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Abstract. The article presents the results of research in the area of using deep neural networks to identify moisture inside the walls of buildings using 

electrical impedance tomography. Two deep neural networks were used to transform the input measurements into images of damp places - convolutional 

neural networks (CNN) and recurrent long short-term memory networks LSTM. After training both models, a comparative assessment of the results 
obtained thanks to them was made. The conclusions show that both models are highly utilitarian in the analyzed problem. However, slightly better results 

were obtained with the LSTM method. 
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ZASTOSOWANIE KONWOLUCYJNYCH SIECI NEURONOWYCH W IDENTYFIKACJI 

ZAWILGOCEŃ ŚCIAN BUDYNKÓW METODĄ EIT 

Streszczenie. W artykule przedstawiono rezultaty badań w obszarze wykorzystania głębokich sieci neuronowych do identyfikacji zawilgoceń wewnątrz 

ścian budynków przy użyciu elektrycznej tomografii impedancyjnej. Do przekształcenia pomiarów wejściowych na obrazy przedstawiające zawilgocone 
miejsca użyto dwóch rodzajów głębokich sieci neuronowych – konwolucyjne sieci neuronowe (CNN) i rekurencyjne sieci typu LSTM. Po wytrenowaniu 

obu modeli dokonano oceny porównawczej uzyskanych dzięki nim rezultatów. Wnioski wskazują na dużą utylitarność obu modeli w badanej problematyce, 

jednak nieco lepsze rezultaty uzyskano dzięki metodzie LSTM. 

Słowa kluczowe: uczenie maszynowe, głębokie uczenie, tomografia impedancyjna, wykrywanie wilgoci w ścianach 

Introduction 

The presence of moisture inside the walls of buildings 

is the cause of many unfavourable phenomena. One of them 

is the chemical and physical degradation of walls, which leads 

to the weakening of the structure of buildings, reducing their 

strength. Wet walls crack at low temperatures due to freezing. 

Chemical compounds, especially aggressive salts and chlorides, 

which penetrate deep into the walls through faulty foundation 

insulation, accelerate the erosion of porous materials such 

as bricks, cement and plaster. The phenomenon of capillary 

leakage contributes to the spread of moisture areas inside 

the walls. Moisture destroys plasters and paints coats, worsening 

the aesthetics. It, in turn, necessitates more frequent renovations, 

which raises the operating costs of buildings [1]. A separate aspect 

is the negative impact of moisture on the health and comfort 

of people staying inside damp rooms. Due to favourable condi-

tions, fungi and microorganisms often breed and multiply inside 

wet walls. Penetrating humans' breathe causes allergies and other 

respiratory illnesses [2]. 

This article presents a non-invasive method to identify 

moisture inside walls using electrical impedance tomography. 

Particular attention was paid to the issue of converting electrical 

measurements generated by tomograph electrodes into spatial 

images (reconstructions) visualizing moisture areas. The transfor-

mation of 96 input measurements into 6215 pixels of the output 

image resolves an inverse problem that is undefined [1]. 

For this purpose, a convolutional neural network (CNN) 

and a deep recurrent long short-term memory network (LSTM) 

with regressive outputs were used [2]. 

The novelty of the presented solution is the adaptation 

of the deep neural network structure, which as a rule is designed 

for image classification problems to solve the regression problem 

in which the input is not an image but a vector consisting 

of 96 voltage measurements. Furthermore, the layers' types, 

amounts, and parameters were finetuned such that the neural 

network was effective in learning. As a result, reconstruction 

images were obtained, the quality of which is adequate to identify 

areas of moisture inside the walls with sufficient precision. 

1. Materials and methods 

In order to verify the effectiveness of CNN in the problem 

of identifying moisture inside the walls of buildings using electri-

cal impedance tomography (EIT) [3, 4], a set of simulation cases 

was generated. The data set included 40,000 measurement vectors 

(inputs) and pattern images (outputs). Each measurement 

vector consisted of 96 measurements correlated with the voltages 

measured between the different electrode pairs. In order to gener-

ate the training data, the Eidors toolbox was used, which cooper-

ates with the Matlab software. Eidors works based on the finite 

element method [5]. A set of 16 linearly positioned electrodes was 

used in the tests. The scheme of the test stand is shown in Fig. 1.  

    

Fig. 1. Scheme of the measuring stand [6] 

The forward problem is solved by determining the potential 

distribution within the region given the boundary conditions and 

complete information about the region, i.e. by solving Laplace's 

equation: 

 −𝛁 ∙ (𝛔 𝛁𝐮) = 0 (1) 

where 𝛔 denotes conductivity, symbol u represents electrical 

potential. The optimized fitness function is constructed in the 

following way: 

 𝐹𝑓𝑖𝑡 = 0.5 ∑ (𝑼 − 𝑼𝑚)𝑇𝑛
𝑖=1 (𝑼 − 𝑼𝑚) (2) 

where 𝑛 is a projection angle (the number of measurement 

sequences: 12 measurements × 8 angle projections = 96 inde-

pendent measurements), Um – the measured voltage, U – the cal-

culated voltage by solving the equation (1). Fig. 2 shows the way 

of transforming measurements into tomographic images. 

On the surface of the damp brick wall, there are 16 electrodes 

arranged vertically in a straight line. The electrodes were connect-

ed to the EIT tomograph, which manages the measurement 
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process [5, 7]. Built-in multiplexer determines the frequency 

of measurements and the sequence of changes of electrode pairs 

between which the measurement is made. The recorded measure-

ments are then converted into images using CNN and LSTM. 

The resolution of the spatial image mesh is 6215 finite elements 

(pixels). 

 

Fig. 2. The method of transforming measurements into tomographic images 

In order to better compare the usefulness of deep learning 

methods in electrical tomography, two types of networks were 

trained: CNN and LSTM. The structure of the layers of the CNN 

network is shown in Fig. 3. All used in the CNN fully connected 

layers model and the regression output layer have the same 

number of outputs, amounting to 6215. 

 

Fig. 3. Convolutional neural network (CNN) layers 

The CNN network consists of 9 layers. The first layer has 

a single sequence structure. It is a vector of 96 measurements. 

The second layer is a 1-D convolutional layer that applies sliding 

convolutional filters to 1-D input. It contains 192 filters of size 4. 

Next is the Rectified Linear Unit (ReLU) layer. The next layer 

is a fully connected layer that precedes the dropout layer with 

a probability of 0.3. The sixth layer is connected again, followed 

by the global max-pooling layer. A fully connected layer multi-

plies the input by a weight matrix and adds a bias vector. 

The eighth layer is the third fully connected layer that precedes 

the regression output layer that computes the half-mean-squared-

error loss for regression tasks. 

The LSTM model had only 4 layers as shown in Fig. 4. First, 

the sequence input layer injects sequence data into the network. 

 

Fig. 4. LSTM network layers 

A bidirectional LSTM (BiLSTM) layer learns long-term 

bidirectional dependencies between time steps of time series 

or sequence data. These dependencies are advantageous when 

the network is required to learn from the entire time series at each 

time step. The last two layers are the fully connected and regres-

sion output layers. 

Fig. 5 shows the CNN learning process based on Root 

Mean Square Error (RMSE). RMSE is calculated according 

to formula (3) 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑁

𝑖=1

𝑁
, (3) 

where N is the number of responses, 𝑦𝑖 is the target output, and �̂�𝑖 

is the model's prediction for response i. In addition, Fig. 6 shows 

the same CNN learning flow but based on the Loss value. 

The Loss is calculated as (4) 

 𝐿𝑜𝑠𝑠 =
1

2𝑆
∑ ∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)

2𝑁
𝑗=1

𝑆
𝑖=1  , (4) 

where S is the sequence length. In our case S = 96. 

 

Fig. 5. Training progress of the CNN through the RMSE indicator 

 

Fig. 6. Training progress of the CNN through the Loss indicator 

 

Fig. 7. Training progress of the LSTM through the RMSE indicator 

 

Fig. 8. Training progress of the LSTM through the Loss indicator 

As can be seen from the figures above, CNN RMSE is around 

145 and Loss around 104. In Figs. 7 and 8 show analogous indica-

tors of the learning quality of the LSTM network. RMSE and Loss 

here are respectively 95 and 5∙103. It proves the advantage of 
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LSTM over CNN. The RMSE and Loss values result from the 

assumptions made, according to which the background value (dry 

areas) of the tomographic image is 1, and the moist areas are 10. 

2. Results and discussion 

Fig. 9 shows the results obtained using CNN and LSTM 

methods for selected 3 cases. The first case (Fig. 9 a-c) shows

the moisture located in the rear part of the examined area. 

The LSTM reconstructions seem to be more precise because CNN 

shows the moisture area larger than in the reference image. 

The second case (Fig. 9 d-f) shows the moisture located in the 

front part of the examined area. Although the LSTM reconstruc-

tions seem to be better again, CNN shows areas with different 

moisture levels also in other parts of the section of the wall, which 

makes it difficult to identify wet areas correctly. 

 

Fig. 9. Comparison of selected reconstructions. Images (a,d,g) are the patterns. Images (b,e,h) were obtained with LSTM algorithm. Images (c,f,i) were created with the CNN 

algorithm  
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The third case (Fig. 9 g-i) shows the moisture located 

in the front lower part of the examined area. Of all the presented 

cases, this one seems to be the closest for both methods (CNN 

and LSTM). The shape and contour of the moisture better reflect 

the CNN, but at the same time, there are minor disturbances 

in the rear part of the tested section, approximately 40 cm above 

the ground level. 

Four widely used metrics were used to evaluate the quality 

of tomographic reconstructions objectively: root mean square 

error (RMSE), normalized mean square error (NMSE), relative 

image error (RIE), and image correlation coefficient (ICC). 

The root mean square error is calculated according to the previ-

ously presented formula (3). NMSE is calculated by (5) 

 NMSE =
‖𝒚−�̂�‖2

‖𝒚−�̅�‖2 , (5) 

where 𝒚 is the reference (ground-truth) conductivity distribution, 

�̅� is the average reference ground-truth conductivity distribution, 

�̂� denotes the reconstructed conductivity distribution, and ‖ ∙ ‖ is 

the L2–norm set [8,9]. RIE is calculated according to formula (6) 

 RIE =
‖𝒚−�̂�‖

‖𝒚‖
 , (6) 

and ICC is described by equation (7) 

 ICC =
∑ (𝑦𝑖−�̅�)𝑛

𝑖=1 (�̂�𝑖−�̅̂�)

√∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1 ∑ (�̂�𝑖−�̅̂�)

2𝑛

𝑖=1

 , (7) 

where �̅̂� is the mean reconstruction conductivity distribution. 

The lower the RMSE, NMSE, and RIE, and the greater the ICC, 

the higher the tomographic image quality. ICC = 1 indicates ideal 

reconstruction, whereas ICC = 0 signifies the worst one. 

The Table 1 compares the LSTM and CNN methods. Four 

criteria defined as indicators were used for this purpose: RMSE, 

NMSE, RIE, and ICC.  

Table 1. Reconstruction quality indicators for the three cases compared 

Methods of 

reconstruction 
Indicator 

Reconstruction cases 

Case 1 Case 2 Case 3 

CNN 

RMSE 1.572 1.781 1.323 

NMSE 0.379 0.244 0.158 

RIE 0.587 0.325 0.275 

ICC 0.722 0.900 0.935 

LSTM 

RMSE 1.159 1.027 1.261 

NMSE 0.206 0.081 0.143 

RIE 0.433 0.187 0.262 

ICC 0.849 0.968 0.941 

Winning method: 

LSTM LSTM LSTM 

LSTM LSTM LSTM 

LSTM LSTM LSTM 

LSTM LSTM LSTM 

 

Three distinct moisture content cases were evaluated. 

The table's final four lines contain information about the method 

that produces the best result for a given case when each measure 

is considered. As can be seen, the LSTM method produced superi-

or results in all cases evaluated. It should be stated objectively 

that some of the differences are quite minor. For instance, 

the difference is very small when comparing the ICC values for 

Case 3. The delta (difference) ICC is only 0.006. When comparing 

the two methods, one additional consideration should be made: 

the reconstruction time. The model's ability to generate images 

quickly is critical, even more so when performing measurements 

during dynamic industrial processes. The time required for 

the LSTM reconstruction was 0.006390 seconds, while the time 

required for the CNN reconstruction was 0.035113 seconds. 

In practice, the difference favours the LSTM more than 5 times. 

3. Conclusions 

This article introduces an innovative algorithmic concept 

for solving the static problem of tomographic image reconstruc-

tion using a recurrent deep LSTM network and convolutional 

neural network. Electrical impedance tomography was used 

to image moisture within a brick wall. The LSTM and CNN 

networks were successfully trained by treating the measurement 

vector as a single time step sequence signal. The reconstruction's 

high quality was confirmed by comparing it to images generated 

using another high-efficiency method, LSTM. Both methods 

described here allow for spatial visualization of the moisture 

distribution within a wall. It is significantly different from tradi-

tional indirect methods, which only test the humidity at selected 

wall points. In addition, the LSTM method has a significant 

advantage in terms of reconstruction speed, which opens up new 

application possibilities, particularly in the area of automated, 

dynamic industrial processes. Future research will focus on deci-

phering the moisture expansion processes occurring within porous 

materials. To fully exploit the LSTM and CNN networks' 

potential, more sophisticated modifications to the input vector 

and data preprocessing are planned. 
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