
Published as a conference paper at ICLR 2021

TEACHING TEMPORAL LOGICS TO NEURAL NET-
WORKS∗

Christopher Hahn
CISPA Helmholtz Center for Information Security
Saarbrücken, 66123 Saarland, Germany
christopher.hahn@cispa.de

Frederik Schmitt
CISPA Helmholtz Center for Information Security
Saarbrücken, 66123 Saarland, Germany
frederik.schmitt@cispa.de

Jens U. Kreber
Saarland University
Saarbrücken, 66123 Saarland, Germany
kreber@react.uni-saarland.de

Markus N. Rabe
Google Research
Mountain View, CA, USA
mrabe@google.com

Bernd Finkbeiner
CISPA Helmholtz Center for Information Security
Saarbrücken, 66123 Saarland, Germany
finkbeiner@cispa.de

ABSTRACT

We study two fundamental questions in neuro-symbolic computing: can deep
learning tackle challenging problems in logics end-to-end, and can neural net-
works learn the semantics of logics. In this work we focus on linear-time tempo-
ral logic (LTL), as it is widely used in verification. We train a Transformer on the
problem to directly predict a solution, i.e. a trace, to a given LTL formula. The
training data is generated with classical solvers, which, however, only provide one
of many possible solutions to each formula. We demonstrate that it is sufficient
to train on those particular solutions to formulas, and that Transformers can pre-
dict solutions even to formulas from benchmarks from the literature on which the
classical solver timed out. Transformers also generalize to the semantics of the
logics: while they often deviate from the solutions found by the classical solvers,
they still predict correct solutions to most formulas.

1 INTRODUCTION

Machine learning has revolutionized several areas of computer science, such as image recogni-
tion (He et al., 2015), face recognition (Taigman et al., 2014), translation (Wu et al., 2016), and
board games (Moravcı́k et al., 2017; Silver et al., 2017). For complex tasks that involve symbolic
reasoning, however, deep learning techniques are still considered as insufficient. Applications of
deep learning in logical reasoning problems have therefore focused on sub-problems within larger
logical frameworks, such as computing heuristics in solvers (Lederman et al., 2020; Balunovic et al.,
2018; Selsam & Bjørner, 2019) or predicting individual proof steps (Loos et al., 2017; Gauthier et al.,
2018; Bansal et al., 2019; Huang et al., 2018). Recently, however, the assumption that deep learning
is not yet ready to tackle hard logical questions was drawn into question. Lample & Charton (2020)
demonstrated that Transformer models (Vaswani et al., 2017) perform surprisingly well on symbolic
integration, Rabe et al. (2020) demonstrated that self-supervised training leads to mathematical rea-
soning abilities, and Brown et al. (2020) demonstrated that large-enough language models learn
basic arithmetic despite being trained on mostly natural language sources.

This poses the question if other problems that are thought to require symbolic reasoning lend them-
selves to a direct learning approach. We study the application of Transformer models to challenging

∗Partially supported by the European Research Council (ERC) Grant OSARES (No. 683300) and the Col-
laborative Research Center “Foundations of Perspicuous Software Systems” (TRR 248, 389792660).

1

Published as a conference paper at ICLR 2021

Figure 1: Performance of our best models trained on practical pattern formulas. The x-axis shows
the formula size. Syntactic accuracy, i.e., where the Transformer agrees with the generator are
displayed in dark green. Instances where the Transformer deviates from the generators output but
still provides correct output are displayed in light green; incorrect predictions in orange.

logical problems in verification. We thus consider linear-time temporal logic (LTL) (Pnueli, 1977),
which is widely used in the academic verification community (Dwyer et al., 1998; Li et al., 2013;
Duret-Lutz et al., 2016; Rozier & Vardi, 2007; Schuppan & Darmawan, 2011; Li et al., 2013; 2014;
Schwendimann, 1998) and is the basis for industrial hardware specification languages like the IEEE
standard PSL (IEEE-Commission et al., 2005). LTL specifies infinite sequences and is typically used
to describe system behaviors. For example, LTL can specify that some proposition P must hold at
every point in time (P) or that P must hold at some future point of time (P). By combining
these operators, one can specify that P must occur infinitely often (P).

In this work, we apply a direct learning approach to the fundamental problem of LTL to find a
satisfying trace to a formula. In applications, solutions to LTL formulas can represent (counter)
examples for a specified system behavior, and over the last decades, generations of advanced algo-
rithms have been developed to solve this question automatically. We start from the standard bench-
mark distribution of LTL formulas, consisting of conjunctions of patterns typically encountered in
practice (Dwyer et al., 1998). We then use classical algorithms, notably spot by Duret-Lutz et al.
(2016), that implement a competitive classical algorithm, to generate solutions to formulas from this
distribution and train a Transformer model to predict these solutions directly.

Relatively small Transformers perform very well on this task and we predict correct solutions to
96.8% of the formulas from a held-out test set (see Figure 1). Impressive enough, Transformers hold
up pretty well and predict correct solutions in 83% of the cases, even when we focus on formulas on
which spot timed out. This means that, already today, direct machine learning approaches may be
useful to augment classical algorithms in logical reasoning tasks.

We also study two generalization properties of the Transformer architecture, important to logical
problems: We present detailed analyses on the generalization to longer formulas. It turns out that
transformers trained with tree-positional encodings (Shiv & Quirk, 2019) generalize to much longer
formulas than they were trained on, while Transformers trained with the standard positional encod-
ing (as expected) do not generalize to longer formulas. The second generalization property studied
here is the question whether Transformers learn to imitate the generator of the training data, or
whether they learn to solve the formulas according to the semantics of the logics. This is possible,
as for most formulas there are many possible satisfying traces. In Figure 1 we highlight the fact
that our models often predicted traces that satisfy the formulas, but predict different traces than the
one found by the classical algorithm with which we generated the data. Especially when testing the
models out-of-distribution we observed that almost no predicted trace equals the solution proposed
by the classical solver.

To demonstrate that these generalization behaviors are not specific to the benchmark set of LTL
formulas, we also present experimental results on random LTL formulas. Further, we exclude that
spot, the tool with which we generate example traces, is responsible for these behaviors, by repeat-
ing the experiments on propositional formulas for which we generate the solutions by SAT solvers.

2

Published as a conference paper at ICLR 2021

The remainder of this paper is structured as follows. We give an overview over related work in
Section 2. We describe the problem definitions and present our data generation in Section 3. Our
experimental setup is described in Section 4 and our findings in Section 5, before concluding in
Section 6.

2 RELATED WORK

Datasets for mathematical reasoning. While we focus on a classical task from verification, other
works have studied datasets derived from automated theorem provers (Blanchette et al., 2016; Loos
et al., 2017; Gauthier et al., 2018), interactive theorem provers (Kaliszyk et al., 2017; Bansal et al.,
2019; Huang et al., 2018; Yang & Deng, 2019; Polu & Sutskever, 2020; Wu et al., 2020; Li et al.,
2020; Lee et al., 2020; Urban & Jakubův, 2020; Rabe et al., 2020), symbolic mathematics (Lample
& Charton, 2020), and mathematical problems in natural language (Saxton et al., 2019; Schlag et al.,
2019). Probably the closest work to this paper are the applications of Transformers to directly solve
differential equations (Lample & Charton, 2020) and directly predict missing assumptions and types
of formal mathematical statements (Rabe et al., 2020). We focus on a different problem domain,
verification, and demonstrate that Transformers are roughly competitive with classical algorithms in
that domain on their dataset. Learning has been applied to mathematics long before the rise of deep
learning. Earlier works focused on ranking premises or clauses Cairns (2004); Urban (2004; 2007);
Urban et al. (2008); Meng & Paulson (2009); Schulz (2013); Kaliszyk & Urban (2014).

Neural architectures for logical reasoning. (Paliwal et al., 2020) demonstrate significant im-
provements in theorem proving through the use of graph neural networks to represent higher-order
logic terms. Selsam et al. (2019) presented NeuroSAT, a graph neural network (Scarselli et al.,
2008; Li et al., 2017; Gilmer et al., 2017; Wu et al., 2019) for solving the propositional satisfiability
problem. In contrast, we apply a generic sequence-to-sequence model to predict the solutions to
formulas, not only whether there is a solution. This allows us to apply the approach to a wider set
of logics (logics without a CNF). A simplified NeuroSAT architecture was trained for unsat-core
predictions (Selsam & Bjørner, 2019). Lederman et al. (2020) have used graph neural networks on
CNF to learn better heuristics for a 2QBF solver. Evans et al. (2018) study the problem of logical
entailment in propositional logic using tree-RNNs. Entailment is a subproblem of satisfiability and
(besides being a classification problem) could be encoded in the same form as our propositional
formulas. The formulas considered in their dataset are much smaller than in this work.

Language models applied to programs. Transformers have also been applied to programs for
tasks such as summarizing code (Fernandes et al., 2018) or variable naming and misuse (Hellen-
doorn et al., 2020). Other works focused on recurrent neural networks or graph neural networks for
code analysis, e.g. (Piech et al., 2015; Gupta et al., 2017; Bhatia et al., 2018; Wang et al., 2018;
Allamanis et al., 2017). Another area in the intersection of formal methods and machine learning is
the verification of neural networks (Seshia & Sadigh, 2016; Seshia et al., 2018; Singh et al., 2019;
Gehr et al., 2018; Huang et al., 2017; Dreossi et al., 2019).

3 DATASETS

To demonstrate the generalization properties of the Transformer on logical tasks, we generated sev-
eral datasets in three different fashions. We will describe the underlying logical problems and our
data generation in the following.

3.1 TRACE GENERATION FOR LINEAR-TIME TEMPORAL LOGIC

Linear-time temporal logic (LTL, Pnueli, 1977) combines propositional connectives with temporal
operators such as the Next operator and the Until operator U . ϕ means that ϕ holds in the next
position of a sequence; ϕ1 U ϕ2 means that ϕ1 holds until ϕ2 holds. For example, the LTL formula
(bU a)∧ (cU ¬a) states that b has to hold along the trace until a holds and c has to hold until a does
not hold anymore. There also exist derived operators. For example, consider the following specifi-
cation of an arbiter: (request → grant) states that, at every point in time (-operator), if
there is a request signal, then a grant signal must follow at some future point in time (-operator).

3

Published as a conference paper at ICLR 2021

The full semantics and an explanation of the operators can be found in Appendix A. We consider
infinite sequences, that are finitely represented in the form of a “lasso” uvω , where u, called pre-
fix, and v, called period, are finite sequences of propositional formulas. We call such sequences
(symbolic) traces. For example, the symbolic trace (a ∧ b)ω defines the infinite sequence where
a and b evaluate to true on every position. Symbolic traces allow us to underspecify propositions
when they do not matter. For example, the LTL formula a is satisfied by the symbolic trace:
true true (a)ω , which allow for any combination of propositions on the first two positions.

Our datasets consist of pairs of satisfiable LTL formulas and satisfying symbolic traces generated
with tools and automata constructions from the spot framework (Duret-Lutz et al., 2016). We use
a compact syntax for ultimately periodic symbolic traces: Each position in the trace is separated
by the delimiter “;”. True and False are represented by “1” and “0”, respectively. The beginning
of the period v is signaled by the character “{” and analogously its end by “}”. For example, the
ultimately periodic symbolic trace denoted by a; a; a; {b}, describes all infinite traces where on the
first 3 positions a must hold followed by an infinite period on which b must hold on every position.

Given a satisfiable LTL formula ϕ, our trace generator constructs a Büchi automatonAϕ that accepts
exactly the language defined by the LTL formula, i.e., L(Aϕ) = L(ϕ). From this automaton, we
construct an arbitrary accepted symbolic trace, by searching for an accepting run in Aϕ.

3.1.1 SPECIFICATION PATTERN

Our main dataset is constructed from formulas following 55 LTL specification patterns identified by
the literature (Dwyer et al., 1998). For example, the arbiter property (p0) → (p1 U p0), stating
that if p0 is scheduled at some point in time, p1 is scheduled until this point. The largest specification
pattern is of size 40 consisting of 6 atomic propositions. It has been shown that conjunctions of such
patterns are challenging for LTL satisfiability tools that rely on classical methods, such as automata
constructions (Li et al., 2013). They start coming to their limits when more than 8 pattern formulas
are conjoined. We decided to build our dataset in a similar way from these patterns only to allow for
a better comparison.

We conjoined random specification patterns with randomly chosen variables (from a supply of 6
variables) until one of the following four conditions are met: 1) the formula size succeeds 126, 2)
more than 8 formulas would be conjoined, 3) our automaton-based generator timed out (> 1s) while
computing the solution trace, or 4) the formula would become unsatisfiable. In total, we generated
1664487 formula-trace pairs in 24 hours on 20 CPUs. While generating, approximately 41% of the
instances ran into the first termination condition, 21% into the second, 37% into the third and 1%
into the fourth. We split this set into an 80% training set, a 10% validation set, and a 10% test set.
The size distribution of the dataset can be found in Appendix B.

For studying how the Transformer performs on longer specification patterns, we accumulated pattern
formulas where spot timed out (> 60s) while searching for a satisfying trace. We call this dataset
LTLUnsolved254 . We capped the maximum length at 254, which is twice as large as the formulas
the model saw during training. The size distribution of the generated formulas can be found in
Appendix B.

In the following table, we illustrate the complexity of our training dataset with two examples from
the above described set LTLPattern126, where the subsequent number of the notation of our
datasets denotes the maximum size of a formula’s syntax tree. The first line shows the LTL for-
mula and the symbolic trace in mathematical notation. The second line shows the input and output
representation of the Transformer (in Polish notation):

LTL formula satisfying symbolic trace
(a→ d) ∧ ¬fW fW ¬fW fW ¬f (¬a ∧ ¬c ∧ ¬f ∨ ¬c ∧ d ∧ ¬f)ω

∧ (c→ ¬cU(c ∧ ¬bW bW ¬bW bW ¬b))
&&G>aFdW!fWfW!fWfG!f>FcU!c&cW!bWbW!bWbG!b {!a&!c&!f|!c&d&!f}

(b ∧ ¬a ∧ a→ cU a) ∧ (a→ c) ∧ (b→ ¬b (¬a ∧ b ∧ ¬c ∧ ¬e ∧ f)(¬a ∧ ¬c
U(b ∧ ¬fW fW ¬fW fW ¬f)) ∧ (a→ (c ∧ (¬aU e) ∧¬e ∧ ¬f)(¬a ∧ ¬c ∧ ¬e ∧ f)
→ (¬aU(e ∧ f)))U a) ∧ c ∧ (a e→ ¬(¬e ∧ f ∧ (¬a ∧ c ∧ ¬e ∧ ¬f)(¬a ∧ ¬e ∧ ¬f)ω

(¬eU(¬e ∧ d)))U(e ∨ c)) ∧ (¬a ∨ (a ∧ ¬fW d)) ∧ (e→ ¬c)
&&&&&&&G>&&b!aFaUcaG>aGc>FbU!b&bW!fWfW!fW &&&&!ab!c!ef;&&&!a!c!e!f;
fG!f>FaU>&cXU!aeXU!a&eFfaFcG>&aFeU!& &&&!a!c!ef;&&&!ac!e!f
&!efXU!e&!ed|ec|G!aF&aW!fdG>eG!c ;{&&!a!e!f}

4

Published as a conference paper at ICLR 2021

3.1.2 RANDOM FORMULAS

To show that the generalization properties of the Transformer are not specific to our data generation,
we also generated a dataset of random formulas. Our dataset of random formulas consist of 1 million
generated formulas and their solutions, i.e., a satisfying symbolic trace. The number of different
propositions is fixed to 5. Each dataset is split into a training set of 800K formulas, a validation set
of 100K formulas, and a test set of 100K formulas. All datasets are uniformly distributed in size,
apart from the lower-sized end due to the limited number of unique small formulas. The formula and
trace distribution of the dataset LTLRandom35, as well as three randomly drawn example instances
can be found in Appendix B. Note that we filtered out examples with traces larger than 62 (less than
0.05% of the original set).

To generate the formulas, we used the randltl tool of the spot framework, which builds unique
formulas in a specified size interval, following a supplied node probability distribution. During the
building process, the actual distribution occasionally differs from the given distribution in order to
meet the size constraints, e.g., by masking out all binary operators. The distribution between all
k-ary nodes always remains the same. To furthermore achieve a (quasi) uniform distribution in size,
we subsequently filtered the generated formulas. Our node distribution puts equal weight on all
operators ¬,∧, and U . Constants True and False are allowed with 2.5 times less probability
than propositions.

3.2 ASSIGNMENT GENERATION FOR PROPOSITIONAL LOGIC

To show that the generalization of the Transformer to the semantics of logics is not a unique attribute
of LTL, we also generated a dataset for propositional logic (SAT). A propositional formula consists
of Boolean operators ∧ (and), ∨ (or), ¬ (not), and variables also called literals or propositions. We
consider the derived operators ϕ1 → ϕ2 ≡ ¬ϕ1∨ϕ2 (implication), ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2)∧(ϕ2 →
ϕ1) (equivalence), and ϕ1 ⊕ ϕ2 ≡ ¬(ϕ1 ↔ ϕ2) (xor). Given a propositional Boolean formula ϕ,
the satisfiability problem asks if there exists a Boolean assignment Π : V 7→ B for every literal in ϕ
such that ϕ evaluates to true . For example, consider the following propositional formula, given in
conjunctive normal form (CNF): (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3). A possible satisfying assignment
for this formula would be {(x1, true), (x2, false), (x3, true)}. We allow a satisfying assignment to
be partial, i.e., if the truth value of a propositions can be arbitrary, it will be omitted. For example,
{(x1, true), (x3, true)} would be a satisfying partial assignment for the formula above. We define
a minimal unsatisfiable core of an unsatisfiable formula ϕ, given in CNF, as an unsatisfiable subset
of clauses ϕcore of ϕ, such that every proper subset of clauses of ϕcore is still satisfiable.

We, again, generated 1 million random formulas. For the generation of propositional formulas, the
specified node distribution puts equal weight on ∧, ∨, and ¬ operators and half as much weight on
the derived operators↔ and⊕ individually. In contrast to previous work (Selsam et al., 2019), which
is restricted to formulas in CNF, we allow an arbitrary formula structure and derived operators.

A satisfying assignment is represented as an alternating sequence of propositions and truth val-
ues, given as 0 and 1. The sequence a0b1c0, for example, represents the partial assignment
{(a, false), (b, true), (c, false)}, meaning that the truth values of propositions d and e can be cho-
sen arbitrarily (note that we allow five propositions). We used pyaiger (Vazquez-Chanlatte, 2018),
which builds on Glucose 4 (Audemard & Simon, 2018) as its underlying SAT solver. We construct
the partial assignments with a standard method in SAT solving: We query the SAT solver for a min-
imal unsatisfiable core of the negation of the formula. To give the interested reader an idea of the
level of difficulty of the dataset, the following table shows three random examples from our training
set PropRandom35. The first line shows the formula and the assignment in mathematical notation.
The second line shows the syntactic representation (in Polish notation):

propositional formula satisfying partial assignment
((d ∧ ¬e) ∧ (¬a ∨ ¬e))↔ ((¬ ⊕ (¬b↔ ¬e)) {(a, 0), (b, 0), (c, 1), (d, 1), (e, 0)}
∨((e⊕ (b ∧ d))⊕ ¬(¬c ∨ (¬a↔ e))))
<->&&d!e|!a!e|xor!b<->!b!exorxore&bd!|!c<->!ae a0b0c1d1e0
(c ∨ e) ∨ (¬a↔ ¬b) {(c, 1)}
||ce<->!a!b c1
¬((b ∨ e)⊕ ((¬a ∨ (¬d↔ ¬e)) {(d, 1), (e, 1)}
∨(¬b ∨ (((¬a ∧ b) ∧ ¬b) ∧ d))))
!xor!be||!a<->!d!e!|!b&&&!ab!b!d d1e1

5

Published as a conference paper at ICLR 2021

trained on tested on

LTLRandom35 LTLRandom35

LTLRandom35 LTLRandom50

LTLPattern126 LTLPattern126

LTLPattern126 LTLUnsolved254

PropRandom35 PropRandom35

PropRandom35 PropRandom50

7.8

16.1

13.9

14.7

24.6

27.6

83.8

38.4

50.3

83.8

67.6

69.1

58.1

35.8

Figure 2: Overview of our main experimental results: the performance of our best performing mod-
els on our different datasets. The percentage of a dark green bar refers to the syntactic accuracy,
the percentage of a light green bar to the semantic accuracy without the syntactic accuracy, and the
incorrect predictions are visualized in orange.

To test the Transformer on even more challenging formulas, we constructed a dataset of CNF formu-
las using the generation script of Selsam et al. (2019) from their publicly available implementation.
A random CNF formula is built by adding clauses until the addition of a further clause would lead to
an unsatisfiable formula. We used the parameters pgeo = 0.9 and pk2 = 0.75 to generate formulas
that contain up to 15 variables and have a maximum size of 250. We call this dataset PropCNF250.

4 EXPERIMENTAL SETUP

We have implemented the Transformer architecture (Vaswani et al., 2017). Our implementation
processes the input and output sequences token-by-token. We trained on a single GPU (NVIDIA
P100 or V100). All training has been done with a dropout rate of 0.1 and early stopping on the
validation set. Note that the embedding size will automatically be floored to be divisible by the
number of attention heads. The training of the best models took up to 50 hours. For the output
decoding, we utilized a beam search (Wu et al., 2016), with a beam size of 3 and an α of 1.

Since the solution of a logical formula is not necessarily unique, we use two different measures
of accuracy to evaluate the generalization to the semantics of the logics: we distinguish between
the syntactic accuracy, i.e., the percentage where the Transformers prediction syntactically matches
the output of our generator and the semantic accuracy, i.e., the percentage where the Transformer
produced a different solution. We also differentiate between incorrect predictions and syntactically
invalid outputs which, in fact, happens only in 0.1% of the cases in LTLUnsolved254 .

In general, our best performing models used 8 layers, 8 attention heads, and an FC size of 1024.
We used a batch size of 400 and trained for 450K steps (130 epochs) for our specification pattern
dataset, and a batch size of 768 and trained for 50K steps (48 epochs) for our random formula
dataset. A hyperparameter study can be found in Appendix C.

5 EXPERIMENTAL RESULTS

In this section, we describe our experimental results. First, we show that a Transformer can indeed
solve the task of providing a solution, i.e., a trace for a linear-time temporal logical (LTL) formula.
For this, we describe the results from training on the dataset LTLPattern126 of specification pat-
terns that are commonly used in the context of verification. Secondly, we show two generalization
properties that the Transformer evinces on logic reasoning tasks: 1) the generalization to larger for-
mulas (even so large that our data generator timed out) and 2) the generalization to the semantics of
the logic. We strengthen this observation by considering a different dataset of random LTL formulas.
Thirdly, we provide results for a model trained on a different logic and with a different data genera-
tor. We thereby demonstrate that the generalization behaviors of the Transformer are not specific to
LTL and the LTL solver implemented with spot that we used to generate the data. An overview of
our training results is displayed in Figure 2.

6

Published as a conference paper at ICLR 2021

Figure 3: Predictions of our best performing model, trained on LTLUnsolved254 , on 5704 specifi-
cation patterns for which spot timed out (> 60s). Semantic accuracy is displayed in green; incorrect
traces in orange; syntactically invalid traces in red.

5.1 SOLVING LINEAR-TIME TEMPORAL LOGICAL FORMULAS

We trained a Transformer on our specification on LTLPattern126 . Figure 1 in the introduction
displays the performance of our best model on this dataset. We observed a syntactic accuracy of
69.1% and a semantic accuracy of 96.8%. With this experiment we can already deduce that it seems
easier for the Transformer to learn the underlying semantics of LTL than to learn the particularities of
the generator. Further we can see that as the formula length grows, the syntactic accuracy begins to
drop. However, that drop is much smaller in the semantic accuracy—the model still mostly predicts
correct traces for long formulas.

As a challenging benchmark, we tested our best performing model on LTLUnsolved254 . It pre-
dicted correct solutions in 83% of the cases, taking on average 15s on a single CPU. The syntactic
accuracy is 0% as there was no output produced by spot within the timeout. The results of the
experiments are visualized in Figure 3. Note that this does not mean that our Transformer models
necessariy outperform classical algorithms across the board. However, since verifying solutions to
LTL formulas is much easier than finding solutions (AC1(logDCFL) vs PSPACE), this experiment
shows that the predictions of a deep neural network can be a valuable extension to the verification
tool box.

5.2 GENERALIZATION PROPERTIES

To prove that the generalization to the semantics is independent of the data generation, we also
trained a model on a dataset of randomly generated formulas. The unshaded part of Figure 4 displays
the performance of our best model on the LTLRandom35 dataset. The Transformers were solely
trained on formulas of size less or equal to 35. We observe that in this range the exact syntactic
accuracy decreases when the formulas grow in size. The semantic accuracy, however, stays, again,
high. The model achieves a syntactic accuracy of 83.8% and a semantic accuracy of 98.5% on
LTLRandom35, i.e., in 14.7% of the cases, the Transformer deviates from our automaton-based
data generator. The evolution of the syntactic and the semantic accuracy during training can be
found in Appendix D.

To show that the generalization to larger formulas is independent from the data generation method,
we also tested how well the Transformer generalizes to randomly generated LTL formulas of a
size it has never seen before. We used our model trained on LTLRandom35 and observed the
performance on LTLRandom50. The model preserves the semantic generalization, displayed in
the shaded part of Figure 4. It outputs exact syntactic matches in 67.6% of the cases and achieves
a semantic accuracy of 92.2%. For the generalization to larger formulas we utilized a positional
encoding based on the tree representation of the formula (Shiv & Quirk, 2019). When using the

7

Published as a conference paper at ICLR 2021

standard positional encoding instead, the accuracy drops, as expected, significantly. A visualization
of this experiments can be found in Appendix E.

In a further experiment, we tested the out-of-distribution (OOD) generalization of the Transformer
on the trace generation task. We generated a new dataset LTLRandom126 to match the formula
sizes and the vocabulary of LTLPattern126. A model trained on LTLRandom126 achieves a se-
mantic accuracy of 24.7% (and a syntactic accuracy of only 1.0%) when tested on LTLPattern126.
Vice versa, a model trained on LTLPattern126 achieves a semantic accuracy of 38.5% (and a
semantic accuracy of only 0.5%) when tested on LTLRandom126. Testing the models OOD in-
creases the gap between syntactic and semantic correctness dramatically. This underlines that the
models learned the nature of the LTL semantics rather than the generator process. Note that the two
distributions are very different.

Following these observations, we also tested the performance of our models on other patterns from
the literature. We observe a higher semantic accuracy for our model trained on random formulas and
a higher gap between semantic and syntactic accuracy for our model trained on pattern formulas:

Patterns Number of Patterns Trained on Syn. Acc. Sem. Acc.
dac (Dwyer et al., 1998) 55 LTLRandom126 49.1% 81.8%

eh (Etessami & Holzmann, 2000) 11 LTLRandom126 81.8% 90.9%
hkrss (Holeček et al., 2004) 49 LTLRandom126 71.4% 83.7%

p (Pelánek, 2007) 20 LTLRandom126 65.0% 90.0%
eh (Etessami & Holzmann, 2000) 11 LTLPattern126 0.0% 36.4%

hkrss (Holeček et al., 2004) 49 LTLPattern126 14.3% 49.0%
p (Pelánek, 2007) 20 LTLPattern126 10.0% 60.0%

In a last experiment on LTL, we tested the performance of our models on handcrafted formulas. We
observed that formulas with multiple until statements that describe overlapping intervals were the
most challenging. This is no surprise as these formulas are the source of PSPACE-hardness of LTL.

aU b ∧ aU ¬b (a ∧ ¬b) (b) (true)ω

&UabUa!b &a!b;b;{1}

While the above formula can be solved by most models, when scaling this formula to four over-
lapping until intervals, all of our models fail: For example, a model trained on LTLRandom35
predicted the trace (a∧ b∧ c) (a∧¬b∧¬c) (b∧ c) (true)ω , which does not satisfy the LTL formula.

(aU b ∧ c) ∧ (aU ¬b ∧ c) ∧ (aU b ∧ ¬c) ∧ (aU ¬b ∧ ¬c) (a ∧ b ∧ c) (a ∧ ¬b ∧ ¬c) (b ∧ c) (true)ω

&&&Ua&bcUa&!bcUa&b!cUa&!b!c &&abc;&&a!b!c;&bc;1

5.3 PREDICTING ASSIGNMENTS FOR PROPOSITIONAL LOGIC

To show that the generalization to the semantic is not a specific property of LTL, we trained a Trans-
former to solve the assignment generation problem for propositional logic, which is a substantially
different logical problem.

As a baseline for our generalization experiments on propositional logic, we trained and tested a
Transformer model with the following hyperparameter on PropRandom35:

Embedding size Layers Heads FC size Batch Size Train Steps Syn. Acc. Sem. Acc.
enc:128, dec:64 6 6 512 1024 50K 58.1% 96.5%

We observe a striking 38.4% gap between predictions that were syntactical matches of our DPLL-
based generator and correct predictions of the Transformer. Only 3.5% of the time, the Transformer
outputs an incorrect assignment. Note that we allow the derived operators ⊕ and↔ in these experi-
ments, which succinctly represent complicated logical constructs.

The formula b ∨ ¬(a ∧ d) occurs in our dataset PropRandom35 and its corresponding assignment
is {(a, 0)}. The Transformer, however, outputs d0, i.e., it goes with the assignment of setting d to
false , which is also a correct solution. A visualization of this example can be found in Appendix F.
When the formulas get larger, the solutions where the Transformer differs from the DPLL algorithm
accumulate. Consider, for example, the formula ¬b∨(e↔ b∨c∨¬d)∨(c∧(b⊕(a⊕¬d))⊕(¬c↔
d) ∧ (a ↔ (b ⊕ (b ⊕ e)))), which is also in the dataset PropRandom35. The generator suggests

8

Published as a conference paper at ICLR 2021

syntactic accuracy
semantic accuracy

Figure 4: Syntactic and semantic accuracy of our best performing model (only trained on
LTLRandom35) on LTLRandom50 . Dark green is syntactically correct; light green is seman-
tically correct, orange is incorrect.

the assignment {(a, 1), (c, 1), (d, 0)}. The Transformer, however, outputs e0, i.e., the singleton
assignment of setting e to false , which turns out to be a (very small) solution as well.

We achieved stable training in this experiment by setting the decoder embedding size to either 64 or
even 32. Keeping the decoder embedding size at 128 led to very unstable training.

We also tested whether the generalization to the semantics is preserved when the Transformer en-
counters propositional formulas of a larger size than it ever saw during training. We, again, utilized
the tree positional encoding. When challenged with formulas of size 35 to 50, our best performing
model trained on PropRandom35 achieves a syntactic accuracy of 35.8% and a semantic accuracy
of 86.1%. In comparison, without the tree positional encoding, the Transformer achieves a syntactic
match of only 29.0% and an overall accuracy of only 75.7%. Note that both positional encodings
work equally well when not considering larger formulas.

In a last experiment, we tested how the Transformer performs on more challenging propositional
formulas in CNF. We thus trained a model on PropCNF250, where it achieved a semantic accuracy
of 65.1% and a syntactic accuracy of 56.6%. We observe a slightly lower gap compared to our LTL
experiments. The Transformer, however, still deviates even on such formulas from the generator.

6 CONCLUSION

We trained a Transformer to predict solutions to linear-time temporal logical (LTL) formulas. We
observed that our trained models evince powerful generalization properties, namely, the generaliza-
tion to the semantics of the logic, and the generalization to larger formulas than seen during training.
We showed that these generalizations do not depend on the underlying logical problem nor on the
data generator. Regarding the performance of the trained models, we observed that they can compete
with classical algorithms for generating solutions to LTL formulas. We built a test set that contained
only formulas that were generated out of practical verification patterns, on which even our data gen-
erator timed out. Our best performing model, although it was trained on much smaller formulas,
predicts correct traces 83% of the time.

The results of this paper suggest that deep learning can already augment combinatorial approaches in
automatic verification and the broader formal methods community. With the results of this paper, we
can, for example, derive novel algorithms for trace generation or satisfiability checking of LTL that
first query a Transformer for trace predictions. These predictions can be checked efficiently. Classi-
cal methods can serve as a fall back or check partial solutions providing guidance to the Transformer.
The potential that arises from the advent of deep learning in logical reasoning is immense. Deep
learning holds the promise to empower researchers in the automated reasoning and formal methods
communities to make bigger jumps in the development of new automated verification methods, but
also brings new challenges, such as the acquisition of large amounts of data.

ACKNOWLEDGEMENTS

We thank Christian Szegedy, Jesko Hecking-Harbusch, and Niklas Metzger for their valuable feed-
back on an earlier version of this paper.

9

Published as a conference paper at ICLR 2021

REFERENCES

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. arXiv preprint arXiv:1711.00740, 2017.

Gilles Audemard and Laurent Simon. On the glucose SAT solver. Int. J. Artif. Intell. Tools, 27
(1):1840001:1–1840001:25, 2018. doi: 10.1142/S0218213018400018. URL https://doi.
org/10.1142/S0218213018400018.

Mislav Balunovic, Pavol Bielik, and Martin Vechev. Learning to solve smt formu-
las. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 10317–
10328. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8233-learning-to-solve-smt-formulas.pdf.

Kshitij Bansal, Sarah M Loos, Markus N Rabe, Christian Szegedy, and Stewart Wilcox. HOList:
An environment for machine learning of higher-order theorem proving. In arXiv preprint
arXiv:1904.03241, 2019.

S. Bhatia, P. Kohli, and R. Singh. Neuro-symbolic program corrector for introductory programming
assignments. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE),
pp. 60–70, May 2018. doi: 10.1145/3180155.3180219.

Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C Paulson, and Josef Urban. Hammering
towards QED. Journal of Formalized Reasoning, 9(1):101–148, 2016.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

Paul Cairns. Informalising formal mathematics: Searching the mizar library with latent semantics. In
International Conference on Mathematical Knowledge Management, pp. 58–72. Springer, 2004.

Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. Compositional falsification of cyber-
physical systems with machine learning components. Journal of Automated Reasoning, 63(4):
1031–1053, 2019.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Re-
nault, and Laurent Xu. Spot 2.0—a framework for ltl and ω-automata manipulation. In Interna-
tional Symposium on Automated Technology for Verification and Analysis, pp. 122–129. Springer,
2016.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification patterns for
finite-state verification. In Mark A. Ardis and Joanne M. Atlee (eds.), Proceedings of the Second
Workshop on Formal Methods in Software Practice, March 4-5, 1998, Clearwater Beach, Florida,
USA, pp. 7–15. ACM, 1998. doi: 10.1145/298595.298598. URL https://doi.org/10.
1145/298595.298598.

Kousha Etessami and Gerard J. Holzmann. Optimizing büchi automata. In Catuscia Palamidessi
(ed.), CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park, PA,
USA, August 22-25, 2000, Proceedings, volume 1877 of Lecture Notes in Computer Science, pp.
153–167. Springer, 2000. doi: 10.1007/3-540-44618-4\ 13. URL https://doi.org/10.
1007/3-540-44618-4_13.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural
networks understand logical entailment? arXiv preprint arXiv:1802.08535, 2018.

Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural summarization.
arXiv preprint arXiv:1811.01824, 2018.

10

https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1142/S0218213018400018
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas.pdf
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas.pdf
https://doi.org/10.1145/298595.298598
https://doi.org/10.1145/298595.298598
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/3-540-44618-4_13

Published as a conference paper at ICLR 2021

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Tactictoe: Learning to reason with hol4
tactics. arXiv preprint arXiv:1804.00595, 2018.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263–1272. JMLR. org, 2017.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common C language
errors by deep learning. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 1026–1034, 2015. doi:
10.1109/ICCV.2015.123. URL https://doi.org/10.1109/ICCV.2015.123.

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, and Petros Maniatis. Global relational
models of source code. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=B1lnbRNtwr.

Jan Holeček, Tomáš Kratochvı́la, Vojtěch Řehák, David Šafránek, Pavel Šimeček, et al. Verification
results in liberouter project, 2004.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning environ-
ment for theorem proving. arXiv preprint arXiv:1806.00608, 2018.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural
networks. In International Conference on Computer Aided Verification, pp. 3–29. Springer, 2017.

IEEE-Commission et al. Ieee standard for property specification language (psl). IEEE Std 1850-
2005, 2005.

Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with flyspeck. Journal of
Automated Reasoning, 53(2):173–213, 2014.

Cezary Kaliszyk, François Chollet, and Christian Szegedy. HolStep: A Machine Learning Dataset
for Higher-order Logic Theorem Proving. In Proceedings of International Conference on Learn-
ing Representations (ICLR), 2017.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In ICLR, 2020.

Gil Lederman, Markus N. Rabe, Edward A. Lee, and Sanjit A. Seshia. Learning heuristics for
quantified boolean formulas through deep reinforcement learning. 2020. URL http://arxiv.
org/abs/1807.08058.

Dennis Lee, Christian Szegedy, Markus N. Rabe, Sarah M. Loos, and Kshitij Bansal. Mathematical
reasoning in latent space. 2020.

Jianwen Li, Lijun Zhang, Geguang Pu, Moshe Y. Vardi, and Jifeng He. LTL satisfiability checking
revisited. In César Sánchez, Kristen Brent Venable, and Esteban Zimányi (eds.), 2013 20th Inter-
national Symposium on Temporal Representation and Reasoning, Pensacola, FL, USA, Septem-
ber 26-28, 2013, pp. 91–98. IEEE Computer Society, 2013. doi: 10.1109/TIME.2013.19. URL
https://doi.org/10.1109/TIME.2013.19.

Jianwen Li, Yinbo Yao, Geguang Pu, Lijun Zhang, and Jifeng He. Aalta: an ltl satisfiability checker
over infinite/finite traces. In Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering, pp. 731–734, 2014.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Modelling high-level mathematical rea-
soning in mechanised declarative proofs. arXiv preprint arXiv:2006.09265, 2020.

11

https://doi.org/10.1109/ICCV.2015.123
https://openreview.net/forum?id=B1lnbRNtwr
http://arxiv.org/abs/1807.08058
http://arxiv.org/abs/1807.08058
https://doi.org/10.1109/TIME.2013.19

Published as a conference paper at ICLR 2021

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided proof
search. In LPAR, 2017.

Jia Meng and Lawrence C Paulson. Lightweight relevance filtering for machine-generated resolution
problems. Journal of Applied Logic, 7(1):41–57, 2009.

Matej Moravcı́k, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael H. Bowling. Deepstack: Expert-level ar-
tificial intelligence in no-limit poker. CoRR, abs/1701.01724, 2017. URL http://arxiv.
org/abs/1701.01724.

Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and Christian Szegedy. Graph
representations for higher-order logic and theorem proving. In AAAI, 2020.

Radek Pelánek. BEEM: benchmarks for explicit model checkers. In Dragan Bosnacki and Stefan
Edelkamp (eds.), Model Checking Software, 14th International SPIN Workshop, Berlin, Germany,
July 1-3, 2007, Proceedings, volume 4595 of Lecture Notes in Computer Science, pp. 263–267.
Springer, 2007. doi: 10.1007/978-3-540-73370-6\ 17. URL https://doi.org/10.1007/
978-3-540-73370-6_17.

Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, and Leonidas
Guibas. Learning program embeddings to propagate feedback on student code. In International
Conference on Machine Learning, pp. 1093–1102, 2015.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pp. 46–57,
1977. doi: 10.1109/SFCS.1977.32. URL https://doi.org/10.1109/SFCS.1977.32.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020.

Markus N. Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning via
self-supervised skip-tree training. 2020.

Kristin Y Rozier and Moshe Y Vardi. Ltl satisfiability checking. In International SPIN Workshop
on Model Checking of Software, pp. 149–167. Springer, 2007.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. CoRR, abs/1904.01557, 2019. URL http://arxiv.org/
abs/1904.01557.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jürgen Schmidhuber, and Jian-
feng Gao. Enhancing the transformer with explicit relational encoding for math problem solving.
arXiv preprint arXiv:1910.06611, 2019.

Stephan Schulz. System description: E 1.8. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning, pp. 735–743. Springer, 2013.

Viktor Schuppan and Luthfi Darmawan. Evaluating ltl satisfiability solvers. In International Sym-
posium on Automated Technology for Verification and Analysis, pp. 397–413. Springer, 2011.

Stefan Schwendimann. A new one-pass tableau calculus for pltl. In International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, pp. 277–291. Springer, 1998.

Daniel Selsam and Nikolaj Bjørner. Guiding high-performance SAT solvers with unsat-core
predictions. In Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd Inter-
national Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, pp. 336–
353, 2019. doi: 10.1007/978-3-030-24258-9\ 24. URL https://doi.org/10.1007/
978-3-030-24258-9_24.

12

http://arxiv.org/abs/1701.01724
http://arxiv.org/abs/1701.01724
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1109/SFCS.1977.32
http://arxiv.org/abs/1904.01557
http://arxiv.org/abs/1904.01557
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1007/978-3-030-24258-9_24

Published as a conference paper at ICLR 2021

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL
https://openreview.net/forum?id=HJMC_iA5tm.

Sanjit A. Seshia and Dorsa Sadigh. Towards verified artificial intelligence. CoRR, abs/1606.08514,
2016. URL http://arxiv.org/abs/1606.08514.

Sanjit A Seshia, Ankush Desai, Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward
Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte, and Xiangyu Yue. Formal specification
for deep neural networks. In International Symposium on Automated Technology for Verification
and Analysis, pp. 20–34. Springer, 2018.

Vighnesh Leonardo Shiv and Chris Quirk. Novel positional encodings
to enable tree-based transformers. In NeurIPS 2019, 2019. URL
https://www.microsoft.com/en-us/research/publication/
novel-positional-encodings-to-enable-tree-based-transformers/.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354–359, 2017.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for cer-
tifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30,
2019.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to
human-level performance in face verification. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pp. 1701–1708, 2014.
doi: 10.1109/CVPR.2014.220. URL https://doi.org/10.1109/CVPR.2014.220.

Josef Urban. MPTP–motivation, implementation, first experiments. Journal of Automated Reason-
ing, 33(3-4):319–339, 2004.

Josef Urban. Malarea: a metasystem for automated reasoning in large theories. ESARLT, 257, 2007.

Josef Urban and Jan Jakubův. First neural conjecturing datasets and experiments. In Conference on
Intelligent Computer Mathematics, 2020.

Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jiřı́ Vyskočil. Malarea sg1-machine learner for auto-
mated reasoning with semantic guidance. In International Joint Conference on Automated Rea-
soning, pp. 441–456. Springer, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural In-
formation Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 5998–6008, 2017. URL http:
//papers.nips.cc/paper/7181-attention-is-all-you-need.

Marcell Vazquez-Chanlatte. mvcisback/py-aiger, August 2018. URL https://doi.org/10.
5281/zenodo.1326224.

Ke Wang, Rishabh Singh, and Zhendong Su. Dynamic neural program embedding for program
repair. In ICLR, 2018.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

13

https://openreview.net/forum?id=HJMC_iA5tm
http://arxiv.org/abs/1606.08514
https://www.microsoft.com/en-us/research/publication/novel-positional-encodings-to-enable-tree-based-transformers/
https://www.microsoft.com/en-us/research/publication/novel-positional-encodings-to-enable-tree-based-transformers/
https://doi.org/10.1109/CVPR.2014.220
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.5281/zenodo.1326224
https://doi.org/10.5281/zenodo.1326224
http://arxiv.org/abs/1609.08144

Published as a conference paper at ICLR 2021

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Grosse. INT: An Inequality Benchmark for Evalu-
ating Generalization in Theorem Proving. arXiv preprint arXiv:2007.02924, 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. arXiv
preprint arXiv:1905.09381, 2019.

14

Published as a conference paper at ICLR 2021

APPENDIX

A LINEAR-TIME TEMPORAL LOGIC (LTL)

In this section, we provide the formal syntax and semantics of Linear-time Temporal Logic (LTL).
The formal syntax of LTL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ,
where p ∈ AP is an atomic proposition. Let AP be a set of atomic propositions. A (explicit)
trace t is an infinite sequence over subsets of the atomic propositions. We define the set of traces
TR := (2AP)ω . We use the following notation to manipulate traces: Let t ∈ TR be a trace
and i ∈ N be a natural number. With t[i] we denote the set of propositions at i-th position of t.
Therefore, t[0] represents the starting element of the trace. Let j ∈ N and j ≥ i. Then t[i, j]
denotes the sequence t[i] t[i + 1] . . . t[j − 1] t[j] and t[i,∞] denotes the infinite suffix of t starting
at position i.

Let p ∈ AP and t ∈ TR. The semantics of an LTL formula is defined as the smallest relation |=
that satisfies the following conditions:

t |= p iff p ∈ t[0]

t |= ¬ϕ iff t 6|= ϕ

t |= ϕ1 ∧ ϕ2 iff t |= ϕ1 and t |= ϕ2

t |= ϕ iff t[1,∞] |= ϕ

t |= ϕ1 U ϕ2 iff there exists i ≥ 0 : t[i,∞] |= ϕ2

and for all 0 ≤ j < i we have t[j,∞] |= ϕ1

There are several derived operators, such as ϕ ≡ true U ϕ and ϕ ≡ ¬ ¬ϕ. ϕ states that
ϕ will eventually hold in the future and ϕ states that ϕ holds globally. Operators can be nested:

ϕ, for example, states that ϕ has to occur infinitely often.

B SIZE DISTRIBUTION IN THE DATASETS

In this section, we provide insight into the size distribution of our datasets. Figure 5 shows the size
distribution of the formulas in our dataset LTLPattern126 .

Figure 6 shows the size distribution of our generated formulas and their traces in the dataset
LTLRandom35. Table 1 shows three randomly drawn example instances of the dataset
LTLRandom35.

Lastly, Figure 7 shows the size distribution of formulas in our dataset LTLUnsolved254.

Figure 5: Size distributions in the LTLPattern126 test set: on the x-axis is the size of the formulas;
on the y-axis the number of formulas.

15

Published as a conference paper at ICLR 2021

(a) Formula distribution by size. (b) Trace distribution by size.

Figure 6: Size distributions in the LTLRandom35 training set: on the x-axis is the size of the
formulas/traces; on the y-axis the number of formulas/traces.

Table 1: Three random examples from LTLRandom35 training set. The first line shows the LTL
formula and the symbolic trace in mathematical notation. The second line shows the syntactic
representation (in Polish notation):

LTL formula satisfying symbolic trace
((dU c)U d) ∧ (b ∧ ¬(¬dU c)) true (b ∧ ¬c ∧ ¬d) (¬c ∧ d) d (true)ω

&XUUdcXXdX&b!U!dc 1;&&b!c!d;&!cd;d;{1}
¬ ((e ∧ (true U b) ∧ c)U c) true (¬b ∧ ¬c) (¬b)ω
!XU&&XeU1bXcc 1;&!b!c;{!b}
¬((¬c ∧ d)U d) true (c ∨ ¬d) (¬d) (true)ω

X!U&!cdXd 1;|c!d;!d;{1}

Figure 7: Size distributions in the LTLUnsolved254 test set: on the x-axis is the size of the formulas;
on the y-axis the number of formulas.

C HYPERPARAMETER ANALYSIS

Table 2 shows the effect of the most significant parameters on the performance of Transformers. The
performance largely benefits from an increased number of layers, with 8 yielding the best results.
Increasing the number further, even with much more training time, did not result in better or even
led to worse results. A slightly less important role plays the number of heads and the dimension of
the intermediate fully-connected feed-forward networks (FC). While a certain FC size is important,
increasing it alone will not improve results. Changing the number of heads alone has also almost
no impact on performance. Increasing both simultaneously, however, will result in a small gain.

16

Published as a conference paper at ICLR 2021

Table 2: Syntactic accuracy and semantic accuracy of different Transformers, tested on
LTLRandom35: Layers refer to the size of the encoder and decoder stacks; Heads refer to the
number of attention heads; FC size refers to the size of the fully-connected neural networks inside
the encoder and decoders.

Embedding size Layers Heads FC size Batch Size Train Steps Syn. Acc. Sem. Acc.
128 3 4 512 512 45K 78.0% 97.1%
128 5 2 512 512 45K 80.4% 97.4%
128 5 4 256 512 45K 81.0% 97.4%
128 5 4 512 512 45K 82.0% 97.9%
128 5 4 1024 512 45K 80.3% 97.3%
128 5 6 1024 512 45K 81.8% 97.7%
128 5 8 512 512 45K 82.0% 97.8%
128 5 8 1024 512 45K 82.5% 97.9%
128 5 8 1500 512 45K 82.6% 97.8%
128 5 12 1024 512 45K 81.9% 97.5%
128 8 4 512 512 45K 83.2% 98.3%
128 8 8 1024 768 50K 83.8% 98.5%
128 10 4 512 512 75K 82.9% 97.6%
256 5 4 512 512 45K 82.3% 97.9%

This seems reasonable, since more heads can provide more distinct information to the subsequent
processing by the fully-connected feed-forward network. Increasing the embeddings size from 128
to 256 very slightly improves the syntactic accuracy. But likewise it also degrades the semantic
accuracy, so we therefore stuck with the former setting.

D ACCURACY DURING TRAINING

In Figure 8 we show the evolution of both the syntactic accuracy and the semantic accuracy during
the training process. Note the significant difference right from the beginning. This demonstrates
the importance of a suitable performance measure when evaluating machine learning algorithms on
logical reasoning tasks.

10 20 30 40 50

20

40

60

80

100

Epoch

A
cc

ur
ac

y
in

pe
rc

en
t

Figure 8: Syntactic accuracy (blue) and semantic accuracy (red) of our best performing model,
evaluated on a subset of 5K samples of LTLRandom35 per epoch.

17

Published as a conference paper at ICLR 2021

E DIFFERENT POSITIONAL ENCODINGS

syntactic accuracy
semantic accuracy

syntactic accuracy
semantic accuracy

Figure 9: Performance of our best model (only trained on LTLRandom35) on LTLRandom50 with
a standard positional encoding (top) and a tree positional encoding (bottom). The syntactic accuracy
is displayed in green, the semantic accuracy in light green and the incorrect predictions in orange.
The shaded area indicates the formula sizes the model was not trained on.

F HANDCRAFTED EXAMPLES

Figure 10: Self-attention of the example propositional formula b ∨ ¬(a ∧ d) in dataset
PropRandom35 (left). Encoder-decoder-attention of the example LTL formula (bU a) ∧ (aU ¬a)
in dataset LTLRandom35 (right).

The LTL formula (bU a) ∧ (aU ¬a) states that b has to hold along the trace until a holds and a has
to hold until a does not hold anymore. The automaton-based generator suggests the trace (¬a ∧
b) a (true)ω , i.e., to first satisfy the second until by immediately disallowing a. The satisfaction of
the first until is then postponed to the second position of trace, which forces b to hold on the first
position. The Transformer, however, chooses the following more general trace a (¬a) (true)ω , by
satisfying the until operators in order (see Figure 10).

18

	Introduction
	Related Work
	Datasets
	Trace Generation for Linear-time Temporal Logic
	Specification pattern
	Random Formulas

	Assignment Generation for Propositional Logic

	Experimental Setup
	Experimental Results
	Solving Linear-time Temporal Logical Formulas
	Generalization Properties
	Predicting Assignments for Propositional Logic

	Conclusion
	Linear-time Temporal Logic (LTL)
	Size Distribution in the Datasets
	Hyperparameter Analysis
	Accuracy During Training
	Different Positional Encodings
	Handcrafted Examples

