the most used is Euclidean distance
d(s, xj), the geometric, straight line distance between two samples, the new data point s
and an existing sample xj , for all n attributes, see Equation (2.13),

d(s, xj) =

√√√√ n∑
i=1

(si − xji)2, (2.13)

3From: https://en.wikipedia.org/wiki/File:SVM_margin.png (retrieved on 2021-04-01), CC BY-SA
4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.

https://en.wikipedia.org/wiki/File:SVM_margin.png
https://creativecommons.org/licenses/by-sa/4.0


18 Chapter 2. Background

X
1

X
2

Figure 2.7: A simplified example of k-NN with "blue" and "red" classes of data points. For the
new data point in "green", we can determine the most likely class by looking at the classes of its
nearest neighbours. In this case, the decision would be “blue” because this is the majority of the
k=3 neighbours.

2.5.3 Artificial neural network

Artificial neural network (ANN) is inspired by studies of how biological neural networks
processes information [24]. A biological brain utilises a completely different information
processing model than traditional digital computers do. The biological brain is a complex
and non-linear "computer" which can organise neurons to perform certain tasks, whether
this is sight or abstract thinking. The reason for the initial interest in ANN was the
realisation that emulating this in digital computers could potentially outperform traditional
computing both in performance and ability.

An ANN is targeted and optimised to solve problems in specific areas, e.g. in recognition
of patterns or classification of information, and is trained in the same way as humans; by
trial and error, assessing achieved results, retrieving stored information and using examples.
The ability of ANN to learn enables it to generalise information which allows it to produce
reasonable results from any data that were not used in the training phase [29].

The McCulloch-Pitts neuron was an early attempt to model the brain neuron using
manually set weights to categorise input data. This was refined by Rosenblatt to a model
which could learn weights. Widrow and Hoff further refined this to include regression. The
problem with these models is that they rely on linear activation functions, which do not
cope well with some complex problems. This caused a hiatus in research into biologically
inspired ML models. However, with the introduction of techniques like back-propagation
and non-linear activation functions, like ReLu and sigmoid, ANN continues to be relevant
in research and applications [16].

A graphical representation of an artificial neuron can be seen in Figure 2.8 and is
expressed in Equation (2.14), whereX andW are the input and weight vectors respectively,
which are summed and fed into the activation function f .



2.5. Machine learning 19

Figure 2.8: A graphical representation of an artificial neuron, also called a perceptron. Inputs
and weights are combined into a sum which is acted upon by an activation function that produces
an output. A bias is often included in such a representation, but can also be generalised as an
ordinary input and wight where the input equals 1.

y = f(
N∑
i=1

XiW i), (2.14)

The activation functions can be simple, like the one used in the original McCulloch-Pitts
neuron; the binary step or Heaviside step function as expressed in Equation (2.15),

f(x) =

{
0 for x < 0

1 for x ≥ 0
, (2.15)

or more complex like the softmax function in Equation (2.16),

f(X)i =
exi∑J
j=1 e

xj
for i=1, . . . , J, (2.16)

which outputs a vector of normalised elements, which sums up to 1, based on an input
vector.

However, a single artificial neuron is usually not enough to solve real-world problems.
A key element of the ANN paradigm is a system with many artificial neurons which are
interconnected in a network configuration and work in unison to solve a particular problem.

The variation in activation function, the size of the network, the network topology
and selection of training algorithm are used to define the ANN model [30]. A simplified
network can look like the one in Figure 2.9. It is a standard feed-forward configuration
with two hidden layers. This might have been a good enough model for a simple problem,
but contemporary models normally have either many hidden layers, often referred to as
deep ANN, or many nodes per layer, wide ANN. Often, one of the inputs for all non-input
nodes is reserved as a bias to have control of the offset of the hyperplane to use all of the
available dynamics of the space it occupies.

2.5.4 Ensemble trees

Extremely randomised trees are ensemble learning methods for classification and
regression which are as accurate or more accurate than some other decision tree



20 Chapter 2. Background

Figure 2.9: A model of an ANN where each circle represents an artificial neuron (or node) as
described in Figure 2.8. The normal topology consists of one input layer (to the left), one output
layer (to the right) and one or more hidden layers (in the middle). Each node in one layer is
connected to all the nodes in the next layer in a feed-forward configuration. Image source: Michael
Nielsen [31].

algorithms, particularly on classification problems. They work by combining decision
trees, with explicit randomised cut-points and attribute choices at the decision nodes,
and averaging the prediction of an ensemble of trees [32].

Gradient boosting is another ensemble method that combines the principle of boosting,
converting weak learners into strong, with gradient descent to minimise loss when adding
trees to the model. One implementation is XGBoost (extreme gradient boosting) by Chen
and Guestrin [33]. It has gained a reputation as having generally very good predictive
performance and is used in many ML competitions. It has also found its way into time-
series applications [34].

C5.0, an early ML framework for training decisions trees, is also a classification model
which employs an ensemble of trees with boosting and pruning [26]. It has multi-path
splitting using the principle of gain. In information theory, gain is defined using the
Shannon entropy4:

H(X) = −
n∑
i=1

P (xi) log2 P (xi), (2.17)

where X is a set of training examples x1 · · ·xn, P(xi) is the probability of value xi and
n is the number of possible values. The information gain IG can then be calculated for X
given the feature Y:

IG(X,Y) = H(X)−H(X|Y), (2.18)

where

H(X|Y) = −
∑

xεX,yεY

P (x|y)logP (x|y)
P (x)

. (2.19)

4Here we have used base 2 logarithms as this maps to units of bits, but other bases are also possible to
use.



2.5. Machine learning 21

2.5.5 Recurrent neural networks

The main difference between traditional feed-forward ANNs and specialised time-aware
algorithms like recurrent neural networks (RNNs) is that in the former input data is
processed in fixed chunks all at once, while the latter processes input data one at a time
and in a sequence where the output of one "step" (one time step) is the input of the next
"step", see Figure 2.10 (a).

(a) vanilla RNN (b) LSTM (c) GRU

Figure 2.10: This figure shows the information processing and data flow in vanilla RNN, LSTM
and GRU cells. The vanilla RNN (a) only has a single tanh activation function, LSTM (b) consists
of three gates: the forget, input and output gates in addition to the cell state and GRU (c) consists
only of the reset and update gates and the cell state. One or two, in the case of LSTM, of the
outputs act as inputs to the next cell. Image source: dProgrammer lopez5.

This recursion can be expanded as a standard feed-forward ANN and we can then apply
traditional back-propagation, see Figure 2.11, to use existing ML algorithms for training.
This technique is often referred to as back-propagation through time (BPTT). Inside each
cell, there are one or more hidden states which make an RNN specialised for processing a
sequence of values distributed in time [16].

Figure 2.11: An illustration of how recursive BPTT in RNN (on the left of the equal sign) can be
unrolled (on the right of the equal sign). This can then be processed in existing ANN algorithms.
A represents a node as described in Figure 2.10, Xt is the input and ht the output. The data
back-propagated through time can be ht, but can also be some other hidden state within the cell.
Image source: Christopher Olah6.

Because vanilla RNN suffers from vanishing gradient, causing earlier time steps to
become quickly "forgotten", similar to the way ANN also suffer from this, variants like
LSTM and GRU were developed to mitigate this issue. However, research by Mikolov et

5From: http://dprogrammer.org/wp-content/uploads/2019/04/RNN-vs-LSTM-vs-GRU-1024x308.
png (retrieved on 2021-04-01).

6From: https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
(retrieved on 2021-04-01).

http://dprogrammer.org/wp-content/uploads/2019/04/RNN-vs-LSTM-vs-GRU-1024x308.png
http://dprogrammer.org/wp-content/uploads/2019/04/RNN-vs-LSTM-vs-GRU-1024x308.png
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png


22 Chapter 2. Background

al. [35] have shown that it’s possible to get near LSTM performance in some cases using
a structurally constrained RNN.

Both GRU and LSTM use a mechanism called gates; additional tensor operations to
modify how the hidden state is used within each cell to regulate how they "remember"
and "forget" to control the time frame of the BPTT as well as for numerical stability to
avoid the vanishing gradient problem [16]. GRU is generally less complicated than LSTM
as it has fewer tensor operations and lacks an output gate, see Figure 2.10 (c) and (b),
respectively.

Chung et al. [36] cannot conclude which of LSTM and GRU performs better on
sequence modelling of polyphonic music and speech data, which is similar to the findings
of Bahdanau et al. [37] on machine translations. However, Yang et al. [38] find that GRU
can perform better for some problems with smaller datasets and long sequences, possibly
due to the lower complexity of the algorithm and hence less overfitting. For all other
scenarios, LSTM is superior to GRU.

Westhuizen and Lasenby have demonstrated that LSTM can also be simplified to only
a single gate, the forget gate, and give better results than LSTM with three gates, on five
different tasks [39]. We will therefore also consider both LSTM and GRU in our research.

2.5.6 Resampling

Resampling in ML are general statistical methods for estimating the model performance
of a population without using distribution tables, e.g. normal distribution, either for
estimating performance or for validating the model. For model validation, this is typically
achieved by using a subset of the original dataset to train a model and the remainder of
the dataset to evaluate the model. This process is repeated multiple times and the results
are aggregated [26]. In this way, the entire dataset can be used in evaluating a particular
algorithm.

The reason for this additional computation step for model validation is to mitigate
the variance-bias trade-off where too simple models produce results with low variance and
high bias, so-called under-fitting models, while too complex models produce results with
low bias and high variance, so-called over-fitting models. The ideal model gives low bias,
the ability for a model to capture the true relationship in the data, and low variance,
the ability to generalise on the data, but in real-world problems, there is nearly always a
trade-off between variance and bias.

K-fold cross-validation is a specific resampling technique where the dataset is randomly
split into k subsets, called folds. The model is then trained on the complete dataset except
for the first fold. This first fold is then used to estimate the performance of the model.
This is repeated for the second fold and so on until the k estimates can be summarised.
The higher the value of k, the lower the general bias of the model, since the training set
increases, while the variance increases [26, 40].

A variant is called stratified k-fold cross-validation, usually used for classification, where
random sampling is performed within the respective classes. This maintains the class
distribution for the outcome of the model, thereby lowering the bias of the model further.

Both of these cross-validation techniques can be repeated with different random splits,
thereby also reducing the variance further. Hastie et al. [41] assert that this repetition
gives a good estimate of the true accuracy, hence can be used without a separate validation
dataset. This is particularly important when the dataset to be used is small.



2.5. Machine learning 23

The misclassification error for cross-validation is calculated similarly to Equation (2.7)
as:

errcv =
1

N

N∑
i=1

L(yi, f−κ(i)(xi)), (2.20)

where κ is the index function which indicates the fold where sample i is present and
f−κ(i)(xi) is the prediction function using data not in the set denoted by κ(i).

Kohavi [40] recommends ten folds, i.e. k = 10, since it strikes a good balance between
bias and variance, compared to more computational expensive configurations like twenty
fold or leave-one-out cross-validation. There is no general recommendation on the number
of repeats as far as we have been able to determine.

Another resampling technique is bootstrap aggregating, also called bagging. The
bootstrap is a collection of samples taken with replacement from the original dataset of
the same size. This means that a particular sample can be represented zero, one or more
times in the bootstrap [26]. Usually, bagging is combined with an ML algorithm, e.g. a
tree model, where the bootstrap is used for training and the samples not in the
bootstrap, referred to as out-of-bag samples, are used for testing. This process is then
repeated, or aggregated, to estimate the model’s performance.

The misclassification error and SD of the bagging are then calculated as:

errboot =
1

B

B∑
i=1

erri and (2.21)

σboot =

√√√√ 1

B − 1

B∑
i=1

(erri − errboot)2, (2.22)

where B is the number of replications and erri is the error from the ith bootstrap
repetition as calculated by Equation (2.7).

Another property of bagging is that it can be used to estimate the SD, and hence
the confidence interval (CI) of an existing classification or regression effort, so-called case
resampling [42]. An important aspect of this method is the number of replications, B
in Equation (2.22). Davison and Hinkley [42] recommend a sufficiently large B without
being specific while Efron and Tibshirani [43] suggest B between 50 and 200. However,
the latter also suggests several methods for constructing the CI claiming that the standard
normal intervals can be inaccurate when used with bootstraps and that these methods
are more accurate for small datasets and a small number of replications, without being
specific about what is "small". They suggest B ≥ 500 for a good estimate of the CI; a
higher number of replications for higher confidence levels. Manly [44] suggest looking at
the variance over several repetitions of the bootstrap process and suggests at least 1000
bootstrap replications for a 95 % CI.

2.5.7 Hyper-parameter tuning

All the models discussed earlier have at least one parameter which can be tuned to
control how the model fits the data. Poor choice of values for these hyper-parameters can
potentially decrease the usefulness of a model. For instance, some hyper-parameters can



24 Chapter 2. Background

control the complexity of a model, but a too complex model can result in over-fitting and
a too simple model can result in under-fitting.

Traditionally, grid search and random search, have been the most widely used strategies
for hyper-parameter optimisation [45]. Over time, other strategies have emerged, like
Bayesian optimisation [46] and evolutionary computation [47].

However, these approaches require that the model is trained and evaluated on each set
of hyper-parameters permutations, causing the computation time to increase proportionally
depending on the number of hyper-parameters to tune and how well the tuning process
converges.

Jaderberg et. al have proposed a novel Lamarckian algorithm, population-based
training (PBT), which reduces the tuning time by both training and tuning the model
simultaneously [48]. It uses a population of “cooperating workers", each optimising one
model with randomly initialised hyper-parameters. At regular intervals, the entire
population is evaluated and all individuals can have their weights and hyper-parameters
updated externally by two methods; exploit and explore. The former method replaces
poorly performing models (bottom quantile) with better performing models (top
quantile). The latter method randomly resamples or perturbs the hyper-parameters of
exploited individuals. This way, good models can continue to learn while poor models are
replaced with variants of good models.

This principle of exploiting and exploring is analogous to inheritance and mutation,
respectively, found in evolutionary computation (EC). Since crossover is not part of
PBT; weights and hyper-parameters are inherited, but only hyper-parameters are
mutated. Learning can in principle be performed by any ML algorithm as the rate of
mutation is decoupled from the rate of learning.

The effect is that PBT generates a schedule of hyper-parameters; multiple sets of hyper-
parameters that change at intervals during training. This is in contrast to the norm; a
single set of hyper-parameters is used for the entire training. See Table 5.5 for an example
schedule found during our research.

Jaderberg et al. show that PBT gives faster convergence time and higher performance
for several experiments compared to their baseline models. They have used large datasets
for their work. Tennebø and Geitle have shown that the technique can also be applied to
achieve comparable or state-of-the-art results on some smaller datasets [49].

The problem of optimising hyper-parameters instead becomes a problem of optimising
the meta-hyper-parameters of the PBT method like the size of worker population, the
size of top and bottom quantiles, the perturbation interval and the resample probability.
However, the default values of these are reasonable for most problems, and a conservative
approach, which we have chosen, is to only configure the size of the worker population and
the perturbation interval.

2.5.8 Data augmentation

The best way to improve the generalisation performance of an ML model is to train it on
more data [16]. However, as described in Section 4.1, there are some challenges with our
data which includes uncertainties about the quality and quantity of the available data.
Data augmentation can reduce the problem by increasing the diversity and amount of data
by generating new, synthetic data based on existing data.

A simple way to illustrate data augmentation is to consider images of objects, human
faces, animals, etc., where each image is transformed using geometrical operations such as



2.5. Machine learning 25

translation, cropping, rotation or shearing to create multiple, similar images to the original
image. In addition, it is possible to adjust chroma components of images to get more or less
colourful or darker or lighter images. The advantage is that we already have the correct
class for the original image, and the number of combinations of geometrical operations on
a single image is huge.

Cubuk et al. [50] have automated this principle with their AutoAugment algorithm.
However, this algorithm uses a fixed augmentation policy and is computer-intensive
which has prompted Ho et al. [51] to propose an algorithm called population-based
augmentation (PBA). Its principles are based on PBT described in Section 2.5.7 and is a
general augmentation policy optimiser that adapts the augmentation operations used in
training to generate a complete augmentation policy schedule, instead of a fixed policy,
significantly reducing the computational costs while matching the performance of
AutoAugment. These methods are based on linear augmentations of images.

A potential more powerful strategy is called elastic deformation introduced by Castro
et al. [52], where a random stress field is used to deform the image in both vertical and
horizontal directions and then smoothed by a Gaussian filter.

However, geometrical image transformations are not directly suitable for our data,
which is strictly numerical sensor data, see Section 4.1. We can take some of the ideas
above and apply them to our dataset, making sure that the augmented dataset retains the
ballistic properties of the original. Some of the ideas we will consider are:

• Windowing, where a long trajectory is sectioned into multiple shorter trajectories of
varying length.

• Recentering, where a trajectory is moved in a radial direction from its origin.
• Melding, where multiple similar trajectories are aligned in time and individual plots

are sampled from those to create new trajectories.
• Noise, where Gaussian or uniform noise is added within the range for each feature.
• Bayesian, where e.g. a Monte Carlo simulation is used to create additional

trajectories.

Synthetic minority over-sampling technique (SMOTE) is another data augmentation
method and was created to mitigate the problem with model over-fitting from
imbalanced datasets [53]. Arsland et al. [54] have reported good results using SMOTE to
create additional synthetic data regardless of class imbalance. It works by selecting
randomly interpolating features from "close" exiting minority examples to create new
minority examples.

Another possibility we have is to use an in-house developed ballistic simulator model to
generate enough trajectories. However, this model contains only a limited set of realistic
projectile models and might introduce unwanted bias compared to real-world scenarios.

2.5.9 Regularisation

Another important concept when dealing with ML is regularisation; any modification to
the learning process that reduces the generalisation error, but not the training error [16].
In other words, techniques to prevent over- and under-fitting. Neyshabur et al. [55] group
regularisation into explicit and implicit regularisation. The former involves an explicit
penalty to the complexity of the model to reward simpler models and include techniques



26 Chapter 2. Background

like weight decay7 an additional term to the loss function, or dropout, where part of the
structure of the model is removed randomly. Implicit regularisation includes convolutional
layers in convolutional neural networks, batch normalisation and also data augmentation.

In their research, Hernández-García and König [56] show that data augmentation results
in the same or better results using fewer computing resources compared to weight decay and
dropout regularisation for visual object classification using ANN. They conclude further
that these two explicit regularisation techniques can dramatically reduce the performance of
the model unless the hyper-parameters are carefully optimised for the network architecture
and the data set, which is not necessary for data augmentation techniques.

It is worth noting that some algorithms have built-in regularisation, e.g. XGBoost [33].

2.6 Machine learning in radar applications

Various techniques for classifying radar targets have been proposed for ships [57] and
theatre ballistic missiles (TBMs)8 [58], using RCS for both types. The former extracts an
additional feature from RCS, angular-diversity RCS, using the maximum scatter difference
(MSD) algorithm to improve the accuracy of classification compared to other methods. It
is unclear whether this approach can be used for projectiles classification, but this could be
a topic of future research. The latter attempts to discriminate between re-entry vehicles
and spent tanks from a TBM. However, the RCS of re-entry vehicles and spent tanks are
uncorrelated leading to a simpler classification task. However, none of them touches on
ballistic projectile classification.

Kobashigawa et al. [59] have looked into detecting unexploded ordnance using ground-
penetrating radar, which compares genetic programming (GP) and ANNs. They conclude
that for radar imaging, GP outperforms ANN. Pisane [60] has worked on non-cooperating
aeroplanes using a bi-static radar configuration, which uses extremely randomised decision
trees (extra-trees). Using RCS or complex RCS, but in a bi-static setting, he concludes
that extra-trees performance is promising and comparable to automatic recognition of radar
images. Again, these methods have not been evaluated on ballistic projectile classification,
but particularly extra-trees looks promising in a radar setting.

Rosa et al. [61] have used multiple ML algorithms to identify individual birds from
radar images. They use multiple binary classifiers to separate birds from clutter and
identify four different types of birds. Random Forest is the best performing classifier with
consistent accuracy of >0.8, however other classifiers also performs well and they argue
that ensembles of classifiers might give better results. Bird clutter is a problem for WLR
since birds can steal capacity and create false targets. Hence, a direct application of this
research can be to filter out birds as false targets.

Recent research into also using RCS in conjunction with a fuzzy classifier to classify
ballistic projectiles has been performed by Lee et al. [62]. They used simulated RCS
values and simulated trajectories for the evaluation, not real data. The fact that clutter
and noise will influence the quality of the RCS estimation is only mentioned sparingly, but
is simulated in the final result. They also only use one type of artillery gun and two types
of mortars limiting the classification space significantly. They conclude that RCS can be
used for the classification of projectiles for the Firefinder radar. Since the principles of all

7The most common forms of weight decay are L1 and L2 regularisation, also called LASSO and ridge
regression [16].

8TBMs are ballistic missiles with a range of less than 3,500 km.



2.7. Summary 27

radars are mostly the same, there is reason to believe that the result should be applicable
also for real data from other radars. And as the authors also conclude, additional features,
such as drag coefficient, estimated firing velocity and estimated firing elevation, can be
subject to fuzzy classifiers and combined to provide a more accurate classification. While
the fuzzy logic as described in this research is not ML, we include it for completeness as
the only public research we found to attempt to classify ballistic projectiles.

Our work involves data that is organised in time series; plots of tracks are recorded in
sequential order. To utilise the data well, a different algorithmic approach is then often
needed. Time-series are well known in forecasting [63] and machine learning methods have
also been exploited in this area, such as autoregressive neural networks which is a hybrid
method combining autoregressive integrated moving average model with neural networks
[64].

Saab has also sponsored other similar work related to ML in radar applications.
Andersson and Luong [65] have used plots, including features like dimensions and
velocities in three dimensions, RCS and micro-Doppler, to distinguish between birds and
UAVs. They used filtered and smoothed behavioural data with LSTM and GRU
networks as well as a hybrid GRU/naive Bayes classifier. They compared their work with
previous work also sponsored by Saab and found that their work yielded better results
than time-series classifications using naive Bayes, logistic regression, SVM and ANN by
Strandberg [66] and comparable to elastic and Kohonen self-organising maps by Rosén
[67]. Similar to Rosa et al. [61], this research can also be used to separate birds from
targets of interest.

2.7 Summary

Correct projectile classification from targets detected by weapon locating radars can
provide substantial benefits, both in terms of cost, resources spent and lives saved,
equally for wartime and peacekeeping scenarios. However, classification has proven to be
challenging, mostly because of the number of different weapon systems and projectiles in
use, real-world effects like rain, fog or wind, and the number of geometries involved.
Research into this field is also sparse.

Based on the quality and quantity of our dataset, we might need to augment the size
of it. To do this, a thorough understanding of the physical properties of the measured and
any synthetic features which are involved in the augmentation is necessary. Furthermore,
the time-series sensitive ML algorithms and hyper-parameter tuning algorithms will need
further investigation.

Existing research in this specific field of artillery projectile classification is limited, but
particularly the consistent use of RCS in related research is interesting and confirms Saab’s
historic use of this feature.





Chapter 3

Ethics

"No nation was ever so virtuous as each believes itself, and none
was ever so wicked as each believes the other."

— Bertrand Russel, Justice in War-Time

This chapter will discuss some general research ethics and specific ethics related to
military systems, through five questions followed by a summary. Where applicable, we
will refer to autonomous weapons systems (AWS) as analogous to the application of ML
in military radar systems.

3.1 Introduction

The Internet Encyclopedia of Philosophy defines that the field of ethics ". . . involves
systematizing, defending, and recommending concepts of right and wrong behavior." and
equals this with "moral philosophy" [68]. This interpretation will, in turn, depend on
personal and collective beliefs, values and norms.

The Norwegian National Committee for Research Ethics in Science and Technology
(NENT) defines "research ethics" as a broad set of standards, values, and institutional
arrangements that contribute to and regulate research activities [69]. It lists 23 guidelines
on how to perform ethical research grouped into these topics:

• The obligations of research to society.
• Integrity, truthfulness, and accountability.
• Uncertainty, risk, and the precautionary principle.
• Protection of research subjects.
• Protection of animals used in research.
• The relationship between research and other knowledge-bearers and forms of

knowledge.
• Commissioned research, openness, and conflicts of interest.
• Whistle-blowing and ethical responsibility.
• Dissemination of research to the general public.

No participants were subject to this research, nor were any animals involved, hence
these elements can be disregarded. Most of the others are more general and most concerned
with how research is performed and not what is researched. This applies equally to research
in general. However, the special consideration in this research is that it involves weapons,

29



30 Chapter 3. Ethics

albeit indirectly, which means that we should investigate the special ethical implication
this raises, specifically the obligation to society. NENT lists three guidelines related to this
topic:

1. Research has an independent responsibility for the role it plays in social
developments.

2. Research should be compatible with sustainable development.
3. Research has a responsibility to contribute to greater global justice.

While the second guideline is relevant in the broader sense of the development of weapon
systems, we consider it outside the scope of this research. The other two are relevant also
for the use of military radar systems, and we will discuss these further.

The former of these deals with promoting peace and avoiding breaches in
international conventions and that the research should benefit society. The latter deals
mostly in how the research is performed and shared for ‘greater global justice’, but we
will include international law related to military actions into this.

In addition, since the author is an employer of Saab and as this research is facilitated
by the use of Saab proprietary data under the supervision of Saab, we have adhered to
Saab’s Code of Conduct [70].

3.2 Ethics in military applications

Since a radar cannot apply force by itself, we will in this discussion consider WLR in a
bigger context which includes a C2 system and weapon systems, see Figure 3.1. The role
of the radar in this context is to gather intelligence to the military and political leaders
in a conflict, about enemy (and friendly) ballistic weapons, much in the same way as a
forward observer, soldiers in the field, but is nevertheless classified as military materiel. In
a combat scenario, the WLR is typically deployed behind the forward line of own troops
and is continuously moved as the battlefronts move. In a camp protection scenario, the
WLR is located inside one of the camps it is tasked to protect. Hence, it is very rarely
involved in hostilities directly.

C2Radar Weapon

Figure 3.1: This is a very simplified view of a (military) radar, in our example, a WLR, in a
setting with a C2 system and one or more weapon systems communicating with each other. They
are bidirectionally connected to show that information can also travel from the weapon to the
radar to command other missions than pure WL missions.

A WLR can estimate POO, POI and the classification of ballistic projectiles and report
this information, either for warning in the case of POI or for the potential of return fire in
the case of POO. It is typically able to send reports either manually or semi-automatically,
that is with humans in-the-loop, or fully automatic, with no humans in-the-loop, within
seconds of detection. With reference to Figure 3.1, there can in other words be different
degrees of automation between the elements involved; the radar, the C2 system and the
weapon systems. The automation can be further fine-tuned to only trigger if a projectile



3.2. Ethics in military applications 31

is launched from within a designated zone1, lands within a different designated zone, the
estimated POO has an accuracy error below a certain threshold or a combination of these
or other criteria. Hence, the WLR itself cannot directly engage an enemy, but provides
intelligence that can be used by weapon systems.

There is little publicly available research on the ethical implications of augmentation
of military radar systems using ML in general which we have been able to find. However,
some research exists in the field of AWS and we will use this analogy even though our
research does not touch directly on autonomy.

The laws of war (LOW) are encoded in a collection of international conventions
describing what is and what is not acceptable behaviour before, during and after armed
conflicts. In addition, national regulations or law is usually also included. Jus ad bellum,
the right to war, prohibits the use of force, except for the right to individual or collective
self-defence. This is regulated by the United Nations (UN) Charter Article 51 [71], and
for Security Council enforcement measures, ibid. Article 42 [72].

Jus in bello, the right in war, governs the conduct of military operations. It is also
referred to as International Humanitarian Law and is based on the Hague Conventions
and the Geneva Conventions including their additional protocols [73]. Also, Article 36 of
the 1977 Additional Protocol to the 1949 Geneva Conventions requires states to determine
whether new weapons may be prohibited by international law [74], more specifically the
rule against inherently indiscriminate2 weapons and the rule against weapons that cause
unnecessary suffering or superfluous injury.

Such weapons include biological weapons which are regulated by the United Nations
Biological and Toxin Weapons Convention [75] which bans the development, production
and stockpiling of biological weapons by the signatory states. The Geneva Protocol from
1925 [76] regulates the use of biological weapons, amongst other methods.

In contrast, there is no similar convention regarding the use of nuclear weapons. At
the time of the nuclear bombing of Hiroshima and Nagasaki in Japan, President Truman
believed that it was the only way to stop the war with Japan [77], but General Eisenhower
claimed that Japan was already defeated before these two attacks [78]. In an interview
published in the New York Times in 1946, Einstein claimed that he was sure that President
Roosevelt would have forbidden the atomic bombing of Hiroshima had he been alive, and
that it was probably carried out to end the Pacific war before the Soviet Union could
participate [79]. Einstein later wrote that he always condemned the use of the atomic
bomb against Japan [80]. Recently it has come to light that the US military leaders knew,
through intercepted communications Between Japan and the Soviet Union, that Japan was
negotiating a surrender before the bombing [81].

The use of ML in military systems is also not regulated in any internationally binding
way. For instance, the European Commission’s proposal for regulating ML, the Artificial
Intelligence Act, explicitly exclude systems for military purposes from the proposal [82].
However, this area is being worked on, both by private companies and organisations. For
instance, both Capgemini’s Code of Ethics for AI [83] and IBM’s Everyday Ethics for
Artificial Intelligence [84] are examples of in-company guidelines for developing applications
in the ML domain. Similarly, organisations as diverse as the Centre for Humanitarian
Dialogue [85] and AI Alliance Russia [86] have developed their respective ethics codes for

1A zone in a military context is a geographical area defined by a polygon or circle.
2An indiscriminate weapon system is a weapons system that cannot be aimed at a specific target and

which is as likely to hit civilians as combatants



32 Chapter 3. Ethics

the ML domain. We expect that also intergovernmental organisations like the UN will
follow suit and provide some regulations in this domain in the future.

In a modern interpretation, jus ad bellum and jus in bello both operate during
hostilities. The former involves the use of force and must be justified by referencing the
principles of necessity and proportionality. The latter also involves the same principles,
guaranteeing that victims on both sides of a conflict are equally worthy of protection,
protecting combatants and civilians from unnecessary suffering, and also deals with how
prisoners of war are treated. However, there is no clear distinction between what is
considered necessary and proportionally and it is up to the state, the military command
and finally the individual soldier to make the distinction, often during stress [73]. History
has shown that adherence to these LOW sometimes breaks down in these situations.

In the following discussion we have formulated five questions to discuss the ethics of
our work:

1. Is it ethical to use improved technology to gather intelligence?
2. Is it ethical to use this intelligence to issue warnings?
3. Is it ethical to use this intelligence to cause harm to other human beings or property?
4. Is it ethical to let technology perform lethal or non-lethal force on people

autonomously?
5. Is it ethical to develop weapon systems that are capable of performing lethal or

non-lethal force on people?

Since a WLR is primarily a defence system, we will not consider the ethics of intelligence
in the setting of espionage, covert operations or theft of information as described by Omand
and Phythian [87] and Beck [88]. Instead, we will in the following discussion consider the
WLR’s use of remote observations and their implications.

3.3 Ethical questions

Question 1: Is it ethical to use improved technology to gather
intelligence?

Intelligence gathering is an important activity for states to maintain their sovereignty.
There has been a huge technological leap from the spyglass to a modern, long-range air
surveillance radar - very few questions the legitimacy for states to acquire more advanced
radar technology. However, this happens from time to time, e.g. when Russia objected
to the planned upgrade of the GLOBUS II radar located in Vardø, near the Norwegian
border to Russia [89].

Does this mean that all technological advances in intelligence gathering are ethically
sound? And is it clear cut what is ethical and what is not? Not necessarily. This is
exemplified by the controversy when Edward Snowden leaked highly classified documents
in 2013; some see him as a whistle-blower who uncovered a global surveillance program
while others felt he is a traitor [87].

What makes the question more complicated is that intelligence gathering can occur
during peacetime, during hostilities or during times of "neither peace nor war." Different
international regulations apply for these different scenarios: During times of war, both jus
in bello and jus ad bellum are applicable, while only the latter applies to the events leading
up to hostilities. However, during peacetime other types of international and national



3.3. Ethical questions 33

laws and regulations are in effect, e.g. the UN Charter in its entirety and numerous other
treaties and other international agreements [90]. One of the main principles of international
law is the promotion of peace [91]. This is also reflected in the NENT ethics guidelines. It
follows from this that aggression should be avoided. But what is aggression on this level?

An analogous example can be that of two neighbours where one is peeking "over the
fence" on the other’s property from afar, perhaps with a pair of binoculars. Can this be
considered illegal aggression? Perhaps it is in some jurisdictions, but what if we add that
the first neighbour lives in a different country than the second neighbour and does this
peeking across the border? Or what if the first neighbour suspects the second neighbour is
doing something criminal? Would it be legal without the binoculars? These are questions
that are not easy to answer from a strictly ethical perspective. What some will consider
aggression, others will dismiss.

An important principle of the LOW is to prevent unnecessary suffering and avoid
collateral damage. To distinguish lawful targets from civilian targets, established means
of identifying military objects and personnel include distinctive marking, i.e. wearing a
uniform and painting vehicles in specific colours. Another important discriminator is the
collection of intelligence about the location of combatants to avoid harming civilians and
damaging civilian property [92]. Hence, it can be argued that some form of WL ability is
required for all states and that it should be optimised for accuracy.

In the case of a radar, the intelligence gathering is non-intrusive; no "curtains" are
present and the information is freely available to anyone with the capability to "see"
it. Therefore, we consider this to be ethical according to both the perspective of social
developments and global justice.

Additionally, it can also act as a deterrent if other nations know the
intelligence-gathering capabilities of a particular nation. Hence, we believe this also
counts as preventing unnecessary suffering as per jus in bello.

Question 2: Is it ethical to use this intelligence to issue warnings?

Ballistic weapons have a high degree of destructive force around the POI. It is therefore
critical to warn both civilians and own troops to evacuate this area as quickly as possible
before an impending attack. To do that it is necessary to know to a certain degree of
confidence which area is affected to route the warning to the correct location. With current
WLR technology, this is already performed today, hence this is already established practice.
But depending on accuracy, false warnings may reduce the trust in these systems [93].
With improved projectile classification, the accuracy and confidence should increase, hence
providing earlier and more accurate warnings as well as reducing the number of false
warnings.

As discussed above, this might even be required behaviour. Again, we believe this
falls within jus in bello and as such is ethical according to both the perspective of social
developments and global justice.

Question 3: Is it ethical to use this intelligence to cause harm to other
human beings or to property?

As discussed, jus ad bellum opens for self-defence from armed attack. To do so effectively,
states use systems of varying degrees of technological complexity to gather intelligence, e.g
WLR to locate POO and POI of hostile RAM weapons. When the POO is known with a



34 Chapter 3. Ethics

high enough degree of confidence according to the doctrine of the defending country, it may
be entitled to use force back. With a higher degree of confidence from better classification,
unnecessary force is possible to avoid since the amount of munition used for counter fire
is inversely proportional to this confidence. This relation is described as circular error
probability (CEP), the smallest radius of a circle containing the true target coordinates to
a certain probability, e.g. 50 % for CEP50 [94]. Higher confidence gives a smaller target
area.

This has two immediate effects in a conflict. Firstly, the area being targeted becomes as
small as possible, limiting the force used and thereby reducing the destruction wrought and
hence, the number of casualties. Secondly, given that the responses are carried out early
enough, before the aggressor can move their weapon systems, they can act as a deterrent -
reducing the total amount of attacks. Therefore, early and correct projectile classification
is essential to prevent unnecessary suffering and collateral damage.

But what if it is a case of first aggression? As already discussed, this is illegal according
to jus ad bellum, independently of the type of technology used. But even the use of certain
weapons in self-defence can be illegal. Such weapons include biological weapons which are
regulated by the United Nations Biological and Toxin Weapons Convention [75], which bans
the development, production and stockpiling of biological weapons by the signatory states.
The Geneva Protocol from 1925 [76] regulates the use of biological weapons, amongst other
methods.

We believe that intelligence can be used both ethically and unethically in a combat
situation. As long as any research is open and available the opportunity that it might
be misused is always present. As such, we do not condone the use of force, but accept
that there might be circumstances where both defence and attack as defined by the LOW
might be necessary. We believe that our research may help to balance the necessity and
proportionality of an attack, and as such is ethical according to both the perspective of
social developments and global justice.

Question 4: Is it ethical to let technology perform lethal or non-lethal
force on people autonomously?

As to the question about autonomy, the latest technology is often introduced in military
applications early and aggressively, also so with ML. One such example is the FOCUS
programme out of the Defense Advanced Research Projects Agency (DARPA) where
autonomous drones can identify and potentially apply lethal force to human targets [95].

Bode and Huelss [96] discuss AWSs and their implications on norms in international
relations. They argue that the development of AWS outpaces public, governmental and
legal considerations. These fundamental norms which are derived from international law,
human rights, and other formal sources, may become second to more procedural norms.
These latter types of norms are defined from what is more functional or effective in practice
in situations of warfare, and they consider that this in turn is leading the development of
fundamental norms. Instead of focusing on how AWS can be regulated, they suggest that
the perspective should be reversed: How AWS may create the regulation. They claim
that per definition, artificial intelligence does not perform (human) ethical judgement in
unstructured and complex environments and that actions of AWS are unpredictable. They
mirror the US drone program where the use of drones, which has set new, "appropriate"
standards for ending human life without there being regulation from international law,
have created a public accepted norm which is now difficult to return to status quo from.



3.3. Ethical questions 35

However, they neglect to discuss that also human actions are highly unpredictable,
even in a command structure found in the armed forces. We can consider the problem
from another angle. Arkin [97] has suggested that soldiers, through their conditioning and
training, can be thought of as robots (or AWS) and that robots could be more humane
than humans. He argues that despite their training, when soldiers are faced with the horror
of the battlefield, it becomes unrealistic that they would abide by the LOW. He admits
that a fully everyday or professional ethics "machine" is unrealistic, but puts forward
that a battlefield ethics subset would be more clear-cut and precise and hence feasible to
implement. He goes on to describe a prototype implementation of such a battlefield ethics
architecture.

In a later work [98], Arkin goes further and argues that AWS could on the battlefield
potentially perform more ethically than human soldiers and lists six ethical considerations
on why AWS may, at some point, be better able to effectively discriminate whether or not
a target is legitimate:

1. The ability to act conservatively, not having to factor in self-preservation.
2. The eventual development and use of a broad range of robotic sensors better equipped

for battlefield observations than humans currently possess.
3. Unmanned robotic systems can be designed without emotions that cloud their

judgement or result in anger and frustration with ongoing battlefield events.
4. Avoidance of the human psychological problem of "scenario fulfilment," i.e. where

humans use new incoming information in ways that only fit their pre-existing belief
patterns.

5. They can integrate more information from more sources far faster, before responding
with lethal force than a human possibly could in real-time.

6. Their potential capability to monitor and record ethical behaviour alone might lead
to a reduction in human ethical infractions when working in teams with humans.

It is quite clear that this is an ambitious goal. Arkin acknowledges that this is
currently not possible and we believe there are many technical challenges needed to be
solved before this can become reality: The current state-of-the-art ML needs significant
updates; the ethical problem of selecting features and training AWS in realistic
environments; the problem of measuring data related to human behaviour, e.g. how can
human deception be measured? There is also the economic aspect of balancing AWSs
conservatism vs. their rate of loss.

One moderator in human behaviour is the possibility of being prosecuted for a crime.
This is also relevant for crimes during wartime. Both individual soldiers and officers have
been prosecuted and convicted for war crimes in the past. But what about AWS?

Today, and for the foreseeable future, the elements which define AWS; the degrees of
autonomy, agency, human control and predictability of result lie on a spectrum. This leads
to problems on how to define AWS - what makes an AWS too autonomous? This lack of
delineation makes it problematic for a general ban on AWS, but also for negotiating a legal,
international framework. Bode and Huelss [96] also note that the idea of ceding control
to AWS in military organisations, which are structured around control and accountability,
is highly contested. There is presently, to the best of our knowledge, no international
regulation on the use of ML in warfare.

Our research attempts to provide increased accuracy of the classification result and
does not touch on autonomy, agency nor human control. The issue of human oversight of
the final result is always challenging with ML, so also for our research.



36 Chapter 3. Ethics

Question 5: Is it ethical to develop weapon systems that are capable of
performing lethal or non-lethal force on people?

The ethical distinction between the development and the use of weapons, autonomous or
not, is pronounced. This is exemplified by Einstein, who was against the use of nuclear
weapons, but also signed the letter warning President Roosevelt about the German nuclear
program in August 1939, which reputedly prompted the US nuclear weapons programme
[99]. More relevantly, autonomous weapons is a controversial topic also at Google, where
thousands of employees reportedly signed a letter to pull out of research in ML used for
drones employed by the US military [100] and several have since resigned [101]. There
are now several worldwide movements that are working for a full ban on autonomous
weapons, like the coalition of international and national organisations, Campaign to Stop
Killer Robots3, and national petitions like the Norwegian Lytt til oss4.

However, in their essay Law and Ethics for Autonomous Weapon Systems: Why a Ban
Won’t Work and How the Laws of War Can, Anderson and Waxman [102] compare the
contemporary controversy of AWS with the, at the time, controversy of the introduction
of the submarine and military aviation. They argue that the feature of autonomy, rather
than a human being making the final targeting decision, would not in itself render the
system indiscriminate, and as such would not automatically be banned by the LOW, as
long as lawful targeting information can be ensured and that the autonomous selection
of the target does not violate the rule to not cause unnecessary suffering or superfluous
injury. They also discuss that over time, for some purposes and forms of attack or defence,
autonomous weapons may be able to be more discriminating and precise than human
beings, which echo Arkin’s argument from above.

Conversely, prominent people in academia and industry like Elon Musk and the late
Stephen Hawking have involved themselves in the Future of Life Institute which works
for research on how to make AI systems robust and beneficial5. Specifically for AWS,
they raise several areas of research like Can lethal autonomous weapons be made to comply
with humanitarian law? and Are autonomous weapons likely to reduce political aversion to
conflict, or perhaps result in accidental battles or wars? [103].

3.4 Summary

This discussion has only scratched the surface on the question about the ethics and morale
of ML in weapon systems. Even though we believe this research in total is ethically sound,
anyone implementing the results of this research and any nation using weapons that are
based on this research will have to make an independent, case-by-case judgement whether
they are themselves within the applicable international treaties and laws.

3https://www.stopkillerrobots.org/
4https://lytt-til-oss.no/
5https://futureoflife.org/ai-open-letter/

https://www.stopkillerrobots.org/
https://lytt-til-oss.no/
https://futureoflife.org/ai-open-letter/


Chapter 4

Methods

"To be sure of hitting the target, shoot first, and, whatever you
hit, call it the target."

— Ashleigh Brilliant, Pot-Shots #0572

This chapter will describe the proprietary dataset provided by Saab and the work
involved in selecting the final subset of data used for our experiments. We will also discuss
the process of evaluating our dataset for the different experiments we have conducted to
answer our research questions from Section 1.2.

4.1 Dataset

The data used for this research was provided by Saab Technologies Norway AS, the
Norwegian subsidiary of Saab AB of Sweden. It consists of more than 10 GB of raw data,
approximately 12 000 track files with over 200 000 individual tracks from various
locations around the world. One sample in this context is one track consisting of several
radar settings, tactical information, environmental information like weather data and
varying numbers of associated plots, sampled several times every second. Each plot, in
turn, consists of radar measurements, parameters used to control the measurements and
processed measurements; semi-synthetic features, 26 features in all. These include
positional information in three dimensions; range, azimuth and elevation angles, timing
information, signal strength and phase information. In addition, synthetic features like
SNR are included. For the overall track, synthetic features like estimated firing elevation
and firing velocity, coordinates for POO and POI and original projectile classification are
also recorded, in total 41 synthetic features including some redundant information.

The track files have been collected using different radars over many years and in
various stages of development, hence with different characteristics. This data needed to
be systematised and categorised to associate correct truth data with their respective
track. This work was complicated due to many factors.

Firstly, some track files contain recordings of projectiles with truth data mixed with
unwanted activities like birds, helicopters and weather clutter. These unwanted activities
can sometimes generate false targets which need to be separated from the true targets.

Secondly, sometimes tracks without truth data are also included in the recordings.
They need to be identified and excluded.

37



38 Chapter 4. Methods

Thirdly, it is also possible that several projectiles might be in the air at the same time
and that the radar does not consistently separate the radar samples from each other or
correlate the radar sample to the same physical projectile. This makes it difficult to reliably
analyse them. It is, therefore, necessary to screen track files for irregularities even though
they appear to classify correctly.

Fourthly, many track files exist in multiple copies, often with different names and even
slightly modified for other purposes. These tracks needed to be filtered out as duplicates.

Fifthly, live firing measurements can be inaccurate, either because of internal factors
like the internal performance or of the radar itself or external factors like the weather; a
combination of systematic errors and stochastic noise. This can give ambiguities in how
the data should be interpreted and hence categorised.

Finally, the format used for recording these track files has over time been extended to
add features to aid the development of ARTHUR. This made the automatic parsing of the
files complicated. We, therefore, concentrated on files from the third generation ARTHUR
since the format is more stable within a single generation and because the recording of
truth data for this generation has been more consistent than for previous generations.

After this vetting of the raw data, we ended up with only 2 259 unique tracks, just over
1 % of the total. This is significantly fewer tracks than expected and likely not enough for
the time-aware ML algorithms discussed in Section 2.5.5. The class distribution of these
tracks are given in Table 4.1 and as we can see, the dataset is highly imbalanced. Hence,
we decided to first investigate our data with less data-intensive algorithms like C5.0 and
XGBoost. As reported by Masini et al. [104], tree models have previously been used for
time series prediction to good effect.

We will use regular accuracy scores along with SD to present our results..

Table 4.1: Total number of individual track files where we have truth data, with the distribution
into their respective projectile types classes. Percentages are also given.

Mortar Gun Rocket
Light Heavy Light Heavy Light Heavy Sum

No. of samples 192 836 37 892 286 16 2259
Percentage of total 8.5 % 37.0 % 1.6 % 39.5 % 12.7 % 0.7 % 100 %

As a benchmark, we performed a case resampling, as described in Section 2.5.6, of
the dataset for the generation 1 and 2 algorithms. Several runs with increasing numbers
of replications, up to 2000, were performed, to monitor the stability of the result. The
results can be seen in Table 4.2. As we can see, the results are stable even at relative few
replications. This indicates a good estimate of the true accuracy of these two algorithms.
The respective confusion matrices for 2 000 replications can be seen in Table 4.3 and
Table 4.4.

Table 4.2: Accuracy of the existing benchmarks for Saab’s generation 1 and 2 algorithms using
case resampling for increasing number of replications with SD (in parenthesis).
Replications 10 20 50 100 200 500 1000 2000

Generation 1 0.904
(0.007)

0.902
(0.006)

0.902
(0.006)

0.903
(0.006)

0.903
(0.006)

0.902
(0.006)

0.902
(0.006)

0.902
(0.006)

Generation 2 0.856
(0.008)

0.850
(0.008)

0.853
(0.007)

0.852
(0.007)

0.851
(0.007)

0.852
(0.008)

0.852
(0.007)

0.852
(0.007)



4.2. Experiments 39

Table 4.3: Confusion matrix for Saab’s generation 1 classifier with accuracy and SD (only for
correct predictions, in parenthesis) using case resampling with 2 000 replications. The predicted
class is given horizontally and the true class vertically.

Predicted class M G R
True class

M 0.984
(0.012) 0.016 0

G 0.004 0.825
(0.004) 0.171

R 0.030 0.109 0.861
(0.020)

Predicted

Table 4.4: Confusion matrix for Saab’s generation 2 classifier with accuracy and SD (only for
correct predictions, in parenthesis) using case resampling with 2 000 replications. The Predicted
class is given horizontally and the true class vertically. Note that this classifier can produce the
class ’None’ when it fails to discern the class. All in all, 57 projectiles are classified as "None" in
this dataset.

Predicted class ML MH GL GH RL RH None
True class

ML 0.566
(0.035) 0.366 0 0 0.005 0 0.063

MH 0.147 0.822
(0.013) 0 0.002 0.001 0 0.027

GL 0 0 0.837
(0.062) 0.163 0 0 0

GH 0.002 0.003 0.007 0.961
(0.007) 0.012 0 0.013

RL 0 0.003 0.108 0.014 0.843
(0.021) 0 0.003

RH 0 0 0 0 0.939 0 0.061

4.2 Experiments

4.2.1 Synthetic track features

We collected the overall synthetic track features, one line for each track. From over 40
synthetic features, we selected a sub-set of only four for this experiment, to make sure the
model is independent of positional data. These features are firing elevation, velocity and
RCS, also used in the original algorithms, as well as acceleration. We have no missing
values in our dataset.

We have selected five different algorithms to evaluate our dataset on, in addition to our
two original algorithms: SVM, k-NN, C5.0, ANN and XGBoost. For all of these, except
C5.0 and XGBoost, a grid search was used to find the best selection of hyper-parameters.
For C5.0 we only invoked boosting with one hundred trees and for XGBoost we used the



40 Chapter 4. Methods

default hyper-parameter settings, which also include one hundred trees amongst others.
For ANN we opted to use 25 epochs to roughly match the computational complexity of the
other ML methods. This could still probably be too many epochs, but this model still did
not converge. We have therefore included the results for a converging ANN model. Each
fold then required just under 100 epochs on average to converge.

Due to the imbalanced dataset, we used stratified K-fold cross-validation, a method
of partitioning the dataset uniquely across all folds while keeping the overall distribution
between the classes, for the classes to be proportionally represented in both training and
testing in all folds. This avoids any class being over- or under-represented in any fold, e.g.
excluded completely.

As mentioned in Section 2.5.6, Kohavi recommends ten folds [40], but we also need to
consider the dataset. With ten folds, GL and RH would be represented with only 3.7 and
1.6 samples on average in the test set, respectively. Hence, for all classifiers, we used five
repeats, each with five folds.

These results, along with the original first- and second-generation classification
algorithm accuracies, are presented in Table 5.2.

4.2.2 Complete track plots

From the results in Table 5.2, we see that two of the extended projectile types, GL and RH,
have lower accuracy and much higher SD than the rest. Comparing this with the number
of samples for each projectile type in Table 4.1, we see that these two are also the projectile
types with the fewest samples. However, as the sample size is relatively low, the likelihood
of SD being accurate is also relatively low [105]. To reduce the SD and potentially increase
the accuracy, more data is necessary.

To complement the dataset, data augmentation was considered as discussed in
Section 2.5.8. One possibility would be to over-sample GL and RH, but as they are from
two and one series of rounds respectively, this would only add very similar synthetic data
compared to what we already have. Undersampling the other classes is not an option as
that would likely result in worse results.

We, therefore, decided to instead use the already available additional data in the form
of individual plots from each track. We use a stratified group K-fold cross-validation to split
the dataset. By grouping the plots to their respective tracks and stratifying that, we avoid
splitting plots from one track across multiple folds, thereby avoiding having plots from the
same track being part of both training and testing in the same fold. This effectively means
that we are still treating each track as one sample. A total of 189,125 individual plots are
available this way. The class distribution of these is given in Table 4.5. As we can see,
there are relatively more GL and RH plots here than for individual tracks in Table 4.1,
particularly for RH. However, the real advantage is the almost two magnitudes increase
in the number of data points for all classes.

Table 4.5: Total number of plots in all track files where we have truth data, with the distribution
into their respective projectile types classes. Percentages are also shown.

Mortar Gun Rocket
Light Heavy Light Heavy Light Heavy Sum

No. of samples 12009 81408 3261 64254 25622 2571 189125
Percentage of total 6.3 % 43.0 % 1.7 % 34.0 % 13.5 % 1.4 % 100 %



4.2. Experiments 41

From the 26 features available for plots, we selected a sub-set of seven which again also
are independent of positional information, leaving out features such as range and bearing
to the target. These include the elevation and velocity of the plot, the relative strength of
the measurement and the SNR. Again we have no missing values in our dataset.

C5.0 does not have the functionality to group data when stratifying and since XGBoost
gave the best initial results, see results in Table 5.2, we will focus this experiment and the
rest of our research solely on XGBoost. These results are given in Table 5.3.

4.2.3 Partial track plots

As we discussed in Section 3.3, Q2, it is advantageous to get a prediction of POO and POI
as early as possible. Normally, ARTHUR will on regular intervals calculate the POO and
POI. Because of the connection between the projectile type and the ballistic model, as
discussed in Section 2.2, it is therefore important to understand when the accuracy of the
classification is good enough to also get accurate estimates of POO and POI.

Hence, we split all the tracks into groups with increasing lengths in steps of five plots,
on average one second track time, to match the calculation intervals of the POO and POI,
and otherwise performed the same experiment as described in Section 4.2.2 for each group.
All in all 20 models were trained and evaluated: The first model uses one second of plot
data for all tracks. Since the minimum length of tracks is between one and two seconds,
this includes all 2 259 tracks. The second model uses two seconds of plot data for all tracks
of at least this length, 2 252 tracks in total. And so on.

Of the 2 259 available tracks, the average length of one track is 84 plots and the median
85 plots. The minimum and the maximum number of plots is 6 and 328, more than 65
seconds, respectively. However, using more than 20 seconds to determine the projectile
type would normally be considered too late. We, therefore, limit the maximum length of
a track to 20 seconds in this experiment.

Tracks that are shorter than the required number of seconds are discarded for that
model. This will gradually reduce the number of included tracks. The results can be seen
in Table 5.4.

4.2.4 Hyper-parameter optimisation

Based on the results from Table 5.3, we performed a more thorough hyper-parameter
optimisation of both problems in Section 4.2.1 and Section 4.2.2; synthetic track features
and complete track plots. We selected PBT as the optimisation method since we have
already had experience with it for smaller datasets [49].

As we discussed in Section 2.5.7, PBT can itself be configured with several meta-hyper-
parameters. For our work, we opted to use 20 workers for a maximum of 200 iterations
each with a perturbation interval of 10 iterations. For the remaining parameters, we used
the default values provided for PBT as described in [48].

We then ran this configuration with both synthetic track features and complete track
plots. Each worker used 75 % of the dataset for training the PBT schedule and the rest for
testing it. PBT can in principle tune any number of hyper-parameters, but the complexity
and run-time of the tuning process can increase as the hyper-parameter space increases.
However, this is independent of the complexity of the learning process of the XGBoost
model itself, which is highly dependent on the selected hyper-parameters of the model, e.g.
max_depth which controls the maximum depth of a tree in an XGBoost model.



42 Chapter 4. Methods

Informal tests on our dataset both with synthetic track features and full track plots
suggested that tuning fewer hyper-parameters from the XGBoost framework, results in
better-performing models, meaning that the default values for the hyper-parameters are
quite good for XGBoost. Hence, for this dataset we allowed PBT to only tune three
hyper-parameters: max_depth between 1 and 9, min_child_wight between 1 and 3 and
eta (analogous to learning rate in some other ML algorithms) between 1e-5 and 1e-1.

After the tuning process was completed, the resulting hyper-parameter schedule was
validated with a stratified and group stratified K-fold cross-validation with five folds and
five repeats - identical to what is described in Section 4.2.1 and Section 4.2.2.



Chapter 5

Results

“When you can measure what you are speaking about, and
express it in numbers, you know something about it.”

— Lord Kelvin, 1883

In this chapter, we will review the results and compare the performance of Saab’s
existing non-probabilistic methods for projectile classification with our probabilistic models
using ML.

Not only do we show that all of our ML models outperform Saab’s proprietary
generation 1 and 2 algorithms, but also can do so after the first second of track time
using plot features. The best result was achieved using a PBT hyper-parameters
optimised XGBoost model with plot data of complete tracks. The resulting accuracy of
0.984 ± 0 for classification into six projectile classes, is significantly better within the
95 % confidence level, than 0.902 ± 0 for the generation 1 algorithm, for only three
classes, and 0.852 ± 0 for the generation 2 algorithm, for six classes, since the 95 % CIs
do not overlap. A summary of the best results can be seen in Table 5.1.

Table 5.1: Summary of the best results achieved: Saab’s first- and second-generation, XGBoost
using synthetic features and hyper-parameter optimised XGBoost using plot features. Saab’s
generation 1 algorithm only classifies into the three classes mortar, gun and rocket, while all the
other algorithms also classify into the calibres light and heavy; six classes in total.

Algorithm Accuracy
Saab’s generation 1 0.902 ± 0
Saab’s generation 2 0.852 ± 0
XGBoost synthetic
features 0.979 ± 0.003

XGBoost plot features,
optimised 0.984 ± 0

43



44 Chapter 5. Results

5.1 Synthetic track features

To run our first experiment, we collected the overall synthetic features, four in total, one
line for each track. We then ran this through our selected ML methods1.

As already discussed in Section 4.1, the dataset is highly imbalanced and it is, therefore,
relevant to investigate the relative accuracy distributed on the projectile types. These
results, along with the original classification accuracies, both for the first- and second-
generation algorithms, are presented in Table 5.2.

Table 5.2: The accuracy and SD (in parenthesis, where available) for C5.0, five classifiers with
five folds, and SVM, k-NN, ANN with 25 epochs and converged ANN, and XGBoost, all with five
repeats with five folds, using compared to the results of the original first and second generation
algorithms, for track data using four synthetic features as discussed in Section 4.2.1. The results
are broken down into the three main classes mortar, gun and rocket and the sub-classes light and
heavy. 95 % CI is included for the overall results and the generation 2 algorithm. Note that the
generation 1 algorithm does not classify into sub-classes light and heavy, only in the main classes
gun, mortar and rocket, which partly explains the higher accuracy compared to generation 2.
Class Gen. 1 Gen. 2 SVM k-NN
ML 0.566 (0.035) ±0.002 0.844 (0.058) 0.900 (0.038)
MH 0.984 (0.012) 0.822 (0.013) ±0.001 0.966 (0.014) 0.970 (0.016)
GL 0.837 (0.062) ±0.003 0.933 (0.130) 0.880 (0.130)
GH 0.825 (0.004) 0.961 (0.007) ±0.000 0.980 (0.012) 0.973 (0.013)
RL 0.843 (0.021) ±0.001 0.948 (0.033) 0.948 (0.035)
RH 0.861 (0.020) 0 0.937 (0.130) 0.937 (0.130)

Overall 0.902 (0.006)
±0.000 0.852 (0.007) ±0.000 0.958 (0.009)

±0.004
0.961 (0.008)
±0.003

Class ANN (25 epochs) ANN (conv.) XGBoost C5.0
ML 0.503 (0.196) 0.768 (0.089) 0.969 (0.031) 0.974
MH 0.968 (0.016) 0.959 (0.022) 0.984 (0.011) 0.981
GL 0.028 (0.057) 0.398 (0.244) 0.940 (0.081) 0.973
GH 0.944 (0.035) 0.957 (0.021) 0.986 (0.010) 0.985
RL 0.743 (0.095) 0.799 (0.073) 0.960 (0.035) 0.965
RH 0.353 (0.441) 0.820 (0.234) 0.823 (0.177) 0.813

Overall 0.871 (0.024)
±0.009

0.911 (0.017)
±0.007

0.979 (0.007)
±0.003

0.979 (0.008)
±0.003

The overall results for the two proprietary Saab algorithms, see Section 4.1, are
accuracies of 0.902 ± 0 and 0.852 ± 0 within the 95 % confidence level for the generation
1 and 2 algorithms respectively. Note that the generation 1 algorithm does not classify
into the sub-classes light and heavy which is the main reason for its better performance.
This is evident when inspecting the confusion matrix for the original generation 2
algorithm, see Table 4.4.

We also see that the total results for C5.0 and XGBoost are practically equivalent.
However, the SD for C5.0 is slightly higher than for XGBoost, which translates to a
slightly more uncertain result. These two methods are significantly better than the

1We used Rulequest’s implementation of C5.0 (https://www.rulequest.com/see5-info.html) and
scikit-learn (https://scikit-learn.org/) for the rest of the methods.

https://www.rulequest.com/see5-info.html
https://scikit-learn.org/


5.2. Complete track plots 45

original algorithms. The other methods, SVM, k-NN and the converged ANN, all have
significant lower accuracies than C5.0 and XGBoost, but also these are significantly
better than the original algorithms. Additionally, the non-converged ANN is significantly
better than the generation 2 algorithm.

The accuracy for both C5.0 and XGBoost is 0.979 ± 0.003, between 0.976 and 0.982,
within a 95 % confidence level. All the results and their confidence intervals can be seen
in Figure 5.1. Note that the CI for generation 1 and 2 algorithms are calculated from a
bootstrap of 2 000 replication, while for the other methods, it is calculated based on five
repeats of five folds each, for a total of 25 folds.

A
cc

ur
ac

y

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

Gen
era

tio
n 1

Gen
era

tio
n 2 C5.0

XGBoo
st

SVM
k-N

N

ANN (c
on

v.)

ANN (2
5 e

po
ch

s)

Figure 5.1: Interval plot with the 95 % CI of our results; generation 1 and 2 using case resampling
with 2 000 replications, and the ML methods C5.0, XGBoost, SVM, k-NN, converged ANN and
ANN with 25 epochs. All of the ML methods are significantly better, with a 95 % confidence level,
than both the original Saab algorithms. C5.0 and XGBoost are significantly better, with a 95 %
confidence level, than the rest.

5.2 Complete track plots

For our second experiment, we collected the plot features, measured and measurement
control features; seven in total, one line for each plot. We then ran this only through
XGBoost.

From the results in Table 5.3, the overall accuracy here is significantly lower within
the 95 % confidence level compared to using synthetic track features. The individual class
accuracies are practically the same within the 95 % confidence level, except for RL, which
is significantly lower. More importantly, the SD for all classes and overall is lower using
plot features than using synthetic features. This indicates that we may have traded higher
bias for lower variance using plot features, hence it should be possible to decrease the bias,
thereby improving the results further, by hyper-parameter optimisation.



46 Chapter 5. Results

Table 5.3: The accuracy and SD (in parenthesis) from XGBoost, five repeats with five folds, using
plot features as discussed in Section 4.2.2 and the accuracy using synthetic track features, identical
to Table 5.2 for convenience of comparison. 95 % CI is also included for both.

XGBoost - tracks XGBoost - plotsClass Accuracy (SD) 95 % CI Accuracy (SD) 95 % CI
ML 0.969 (0.031) ±0.012 0.968 (0.011) ±0.004
MH 0.984 (0.011) ±0.004 0.986 (0.004) ±0.002
GL 0.940 (0.081) ±0.032 0.931 (0.034) ±0.013
GH 0.986 (0.010) ±0.004 0.978 (0.007) ±0.003
RL 0.960 (0.035) ±0.014 0.921 (0.017) ±0.007
RH 0.823 (0.177) ±0.070 0.913 (0.062) ±0.024
Overall 0.979 (0.007) ±0.003 0.972 (0.003) ±0.001

5.3 Partial track plots

Similarly to Section 5.2, for our third experiment, we used the same seven features, one
line for each plot. We then ran this through XGBoost in groups of increasing length, in
steps of one second.

In Table 5.4 we have listed the total accuracy and individual class accuracy for the
20 one-second intervals. We also include the complete dataset using plot features for easy
reference of the overall accuracies. The results have been summarised in Figure 5.2 and
Figure 5.3.

As expected, we see that the accuracy generally increases as the length of the included
tracks increase. For ML, MH, RL, RH and the overall accuracy, the best result is achieved
from having a track length of 20 seconds, i.e. the maximum track length we tested.
However, for GL and GH, the best result is after six to nine seconds, after which the
accuracy starts to decrease.

We also observe that for all classes the accuracies are better than the original Saab
generation 2 algorithm as seen in Table 5.2 already after the first second within the 95 %
confidence level.

5.4 Hyper-parameter optimisation

Tuning and training on the synthetic track features and complete track plot features
concluded with the best schedules giving an accuracy of 1.0 and 0.999 respectively. This
type of over-fitting is expected since the optimisation performed by PBT2. is quite
aggressive. A typical schedule profile from PBT can look like Table 5.5. The schedule
describes how the selected hyper-parameters are inherited and perturbed during the
training of a model. This schedule, typically for the best performing model, can then be
used to re-train new models using different data, e.g. for validating the model.

The results from the cross-validation of these two models are shown in Table 5.6. For
synthetic track features, the results are very similar to the original unoptimised results.
However, for complete track plots, we see a significant increase in accuracy, from
0.972 ± 0.001 to 0.984 ± 0, both within 95 % CI.

2We used Ray’s implementation of PBT.



5.4. Hyper-parameter optimisation 47

Avg. no of seconds

A
C

C

0.600

0.700

0.800

0.900

1.000

5 10 15 20

Overall ACC

GH

GL

MH

ML

RH

RL

Class accuracy and overall accuracy over time

Figure 5.2: The development in class accuracy and overall accuracy using partial track plots in
time steps from one to 20 seconds. RH sees a notable increase.

Avg. no of seconds

A
C

C
 C

I ±

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

0.110

5 10 15 20

Overall ACC

GH

GL

MH

ML

RH

RL

95 % confidence interval for class accuracy and overall accuracy over time

Figure 5.3: The development in the 95 % CI of class accuracy and overall accuracy using partial
track plots in time steps from one to 20 seconds. RH sees a notable decrease in CI.



48 Chapter 5. Results

Table 5.4: The accuracy from XGBoost, five repeats with five folds, using tracks with an increasing
number of plots. Each row represents the results using the accumulated series of plots from
individual tracks in steps of five plots, about one second. In addition to the total accuracy,
including the 95 % CI, and the accuracy per class with 95 % CI for the first row, we also show the
number of unique tracks containing the required number of plots and the total number of plots
included in the training and testing. The results using the complete dataset from Table 5.2 are
included at the bottom for easy reference. The best accuracy scores have been highlighted for ease
of reading.

Total Mortar Gun RocketAvg. no.
of sec.

No. of
tracks

No. of
plots ACC 95 % CI ML MH GL GH RL RH

1 2259 11295 0.964 ±0.003 0.935
±0.011

0.981
±0.003

0.893
±0.036

0.976
±0.004

0.922
±0.011

0.650
±0.103

2 2252 22520 0.968 ±0.002 0.943 0.981 0.918 0.977 0.936 0.726
3 2214 33210 0.971 ±0.003 0.936 0.985 0.935 0.980 0.940 0.773
4 2135 42700 0.972 ±0.002 0.886 0.988 0.929 0.981 0.942 0.809
5 2074 51850 0.976 ±0.001 0.906 0.992 0.943 0.983 0.941 0.781
6 2025 60750 0.979 ±0.002 0.933 0.994 0.943 0.985 0.943 0.812
7 1983 69405 0.979 ±0.001 0.937 0.995 0.950 0.985 0.943 0.849
8 1945 77800 0.979 ±0.001 0.939 0.993 0.949 0.984 0.944 0.850
9 1889 85005 0.978 ±0.002 0.944 0.992 0.963 0.984 0.938 0.853
10 1798 89900 0.978 ±0.001 0.941 0.994 0.953 0.983 0.937 0.860
11 1685 92675 0.980 ±0.003 0.954 0.996 0.940 0.984 0.943 0.873
12 1547 92820 0.978 ±0.002 0.963 0.995 0.939 0.982 0.932 0.875
13 1363 88595 0.978 ±0.003 0.964 0.995 0.942 0.979 0.943 0.886
14 1264 88480 0.976 ±0.003 0.967 0.994 0.940 0.977 0.932 0.892
15 1204 90300 0.976 ±0.003 0.970 0.992 0.940 0.979 0.931 0.890
16 1161 92880 0.975 ±0.003 0.966 0.993 0.937 0.978 0.929 0.907
17 1126 95710 0.976 ±0.003 0.972 0.995 0.942 0.975 0.933 0.916
18 1048 94320 0.976 ±0.002 0.974 0.995 0.934 0.973 0.931 0.936
19 949 90155 0.976 ±0.003 0.969 0.995 0.944 0.975 0.927 0.942
20 847 84700 0.982 ±0.002 0.984 0.996 0.868 0.968 0.950 0.990

Overall 2259 189125 0.972 ±0.001 0.968 0.986 0.931 0.978 0.921 0.913

Table 5.5: This PBT schedule for XGBoost trained using the synthetic track feature dataset
to an accuracy of 1.0. It contains four perturbations after the initial perturbation; the first is
where worker 17 is replaced with values from worker 13 at time step 10 and the hyper-parameters
perturbed to the values 5 for max_depth, 1 for min_child_weight, and 0.03505 for eta. Worker 0
is then replaced with the values from worker 17 at time step 20 and perturbed again etc. Note
that the weights of the cloned worker are retained.

Initial worker config Clone from worker Perturbed config
Time no. eta max

depth
min
child no. eta max

depth
min
child eta max

depth
min
child

10 17 0.01803 1 3 13 0.05912 7 3 0.03505 5 1
20 0 0.09621 4 2 17 0.03505 5 1 0.05193 6 1
70 12 0.07653 1 3 0 0.05193 6 1 0.04760 4 2
80 0 0.09621 4 2 12 0.04760 4 2 0.05712 4 1



5.4. Hyper-parameter optimisation 49

Table 5.6: The accuracy and SD (in parenthesis) from XGBoost hyper-parameter optimised with
the PBT schedules, five repeats with five folds, using synthetic track features and plot features
from all tracks. 95 % CI is also included for both. This table is comparable to Table 5.3, but with
a schedule instead of a fixed set of hyper-parameters.

XGBoost - tracks XGBoost - plotsClass Accuracy (SD) 95 % CI Accuracy (SD) 95 % CI
ML 0.969 (0.027) ±0.011 0.977 (0.003) ±0.001
MH 0.983 (0.010) ±0.004 0.993 (0.001) ±0.000
GL 0.934 (0.091) ±0.036 0.959 (0.007) ±0.003
GH 0.986 (0.009) ±0.004 0.988 (0.001) ±0.000
RL 0.959 (0.036) ±0.014 0.956 (0.002) ±0.001
RH 0.823 (0.177) ±0.069 0.958 (0.010) ±0.004
Overall 0.978 (0.007) ±0.003 0.984 (0.000) ±0.000





Chapter 6

Discussion

"...all knowledge, and especially the weightiest knowledge of the
truth, to which only a brief triumph is allotted between the two
long periods in which it is condemned as paradoxical or
disparaged as trivial. "
— Arthur Schopenhauer, The World as Will and Representation

The aim of this research has been to evaluate how well ML algorithms perform at
classifying ballistic non-cooperating radar targets (i.e. artillery projectiles) to provide
better accuracy in POO and POI, hence providing better intelligence about hostile
weapon systems. This intelligence can in turn provide more effective and timely
countermeasures. We have compared two of Saab’s original algorithms with several ML
algorithms, particularly XGBoost. We have also investigated which features provide
better classification power and how early in a projectile’s trajectory an assessment can be
made.

Based on the results in Chapter 5, we will answer the research questions put forward
in Section 1.2:

RQ 1 How good accuracy can be achieved using machine learning techniques compared to
Saab’s original algorithms?

Based on the results in Section 5.1 we can conclude that the five ML methods we
selected, C5.0, XGBoost, SVM, k-NN and both ANNs all outperforms Saab’s original
algorithms using synthetic features. The best results were achieved with C5.0 and XGBoost
with 0.979 ± 0.003 for six classes for both methods, compared to 0.902 ± 0 for generation
1, for only three classes, and 0.852 ± 0 for generation 2, for six classes. The 95 % CIs do not
overlap which is a significant result. Additional hyper-parameter optimisation, discussed in
Section 5.4, did not yield improved results for synthetic features. This is discussed further
in Section 6.1.1 and Section 6.1.4.

RQ 2 How can measured features improve the classification power?

Based on the results in Section 5.2, we observe that using plot features, measured and
measurement control features of single plots, does not give a significant improvement in the
unoptimised results. However, using PBT hyper-parameter optimisation, as discussed in
Section 5.4, improves the best score from 0.979 ± 0.003 to 0.984 ± 0, which is a significant

51



52 Chapter 6. Discussion

improvement since the 95 % CIs do not overlap. This is discussed further in Section 6.1.2
and Section 6.1.4.

RQ 3 How does the accuracy of the classification evolve over time for a track?

Based on the results in Section 5.3, we observe that the overall classification accuracy
using regular intervals of plot features increases over time for a track. We can also see a
particularly pronounced increase in accuracy for RH. However, for gun artillery, the best
accuracy is achieved at around six to seven seconds for GH and nine seconds for GL. The
overall accuracy after one second is 0.964 ± 0.003 which is significantly better than both
Saab’s original generation 1 and 2 algorithms. The accuracies for individual classes are
also significantly better than Saab’s original algorithms after one second. This is discussed
further in Section 6.1.3.

The rest of this chapter will discuss the results further, the challenges and limitations
with this work as well as possible future work.

6.1 Experiments

6.1.1 Synthetic track features

Using synthetic track features, both C5.0 and XGBoost perform significantly better than
the original first- and second-generation Saab algorithms, as seen in Table 5.2 and
Figure 5.1.

Since both C5.0 and XGBoost are tree-based algorithms, it is relatively easy to
investigate their internal workings. One of the 100 decision trees from our C5.0 run is
presented in Listing 6.1.

The structure in Listing 6.1 looks similar to the simplified algorithm in Listing 1.1,
which is based on the generation 1 algorithm by Saab. If we also consider the example
limits in Table 2.1, we see that the similarity is strong with the first two decision levels
looking very similar, with some differences in the thresholds and the use of the acceleration
feature in the C5.0 model. The similarities are somewhat obscured by the fact that the
original generation 1 algorithm by Saab only classifies into the three main projectile classes,
while we have now also classified into light and heavy for each of the main projectile classes.

One interesting observation is that C5.0 uses different thresholds for firing_velocity
based on whether the firing elevation is above or below 45.4°. If we compare the two, the
first node in the C5.0 example tree, firing_elevation <= 45.4, is more similar to Saab’s
generation 1 algorithm than the second node, firing_elevation > 45.4; the latter being
more complex than the first, indicating that high-angle firing1 is more complex. Hence,
Saab’s generation 1 algorithm is possibly too simplistic.

C5.0 is using RCS to discriminate between guns and rockets, which is very reasonable
and more or less identical to how it is done in Saab’s algorithms since rockets are physically
bigger and should therefore result in higher RCS values. But C5.0 is also using RCS to
select between using firing elevation or firing velocity to separate between light and heavy
mortars. This is less obvious as both firing elevation and velocity in theory should be
independent of the apparent size of the projectile. We also see that acceleration, which
Saab has not used, is used in two places in the decision tree. This indicates that not

1High-angle fire is artillery with a firing elevation at 45°and above, and low-angle is below 45°.



6.1. Experiments 53

Listing 6.1: Example of a decision tree generated by C5.0. Each leaf is presented with a feature,
a threshold value, the resulting class and the number of classifications and misclassifications, if
present. All of the projectile classes are represented in this tree except GL. This is one tree from
an ensemble so other trees may include GL.
f i r i n g_e l e v a t i o n <= 45 . 4 :
: . . . f i r i n g_v e l o c i t y <= 684 : GH (767/126 .8 )
: f i r i n g_v e l o c i t y > 684 :
: : . . . r c s < =47.331: GH (63 . 7 / 32 . 2 )
: r c s > 47 . 3 31 :
: : . . . f i r i n g_e l e v a t i o n <= 18 . 2 : RH (51/17 . 3 )
: f i r i n g_e l e v a t i o n > 18 . 2 : RL (164 . 7 / 0 . 8 )
f i r i n g_e l e v a t i o n > 45 . 4 :
: . . . f i r i n g_v e l o c i t y <= 144 :

: . . . a c c e l e r a t i o n <= 7 : GH (81 . 6 / 6 . 8 )
: a c c e l e r a t i o n > 7 : MH (26 . 2 / 1 . 5 )
f i r i n g_v e l o c i t y > 144 :
: . . . f i r i n g_v e l o c i t y > 603 : GH (49 . 4 )

f i r i n g_v e l o c i t y <= 603 :
: . . . f i r i n g_v e l o c i t y > 264 :

: . . . a c c e l e r a t i o n <= 39 : MH (475 . 5 )
: a c c e l e r a t i o n > 39 : ML (24 . 7 )
f i r i n g_v e l o c i t y <= 264 :
: . . . f i r i n g_e l e v a t i o n <= 53 . 4 : MH (37 . 6 )

f i r i n g_e l e v a t i o n > 53 . 4 :
: . . . r c s <= 147 . 334 :

: . . . f i r i n g_e l e v a t i o n <= 61 . 2 : ML ( 4 6 . 5 / 1 . 5 )
: f i r i n g_e l e v a t i o n > 61 . 2 : MH (144 . 1 /20 . 3 )
r c s > 147 . 334 :
: . . . f i r i n g_v e l o c i t y <= 233 : ML (90 . 3/3 )

f i r i n g_v e l o c i t y > 233 : MH (10 . 5 )

only can C5.0 extract much of the same information automatically as what has been done
empirically by Saab in the past, but also seemingly improve on this, even for classes with
relatively few samples; GL and RH.

If we contrast this with the decision trees from the XGBoost classifier in Listing 6.2
through Listing 6.7, for ML, MH, GL, GH, RL and RH respectively, we see that they are
binary classifiers where each tree predicts one of the six classes. That means that with one
hundred trees per class, 600 trees are produced in total. Each leaf contributes a fraction
to the overall result. This fraction is also incorporated into the feature importance, the
relative usefulness of each feature in the model, where the sum for all features equals 1.
In Listing 6.9, we see that the relative feature importance for XGBoost is similar to the
feature usage in C5.0, how many of the cases each feature is in use, in Listing 6.8.

We also see that the XGBoost examples are generally much more complex than the
one for C5.0, but given the similarity in results, it is likely that similar learning and
generalisation to C5.0 is being performed also by XGBoost.

As briefly discussed in Section 2.5.4, XGBoost is an ensemble learning technique where
the results of each base-learner are combined to generate the final probabilities. XGBoost
treats a classification problem as a logistic regression problem and the raw leaf values
seen in our examples are log-odds, not probabilities. To get probabilities, the odds need
to be summed using the logistic function, which is the inverse of the logit function and
then transformed into a probability [41]. This cannot be performed using only parts of



54 Chapter 6. Discussion

Listing 6.2: Example of a booster tree generated by XGBoost for ML using synthetic features.
The tree is a binary classifier and each node is presented with a feature, a threshold value and the
decision path further. Each leaf gives information on how much it contributes to the overall result.
boos te r [ 3 ] :
0 : [ f i r i n g_ve l o c i t y <232.5] yes=1,no=2,miss ing=1

1 : [ a c c e l e r a t i on <3.5 ] yes=3,no=4,miss ing=3
3 : [ f i r i n g_e l e va t i on <65.3500061] yes=7,no=8,miss ing=7

7 : [ f i r i n g_e l e va t i on <65.1499939] yes=15,no=16,miss ing=15
1 5 : [ a c c e l e r a t i on <2.5 ] yes=21,no=22,miss ing=21

21 : l e a f =−0.0562642515
2 2 : [ f i r i n g_ve l o c i t y <176.5] yes=25,no=26,miss ing=25

25 : l e a f =0.0141740954
26 : l e a f =−0.0525275357

16 : l e a f =0.0156661049
8 : [ f i r i n g_e l e va t i on <71.6499939] yes=17,no=18,miss ing=17

17 : l e a f =0.269895345
18 : l e a f =−0.0346111655

4 : [ f i r i n g_ve l o c i t y <158.5] yes=9,no=10,miss ing=9
9 : l e a f =−0.0372070074
1 0 : [ rcs <23.6464996] yes=19,no=20,miss ing=19

1 9 : [ a c c e l e r a t i on <4.5 ] yes=23,no=24,miss ing=23
2 3 : [ f i r i n g_e l e va t i on <62.25] yes=27,no=28,miss ing=27

27 : l e a f =−0.0372070074
28 : l e a f =0.0626644269

24 : l e a f =0.175331637
20 : l e a f =0.280902416

2 : [ rcs <0.685500026] yes=5,no=6,miss ing=5
5 : [ f i r i n g_ve l o c i t y <331.5] yes=11,no=12,miss ing=11

11 : l e a f =0.0626644269
12 : l e a f =−0.0410560071

6 : [ rcs <4208.80518] yes=13,no=14,miss ing=13
13 : l e a f =−0.0593901761
14 : l e a f =−0.00561615312

the ensemble, hence we can’t get a meaningful probability from single examples, only the
example’s contribution to the odds.

The complexity of the trees in the model between the different projectile classes varies
widely. From a minimum of three nodes, basically a single if-then-else statement, to a
maximum of 51 nodes. Our examples included here attempts to reflect the general tree
complexities of the various classes. What we see is that in general, the complexity reflects
the number of samples in each class. GL (Listing 6.4) and RH (Listing 6.7) are represented
with relatively small trees with 8 to 10 nodes respectively, but also have decidedly the lowest
number of samples from the dataset, 37 and 16 respectively, from a total of 2 259. Compare
that with the trees for the other classes, which have 26 to 30 nodes, but roughly one
magnitude more samples. We can reason that the size of the trees is roughly proportional
to the number of samples used to generate them. This is not unreasonable as fewer data
points of a particular class could result in a less complex algorithm for that class provided
the samples used reflects a similar physical model with limited variance.

The question is whether this is a sign of under-fitting for GL and RH? Even though
we perform cross-validation, the number of samples are so small for these classes that we
cannot be categorical. This is also reflected in the SD presented in Table 5.2 for XGBoost,
0.081 and 0.177 for GL and RH respectively. We do not have SD for individual classes in



6.1. Experiments 55

Listing 6.3: Example of a booster tree generated by XGBoost for MH using synthetic features.
The tree is a binary classifier and each node is presented with a feature, a threshold value and the
decision path further. Each leaf gives information on how much it contributes to the overall result.
boos te r [ 2 ] :
0 : [ f i r i n g_e l e va t i on <46] yes=1,no=2,miss ing=1

1 : [ rcs <1.32500005] yes=3,no=4,miss ing=3
3 : [ a c c e l e r a t i on <24.5] yes=7,no=8,miss ing=7

7 : l e a f =−0.0313322134
8 : l e a f =0.140073419

4 : [ a c c e l e r a t i on <209.5] yes=9,no=10,miss ing=9
9 : l e a f =−0.0589417927
10 : l e a f =0.0156661049

2 : [ f i r i n g_ve l o c i t y <232.5 ] yes=5,no=6,miss ing=5
5 : [ a c c e l e r a t i on <3.5 ] yes=11,no=12,miss ing=11

1 1 : [ f i r i n g_e l e va t i on <65.3500061] yes=15,no=16,miss ing=15
15 : l e a f =0.273978859
1 6 : [ f i r i n g_e l e va t i on <71.8999939] yes=19,no=20,miss ing=19

19 : l e a f =−0.0541192815
20 : l e a f =0.0156661049

1 2 : [ rcs <88.4654999] yes=17,no=18,miss ing=17
1 7 : [ a c c e l e r a t i on <4.5 ] yes=21,no=22,miss ing=21

2 1 : [ f i r i n g_e l e va t i on <62.4000015] yes=23,no=24,miss ing=23
23 : l e a f =0.184263259
24 : l e a f =0.0156661049

2 2 : [ f i r i n g_e l e va t i on <69.1999969] yes=25,no=26,miss ing=25
25 : l e a f =−0.0485969074
26 : l e a f =0.0626644269

18 : l e a f =−0.057357654
6 : [ a c c e l e r a t i on <13.5] yes=13,no=14,miss ing=13

13 : l e a f =0.295709848
14 : l e a f =0.0744140074

C5.0 since the tool does not report this for the individual folds, only for the summary.
It is difficult to compare and contrast individual C5.0 and XGBoost models, partly

because they both are ensemble models. However, there are notable differences. Where the
C5.0 tree in Listing 6.1 uses low and high relative values of firing_elevation to distinguish
between RL and RH, XGBoost uses high firing_velocity combined with medium rcs (node
11 in Listing 6.6: Leaf value of 0.285) and medium firing_velocity combined with medium
firing_elevation (node 21 in Listing 6.6: Leaf value of 0.254) to select for RL and high
acceleration combined with high rcs (node 6 in booster 4 in Listing 6.7: Leaf value of 0.206)
to select for RH. The delineation between RL and RH concerning rcs in our two XGBoost
examples is exactly 889.815552. This can be seen in node 6 of Listing 6.6 and node 2
in booster 4 of Listing 6.7. Being an ensemble of learners, we have no way of validating
that value or anything else from these trees, but from a manual inspection of the 16 RH
samples, this value seems sensible: Only one RL is above and only two RH are below this
limit.

While there are some similarities in the description above, firing_elevation being used
by both, it is clear that the XGBoost models are much more complex. Yet, C5.0 and
XGBoost score more or less the same. We cannot explain this apparent inconsistency. The
XGBoost models appear not to be prone to overfitting judging by the SD.

We have not analysed the results of the SVM, k-NN and ANN models as they initially



56 Chapter 6. Discussion

Listing 6.4: Example of three booster trees generated by XGBoost for GL using synthetic features.
Two of the trees are more or less identical with only small differences in the leaf values, while
the third also adds RCS as a condition. They are much smaller and less complex than the other
projectile classes except RH. The tree is a binary classifier and each node is presented with a
feature, a threshold value and the decision path further. Each leaf gives information on how much
it contributes to the overall result.
boos te r [ 1 ] :
0 : [ f i r i n g_e l e va t i on <27.3499985] yes=1,no=2,miss ing=1

1 : [ f i r i n g_ve l o c i t y <316] yes=3,no=4,miss ing=3
3 : [ a c c e l e r a t i on <4.5 ] yes=5,no=6,miss ing=5

5 : l e a f =−0.0538314134
6 : [ f i r i n g_e l e va t i on <19.7999992] yes=7,no=8,miss ing=7

7 : l e a f =−0.0313322134
8 : l e a f =0.256362706

4 : l e a f =−0.0588730015
2 : l e a f =−0.0593802407

boos te r [ 7 ] :
0 : [ f i r i n g_e l e va t i on <27.3499985] yes=1,no=2,miss ing=1

1 : [ f i r i n g_ve l o c i t y <316] yes=3,no=4,miss ing=3
3 : [ a c c e l e r a t i on <4.5 ] yes=5,no=6,miss ing=5

5 : l e a f =−0.0529800467
6 : [ f i r i n g_e l e va t i on <19.7999992] yes=7,no=8,miss ing=7

7 : l e a f =−0.031398233
8 : l e a f =0.203315571

4 : l e a f =−0.058095891
2 : l e a f =−0.0586097091

boos te r [ 6 1 ] :
0 : [ f i r i n g_e l e va t i on <27.3499985] yes=1,no=2,miss ing=1

1 : [ f i r i n g_ve l o c i t y <316] yes=3,no=4,miss ing=3
3 : [ a c c e l e r a t i on <4.5 ] yes=5,no=6,miss ing=5

5 : l e a f =−0.0459649973
6 : [ rcs <11.5494995] yes=7,no=8,miss ing=7

7 : l e a f =−0.00487041473
8 : [ f i r i n g_e l e va t i on <22.6500015] yes=9,no=10,miss ing=9

9 : l e a f =0.00924922246
10 : l e a f =0.0834095553

4 : l e a f =−0.0528791547
2 : l e a f =−0.0536592118

perform worse than C5.0 and XGBoost and are more complicated compared to evaluate
than decision tree models. Particularly ANN with its mimic of neurological processes is
obtuse. This lack of transparency of some ML algorithms is also limiting the usefulness of
their adoptions in some areas due to the lack of trust [106]. This is especially the case in
the defence industry where accountability is an important factor, see Section 3.3.

As seen in Listing 6.9, 85.5 % of the decisions are controlled by the three features
firing_elevation, firing_velocity and rcs - the same three features used by Saab’s generation
1 algorithm. By also utilising the acceleration feature, accounting for 14.5 % of the decision
power for the XGBoost model, and modelling an ensemble of 100 learners we increase the
accuracy from 0.902 ± 0 to 0.979 ± 0.003, while also discriminating into light and heavy
calibres. The original result for Saab’s generation 2 algorithm, which already discriminates
between light and heavy calibres, is 0.852 ± 0. This is a significant improvement compared
to both legacy Saab algorithms, see Figure 5.1.



6.1. Experiments 57

Listing 6.5: Example of a booster tree generated by XGBoost for GH using synthetic features.
The tree is a binary classifier and each node is presented with a feature, a threshold value and the
decision path further. Each leaf gives information on how much it contributes to the overall result.
boos te r [ 0 ] :
0 : [ f i r i n g_e l e va t i on <36.5499992] yes=1,no=2,miss ing=1

1 : [ f i r i n g_ve l o c i t y <700] yes=3,no=4,miss ing=3
3 : [ f i r i n g_ve l o c i t y <463.5 ] yes=7,no=8,miss ing=7

7 : [ a c c e l e r a t i on <25.5] yes=15,no=16,miss ing=15
1 5 : [ f i r i n g_ve l o c i t y <312.5] yes=25,no=26,miss ing=25

2 5 : [ a c c e l e r a t i on <4.5 ] yes=29,no=30,miss ing=29
29 : l e a f =0.269157022
30 : l e a f =−0.0169648547

26 : l e a f =0.280767739
1 6 : [ f i r i n g_e l e va t i on <27.4500008] yes=27,no=28,miss ing=27

2 7 : [ rcs <1.46950006] yes=31,no=32,miss ing=31
31 : l e a f =0.0156661049
32 : l e a f =−0.0520377681

28 : l e a f =0.0626644269
8 : [ a c c e l e r a t i on <35.5] yes=17,no=18,miss ing=17

17 : l e a f =0.295744568
18 : l e a f =0.111621007

4 : [ rcs <47.723999] yes=9,no=10,miss ing=9
9 : [ f i r i n g_ve l o c i t y <945.5 ] yes=19,no=20,miss ing=19

19 : l e a f =0.173055828
20 : l e a f =0.0156661049

10 : l e a f =−0.0571657307
2 : [ rcs <15.5895004] yes=5,no=6,miss ing=5

5 : [ f i r i n g_e l e va t i on <47.4500008] yes=11,no=12,miss ing=11
1 1 : [ rcs <4.33899975] yes=21,no=22,miss ing=21

21 : l e a f =0.0156661049
22 : l e a f =0.255798131

12 : l e a f =−0.0551214851
6 : [ f i r i n g_ve l o c i t y <145] yes=13,no=14,miss ing=13

1 3 : [ rcs <276.780518] yes=23,no=24,miss ing=23
23 : l e a f =−0.0313322134
24 : l e a f =0.0484556332

14 : l e a f =−0.0588880628

6.1.2 Complete track plots

It came as a surprise to us that using plot features gave such strong results compared
to synthetic track features, 0.972 ± 0.001 vs. 0.979 ± 0.003, see Table 5.3. The result
is significantly lower, within a 95 % confidence level since the CIs do not overlap, but is
still significantly better than the existing Saab algorithms. What is surprising is that using
plots directly, without considering it a time series, is within 0.007 points of the result where
we have used features extracted from the entire length of the track.

It is not obvious to us how this result is achieved. Is the problem easier than expected?
Does XGBoost perform feature extraction which is not obvious? Or are we just lucky
because rounds follow a narrow feature space?

Inspecting the feature importances for the plot features can give us some insight. They
are given in Listing 6.10 and we observe that the most important feature by far accounting
for 46.1 % of the "decision power", how important a feature is, is the radial_velocity
feature. Radial velocity is the rate of change as a vector of the distance between a point,



58 Chapter 6. Discussion

Listing 6.6: Example of a booster tree generated by XGBoost for RL using synthetic features.
The tree is a binary classifier and each node is presented with a feature, a threshold value and the
decision path further. Each leaf gives information on how much it contributes to the overall result.
boos te r [ 5 ] :
0 : [ f i r i n g_ve l o c i t y <685.5] yes=1,no=2,miss ing=1

1 : [ f i r i n g_e l e va t i on <20.25] yes=3,no=4,miss ing=3
3 : [ f i r i n g_ve l o c i t y <409.5] yes=7,no=8,miss ing=7

7 : [ f i r i n g_e l e va t i on <19.0499992] yes=13,no=14,miss ing=13
13 : l e a f =−0.0546157882
14 : l e a f =0.0156661049

8 : [ f i r i n g_e l e va t i on <18.4000015] yes=15,no=16,miss ing=15
15 : l e a f =0.0626644269
1 6 : [ f i r i n g_ve l o c i t y <462.5] yes=21,no=22,miss ing=21

21 : l e a f =0.254096627
22 : l e a f =0.0626644269

4 : [ f i r i n g_ve l o c i t y <134.5] yes=9,no=10,miss ing=9
9 : l e a f =0.140073419
1 0 : [ a c c e l e r a t i on <37.5] yes=17,no=18,miss ing=17

1 7 : [ f i r i n g_e l e va t i on <20.4500008] yes=23,no=24,miss ing=23
2 3 : [ f i r i n g_ve l o c i t y <572] yes=27,no=28,miss ing=27

27 : l e a f =0.0156661049
28 : l e a f =−0.0372070074

24 : l e a f =−0.0591478087
1 8 : [ f i r i n g_ve l o c i t y <501] yes=25,no=26,miss ing=25

25 : l e a f =−0.0346111655
26 : l e a f =0.0626644269

2 : [ rcs <39.6094971] yes=5,no=6,miss ing=5
5 : l e a f =−0.0448522829
6 : [ rcs <889.815552] yes=11,no=12,miss ing=11

11 : l e a f =0.285002619
1 2 : [ f i r i n g_e l e va t i on <18.1500015] yes=19,no=20,miss ing=19

19 : l e a f =−0.0425222926
20 : l e a f =0.0156661049

our WLR, and an object, the projectile in question. In other words, the speed at which
a target is moving away from the radar. An object can be approaching, negative radial
velocity, receding, positive radial velocity, or stationary relative to the radar, zero radial
velocity. On its own, it is not a very useful feature as it is highly dependent on the
geometry of the firing, and can in principle be the same irrespectively of the projectile
type and calibre, at least for a single measurement. However, as we see from a typical
decision tree example produced by XGBoost using plot features in Listing 6.11 for RH,
this feature is heavily involved with other features like snr and str2 (nodes 1, 2, 4, 11, 19,
20, 23, 33 and 38 in Listing 6.11). This indicates that XGBoost has managed to perform
feature extraction which is not evident for a human or that the limited number of RHs
have similar geometries relative to the radar. This situation is also similar for the other
features.

As for the other questions posed above, we cannot conclude in any direction. The likely
answer is that it is a combination of several factors which leads to these positive results.

The decision trees produced by XGBoost when using plot features are much more

2STR is a proprietary Saab measure of signal strength irrespectively of attenuations and gains in the
signal path.



6.1. Experiments 59

Listing 6.7: Example of two booster trees generated by XGBoost for RH using synthetic features.
Since these two are for the same class they are quite similar. Other trees can be much more
complicated, some with up to fifty leaves. The tree is a binary classifier and each node is presented
with a feature, a threshold value and the decision path further. Each leaf gives information on
how much it contributes to the overall result.
boos te r [ 4 ]
0 : [ a c c e l e r a t i on <88.5] yes=1,no=2,miss ing=1

1 : [ f i r i n g_e l e va t i on <17] yes=3,no=4,miss ing=3
3 : [ f i r i n g_e l e va t i on <13.8999996] yes=7,no=8,miss ing=7

7 : l e a f =−0.039313063
8 : l e a f =0.0626644269

4 : l e a f =−0.059409827
2 : [ rcs <889.815552] yes=5,no=6,miss ing=5

5 : l e a f =−0.0511596315
6 : l e a f =0.206069544

boos te r [ 7 0 ] :
0 : [ a c c e l e r a t i on <70.5] yes=1,no=2,miss ing=1

1 : l e a f =−0.0533642098
2 : [ f i r i n g_ve l o c i t y <862.5 ] yes=3,no=4,miss ing=3

3 : [ f i r i n g_e l e va t i on <12.75] yes=5,no=6,miss ing=5
5 : l e a f =−0.032286115
6 : [ a c c e l e r a t i on <96.5] yes=7,no=8,miss ing=7

7 : l e a f =0.0901749209
8 : l e a f =0.0285347607

4 : l e a f =−0.0475433432

Listing 6.8: The feature usage of the four track features from the model generated by C5.0. The
percentages describe the feature’s use in the total decision path for all the trees.

100 % f i r i n g_e l e v a t i o n
100 % f i r i n g_v e l o c i t y
55 % a c c e l e r a t i o n
24 % rc s

Listing 6.9: The feature importances of the same four track features from the XGBoost model.
The numbers are fractions of cases determined by that feature for the whole ensemble of trees,
summing up to 1.

0 .493 f i r i n g_e l e v a t i o n
0 .297 f i r i n g_v e l o c i t y
0 .145 a c c e l e r a t i o n
0 .065 r c s

complex than when using synthetic features. The example in Listing 6.11 for RH contains
75 nodes, compared to eight for a tree using synthetic features in Listing 6.7. Part of this
increase in complexity can be explained by the increase in dimensionality; from four to
seven features, about a factor of (7/4)2 ≈ 3.0 in the complexity of a binary tree. The
"remaining" increase is likely to come from the increase in samples, from 16 of 2 259, or
0.7 %, to 2571 of 189 125, or 1.4 %, two magnitudes more total samples and a doubling in
the relative number of samples, for RH.

The complexity of the trees in the model across the different projectile classes varies,
from a minimum of 53 nodes to a maximum of 127 nodes. This is only a doubling of



60 Chapter 6. Discussion

Listing 6.10: The feature importances of the seven features from the XGBoost model using complete
track plots. The numbers are fractions of cases determined by that feature for the whole ensemble
of trees, summing up to 1.

0 .461 r ad i a l_ve l o c i t y
0 .196 upper_pri
0 .131 snr
0 .074 e l e v a t i o n
0 .051 lower_pri
0 .050 s t r
0 .034 phase

complexity difference compared to more than a magnitude for the model using synthetic
features. A higher maximum complexity indicates a more complex problem with higher
dimensionality. Since the relative difference between the maximum and minimum
complexity is lower, this could potentially indicate better model fitting of the data, i.e.
less over- or under-fitting. This is supported by the lower variance for plot features
compared to synthetic features.

6.1.3 Partial track plots

From the chart in Figure 5.2, it is clear that there is a marked improvement in accuracy
for RH with longer tracks. For the other classes and overall accuracy, there are fewer
variations with the increase in the length of the tracks. Similarly, the 95 % CI is following
an inverse trend compared to the accuracy, as seen in Figure 5.3.

Using plot features in groups of regular intervals of one second gives a general increase
in accuracy as the tracks get longer without affecting the 95 % CI much, see Table 5.4.
As the tracks get longer, the number of tracks of this minimum length from our dataset,
get fewer. However, the total number of plots used for training one group increases up to
more than 92 000 before levelling off at around eleven seconds. Still, for ML, MH, RL and
RH, the accuracies continue to increase. This can be explained either with a robust model
for these classes or that there is less variation for these longer tracks.

For GL and GH the accuracies increase up to seven seconds for GH and nine seconds
for GL. If we zoom in on the accuracy and 95 % CI for just GL and GH, see Figure 6.1
and Figure 6.2, we can conclude that the change in accuracy is significant with the 95 %
confidence level. Also note that there is a sudden drop in the accuracy, and a similar
increase in CI, for GL for the last group with 20 seconds worth of plot data for each track,
which can be explained by very few samples of tracks of this length.

It is worth noting that the models are trained for a specific duration of plot data. Using
these models for any other duration of plot data is probably not useful. This is illustrated
in Figure 6.3 where we see that the relative feature importances vary over time.

One possible practical application of this discovery is to fix the projectile classification
after a certain time iff it is one of GL or GH. In our research, this time appears to
be around six to nine seconds, but further research is needed to confirm our findings.
This could also potentially increase the accuracy for the other projectile classes because
of a decrease in the problem complexity if two classes are removed from the remaining
classification problem.



6.1. Experiments 61

Avg. no of seconds

A
C

C

0.870

0.890

0.910

0.930

0.950

0.970

0.990

5 10 15 20

GH GL

Class accuracy for GL and GH over time

Figure 6.1: The development in class accuracy for GL and GH from the XGBoost model using
partial track plots in time steps from one to 20 seconds.

Avg. no of seconds

A
C

C
 C

I ±

0.000

0.020

0.040

0.060

5 10 15 20

GH GH

95 % confidence interval for class accuracy for Gl and GH over time

Figure 6.2: The development in the 95 % CI for GL and GH from the XGBoost model using partial
track plots in time steps from one to 20 seconds.



62 Chapter 6. Discussion

Listing 6.11: Example of a booster tree generated by XGBoost for RH using plot features. The
tree is a binary classifier and each leaf is presented with a feature, a threshold value and how much
each leaf contributes to the overall result.

booster [4]:
0:[snr <18.3449993] yes=1,no=2,missing =1

1:[ radial_velocity < -456.100006] yes=3,no=4,missing =3
3:[str <13.6900005] yes=7,no=8,missing =7

7:[str <12.8150005] yes=13,no=14, missing =13
13:[snr < -0.875] yes=25,no=26, missing =25

25: leaf = -0.17680946
26:[snr <1.27999997] yes=47,no=48, missing =47

47: leaf =0.0499999933
48: leaf = -0.166666657

14:[snr <4.15999985] yes=27,no=28, missing =27
27:[ phase <151.75] yes=49,no=50, missing =49

49: leaf = -0.112500004
50: leaf =0.527586222

28:[ elevation <2.21000004] yes=51,no=52, missing =51
51: leaf = -0.148543686
52: leaf =0.0209302269

8:[ pri_upper <433.5] yes=15,no=16, missing =15
15: leaf = -0.166386545
16:[str <15.4699993] yes=29,no=30, missing =29

29:[snr <8.71999931] yes=53,no=54, missing =53
53: leaf =0.51351887
54: leaf = -0.138461545

30:[ elevation <2.80999994] yes=55,no=56, missing =55
55: leaf =0.756054819
56: leaf =0.0473684184

4:[ radial_velocity < -349.799988] yes=9,no=10, missing =9
9:[snr <7.59500027] yes=17,no=18, missing =17

17:[str <12.9099998] yes=31,no=32, missing =31
31:[snr <4.72000027] yes=57,no=58, missing =57

57: leaf = -0.178372413
58: leaf = -0.130668849

32:[ pri_upper <493.5] yes=59,no=60, missing =59
59: leaf =0.22005856
60: leaf = -0.176908389

18:[str <13.9699993] yes=33,no=34, missing =33
33:[ radial_velocity < -437.450012] yes=61,no=62, missing =61

61: leaf =0.0264705811
62: leaf = -0.150000006

34:[ pri_upper <375] yes=63,no=64, missing =63
63: leaf = -0.16578947
64: leaf =0.580683291

10:[snr <14.9699993] yes=19,no=20, missing =19
19:[ radial_velocity < -311.200012] yes=35,no=36, missing =35

35:[snr <12.3450003] yes=65,no=66, missing =65
65: leaf = -0.177563265
66: leaf =0.145065784

36: leaf = -0.17986697
20:[ radial_velocity < -282.700012] yes=37,no=38, missing =37

37:[ pri_upper <359] yes=67,no=68, missing =67
67: leaf = -0.175149709
68: leaf =0.766569734

38:[ radial_velocity < -218.350006] yes=69,no=70, missing =69
69: leaf = -0.140141562
70: leaf = -0.179855406

2:[ radial_velocity < -215.549988] yes=5,no=6,missing =5
5:[ pri_upper <357.5] yes=11,no=12, missing =11

11:[ radial_velocity < -223.299988] yes=21,no=22, missing =21
21:[ pri_upper <356.5] yes=39,no=40, missing =39

39: leaf = -0.179216072
40: leaf = -5.02914199e-09

22:[ elevation <3.71000004] yes=41,no=42, missing =41
41: leaf = -0.0947368443
42: leaf =0.33157894

12:[ elevation <4.11499977] yes=23,no=24, missing =23
23:[ radial_velocity < -319.149994] yes=43,no=44, missing =43

43:[ pri_upper <382] yes=71,no=72, missing =71
71: leaf = -0.124137938
72: leaf =0.661764741

44: leaf = -0.176223785
24:[ elevation <6.07999992] yes=45,no=46, missing =45

45:[ phase <216.25] yes=73,no=74, missing =73
73: leaf =0.866650403
74: leaf =0.228497401

46: leaf = -0.17496112
6:leaf = -0.179932356



6.1. Experiments 63

Avg. no. of seconds

Im
po

rta
nc

e

0.000

0.200

0.400

0.600

5 10 15 20

Elevation

Velocity

STR

SNR

Phase

PRI (upper)

PRI (lower)

Feature importances over time

Figure 6.3: The variation of feature importances of the seven features from the XGBoost model
using partial track plots in time steps from one to 20 seconds.

6.1.4 Hyper-parameter optimisation

Following up on the discussion from Section 6.1.2 and seeing that the variance is much less
for an XGBoost model trained with plot features compared to one trained with synthetic
track features, see Table 5.3, we suspected that additional hyper-parameter optimisation
would be more beneficial when using plot features. As we can see from Table 5.6, there is
very little change in hyper-parameter optimising the synthetic features, while optimising
plot features gives a significant increase from 0.972 ± 0.001 to 0.984 ± 0. This is also our
best result, significantly better than 0.979 ± 0.003 for unoptimised, synthetic features.

The complexity of the XGBoost trees across the different projectile classes varies even
more in the optimised model. From a minimum of 25 nodes to a maximum of 401 nodes.
Again we have more than a magnitude in the difference in the complexity between the
minimum and maximum.

What happens during PBT hyper-parameter optimisation is that the learning process is
perturbed several times during learning and this process is performed for multiple models,
20 in our case. It is therefore probable that the variety in the complexity of individual trees
becomes greater as a more random exploration of the hyper-parameter space is performed.

However, this added complexity might be unwanted in a military application where
accountability is important. As described in Section 4.2.4, we did not attempt to restrain
XGBoost from growing in complexity in this experiment. Particularly max_depth is
important for the total complexity of each learner, but other hyper-parameters are also
available to control the resulting complexity in more detail.



64 Chapter 6. Discussion

6.2 Challenges and limitations

As described in Section 4.1, the labelling of the tracks is based on truth data which is
manually recorded, usually in a notebook or a separate computer file, for each firing session.
This can introduce several sources of errors; from the people in charge of the firing, via
the people handling the ammunitions and weapons, via the people communicating this
information, typically over radio communication and potentially across a language barrier,
to a representative from Saab, to the Saab employee who records this information and
associate it with the corresponding track file. Also, the final step, which we have performed
as a part of this research, of mapping a single track to the correct recorded label to prepare
a benchmark, can introduce additional sources of errors.

Normally, one firing session is recorded in multiple track files which can contain zero
or more tracks each. The challenge is that the recorded truth data is done per firing
session and usually only for the firings of interest within that session. Hence, many types
of projectiles can have been fired during the same session, often at the same time, without
the specific truth data being associated with a particular track. Also, firings that are not
part of the session and false targets from clutter can be detected and recorded without
being labelled as such. These tracks needed to be identified and removed.

Discriminating which projectile is represented in which track is, therefore, a time
consuming and potentially error-prone task when done retrospectively. The raw dataset
provided by Saab contains over 200 000 tracks and through the manual process outlined
in Section 4.1, we ended up with 2 259 tracks from 172 sessions, with what we believe is
correctly labelled data. During this process, we found several examples of suspicious or
wrongly labelled data. These were excluded altogether.

Another factor we need to consider is the background for these recordings. Normally,
a firing session is planned well in advance to test a particular feature of the radar or
validate the radar performance in a specific scenario. To do this, the geometry of firing
and the weather must be within specific parameters. This means that there could be a
bias towards particular patterns for particular projectiles, geometries and specific weather
conditions which could affect the real-life performance of our work. Naturally, any
empirically developed algorithm using the same data will have similar constraints.

As can be seen in Table 4.4, there is mainly one source for the relatively low performance
of the generation 2 algorithm; the failure to distinguish between the calibre groups light
and heavy. More specifically, the failure to classify RH in general, the misclassification
of ML as MH and vice versa and, to a lesser extent, the misclassification of GL as GH
and vice versa. This makes sense as it is less complicated to only classify into three main
groups than to also classify into two subgroups, six groups altogether. If we adjust for this
and only look at the basic projectile types also for generation 2, we get an overall accuracy
of 0.969. This is better than for generation 1, but this is not what we desire as this reduces
the functionality of the classifier. Hence, the comparison between Saab’s generation 1 and
2 performed in this work is not "fair".

As far as we have been able to determine, no research into ballistic projectile
classification using machine learning has ever been published before. One of the reasons
for this can be that the dataset we have used is based on many years of development,
testing and data recording using the ARTHUR WLR. This makes this proprietary
dataset potentially unique, which other manufacturers of WLR systems might not have
available for their research. Another reason can be that manufacturers have kept their



6.2. Challenges and limitations 65

results proprietary and hence never published them as we do now. This makes it
impossible to compare and contrast our results with similar research.

Nevertheless, the results we have are very clear compared to Saab’s original proprietary
algorithms, that we think they stand on their own. However, the single largest challenge
with this work is the quality and amount of data, particularly the low number of samples
for the projectile classes GL and RH. Even though the variance for these two classes is also
generally low in our hyper-parameter optimised results, as shown in Table 5.6, the data
has been collected from only a limited number of firing sessions, rounds of fire with similar
geometries; two and one sessions respectively for GL and RH. It is therefore likely that
additional samples of these projectile classes from more diverse firing sessions will provide
a more challenging problem. We recommend that additional data are sourced, either from
additional recordings, or an even more involved examination of the existing data.

As with most ML applications, one weakness in the novel methods for projectile
classification we have discussed and used in this work, and hence in the results reported,
is that all the samples in the data set are from weapon and projectile types that are
known. New projectile types, projectiles that have never been recorded by ARTHUR or
new firing geometries might fall outside the "boundaries" defined during the learning
process and hence might give incorrect classification or fail to give a majority
classification if encountered. This is also a challenge with the original Saab algorithms as
they too are based on empirical data. However, for a human engineer, it is possible to
take the knowledge of missing knowledge and add fail-safes or extrapolate to probable
scenarios and thereby potentially handle these types of situations better than ML
algorithms.

As we briefly mentioned in Section 4.2.2, we have not performed any data augmentation,
see Section 2.5.8. Nor have we applied any regularisation techniques, see Section 2.5.9,
partly based on the initial strong results, but also since there is built-in regularisation in
XGBoost. However, these are techniques that could also potentially be beneficial for this
dataset irrespectively of the underlying ML framework.

Normally we would run a suitable statistical hypothesis test or calculate the p-value
of a given hypothesis test on our results, for a statistically strong result. However, since
we use stratified k-fold cross-validation, which breaks the condition of independence, and
since the measures of variability are dissimilar, given the differences in replications using
bagging to derive the results for Saab’s generation 1 and 2 algorithms, and using cross-
validation for our ML methods, this is not methodically safe [105]. Instead, we use the
95 % CI directly: Where the confidence intervals do not overlap we can claim that the
result is significant within the 95 % confidence level. However, where they do overlap, we
cannot claim the converse, i.e. that the result is not significant.

The consequence of this method is that we may fail to detect type II errors, i.e. that we
fail to reject a false null hypothesis [105]. In other words, that we fail to detect a significant
result where the intervals overlap. To increase the statistical power of our work, a more
thorough statistical treatment is required, which is not within the scope of this thesis.

However, for this work, this is less of a problem as we do not have CI overlap for our
claims. The main reason for this is that the variances are generally very low, resulting in
very small CIs.



66 Chapter 6. Discussion

6.3 Future work

Since the initial results using decision tree models were quite strong, as described in
Section 5.1, we opted to focus our effort in this direction since decision trees are easier to
interpret and, as such, more suitable for Saab. We see from Section 5.1 that all the ML
methods tested perform better than Saab’s algorithms. Hence, there is no reason that
other ML algorithms cannot perform equally well or better compared to our best results
with the appropriate optimisation. Also, the time-aware RNN algorithms briefly
discussed in Section 2.5.5, should be investigated.

We have additional domain knowledge in our track files that have not been used. By
including information about the weather, particularly wind, accurate position information
of the WLR and individual system corrections, synthetic, precise 3D-position vectors of
plots can be calculated. Together with the relative height of the plot, these additional
synthetic features, which represent the ballistic trajectory of the projectile when all plots
are included, can be considered a behavioural pattern when considered as a time series.
They could potentially give any ML method, but perhaps RNN more so, useful additional
information to discriminate between the various projectile classes.

The natural next concrete step would be to mix synthetic and plot features and train
a mixed model, using e.g. XGBoost. There is no obvious advantage to this based on the
existing results; no projectile class performs better using only synthetic features. However,
a mixed model could potentially perform more advanced feature extraction which could
provide improved performances.

Hybrid models where different models are used for different parts of the problems, as
introduced in Section 6.1.3 with one or two models for guns and separate models for rockets
and mortars could also provide better overall performance. Another possibility can be seen
from Table 5.2 where SVM and k-NN give better performance for the RH class than the
other ML methods.

One of the advantages of decision trees like C5.0 and XGBoost is that they are
relatively easy to interpret. This is particularly useful in the defence industry where
accountability is important. Of course, having an ensemble model with several 10s or
100s of individual decision trees can become very difficult to follow. While the decision
trees produced by C5.0 can be quite complex, the one in Listing 6.1 is one of the least
complex produced in our experiments, they can be used as inspiration to manually adapt
existing algorithms. We have shown that not only can additional features be used to
good effect, but additional discriminant nodes can also be added to improve the final
accuracy as illustrated in Listing 6.1. The advantage of this approach is that it can be
possible to validate the final solution analytically.

Instead of a manual adaption of existing algorithms or using ensembles of decision trees
directly from e.g. XGBoost, it could be worthwhile to investigate how GP, a sub-field
within genetic algorithms first introduced by Koza [107], could be used on this problem.
We envisage that the existing algorithm, possibly optimised by some of our findings, can
undergo evolution using any of the GP frameworks that exist, e.g. ADATE [108], IGoR
[109] or MagickHaskell [110], and provide valuable insight.

Furthermore, both C5.0 and XGBoost have hyper-parameters that can be used to adjust
the complexities of each learner. C5.0 has the concept of pruning, where parts of the tree,
which are predicted to have a relatively high error rate, are removed, and it is possible
to control how aggressive this pruning is. Similarly, the max_depth hyper-parameter in



6.3. Future work 67

XGBoost is used to control the maximum depth of a tree, which directly controls the
complexity. The default value is six, which can still give quite complex trees. XGBoost also
provides hyper-parameters to tune the total number of leaves and how tolerant each node
is for incorrect classification. We have on purpose used default values for our experiments.
Reducing the ceiling for these hyper-parameters will reduce the complexity of the final
model and could make them easier for human analysis.

By changing the focus from a "best possible" model to a "lowest possible complexity
while retaining as much accuracy as possible" model, we believe it is possible to create
models which are much less complex, both for C5.0 and XGBoost, and still provides better
performance than the original Saab algorithms. These can then be better candidates to
analyse and understand to validate for accountability, where this is a requirement, or for
further research as described above.

A prerequisite for the classification methods used here, both Saab’s original and the
ML methods developed here, is that false targets like birds, planes or other forms of
clutter have been filtered out before the projectile classification. By thresholding the
resulting probabilities it could be possible to detect false targets also during the projectile
classification. Similarly, the individual probabilities can be used to calculate the level
of confidence of the classification, which can be used to determine whether a particular
classification should be trusted or not.

Since we have a large amount of unlabelled data, which has not been used in this
research, as well as a small amount of labelled data, over 200 000 and 2 259 respectively,
the situation lends itself to exploration using semi-supervised methods. Semi-supervised
methods can be thought of as a hybrid of supervised and unsupervised learning, which
were briefly mentioned in Section 2.5, where the small amount of labelled data augments
the unlabelled data [111], and can thereby potentially improve the final result.





Chapter 7

Conclusion

"Only a Sith deals in absolutes."
— Obi-Wan Kenobi, Revenge of the Sith

The purpose of this master’s thesis is to investigate the possibility of using ML for
classifying ballistic artillery projectiles. We have used both synthetic features, features
calculated from measurements of a single projectile track, and radar plot features,
individual measurement and measurement control features.

The data was provided by Saab Technology Norway AS, a subsidiary of Saab AB, and
is completely novel. It consists of more than 10 GB of raw data, approximately 12 000
track files with over 200 000 individual tracks recorded using Saab’s ARTHUR WLR from
various locations around the world. The filtered dataset usable for our research consists
of 2 259 unique tracks, just over 1 % of the total tracks available, with a total of 189 125
individual radar plots.

Three research questions are discussed in this thesis: Firstly, we want to see how well
ML can classify our data using synthetic features compared to Saab’s original algorithms
(RQ1). Secondly, we look at how measured features can improve the classification power
(RQ2). Thirdly, we explore how the accuracy of the classification evolve over time for a
track (RQ3).

Our work shows that we can significantly outperform Saab’s original classification
algorithms using ML and synthetic features. We also show that the performance can be
further improved by using PBT to optimise the hyper-parameters when using plot
features from a track. Finally, we can outperform Saab’s original algorithms using only
one second of non-optimised plot features from a track. The best results were achieved
using XGBoost, an ensemble tree method with gradient boosting. Using our best ML
model to classify our data into six projectile classes, the accuracy increases from 0.852,
using Saab’s original generation 2 algorithm, to 0.984.

Using plot data, instead of synthetic track data, to classify ballistic artillery projectiles
into one of the projectile types gun, mortar or rocket as well as the calibres light or heavy,
is, as far as we have been able to determine, completely novel. As for synthetic features, we
see that, in addition to the natural features elevation, firing velocity and RCS, acceleration
has a clear decision power; stronger than RCS. This knowledge can be utilised regardless
of what else is taken from this work.

These results can be used to improve the accuracy of the estimation of POO and POI
and thereby improve the quality of the warnings given to own troops and civilians about

69



70 Chapter 7. Conclusion

pending ballistic attacks. They can also be used to improve the effectiveness of counter-
attacks on hostile weapons and thereby potentially reduce fatalities, collateral damage and
the number of enemy attacks.

Organisations or individuals who choose to use the result from this research, must on
an independent basis make the judgement whether they are within the respective national
and applicable international treaties, norms and laws.



Chapter 8

Glossary

AESA active electronically steered array

ANN artificial neural network

ARTHUR artillery hunting radar

AWS autonomous weapons systems

BPTT back-propagation through time

C2 command and control

CEP circular error probability

CI confidence interval

DARPA Defense Advanced Research Projects Agency

EC evolutionary computation

EM electromagnetic

GH gun heavy

GL gun light

GP genetic programming

GRU gated recurrent unit

IFF identification friend or foe

LOW laws of war

LSTM long short-term memory

k-NN k-nearest neighbour

MH mortar heavy

ML machine learning

71



72 Chapter 8. Glossary

ML mortar light

MLE maximum likelihood estimation

MSD maximum scatter difference

NCTR non-cooperative target recognition

NENT National Committee for Research Ethics in Science and Technology

NN neural network

PBA population-based augmentation

PBT population-based training

PESA passive electronically scanned array

POI point of impact

POO point of origin

PSR primary surveillance radar

RAM rocket, artillery, mortar

RH rocket heavy

RL rocket light

RCS radar cross-section

RNN recurrent neural network

SD standard deviation

SNR signal-to-noise ratio

SMOTE synthetic minority over-sampling technique

SSR secondary surveillance radar

SVM support vector machine

UN United Nations

TBM theatre ballistic missile

WL weapon locating

WLR weapon locating radar

WND will not disclose



Bibliography

[1] “U.S. Army engineers work to create a new longer M777 155mm howitzer under the
name M777er 13103162,” Army Recognition, Mar. 2016.

[2] Col. Liam Collins and Capt. Harrison “Brandon” Morgan, “King of Battle: Russia
Breaks Out the Big Guns,” Association of the United States Army, Jan. 2019.

[3] D. Clarke, World War I Battlefield Artillery Tactics. Bloomsbury Publishing, 2014.

[4] Department of the Army, “FM 6-121: Tactics, Techniques, and Procedures for Field
Artillery Target Acquisition,” Sept. 1990.

[5] W. Van der Kloot, “Lawrence Bragg’s role in the development of sound-ranging in
World War I,” Notes and Records of the Royal Society, vol. 59, no. 3, pp. 273–284,
2005.

[6] Saab AB, “Arthur - Weapon Locating System,” 2018.

[7] L. Dicander, G. Kihlström, and P. Lundgren, “Framgångsfaktorer i ett lyckat
samarbetsprojekt mellan Norge och Sverige,” Försvarets Historiska Telesamlingar,
Armén, Mar. 2009.

[8] Saab AB, “Giraffe AMB - Air Surveillance,” 2018.

[9] W. Fishbein, “Firefinder, a Radar Forty Years in the Making,” IEEE Trans. Aerosp.
Electron. Syst., vol. 44, no. 2, pp. 817–829, 2008.

[10] H. Meikle, Modern Radar Systems. Artech House, second ed., 2008.

[11] PIT-RADWAR SA, “WLR-100 Weapon Locating Radar LIWIEC,” 2018.

[12] What Is India Publishers (P) Ltd., “BEL Weapon Locating Radars @
whatisindia.com Thursday, December 14, 2006 19:14:15 IST,” Dec. 2006.

[13] OCCAR, “COBRA,” 2018.

[14] Israel Aerospace Industries Ltd., “ELM-2084 - MRR,” 2018.

[15] V. C. Ravindra, Y. Bar-Shalom, and P. Willett, “Projectile Identification and Impact
Point Prediction,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46,
no. 4, pp. 2004–2021, 2010.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016.

73



74 BIBLIOGRAPHY

[17] N. V. Chawla, “Data Mining for Imbalanced Datasets: An Overview,” Data mining
and knowledge discovery handbook, pp. 875–886, 2009.

[18] C. X. Ling, J. Huang, and H. Zhang, “AUC: A Better Measure than Accuracy
in Comparing Learning Algorithms,” in Advances in Artificial Intelligence: 16th
Conference of the Canadian Society for Computational Studies of Intelligence, AI
2003, Halifax, Canada, June 11-13, 2003, Proceedings (Y. Xiang and B. Chaib-draa,
eds.), (Berlin, Heidelberg), pp. 329–341, Springer, 2003.

[19] B. Hanczar, J. Hua, C. Sima, J. Weinstein, M. Bittner, and E. R. Dougherty, “Small-
sample precision of roc-related estimates,” Bioinformatics, vol. 26, no. 6, pp. 822–830,
2010.

[20] D. J. Hand, “Measuring classifier performance: a coherent alternative to the area
under the ROC curve,” Machine learning, vol. 77, no. 1, pp. 103–123, 2009.

[21] J. M. Lobo, A. Jiménez-Valverde, and R. Real, “AUC: a misleading measure of the
performance of predictive distribution models,” Global Ecology and Biogeography,
vol. 17, no. 2, pp. 145–151, 2008.

[22] P. Simon, Too Big to Ignore: The Business Case for Big Data. John Wiley & Sons,
Mar. 2013.

[23] A. M. Turing, “Computing Machinery and Intelligence,” Mind, vol. 59, no. 236,
pp. 433–460, 1950.

[24] S. Marsland, Machine Learning: An Algorithmic Perspective. Chapman and
Hall/CRC, 2014.

[25] P. A. Vikhar, “Evolutionary Algorithms: A Critical Review and its Future
Prospects,” in 2016 International Conference on Global Trends in Signal Processing,
Information Computing and Communication (ICGTSPICC), pp. 261–265, Dec. 2016.

[26] M. Kuhn and K. Johnson, Applied Predictive Modeling. Springer, 2013.

[27] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[28] K. Cho, B. v. Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation,” arXiv preprint arXiv:1406.1078, 2014.

[29] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,
1994.

[30] R. Lippmann, “An introduction to computing with neural nets,” IEEE Assp
magazine, vol. 4, no. 2, pp. 4–22, 1987.

[31] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

[32] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn.,
vol. 63, no. 1, pp. 3–42, 2006.



BIBLIOGRAPHY 75

[33] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in KDD
’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data, pp. 785–794, ACM, Aug. 2016.

[34] Q. Lei, J. Yi, R. Vaculin, L. Wu, and I. S. Dhillon, “Similarity
Preserving Representation Learning for Time Series Clustering,” arXiv preprint
arXiv:1702.03584, 2017.

[35] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ranzato, “Learning Longer
Memory in Recurrent Neural Networks,” arXiv preprint arXiv:1412.7753, 2014.

[36] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[37] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[38] S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU neural network performance
comparison study: Taking Yelp review dataset as an example,” in 2020 International
workshop on electronic communication and artificial intelligence (IWECAI), pp. 98–
101, IEEE, 2020.

[39] J. Van Der Westhuizen and J. Lasenby, “The unreasonable effectiveness of the forget
gate,” arXiv preprint arXiv:1804.04849, 2018.

[40] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection,” in Proceedings of the 14th International Joint Conference on
Artificial Intelligence - Volume 2, IJCAI’95, (San Francisco, CA, USA), pp. 1137–
1145, Morgan Kaufmann Publishers Inc., 1995.

[41] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference and Prediction. Springer Science & Business Media, 2009.

[42] A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Application.
Cambridge University Press, 1997.

[43] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. Chapman &
Hall/CRC, 1993.

[44] B. F. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology.
Chapman & Hall/CRC, Taylor & Francis, 2006.

[45] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,”
Journal of Machine Learning Research, vol. 13, pp. 281–305, 2012.

[46] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and
Hierarchical Reinforcement Learning,” arXiv preprint arXiv:1012.2599, 2010.

[47] J. H. Holland, “Genetic Algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73,
1992.



76 BIBLIOGRAPHY

[48] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi,
O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando, and K. Kavukcuoglu,
“Population Based Training of Neural Networks,” arXiv preprint arXiv:1711.09846,
2017.

[49] F. Tennebø and M. Geitle, “Evaluating Population Based Training on Small
Datasets,” in Norsk IKT-konferanse for forskning og utdanning, 2019.

[50] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “AutoAugment:
Learning Augmentation Strategies from Data,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 113–123, IEEE, 2019.

[51] D. Ho, E. Liang, X. Chen, I. Stoica, and P. Abbeel, “Population Based Augmentation:
Efficient Learning of Augmentation Policy Schedules,” in Proceedings of the 36th
International Conference on Machine Learning (K. Chaudhuri and R. Salakhutdinov,
eds.), vol. 97 of Proceedings of Machine Learning Research, pp. 2731–2741, PMLR,
09–15 Jun 2019.

[52] E. Castro, J. S. Cardoso, and J. C. Pereira, “Elastic Deformations for Data
Augmentation in Breast Cancer Mass Detection,” in 2018 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI), pp. 230–234, IEEE, 2018.

[53] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
Minority Over-sampling Technique,” Journal of Artificial Intelligence Research,
vol. 16, pp. 321–357, 2002.

[54] M. Arslan, M. Guzel, M. Demirci, and S. Ozdemir, “SMOTE and Gaussian
Noise Based Sensor Data Augmentation,” in 2019 4th International Conference on
Computer Science and Engineering (UBMK), pp. 1–5, IEEE, 2019.

[55] B. Neyshabur, R. Tomioka, and N. Srebro, “In Search of the Real Inductive
Bias: On the Role of Implicit Regularization in Deep Learning,” arXiv preprint
arXiv:1412.6614, 2014.

[56] A. Hernández-García and P. König, “Data augmentation instead of explicit
regularization,” arXiv preprint arXiv:1806.03852, 2018.

[57] S.-C. Chan and K.-C. Lee, “Radar Target Recognition by MSD Algorithms on
Angular-Diversity RCS,” IEEE Antennas and Wireless Propagation Letters, vol. 12,
pp. 937–940, 2013.

[58] A. Register, W. Blair, L. Ehrman, and P. K. Willett, “Using Measured RCS in a
Serial, Decentralized Fusion Approach to Radar-Target Classification,” in 2008 IEEE
Aerospace Conference, pp. 1–8, IEEE, 2008.

[59] J. S. Kobashigawa, H.-S. Youn, M. F. Iskander, and Z. Yun, “Classification of
Buried Targets Using Ground Penetrating Radar: Comparison Between Genetic
Programming and Neural Networks,” IEEE Antennas and Wireless Propagation
Letters, vol. 10, pp. 971–974, 2011.

[60] J. Pisane, Automatic target recognition using passive bistatic radar signals. PhD
thesis, Supélec, Apr. 2013.



BIBLIOGRAPHY 77

[61] I. M. D. Rosa, A. T. Marques, G. Palminha, H. Costa, M. Mascarenhas, C. Fonseca,
and J. Bernardino, “Classification success of six machine learning algorithms in radar
ornithology,” Ibis, vol. 158, no. 1, pp. 28–42, 2016.

[62] S.-J. Lee, S.-J. Jeong, B.-S. Kang, H. Kim, S.-M. Chon, H.-G. Na, and K.-T.
Kim, “Classification of Shell-Shaped Targets Using RCS and Fuzzy Classifier,” IEEE
Transactions on Antennas and Propagation, vol. 64, no. 4, pp. 1434–1443, 2016.

[63] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis:
Forecasting and Control. John Wiley & Sons, 2015.

[64] T. Taskaya-Temizel and M. C. Casey, “A Comparative Study of Autoregressive
Neural Network Hybrids,” Neural Networks, vol. 18, no. 5-6, pp. 781–789, 2005.

[65] H. Andersson and C. T. Luong, “Classification between birds and UAVs using
recurrent neural networks,” Master thesis, Chalmers University of Technology, 2020.

[66] J. Strandberg, “Time series classification for identification of radar targets,” Master
thesis, Chalmers University of Technology, 2015.

[67] J. Rosen, “Behavior Classification based on Sensor Data - Classifying time series
using low-dimensional manifold representations,” Master thesis, Chalmers University
of Technology, 2015.

[68] J. Fieser, “Ethics,” in Internet Encyclopedia of Philosophy, Internet Encyclopedia of
Philosophy, 2021.

[69] Ø. Mikkelsen, S. H. Hartvigsen, K. H. Hauge, S. Nordenson, E. Nordtveit, R. Nydal,
M. van der Velden, J. U. Skåre, R. Viste, L. Øvreås, et al., Guidelines for Research
Ethics in Science and Technology. The National Committee for Research Ethics in
Science and Technology, 2. ed., June 2016.

[70] Saab, “Code of Conduct,” Aug. 2020.

[71] United Nations, “Charter of the United Nations Article 51,” Oct. 1945.

[72] United Nations, “Charter of the United Nations Article 42,” Oct. 1945.

[73] J. Moussa, “Can jus ad bellum override jus in bello? Reaffirming the separation
of the two bodies of law,” International Review of the Red Cross, vol. 90, no. 872,
pp. 963–990, 2008.

[74] M. Verbruggen and V. Boulanin, “Article 36 reviews: Dealing with the challenges
posed by emerging technologies,” in Article 36 reviews and emerging technologies:
Exploring the challenges posed by emerging technologies to the legal review of weapons,
and means and methods of warfare., Stockholm International Peace Research
Institute (SIPRI), 2017.

[75] United Nations, Convention on the Prohibition of the Development, Production
and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on their
Destruction. United Nations, 1972.



78 BIBLIOGRAPHY

[76] League of Nations, Protocol for the Prohibition of the Use in War of Asphyxiating,
Poisonous or Other Gases, and of Bacteriological Methods of Warfare. League of
Nations, 1925.

[77] H. S. Truman, “Address in Milwaukee, Wisconsin, October 14, 1948,” Oct. 1948.

[78] D. D. Eisenhower, The White House Years: Mandate for Change, 1953-1956, vol. 1.
Doubleday, 1963.

[79] “Einstein deplores Use of Atom Bomb,” The New York Times, p. 1, Aug. 1946.

[80] O. Nathan and H. Norden, Einstein on Peace. Schocken Books, 1968.

[81] G. Alperovitz, “The War Was Won Before Hiroshima—And the Generals Who
Dropped the Bomb Knew It,” The Nation, Aug. 2015.

[82] European Commission, “Proposal for a regulation of the European Parliament and
of the Council laying down harmonised rules on artificial intelligence (Artificial
Intelligence Act) and amending certain Union legislative acts,” Apr. 2021.

[83] Capgemini, “Code of Ethics for AI,” Jan. 2021.

[84] IBM, “Everyday Ethics for Artificial Intelligence,” 2019.

[85] Centre for Humanitarian Dialogue, “Code of Conduct on Artificial Intelligence in
Military Systems,” Aug. 2019.

[86] AI Alliance Russia, “Artificial Intelligence Code of Ethics,” Oct. 2021.

[87] D. Omand and M. Phythian, Principled Spying: The Ethics of Secret Intelligence.
Oxford University Press, 2018.

[88] N. J. Beck, “Espionage and the Law of War,” American Intelligence Journal, vol. 29,
no. 1, pp. 126–136, 2011.

[89] T. O’Connor, “Russia will "take measures" against a U.S. radar nears its border,
thought to serve missile defense,” Newsweek, May 2019.

[90] R. Sims, “How do we understand international law and peace?,” Masters thesis,
Georgia State University, 2018.

[91] E. V. Carreno, “Address,” in Peace Through International Law: The Role of
the International Law Commission. A Colloquium at the Occasion of Its Sixtieth
Anniversary (G. Nolte, ed.), vol. 211, pp. 5–6, Springer Science & Business Media,
2009.

[92] T. Grant, “Building an Ontology for Planning Attacks That Minimize Collateral
Damage: Literature Survey,” in 14th International Conference on Cyber Warfare
and Security: ICCWS 2019, p. 78, Academic Conferences International Limited,
2019.

[93] D. A. Cafarelli, “Effect of False Alarm Rate on Pilot Use and Trust of Automation
Under Conditions of Simulated High Risk,” Master thesis, Massachusetts Institute
of Technology, 1998.



BIBLIOGRAPHY 79

[94] W. Nelson, “Use of Circular Error Probability in Target Detection,” The MITRE
Corporation, 1988.

[95] M. Rosenberg and J. Markoff, “The Pentagon’s ‘Terminator Conundrum’: Robots
That Could Kill on Their Own,” The New York Times, Oct. 2016.

[96] I. Bode and H. Huelss, “Autonomous weapons systems and changing norms in
international relations,” Review of International Studies, vol. 44, no. 3, pp. 393–413,
2018.

[97] R. C. Arkin, Governing Lethal Behavior in Autonomous Robots. Chapman and
Hall/CRC, 2009.

[98] R. C. Arkin, “The Case for Ethical Autonomy in Unmanned Systems,” Journal of
Military Ethics, vol. 9, no. 4, pp. 332–341, 2010.

[99] R. G. Hewlett and O. E. Anderson, The New World 1939/1946: A History of the
United States Atomic Energy Commission, vol. 1. The Pennsylvania State University
Press, 1962.

[100] K. Quach, “Googlers revolt over AI military tech contract, brainiacs boycott killer
robots, and more,” The Register, 2018.

[101] K. Conger, “Google Employees Resign in Protest Against Pentagon Contract,”
Gizmodo, May 2018.

[102] K. Anderson and M. C. Waxman, “Law and Ethics for Autonomous Weapon Systems:
Why a Ban Won’t Work and How the Laws of War Can,” tech. rep., Stanford
University, The Hoover Institution (Jean Perkins Task Force on National Security
and Law Essay Series), 2013.

[103] S. Russell, D. Dewey, and M. Tegmark, “Research Priorities for Robust and Beneficial
Artificial Intelligence,” AI Magazine, vol. 36, no. 4, pp. 105–114, 2015.

[104] R. P. Masini, M. C. Medeiros, and E. F. Mendes, “Machine learning advances for
time series forecasting,” arXiv preprint arXiv:2012.12802, 2020.

[105] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures.
CRC Press, 2011.

[106] D. Gunning, “Broad Agency Announcement — Explainable Artificial Intelligence
(XAI),” tech. rep., DARPA, 2016.

[107] J. R. Koza and J. R. Koza, Genetic programming: on the programming of computers
by means of natural selection, vol. 1. MIT Press, 1992.

[108] R. Olsson, “Inductive functional programming using incremental program
transformation,” Artificial intelligence, vol. 74, no. 1, pp. 55–81, 1995.

[109] M. Hofmann, “Igorii-an analytical inductive functional programming system (tool
demo,” in In PEPM, Citeseer, 2010.

[110] S. Katayama, “Systematic search for lambda expressions.,” Trends in functional
programming, vol. 6, pp. 111–126, 2005.



80 BIBLIOGRAPHY

[111] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis
lectures on artificial intelligence and machine learning, vol. 3, no. 1, pp. 1–130, 2009.






	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Research questions

	Background
	General radar principles
	Weapon locating radar
	Artillery weapons
	Performance metrics
	Machine learning
	Machine learning in radar applications
	Summary

	Ethics
	Introduction
	Ethics in military applications
	Ethical questions
	Summary

	Methods
	Dataset
	Experiments

	Results
	Synthetic track features
	Complete track plots
	Partial track plots
	Hyper-parameter optimisation

	Discussion
	Experiments
	Challenges and limitations
	Future work

	Conclusion
	Glossary
	Bibliography

