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Abstract

Temporal logics are a well established formal specification paradigm to specify the behavior
of systems, and serve as inputs to industrial-strength verification tools. We report on
current advances in applying deep learning to temporal logical reasoning tasks, showing
that models can even solve instances where competitive classical algorithms timed out.

1 Introduction

The assumption that deep learning is not yet ready to tackle hard reasoning questions has
been drawn into question. For example, Transformer models [25] perform surprisingly well
on symbolic integration tasks [16], self-supervised training can lead to mathematical reasoning
abilities [22], or large-enough language models learn basic arithmetic despite being trained
on mostly natural language sources [21]. These success stories and uprising workshops and
conferences on this topic (e.g., [5, 24, 26]), pose the question if challenging problems in the area
of automated verification lend themselves to a direct learning approach as well. We report on
current advances in applying deep learning to involved temporal logical reasoning tasks.

Many approaches in verification are based on temporal logics, a specification paradigm that
is the basis for industrial hardware specification languages like the IEEE standard PSL [13].
For example, linear-time temporal logic (LTL) [20] can specify that some proposition P must
hold at every point in time ([JP) or that P must hold at some future point of time (& P). By
combining these operators, one can specify that P must occur infinitely often (O P). LTL
satisfiability is the (PSPACE-complete) problem of computing a logical solution, i.e., a trace,
which is sequence of propositions, that satisfies an LTL formula. In applications, solutions to
LTL formulas can represent (counter-)examples for a specified system behavior. LTL synthesis
is the (2EXPTIME-complete) problem of automatically constructing a circuit that satisfies an
LTL specification for every input. This is an especially challenging and active research field
including an annual tool competition (SYNTCOMP [14]).

Over the last decades, generations of advanced algorithms have been developed to solve
temporal reasoning tasks automatically. We show that fully neural approaches are already
competitive: By computing satisfying traces to LTL formulas, we show that Transformers
generalize to the semantics of LTL (Section 2 and [11]) and based on those findings, we show
that Transformers can be used to even synthesize fully functional circuits directly out of LTL
specifications (Section 3 and [23]).

2 Transformers Generalize to the Semantics of Temporal Logics

For predicting a satisfying trace to an LTL formula, we generated training data in two different
ways: randomly and as conjunctions of patterns typically encountered in practice [7]. We use
spot [6], that implements a competitive classical algorithm, to generate solutions to formu-
las from these distribution and train a Transformer model to predict solutions directly. The
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Figure 1: [11] Performance on different datasets, where the number refers to the size of the largest formula in
the data set. The percentage of a dark green bar refers to the syntactic accuracy, the percentage of a light green
bar to the semantic accuracy without the syntactic accuracy. Incorrect predictions are given in orange.
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Figure 2: [11] Instances where the model agrees with the generator are displayed in dark green; deviations from
the generators output but still correct predictions are displayed in light green; incorrect predictions in orange.

formula size

question, however, is whether Transformers learn to imitate the generator of the training data,
rather than learn to solve the formulas according to the semantics of the logics. We, thus,
differentiate between a syntactic accuracy, i.e., where the model predicts the same trace as the
classical algorithm and the semantic accuracy, i.e., where the model deviates.

Figure 1 shows a subset of experiments conducted in [11] showing that, in fact, the latter
holds true. In our experiments, we observed that Transformers predict correct solutions to
98.5% of the random formulas (line 1) and 96.8% of the pattern formulas (line 3) from a held-
out test set. Figure 2 shows the performance of a model trained and tested on combinations
of specification patterns LTLPattern126 in more detail. When the formulas become larger, the
gap between syntactic and semantic accuracy increases. We also observed that Transformers
generalize to larger formulas than seen during training (line 2). Impressive enough, Transformers
hold up pretty well and predict correct solutions in 83% of cases on a set of formulas that spot
could not solve within 60 seconds (line 4). Finally, we performed an out-of-distribution test
by predicting traces to held-out specification patterns from the literature ([8, 12, 19]). Trained
on LTLRandom126, the model achieved an accuracy of 84.4% (62.2% syntactic accuracy) and
trained on LTLPattern126 it achieved 50.0% (11.3%).

3 Transformers Construct Circuits out of Temporal Logical Specifications

To predict a circuit that satisfies an LTL formula for every input, we utilized specification pat-
terns mined from benchmarks of the annual reactive synthesis competition (SYNTCOMP) [14].
An example for such a pattern is a typical request-response property: [(request — <> grant).
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Figure 3: [23] The specification (left), the predicted AIGER circuit (middle) and the visualization of the circuit
(right) for a prioritizing arbiter.

The formula states that at every point in time ((J) a request must be eventually () followed by
a grant. By combining specification patterns, we generated over 200000 specifications includ-
ing both realizable and unrealizable specifications. Using classical LTL synthesis tools [9, 18],
we obtained a dataset consisting of formulas and their circuit implementations in AIGER [2].
We represented the specifications and circuits as sequences and trained hierarchical Trans-
formers [17] on the circuit construction task. For example, when given the specification of a
prioritizing arbiter that manages a shared resource, the model predicts a correct circuit given
as an AIGER file, displayed in Figure 3. The specification consists of a combination of request-
response and mutual exclusion patterns.

We ran several experiments [23], where the results of a subset can be found in Table 1.
The Testset contains held-out data from the training distribution, i.e., combinations of mined
patterns, where the model achieved an accuracy of 79.9%. We also tested on the challenging
SYNTCOMP benchmarks, which contain practical specifications of systems, such as arbiters of
the AMBA AHB bus [3, 4, 10] or robotic controllers [15]. For the instances that fit into
the size restrictions of the model [23], the model achieved an accuracy of 66.8% (making this
already a competitive approach). We stored specifications for which the synthesis tool timed out
(> 120s) in the dataset Timeouts. The Transformer was able to solve 30.1% substantiating the
strong generalization of this model. We also performed an out-of-distribution test by predicting
circuits for a Smart Home benchmark [1] that has only recently been added to the SYNTCOMP
competition 2021. Note that we have not mined patterns from this benchmark. We achieved an
accuracy of 40.0% for the instances that fit into the size restrictions of the model. This means
that, already today, direct machine learning approaches may be useful to augment classical
algorithms in verification tasks.

Table 1: [23] Accuracy reported for 5 runs on Testset, SYNTCOMP benchmarks, Timeouts, and Smart Home
benchmarks for different beam sizes, including the standard deviation. For the test data we show the syntactic
accuracy in parenthesis.

Dataset Beam Size 1 Beam Size 4 Beam Size 8 Beam Size 16
Testset 53.6(31.1) =2.4 70.4(39.0) £2.3 75.8(41.9) +£2.1 79.9(44.5) 2.0
SYNTCOMP 51.94+2.2 60.0+1.5 63.6 =1.9 66.8 +1.2
Timeouts 11.7+1.1 21.14+0.9 25.94+1.0 30.14+1.2
Smart Home 2294 3.6 314+£7.1 44.8 +6.5 40.0£6.5
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