
BLURtooth: Exploiting Cross-Transport Key Derivation in
Bluetooth Classic and Bluetooth Low Energy
Daniele Antonioli∗

EURECOM
Biot, France

daniele.antonioli@eurecom.fr

Nils Ole Tippenhauer
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
tippenhauer@cispa.de

Kasper Rasmussen
University of Oxford

Oxford, UK
kasper.rasmussen@cs.ox.ac.uk

Mathias Payer
EPFL

Lausanne, Switzerland
mathias.payer@nebelwelt.net

ABSTRACT
Bluetooth is a pervasive wireless technology specified in an open
standard. The standard defines Bluetooth Classic (BT) for high-
throughput wireless services and Bluetooth Low Energy (BLE) very
low-power ones. The standard also specifies security mechanisms,
such as pairing, session establishment, and cross-transport key
derivation (CTKD). CTKD enables devices to establish BT and BLE
security keys by pairing just once. CTKD was introduced in 2014
with Bluetooth 4.2 to improve usability. However, the security im-
plications of CTKD were not studied carefully.

This work demonstrates that CTKD is a valuable and novel Blue-
tooth attack surface. It enables, among others, to exploit BT and BLE
just by targeting one of the two (i.e., Bluetooth cross-transport ex-
ploitation). We present the design of the first cross-transport attacks
on Bluetooth. Our attacks exploit issues that we identified in the
specification of CTKD. For example, we find that CTKD enables an
adversary to overwrite pairing keys across transports. We leverage
these vulnerabilities to impersonate, machine-in-the-middle, and
establish unintended sessions with any Bluetooth device support-
ing CTKD. Since the presented attacks blur the security boundary
between BT and BLE, we name them BLUR attacks. We provide a
low-cost implementation of the attacks and test it on a broad set
of devices. In particular, we successfully attack 16 devices with 14
unique Bluetooth chips from popular vendors (e.g., Cypress, Intel,
Qualcomm, CSR, Google, and Samsung), with Bluetooth standard
versions of up to 5.2. We discuss why the countermeasures in the
Bluetooth are not effective against our attacks, and we develop and
evaluate practical and effective alternatives.

∗This work started while Daniele was at EPFL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3523258

CCS CONCEPTS
• Security andprivacy→ Systems security;Network security;
Mobile and wireless security; Security protocols;

KEYWORDS
CTKD, Bluetooth, Bluetooth Classic, Bluetooth Low Energy
ACM Reference Format:
Daniele Antonioli, Nils Ole Tippenhauer, Kasper Rasmussen, and Mathias
Payer. 2022. BLURtooth: Exploiting Cross-Transport Key Derivation in
Bluetooth Classic and Bluetooth Low Energy. In Proceedings of the 2022
ACM Asia Conference on Computer and Communications Security (ASIA
CCS ’22), May 30-June 3, 2022, Nagasaki, Japan. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3488932.3523258

1 INTRODUCTION
Bluetooth is a pervasive wireless technology used by billions of
devices, including mobile phones, laptops, headphones, cars, speak-
ers, medical and industrial appliances [11]. It is specified in an open
standard maintained by the Bluetooth special interest group (SIG),
and its latest version is 5.3 [14]. The standard specifies two trans-
ports: Bluetooth Classic (BT) and Bluetooth Low Energy (BLE). BT is
best suited for connection-oriented and high-throughput use cases,
such as streaming audio. BLE is optimized for connection-less and
very-low-power use cases such as fitness tracking.

The Bluetooth standard defines dedicated security architectures
and threat models for BT [14, p. 947] and BLE [14, p. 1549]. Each
transport provides a pairing and a session establishment protocol.
Pairing lets two devices agree upon a long-term pairing key acting
as a root of trust. Session establishment allows paired devices to
establish a secure channel through a fresh session key derived from
their pairing key.

Traditionally, two devices supporting BT and BLE would have
to pair separately to use BT and BLE securely. In 2014, the Blue-
tooth standard (v4.2) introduced Cross-Transport Key Derivation
(CTKD) to address this usability issue. CTKD enables pairing over
BT or BLE, generating a pairing key for that transport, and deriving
the pairing key for the other transport without pairing a second
time [14, p. 1366]. As a result, CTKD tries to unify BT and BLE
pairing, but its security implications are still unclear.

We uncover that CTKD provides a valuable and novel Bluetooth
attack surface. In particular, CTKD allows exploiting BT from BLE
and vice versa, which is an unprecedented threat for Bluetooth.

https://doi.org/10.1145/3488932.3523258
https://doi.org/10.1145/3488932.3523258

Moreover, attacks on CTKD are portable across targets as they
exploit a security protocol in the Bluetooth standard. Additionally,
since CTKD is used in conjunction with Bluetooth’s most secure
modes (e.g., Secure Simple Pairing and Secure Connections), exploit-
ing it would defeat even the strongest Bluetooth setups. Finally,
stopping and detecting an attack on CTKD is not trivial as it is
transparent to end-users.

Despite CTKD being a critical attack surface, it has not received
any attention from the research community and only limited care
from the Bluetooth standard. For versions 4.1, 4.2, and 5.0, the
Bluetooth standard does not provide any security argument about
CTKD. In version 5.1, the standard introduced some recommenda-
tions about CTKD key overwrite attempts. In particular, a device
should not overwrite a key if the overwritten key has higher en-
tropy or machine-in-the-middle (MitM) protection. Other attacks
on CTKD are not discussed (e.g., attacks not requiring to overwrite
keys or to overwrite keys but without downgrading their strength
or MitM protection).

We present a novel family of cross-transport attacks for Bluetooth.
Unlike prior work [2, 4, 5, 9, 24, 25, 39, 43, 44, 47, 49] our attacks
are the first attacks targeting CTKD and the first sample of cross-
transport attacks for Bluetooth (i.e., attacks capable of exploiting
BT and BLE just by targeting one of the two). Prior attacks focused
either on BT or BLE. For a detailed comparison, see Section 9.

Our cross-transport attacks achieve impactful goals. In particular,
they enable impersonation and MitM attacks on any BT and BLE
device. Furthermore, they allow an attacker to establish unintended
and anonymous BT and BLE sessions with a victim. As a result
the adversary, among others, can access sensitive data and inject
arbitrary commands in a supposedly secure Bluetooth connection.
Moreover, the attacks are effective regardless of the victims’ security
capabilities, including Secure Connections and Numeric Compar-
ison. We name our attacks BLUR attacks, as they are exploiting
CTKD to blur the security boundary between BT and BLE.

We implement the BLUR attacks using a low-cost hardware and
software setup that we will open-source. We demonstrate the effec-
tiveness of the attacks by exploiting 16 unique devices employing 14
different Bluetooth chips from Broadcom, Cambridge Silicon Radio
(CSR), Cypress, Intel, and Qualcomm. Our set of vulnerable devices
covers Bluetooth 4.2, 5.0, 5.1, 5.2, which are the most popular in the
market, and even a 4.1 device to which CTKD was backported. We
could not test 5.3 devices because they were not in the market at
the time of submission.

We concretely address the BLUR attacks by presenting four
protocol-level countermeasures. Our mitigations can be imple-
mented at the operating system level with low effort. We imple-
mented a proof-of-concept of one of our proposed countermea-
sures (i.e., disable key overwriting) to protect a Linux laptop, and
we successfully tested it against our attacks. We summarize our
contributions as follows:

• We identify CTKD as a novel and relevant attack surface
for Bluetooth. We find that CTKD enables to attack BT from
BLE and vice versa (i.e., cross-transport attacks) while being
standard-compliant, transparent to end-users and employed
with BT and BLE most secure configurations.

• We design, implement, and evaluate four novel attacks target-
ing vulnerabilities in the specification of CTKD. The attacks
are standard-compliant up to at least Bluetooth 5.0 (that
should be the majority of CTKD-enabled devices according
to [12, 15]). Our attacks are the first to exploit CTKD and
act across BT and BLE transports compared to related work.
They enable impersonation, MitM, and unwanted sessions
attacks. We indicate them as BLUR attacks as they blur the
security boundary between BT and BLE.

• We build a low-cost implementation of the BLUR attacks
using a Linux laptop and a Bluetooth development board.
We use our implementation to attack 16 devices employing
14 unique Bluetooth chips and covering all Bluetooth ver-
sions compatible with CTKD (e.g., 4.2, 5.0, 5.1, and 5.2). We
demonstrate that the BLUR attacks are effective on all tested
devices. Moreover, we discuss why the key overwrite coun-
termeasure introduced since Bluetooth 5.1 is ineffective, and
propose alternative countermeasures to mitigate the attacks.

Disclosure. We responsibly disclosed our findings with the Blue-
tooth SIG (which is supposed to contact the relevant vendors) two
times. In May 2020, we sent our first report which is now tracked
with CVE-2020-15802. In September 2020, the Bluetooth SIG unilat-
erally released a security note [13], claiming that Bluetooth 5.1 and
later are not vulnerable to the presented attacks because of mitiga-
tions in the standard. We experimentally show that the mitigations
are ineffective by exploiting 5.1 and 5.2 devices in Section 7.2, and
discuss this further in Section 8. We disclosed our related findings
to the SIG in May 2021.

2 BLUETOOTH CLASSIC (BT) AND LOW
ENERGY (BLE)

BT and BLE are two wireless transports specified in the Bluetooth
standard [14]. These transports complement each other: BT is used
for high-throughput and connection-oriented services, such as
streaming audio and voice, while BLE is optimized for very low-
power and low-throughput services such as fitness tracking and
digital contact tracing. High-end devices, such as laptops, smart-
phones, headsets, and tablets, provide both BT and BLE, while
low-end devices such as mice, keyboards, and wearables provide
either BT or BLE.

BT and BLE have similar security mechanisms (i.e., pairing and
session establishment) but different security architectures and threat
models. Pairing lets two devices establish and authenticate a pairing
key that acts as the root of trust and is the standard is defined as
secure simple pairing (SSP). BLE SSP is performed using the Security
Manager Protocol (SMP) [14, p. 1597], while BT SSP uses the Link
Manager Protocol (LMP) [14, p. 573]. During pairing, BLE allows
negotiating the entropy of the pairing keywhile BT does not. BT and
BLE provide a Secure Connections mode that enhances the pairing
and session establishment security primitives. In particular, Secure
Connections mandates the usage of FIPS-compliant algorithms
such as AES-CCM, HMAC-SHA-256, and the ECDH on the P-256
curve [14, p. 266].

While pairing, BT and BLE employ similar association mech-
anisms. For example, if any of the two pairing devices have no

input-output capabilities, then the devices use Just Works (JW) as-
sociation. Just Works does not require user interaction, but it does
not protect against MitM attacks. Session establishment lets paired
devices establish a secure communication channel protected by
a fresh session key derived from the pairing key. During session
establishment, BT allows negotiating the entropy of the session key
while the BLE session key inherits the entropy of the associated
pairing key.

BT and BLE use the same notion of pairable and discoverable
states. If a device is pairable, it accepts pairing requests from remote
devices. If it is discoverable, it reveals its identity when scanned
by other devices. Notably, a device answers a pairing request even
if it is not discoverable [46]. For example, if the user knows the
Bluetooth address of her pair of headphones, she can complete
BT or BLE pairing by sending a pairing request from her laptop
without putting the headphones into discoverable mode.

Both BT and BLE use a Central-Peripheral medium access pro-
tocol. The Central is the connection initiator, while the Peripheral
is the responder. BT allows switching Central and Peripheral roles
dynamically, while BLE roles are fixed. High-end devices, such as
laptops and smartphones, support both BLE Central and BLE Pe-
ripheral modes and are typically used as BLE Centrals. Low-end
devices, such as fitness trackers and smartwatches, support only
the BLE Peripheral mode.

3 CROSS-TRANSPORT KEY DERIVATION
In this section, we introduce CTKD as a feature, and we describe its
association protocols used from BT and BLE. In our descriptions,
we refer to the Bluetooth Central as Alice and to the Peripheral as
Bob and in the figure, we color-code BLE with light blue and BT
with blue.

3.1 Introduction about CTKD
In 2014, Bluetooth 4.2 introduced CTKD to improve the usability
of BT and BLE pairing. Before its introduction, devices had to pair
over BT and BLE to use both of them securely. With CTKD, the
devices pair either over BT or BLE, compute the pairing key, and
derive the pairing key for the other transport without having to
pair a second time [14, p. 276,1366].

A Bluetooth device requires few capabilities to support CTKD.
It has to support BT and BLE (i.e., dual-mode), Secure Connec-
tions, and a Bluetooth version greater or equal to 4.2. Examples of
devices supporting CTKD are laptops, tablets, smartphones, head-
sets, speakers, and high-end wearable devices, and their number
is steadily growing [12]. The list of vendors includes Apple [48],
Google [6], Cypress [18], Linux [16], Qualcomm [37], and Intel [26].
Notably, Apple presented it as a core and always-on Bluetooth
feature during WWDC 2019.

The Bluetooth standard specifies a custom key derivation func-
tion (KDF) for CTKD [14, p. 1589]. The KDF takes a 128-bit key and
two 4-byte strings and derives a 128-bit key. If CTKD starts from
BLE, then the BT pairing key is derived using the “tmp2” and “brle”
strings. In the other case, the derivation is performed using the
“tmp1” and “lebr” strings. The standard uses KDF in a deterministic
way as reusing the same input key will derive the same output key.
We re-implemented KDF to validate our analysis (see Section A.1).

Alice (Central)

A

Bob (Peripheral)

B

Devices pairable over BLE

BLE Pairing Request:
Assoc, ADDA, SC, CTKD, PKA, NA

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

DK = PKB · SKA

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

DK = PKA · SKB

KBLE = kdfLE(DK, NA,
NB , ADDA, ADDB)
KBT = ctkd(KBLE,
“tmp1”, “lebr”)

BLE Key Distribution: CSRKA, IRKA

BLE Key Distribution: CSRKB, IRKB

Figure 1: CTKD from BLE. Alice and Bob negotiate SC and
CTKD support during BLE pairing. Then, they compute the
BLE pairing key and derive the BT pairing key via CTKD.
Note that they exchange no message over BT. Then, they ex-
change additional BLEkeys, including signature (CSRK) and
identity resolving (IRK) keys. After pairing with CTKD, the
devices can establish secure sessions over BT and BLE.

Since CTKD is a novel attack surface, its security implications
are unclear. Prior research did not cover CTKD, while the Blue-
tooth standard since version 5.1 provides limited CTKD security
arguments. In particular, it only discusses mitigations against a
particular class of key overwrite attacks (e.g., key overwrite with a
weaker key). However, it ignores other threats such as other types
of key overwrite attacks or attacks not requiring to overwrite keys.

3.2 CTKD Protocols for BT and BLE
In this section we describe how CTKD is negotiated and used from
BLE and BT.

CTKD from BLE. Figure 1 shows how CTKD is negotiated and
used to derive a BT pairing key during BLE pairing. Alice and
Bob are pairable over BLE and BT and discover each other using
BLE scanning and advertising. Then, they perform pairing over
BLE using the SMP protocol. We experimentally found that CTKD
is negotiated by setting to one the Link Key flag of the Initiator
and Responder key distribution SMP fields [14, p. 1610] and that
such negotiation is not protected. Other than the Link Key flag,
the devices should also declare Secure Connections support (SC),
which is also spoofable. The BLE pairing messages also contain an
association method (Assoc), a source BLE address (ADD), a public
key (PK), and a nonce (N).

After exchanging the pairing messages, the devices compute a
Diffie-Hellman shared secret (DK) using the exchanged PK. DK is
used to compute the BLE pairing key (KBLE) using the BLE pairing
key derivation function (kdfLE). Then, the devices use CTKD’s key
derivation function (ctkd) to derive the BT pairing key (KBT). To

Alice (Central)

A

Bob (Peripheral)

B

Devices pairable over BT

BT Pairing Request:
Assoc, ADDA, SC, PKA, NA

BT Pairing Response:
Assoc, ADDB , SC, PKB, NB

DK = PKB · SKA

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

DK = PKA · SKB

KBT = kdfBT(DK, NA,
NB, ADDA, ADDB)

BT CTKD Request:
CTKD, CSRKA, IRKA

BT CTKD Response:
CTKD, CSRKB, IRKB

KBLE = ctkd(KBT,
“tmp2”, “brle”)

KBLE = ctkd(KBT,
“tmp2”, “brle”)

Figure 2: CTKD fromBT.Alice andBob duringBTpairingne-
gotiate SC support. Then, they compute the BT pairing key,
start a secure session over BT and send BT CTKD messages
containing CTKD support and other keying material gener-
ated for BLE, such as signature (CSRK) and identity resolv-
ing (IRK) keys. Notably, the CTKD request and response are
encoded as BLE pairing request and response and tunneled
over BT. Afterward, Alice and Bob derive the BLE pairing
key, via CTKD without exchanging any message over BLE.
After the protocol is completed Alice and Bob can establish
secure sessions both for BT and BLE.

complete BLE pairing, Alice and Bob establish a secure session over
BLE and exchange additional keys (e.g., CSRK and IRK). As a result,
Alice and Bob share KBLE and KBT, without having to pair over BT.

CTKD from BT. Figure 2 presents how CTKD is negotiated and
used to derive a BLE pairing key during BT pairing. Alice and Bob
are pairable over BT and BLE and discover each other via BT inquiry.
Then, they exchange pairing request and responsemessages over BT
to negotiate several BT capabilities (including SC), and to exchange
their BT addresses, keys, and nonces. Then, they compute DK and
use it together with their BT addresses and nonces to compute
the BT pairing key (KBT) through the BT pairing key derivation
function (kdfBT).

Unlike for BLE, BT pairing messages do not include a CTKD
flag. Instead the devices start a secure BT session and exchange
two messages containing the CTKD flag and additional security
material needed for BLE, such as signature keys (CSRK) and identity
resolving keys (IRK). These two messages are peculiarly encoded as
BLE SMP packets but sent over BT. We are not sure why the Blue-
tooth standard is not describing such a “BLE tunneling” protocol.
Once CTKD is negotiated, Alice and Bob use it to derive the BLE
pairing key (KBLE) from the BT key without pairing over BLE.

4 THREAT MODEL
We now present our system and attacker models.

4.1 System Model
Our system model considers two victims, Alice and Bob, who can
securely communicate over BT and BLE. The victims support CTKD,
use the most secure Bluetooth modes they support (e.g., SC and
SSP with strong association), and are already paired over BT and/or
BLE. This setup should protect the victims against eavesdropping,
impersonation, andMitM attacks, as claimed in [14, p. 266].Without
loss of generality, we assume that Alice is the Central and Bob is
the Peripheral.

Regarding notation, we denote a BT pairing key with KBT, a
BT session key with SKBT, a BLE pairing key with KBLE, a BLE
session key with SKBLE. We indicate a Bluetooth address with ADD,
a public key with PK, a private key with SK, a shared Diffie-Hellman
secret with DK, a nonce with N, and a message authentication code
with MAC.

4.2 Attacker Model and Goals
Our attacker model considers Charlie, an adversary in Bluetooth
range with the victims. The adversary’s knowledge is limited to
what the victims advertise over the air, e.g., full or partial Bluetooth
addresses, Bluetooth names, and security and IO capabilities. She
can scan and discover devices, send pairing requests and responses,
use CTKD, propose weak association mechanisms (e.g., Just Works),
and dissect and craft Bluetooth packets.

The attacker does not know the secret pairing and session keys
shared between the victims. She wants to conduct the attack at
any time (e.g., she does not have to be present when the victims
are pairing or negotiating a secure session). Moreover, she cannot
access and tamper with the victims’ devices.

The attacker has four goals. (i) impersonate Alice (Central) and
take over (i.e., steals) her secure sessions with Bob. (ii) imperson-
ate Bob (Peripheral) and take over his secure sessions with Alice.
Central and Peripheral impersonation are different goals, as they
require different attack strategies. (iii) MitM Alice and Bob’s secure
session (iv) establish unintended sessions with Alice and Bob as an
anonymous device with arbitrary capabilities.

5 BLUR ATTACKS
In this section we introduce the BLUR attacks, four novel and high-
impact attacks on CTKD. The attack enables to impersonate, MitM,
and establish unintended session with any Bluetooth device sup-
porting CTKD. We now describe the attacks’ root causes, under-
lying attack strategy and technical details. We also discuss some
interesting aspects about them.

5.1 Root Causes
Our attacks leverage two vulnerabilities associated with the design
of CTKD:

Permanent BT and BLE pairing. CTKD incentivize vendors to
keep devices pairable over BT and BLE to provide a better pairing
experience (i.e., pairing once other than two times). However, this

Figure 3: BLUR attack strategy. Alice andBob are paired over
BT and run a secure BT session. Charlie approaches Bob as
Alice and starts a BLE process with Bob declaring CTKD sup-
port. Then Charlie agrees upon a BLE pairing key with Bob,
and tricks Bob into overwriting Alice’s BT and BLE pairing
keys. As a result, Charlie can establish BT and BLE sessions
with Bob as Alice.

can be exploited to pair on transports not currently in use, even if
the victim is not discoverable on that transport.

Cross-transport key tampering. By design CTKD allows to write
and overwrite pairing keys on BT and BLE by trusting a pairing
process happening either on BT or BLE. As a result, CTKD exposes
a novel cross-transport attack surface and associated attack vectors,
where an attacker can try to exploit BT and BLE by targeting one of
the two. For example, we abuse CTKD to tamper with pairing keys
across transport, which is unprecedented for Bluetooth. Moreover,
we attack CTKD to get access to BLE key material such as IRK and
CSRK by only sending malicious BT packets.

Root causes impact. The attacks’ root causes affect any Bluetooth
device supporting CTKD, including, among others, IT devices (e.g.,
laptops, smartphones, and tablets) and IoT ones (e.g., headphones,
earbuds, and speakers). Moreover, these vulnerabilities are present
regardless of the Bluetooth application layer service (i.e., Bluetooth
profile) as they target a link-layer security protocol.

5.2 Attack Strategy
Before explaining the BLUR attacks in detail, we present the attack
strategy with the help of Figure 3. We assume an attack scenario
where Alice is a laptop and Bob is a pair of headphones. The victims
had already paired using CTKD. We find that this scenario can be
exploited in multiple ways, we now describe the strategy needed
to impersonate Alice to Bob. A similar strategy can be used to
impersonate Bob to Alice.

As shown in the bottom part of Figure 3, Charlie can approach
Bob as Alice and start a pairing process over BLE while declaring
CTKD support. Bob completes pairing over BLE with Charlie think-
ing it is repairing with Alice. Then, Bob computes new BLE and BT
pairing keys, overwrites Alice’s keys, and connects with Charlie
over BLE. As a result Charlie takes over Alice achieving his goal.

If Bob (or Alice) support strong pairing association, like Numeric
Comparison, Charlie can optimize his attack strategy by downgrad-
ing it to a weak one (i.e., Just Works). In particular, Charlie can

Charlie (Central)

C

Bob (Peripheral)

B

Devices pairable over BLE

BLE Pairing Request as Alice:
JW, ADDA, SC, CTKD, PKC , NC

BLE Pairing Response:
Assoc, ADDB , SC, CTKD, PKB, NB

Compute KBLE

Derive KBT

Compute KBLE

Derive KBT

BLE Key Distribution: CSRKC , IRKC

BLE Key Distribution: CSRKB, IRKB

Figure 4: BLURCentral impersonation attack. Charlie sends
a BLE pairing request with Alice’s address (ADD𝐴) including
JustWorks association, CTKD, and his public key (PK𝐶). Bob
answerswith aBLEpairing response thinking that he is talk-
ing to Alice. The attacker and the victim agree on KBLE, and
derive KBT, via CTKD and complete BLE pairing by generat-
ing and distributingmore keys over a secure BLE session. As
a result of the Central impersonation attack, Charlie tricks
Bob into overwriting Alice’s keys with his ones and takes
over Alice who can no longer connect back to Bob.

declare no input output capabilities during the BT/BLE pairing
feature negotiation phase and trigger Just Works [25]. We note that
this trick does not unset the pairing MitM protection flag.

5.3 Impersonation and MitM Attacks
We now describe the Central impersonation, Peripheral imperson-
ation, and MitM BLUR attacks.

Central impersonation. Charlie impersonates Alice and takes
over her BT and BLE sessions with Bob as in Figure 4. Charlie
(Central) presents to Bob (Peripheral) as Alice and sends a BLE
pairing request containing Alice’s Bluetooth address (ADD𝐴), no
input/output capabilities to trigger Just Works, his public key (PK𝐶),
and CTKD support. Bob answers with a pairing BLE response be-
lieving that Alice wants to re-pair. Then, Charlie and Bob compute
KBLE, complete JW association, and derive KBT via CTKD. Bob ends
up overwriting Alice’s BT and BLE pairing keys with the newly
derived keys. Additionally, Charlie and Bob exchange additional
BLE key material (e.g., CSRK, IRK).

Peripheral impersonation. Charlie impersonates Bob and takes
over his BT and BLE sessions with Alice as in Figure 5. In this case,
Charlie (Peripheral) impersonates Bob to Alice and sends her a BT
pairing request containing Bob’s address (ADD𝐵), no input/output
capabilities, and his public key (PK𝐶). Even if Charlie is a Peripheral,
she can send a BT pairing request because BT allows switching
roles before starting a pairing process. Alice answers with a BT

Alice (Central)

A

Charlie (Peripheral)

C

Devices pairable over BT

BT Pairing Request as Bob:
JW, ADDB , SC, PKC , NC

BT Pairing Response:
Assoc, ADDA, SC, PKA, NA

Compute KBT Compute KBT

BT CTKD Request as Bob:
CTKD, CSRKC , IRKC

BT CTKD Response:
CTKD, CSRKA, IRKA

Derive KBLE Derive KBLE

Figure 5: BLUR Peripheral impersonation attack. Charlie
sends a BT pairing request with Bob’s address (ADD𝐵) in-
cluding Just Works association, and his public key (PK𝐶).
The pairing request is valid as BT enables to dynamically
switch from Peripheral to Central before sending a pairing
request. Alice answers with a BT pairing response believing
that she is talking to Bob. The attacker and the victim estab-
lish KBT, negotiate CTKD and exchange additional keying
material for BLEwith a BTCTKD request and responsemes-
sages, and derive KBLE. As a result of the Peripheral imper-
sonation attack, Charlie tricks Alice into overwriting Bob’s
keys with his ones and takes over Bob who can no longer
connect back to Alice.

pairing response believing that Bob wants to re-pair over BT. The
two compute KBT with JW association.

Then, Charlie starts a secure BT session and sends a tunneled BLE
pairing request to Alice, still pretending to be Bob. The BLE pairing
request includes Charlie’s signature and MAC randomization BLE
keys (CSRK𝐶 , IRK𝐶) and the CTKD support flag. Alice answers with
a BLE pairing response tunneled over BT. Then the devices derive
KBLE via CTKD. As a result, Charlie forces Alice into overwriting
Bob’s pairing keys with his keys and accesses additional BLE keys
from Alice.

MitM. Charlie mounts a MitM attack by combining the Central
and Peripheral spoofing attacks as shown in Figure 6. If Alice and
Bob are running a BLE session, Charlie starts with the Peripheral
impersonation attack presenting to Alice as Bob over BT. Otherwise,
he launches a Central impersonation attack by targeting Bob as
Alice over BLE. After the first attack, the impersonated victim is
disconnects from the other victim. Then, Charlie targets the imper-
sonated victim with a second impersonation attack and establishes
a MitM position between the two victims. As a result, Charlie sits

Peripheral Impersonation Centra
l Im

perso
natio

n

Figure 6: BLUR MitM attack. Charlie combines the Central
and Peripheral impersonation attacks and MitM Alice and
Bob secure session over BT and BLE.

in the middle of secure BT and BLE sessions between Alice and
Bob.

5.4 Unintended Session Attacks
During our experiments with CTKD, we noticed that all devices
were always pairable over BT and BLE even when they were not dis-
coverable. However, while being pairable over BT and BLE devices
typically use one transport at a time. For example, a pair of headsets
advertises its presence over BT and BLE, but once paired uses only
BT audio profiles. The attacker can target the unused transport to
establish secure BT and BLE session with a victim while imper-
sonating a random device. We name this novel Bluetooth threat as
unintended session attack.

An unintended session attack is valuable for various reasons. It is
stealthy as the attacker pairs with a victim as an anonymous device
and with minimal user interaction. Moreover, it allows complete
device enumeration as the attacker, being a trusted peer, can access
all BT and BLE services, including protected ones (unlike related
attacks [17]). Additionally, the attack anonymously de-anonymizes
victim devices, as the attacker gets access to the identity resolving
key distributed during pairing. Finally, the trust relation between
the attacker and the victim enables the adversary to reach more
Bluetooth code sections, including potential remote code execution
bugs in the pairing and secure session code.

In Figure 7, we describe an unintended session attack against Bob,
who is securely connected to Alice over BT. Charlie can send a BLE
pairing request to Bob with a random Bluetooth address, CTKD sup-
port, and Just Works association. Charlie and Bob negotiate KBLE,
and derive KBT via CTKD. Now, Charlie can establish secure but
unintended BT and BLE sessions with Bob without breaking Bob’s
existing session with Alice. Charlie can also establish unintended
sessions with Alice using a similar strategy.

6 IMPLEMENTATION
In this section, we describe our attack scenario, and our implemen-
tation of a custom attack device to perform the BLUR attacks that
we will open-source.

6.1 Attack Scenario
Figure 8 presents our attack scenario. Alice is represented by a 7th
generation ThinkPad X1 laptop and Bob by a pair of Sony WH-
CH700N headphones. The attacker (Charlie) uses a CYW920819

Figure 7: BLUR unintended sessions attack. Charlie can take
advantage of CTKD to establish unintended BT and BLE ses-
sions with Bob as a random device with arbitrary capabili-
ties. The same can happen if Charlie targets Alice.

Figure 8: BLUR attack scenario. Alice (Central) is a
ThinkPad X1 7th gen, Bob (Peripheral) is a pair of SonyWH-
CH700N headphones and Charlie (attacker) is a CYW920819
board connected via USB to a ThinkPad X1 3rd gen. Alice
and Bob have paired in the absence of Charlie, and are run-
ning a secure BT session.

development board [19] and a 3rd generation ThinkPad X1 lap-
top as her attack device. See Section 6.2 for the attack device’s
implementation.

Table 1 summarizes the most relevant Bluetooth features of
Alice, Bob, and Charlie. Alice and Bob have an Intel Bluetooth chip,
while Bob has a Cambridge Silicon Radio (CSR) one. Alice, Bob,
and Charlie support Bluetooth 5.1, 4.1, and 5.0. Alice and Charlie
support Secure Connections both on the Host and the Controller,
while Bob only on the Controller. All devices support BT, BLE, and
CTKD. Regarding pairing association methods, the laptops support
Numeric Comparison, while the headsets only support Just Works
as they lack a display.

6.2 Attack Device
Our attack device consists of a CYW920819 development board and a
Linux laptop (see Figure 9) and is convenient for several reasons. We
can program our board (Bluetooth Controller) to impersonate any
BT/BLE device, we can patch its closed-source firmware to control
the BT link management protocol (LMP) packets and the BLE link
layer ones. Moreover, we can alter the laptop’s BT and BLE kernel
and user-space code to set Bluetooth Host-specific configuration
bits such as negotiating CKTD and Just Works. We discarded a
software-defined radio (SDR) setup as there is no fully functional
and open-source BT/BLE SDR stack. We now describe in detail how
we modify the attack device’s Host and Controller components.

Table 1: Relevant features of Alice, Bob, and Charlie. We
redact the devices’ Bluetooth addresses for privacy reasons.

Alice Bob Charlie

Device(s) X1 7th gen WH-CH700N X1 3rd gen /
CYW920819

Radio Chip Intel CSR Intel / Cypress
Subversion 256 12942 256 / 8716
Version 5.1 4.1 5.0
Name x7 WH-CH700N x1
ADD Redacted Redacted Redacted
Class 0x1c010c 0x0 0x0
BT SC True Only Controller True
BT AuthReq 0x03 0x02 0x03
BLE SC True True True
BLE AuthReq 0x2d 0x09 0x2d
CTKD True True True
h7 True False True
Role Central Peripheral Central
IO Display No IO Display
Association Numeric C. Just Works Numeric C.
Pairable True True True

Figure 9: Attack device block diagram. The attack device is
composed of Linux laptop (Host) and a CYW920819 devel-
opment board (Controller) connected via USB and commu-
nicating using the Host Controller Interface (HCI) protocol.

Host modifications. We modified the host using standard Linux
tools such as bluetoothctl, hciconfig, and btmgmt. For example,
we use btmgmt to toggle several Bluetooth functionalities (e.g., BT,
BLE, SC, scanning, advertising, and discoverability) and to send
pairing requests with no input-output capabilities.

Furthermore, we patch the host to parse the link-layer packets
from the controller. This is handy as it enables monitoring Blue-
tooth HCI and link-layer traffic solely from the host. To activate
link-layer packet forwarding on the controller, we sent a vendor-
specific command to the board that switches on an undocumented
diagnostic mode. Finally, we patched the host such that the MitM
flag is always set to True, even when the input-output capability
flag of the attack device is set to None.

Controller modifications. We modified the controller by dynam-
ically patching the development board Bluetooth firmware. The

patches are sent using a proprietary mechanism supported by the
board. To develop the patches, we had first to dump the firmware,
and reverse-engineer its relevant parts. Using a proprietary HCI
command we dumped a board RAM snapshot at runtime. We use
the memory maps that we extracted from the board’s SDK to extract
the memory segments from the snapshot (e.g., ROM, RAM, and
the scratchpad). The firmware is stored in the ROM as a stripped
ARM32 binary and contains 16-bit Thumb instructions.

To reverse-engineer the firmware, we loaded the ROM, RAM,
and scratchpad in Ghidra and statically analyzed them. In our first
pass, we isolated the libc functions (e.g., malloc and calloc) by
looking at the signatures and code patterns of the most called
functions. Then, as described in [33], we loaded into Ghidra the
firmware debugging symbols from the board’s SDK, and we isolated
interesting functions and data structures. Then, we wrote ARM
Thumb assembly patches to change their behaviors, and we applied
those patches at runtime using internalblue, a toolkit presented
in [33]. Our set of patches allows transforming our board into
whatever device we want by changing its identifiers, including
addresses, names, and capabilities.

7 EVALUATION
We now present our evaluation setup and results.

7.1 Setup
We now describe how we conducted the four BLUR attacks pre-
sented in Section 5 using the attack device described in Section 6.2.

Central impersonation. To impersonate a Central (e.g., a laptop),
we patch our attack device to clone the Central Bluetooth features
(e.g., Bluetooth address, name, device class, and security parame-
ters). To start the attack, we send a BLE pairing request declaring
CTKD and Just Works support using btmgmt. The devices agree
on KBLE, derive KBT via CTKD and establish a secure BLE session.
Then, the Peripheral terminates the BT session with the imper-
sonated Central, and starts a secure BT session with the attack
device.

Peripheral impersonation. To impersonate a Peripheral (e.g., a
pair of headphones), we modify our attack device to mimic the
Peripheral’s Bluetooth features. Then, we send a BT pairing request
from the attack device to the victim Central declaring CTKD and
JustWorks support using btmgmt. The Central and the attack device
agree on KBT, derive KBLEvia CTKD, and establish a secure session
over BT.

MitM. By using two development boards connected to the same
laptop, we impersonate the Central and the Peripheral at the same
time to mount a MitM attack. In particular, we run the Central
impersonation attack first, and then the Peripheral impersonation
one.

Unintended sessions. To conduct the unintended session attack,
we patch our attack device to spoof a device unknown to the victim.
If we target a Central (Peripheral) the attack starts with a pairing
request over BT (BLE). In both cases, the attacker completes pairing
using CTKD and can establish secure sessions over BT and BLE
with the victim as an anonymous device.

7.2 Results
Table 3 presents the evaluation results. The first three columns
indicate the device producer, model, and operating system (OS). The
following two columns provide information about the Bluetooth
chip producer and model. The next column shows the Bluetooth
version. The last four columns indicate the role of the attacker (e.g.,
if the adversary is a Peripheral then the victim is a Central), and
whether or not a victim is vulnerable to impersonation, MitM, and
unintended sessions (US) attacks. If a device is vulnerable, we mark
the table cell with a checkmark (✓).

Overall we exploit 16 unique devices employing 14 different
Bluetooth chips. We targeted different device types (e.g., laptops,
smartphones, headphones, and development boards), manufactur-
ers (e.g., Samsung, Dell, Google, Lenovo, and Sony), operating sys-
tems (e.g., Android, Windows, Linux, and proprietary OSes), and
Bluetooth firmware (e.g., Broadcom, CSR, Cypress, Intel, Qualcomm,
and Samsung).

Moreover, Table 3 empirically demonstrates that the BLUR at-
tacks are effective on all the Bluetooth versions that we tested
(Bluetooth 4.2, 5.0, 5.1, and 5.2). We could not test Bluetooth 5.3 de-
vices as they were not available at the time of submission. Notably,
the attacks work also against Bluetooth 4.1 devices.

Finally, Table 3 shows that the Bluetooth 5.1 and 5.2 devices
that we tested are vulnerable the BLUR attacks, despite the CTKD
key overwrite mitigation in the standard since Bluetooth 5.1 [14,
p. 1366]. In Section 8, we discuss why we think that this is the case
and we propose alternative and effective countermeasures.

8 COUNTERMEASURES
In this section, we summarize the CTKD key overwrite countermea-
sures in the Bluetooth standard since version 5.1, and we explain
why they are not effective against the BLUR attacks. Then, we pro-
pose effective mitigations for the BLUR attacks, and we describe
how we implemented and evaluated one of them.

8.1 Countermeasures in the Bluetooth
standard and their ineffectiveness

Since 5.1 the Bluetooth standard introduced backward incompat-
ible countermeasures against some CTKD key overwrite attacks.
In particular, the 5.1 and 5.2 standards state “While performing
cross-transport key derivation, if the key for the other transport
already exists, then the devices shall not overwrite that existing
key with a key that is weaker in either strength or MITM protec-
tion” [10, p. 1401]. Hence, an attacker cannot overwrite a pairing
key with CTKD if the overwriting key has either a lower entropy
(i.e., strength) or a lower MitM protection than the overwritten
one. The phrasing is 5.3 is more verbose, but it enforces the same
conditions [14, p. 1366].

The Bluetooth SIG currently relies on these countermeasures to
claim that the BLUR attacks are ineffective against devices support-
ing Bluetooth 5.1 and later [13]. Nevertheless, the results presented
in Section 7.2 demonstrate that such mitigations appear to be inef-
fective against our attacks. The interesting question then is: “Why
are the BLUR attacks successful against Bluetooth 5.1 or higher?”
One might expect implementation issues, but we argue that the

problems still lie with the design of CTKD for the following three
reasons:

• None of our attacks use CTKD to downgrade the pairing
key’s strength (i.e., entropy). Indeed, they do not trigger the
key strength condition of the countermeasure.

• The unintended session attacks never require overwriting
pairing keys via CTKD. The same is true for impersonation
attacks where the adversary attacks a transport and the
victims are only sharing a pairing key for that transport as
the pairing key derived from CTKD does not overwrite an
old key.

• Some impersonation attacks require overwriting keys via
CTKD. However, we experimentally found that for 5.1 and
5.2 devices, if we declare no input/output capabilities with-
out unsetting the MitM protection flag, then we are still
capable of downgrading pairing to Just Works without trig-
gering the mitigation in the Bluetooth standard. This is a
consequence of the association negotiation criteria in the
Bluetooth standard [14, p. 1573].

8.2 Our Countermeasures
We now propose two countermeasures against our attacks filling
the security gaps still present in the Bluetooth standard. Our coun-
termeasures directly address the permanent pairing and key tam-
pering root causes described in Section 5.1 and prevent the four
BLUR attacks.

Avoid cross-transport key tampering. To address CTKD key tam-
pering problems (including key overwrites), we suggest disabling
CTKD when is used to overwrite trusted pairing key, unless the
user explicitly consents (with sufficient explanations to make an
informed decision). This countermeasure should be added to any
device supporting CTKD, not only from standard version 5.1 on-
wards.

Disable permanent BT and BLE pairing. To address the issues
with devices being permanently pairable over BT and BLE, we
recommend that a device should automatically stop being pairable
on a transport that is not currently in use. To avoid denial of service
issues a device should also allow to manually enable and disable
pairing on BLE and BT.

8.3 Key Tampering Countermeasure PoC
To verify the effectiveness of the cross-transport key tampering
countermeasure, we developed and successfully tested a proof of
concept (PoC) key tampering mitigation for Linux. We selected
Linux because is open-source and is employed on multiple Blue-
tooth devices such as Android smartphones, embedded devices, and
laptops.

Our PoC works as follows. We pair a Linux laptop (victim) with
a smartphone using CTKD. Let us assume that the laptop Blue-
tooth address is AA:AA:AA:AA:AA:AA and the smartphone one is
BB:BB:BB:BB:BB:BB. Once the pairing process is completed, the
laptop stores the pairing keys in the info file at: /var/lib/blueto
oth/AA:AA:AA:AA:AA:AA/BB:BB:BB:BB:BB:BB/info. To prevent
key tampering, we unset the write permission bit on such info file.

Table 2: Comparison with related work. The BLUR attacks
are the first cross-transport standard-compliant attacks for
Bluetooth and the first targeting CTKD. C = Data Confiden-
tiality, I = Data Integrity, A = Device Authentication, K = Key
disclosure. No (#) Partially (G#), Yes ().

Attack

Year Paper Target Phase C I AK SC Pst

Attacks on BT
2016 Albaz. [1] Standard Any G#### x -
2017 Seri [40] Impl. Pairing # NA ✓

2018 Sun [43] Standard Pairing # ✓ -
2018 Biham [9] Standard Pairing G# NA ✓

2019 Ossmann [35] Standard NA G#### x -
2019 Antonioli [2] Standard Pairing G## ✓ -
2020 Antonioli [4] Standard Pairing # ✓ -
2021 Tsch. [44] Standard Pairing # ✓ -
Attacks on BLE
2016 Jasek [28] Standard NA G#### x -
2018 Biham [9] Standard Pairing G# NA ✓

2019 Seri [41] Impl. NA #G#G## NA ✓

2020 Zhang [49] Standard Pairing G#G#G## ✓ -
2020 Wu [47] Standard Session ## # ✓ -
2020 Garbelini [22] Impl. Any G#G#G## NA -
2020 Antonioli [5] Standard Pairing G## ✓ -
Cross-transport attacks on BT and BLE
2022 BLURtooth Standard Any G# ✓ ✓

Then, we run the BLUR Peripheral impersonation attack against
the laptop (Central) and we confirm that the attack is ineffective.

Our PoC can be improved by selectively setting and unsetting
the write permission on the pairing key file based on manual or
automatic triggers. For example, the OS might integrate a graphical
user interface to lock/unlock the file. Moreover, it can provide an
automatic mechanism that locks the pairing key file if a trusted
device tries to repair with weaker Bluetooth security parameters
(e.g., Just Works other than Numeric Comparison). We note that
effectively detecting impersonation attacks is outside of the scope
of this countermeasure.

9 RELATEDWORK
Bluetooth is the most popular wireless technology for low-power
services and cable replacement [23]. The Bluetooth standard evolved
to include more security mechanisms (e.g., SSP, SC) and transports
(e.g., BT, BLE). Over the years, numerous standard-compliant at-
tacks have been discovered since Bluetooth v1.0 [27, 32].

Recent standard-compliant attacks on BT include attacks on
legacy pairing [42], secure simple pairing (SSP) [9, 24, 43], as-
sociation [25, 44], key negotiation [2], and authentication proce-
dures [4, 31, 45]. Regarding BLE, there exist attacks on legacy pair-
ing [39], key negotiation [5], SSP [9, 49], reconnections [47], and
GATT [28].

The BLUR attacks are novel compared to prior standard-compliant
attacks. As we can see from Table 2, they are the first cross-transport
attacks, meaning the first targeting BT from BLE and vice versa.
Moreover, no prior attacks targeted (and evaluated the security of)
CTKD. Finally, like the BIAS attack [4], they require a weak threat
model as the attacker can target a victim at any time. Unlike the
BIAS attack, the effect of our attacks is persistent across sessions.
Like other standard-compliant attacks, the BLUR attacks are effec-
tive regardless of the security mode (e.g., SSP with SC), association
method (e.g., Numeric Comparison), and Bluetooth version num-
bers. Surveys on Bluetooth security are not discussing CTKD, which
instead should be part of Bluetooth’s threat model [20, 34, 36].

We have seen attacks targeting specific implementation flaws
on BT [40] and BLE [22, 41]. As our attacks target the CTKD speci-
fication, they are effective regardless of the implementation details.

Cross-protocol attacks were exploited for proximity technologies
using Bluetooth and Wi-Fi. Two prominent examples are attacks on
Apple ZeroConf [8] and Google Nearby Connections [3]. However,
no prior attack targeted the BT/BLE combination.

The cryptographic primitives used by Bluetooth have been ex-
tensively analyzed. For example, the 𝐸0 cipher used by BT was
investigated [21], and it is considered relatively weak [36]. SAFER+,
used for authentication, was analyzed as well [30]. BT and BLE
“Secure Connections” use the AES-CCM authenticated-encryption
cipher. AES-CCM was extensively analyzed [29, 38], and it is FIPS-
compliant. The BLUR attacks target the CTKD protocol, hence they
are effective with perfectly secure cryptographic primitives.

10 CONCLUSION
CTKD was introduced in Bluetooth 4.2 to improve the usability of
BT and BLE pairing. However, its security implications were not
clear as there was no prior research evaluating its security. More-
over, the Bluetooth standard provides only limited and version-
specific security arguments about CTKD since version 5.1. This
work demonstrates that CTKD is a novel and relevant attack sur-
face as it enables high impact attacks affecting BT and BLE just
by targeting one of the two (i.e., unprecedented cross-transport
exploitation for Bluetooth).

We present the BLUR attacks, four novel cross-transport threats
on CTKD to impersonate, MitM and establish unintended (anony-
mous) sessions with BT and BLE device. Since the attacks target
vulnerabilities in CTKD’s specification, they are effective regardless
of the security capabilities of the victim (e.g., usage of SSP, SC, on
strong association) and software and hardware details. The attacks
exploit the fact that CTKD, by design, allows an attacker to pair over
unused transports and tamper with security keys across transports
(e.g., write and overwrite pairing keys).

To demonstrate the feasibility of the BLUR attacks, we present
a low-cost implementation based on readily available hardware
and open-source software (that we will open-source). We use our
implementation to confirm that the BLUR attacks are effective and
impactful. In particular, we exploited 16 different devices using 14
unique Bluetooth chips. Our device sample includes all the Blue-
tooth version currently in themarket supporting CTKD (e.g., 4.2, 5.0,
5.1, and 5.2) and devices supporting SSP, SC and strong association.

We also experimentally confirm that the mitigations in the Blue-
tooth standard since v5.1 are ineffective against the BLUR attacks,
and we provide solid arguments to explain why. As such, we ex-
pect all current CTKD-capable Bluetooth devices to be vulnerable
to the BLUR attacks. To fix the attacks, we propose two practical
and legacy-compliant countermeasures. In particular, we suggest
disabling pairing when not needed and adding a mechanism to
prevent key tampering. We implemented the latter on Linux and
successfully evaluated it against a BLUR impersonation attack.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers. This project was
supported by European Research Council (ERC) grant No. 850868,
DARPA HR001119S0089-AMP-FP-034, and Fondation Botnar. Any
findings are those of the authors and do not necessarily reflect the
views of our sponsors.

REFERENCES
[1] Wahhab Albazrqaoe, Jun Huang, and Guoliang Xing. 2016. Practical Bluetooth

traffic sniffing: Systems and privacy implications. In Proceedings of the Annual
International Conference on Mobile Systems, Applications, and Services. ACM,
333–345.

[2] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2019. The
KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation of
Bluetooth BR/EDR. In Proceedings of the USENIX Security Symposium. USENIX.

[3] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2019. Nearby
Threats: Reversing, Analyzing, and Attacking Google’s “Nearby Connections” on
Android. In Proceedings of the Network and Distributed System Security Symposium
(NDSS).

[4] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2020. BIAS:
Bluetooth Impersonation AttackS. In Proceedings of Symposium on Security and
Privacy (S&P). IEEE.

[5] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2020. Key Nego-
tiation Downgrade Attacks on Bluetooth and Bluetooth Low Energy. Transactions
on Privacy and Security (TOPS) (2020). https://doi.org/10.1145/3394497

[6] AOSP. 2020. Fluoride Bluetooth stack. https://chromium.googlesource.com/aosp/
platform/system/bt/+/master/README.md, Accessed: 2020-01-27.

[7] Python Cryptographic Authority. 2019. Python cryptography. https://
cryptography.io/en/latest/, Accessed: 2019-02-04.

[8] Xiaolong Bai, Luyi Xing, Nan Zhang, XiaoFeng Wang, Xiaojing Liao, Tongxin
Li, and Shi-Min Hu. 2016. Staying secure and unprepared: Understanding and
mitigating the security risks of Apple zeroconf. In 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 655–674.

[9] Eli Biham and Lior Neumann. 2018. Breaking the Bluetooth Pairing–Fixed
Coordinate Invalid Curve Attack. http://www.cs.technion.ac.il/~biham/BT/bt-
fixed-coordinate-invalid-curve-attack.pdf.

[10] Bluetooth SIG. 2019. Bluetooth Core Specification v5.2. https://www.bluetooth.
org/docman/handlers/downloaddoc.ashx?doc_id=478726, Accessed: 2020-01-27.

[11] Bluetooth SIG. 2019. Bluetooth Markets. https://www.bluetooth.com/markets/.
[12] Bluetooth SIG. 2020. Bluetooth Market Update 2020. https://www.bluetooth.

com/bluetooth-resources/2020-bmu/.
[13] Bluetooth SIG. 2020. Bluetooth SIG Statement Regarding BLURtooth.

https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-
security/blurtooth/.

[14] Bluetooth SIG. 2021. Bluetooth Core Specification v5.3. https://www.bluetooth.
org/DocMan/handlers/DownloadDoc.ashx?doc_id=521059, Accessed: 2021-11-
15.

[15] Bluetooth SIG. 2021. Bluetooth Market Update 2021. https://www.bluetooth.com/
bluetooth-resources/2021-bmu/?utm_campaign=bmu&utm_source=internal&
utm_medium=web&utm_content=2021bmu-resourcepopup.

[16] BlueZ. 2014. Bluetooth 4.2 features going to the 3.19 kernel release. https:
//tinyurl.com/q9dzh2h, Accessed: 2020-01-27.

[17] Guillaume Celosia and Mathieu Cunche. 2019. Fingerprinting Bluetooth Low
Energy devices based on the generic attribute profile. In Proceedings of the 2nd
International ACM Workshop on Security and Privacy for the Internet-of-Things.
24–31.

[18] Cypress. 2019. BLE and Bluetooth. https://www.cypress.com/products/ble-
bluetooth, Accessed: 2020-01-27.

[19] Cypress. 2019. CYW920819EVB-02 Evaluation Kit. https://www.cypress.com/
documentation/development-kitsboards/cyw920819evb-02-evaluation-kit, Ac-
cessed: 2019-11-16.

https://doi.org/10.1145/3394497
https://chromium.googlesource.com/aosp/platform/system/bt/+/master/README.md
https://chromium.googlesource.com/aosp/platform/system/bt/+/master/README.md
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.bluetooth.com/markets/
https://www.bluetooth.com/bluetooth-resources/2020-bmu/
https://www.bluetooth.com/bluetooth-resources/2020-bmu/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/blurtooth/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/blurtooth/
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=521059
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=521059
https://www.bluetooth.com/bluetooth-resources/2021-bmu/?utm_campaign=bmu&utm_source=internal&utm_medium=web&utm_content=2021bmu-resourcepopup
https://www.bluetooth.com/bluetooth-resources/2021-bmu/?utm_campaign=bmu&utm_source=internal&utm_medium=web&utm_content=2021bmu-resourcepopup
https://www.bluetooth.com/bluetooth-resources/2021-bmu/?utm_campaign=bmu&utm_source=internal&utm_medium=web&utm_content=2021bmu-resourcepopup
https://tinyurl.com/q9dzh2h
https://tinyurl.com/q9dzh2h
https://www.cypress.com/products/ble-bluetooth
https://www.cypress.com/products/ble-bluetooth
https://www.cypress.com/documentation/development-kitsboards/cyw920819evb-02-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920819evb-02-evaluation-kit

[20] John Dunning. 2010. Taming the blue beast: A survey of Bluetooth based threats.
IEEE Security & Privacy 8, 2 (2010), 20–27.

[21] Scott Fluhrer and Stefan Lucks. 2001. Analysis of the E0 encryption system.
In Proceedings of the International Workshop on Selected Areas in Cryptography.
Springer, 38–48.

[22] Garbelini, Matheus and Chattopadhyay, Sudipta and Wang, Chundong. 2020.
SweynTooth: Unleashing Mayhem over Bluetooth Low Energy. https://asset-
group.github.io/disclosures/sweyntooth/sweyntooth.pdf, Accessed: 2020-04-08.

[23] Jaap Haartsen, Mahmoud Naghshineh, Jon Inouye, Olaf J Joeressen, and Warren
Allen. 1998. Bluetooth: Vision, goals, and architecture. ACM SIGMOBILE Mobile
Computing and Communications Review 2, 4 (1998), 38–45.

[24] Keijo Haataja and Pekka Toivanen. 2010. Two practical man-in-the-middle
attacks on Bluetooth secure simple pairing and countermeasures. Transactions
on Wireless Communications 9, 1 (2010), 384–392.

[25] Konstantin Hypponen and Keijo MJ Haataja. 2007. Nino man-in-the-middle
attack on Bluetooth secure simple pairing. In Proceedings of the International
Conference in Central Asia on Internet. IEEE, 1–5.

[26] Intel. 2019. Intel Wireless Solutions. https://www.intel.com/content/www/us/
en/products/wireless.html, Accessed: 2020-01-27.

[27] Markus Jakobsson and Susanne Wetzel. 2001. Security weaknesses in Bluetooth.
In Proceedings of the Cryptographers’ Track at the RSA Conference. Springer, 176–
191.

[28] Sławomir Jasek. 2016. Gattacking Bluetooth smart devices. Black Hat USA
Conference.

[29] Jakob Jonsson. 2002. On the security of CTR+ CBC-MAC. In Proceedings of the
International Workshop on Selected Areas in Cryptography. Springer, 76–93.

[30] John Kelsey, Bruce Schneier, and DavidWagner. 1999. Key schedule weaknesses in
SAFER+. In Proceedings of the Advanced Encryption Standard Candidate Conference.
NIST, 155–167.

[31] Albert Levi, Erhan Çetintaş, Murat Aydos, Çetin Kaya Koç, and M Ufuk Çağlayan.
2004. Relay attacks on Bluetooth authentication and solutions. In Proceedings
International Symposium on Computer and Information Sciences. Springer, 278–
288.

[32] Andrew Y Lindell. 2008. Attacks on the pairing protocol of Bluetooth v2.1. Black
Hat USA, Las Vegas, Nevada (2008).

[33] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick. 2019. In-
ternalBlue - Bluetooth Binary Patching and Experimentation Framework. In
Proceedings of Conference on Mobile Systems, Applications and Services (MobiSys).
ACM.

[34] Nateq Be-Nazir Ibn Minar and Mohammed Tarique. 2012. Bluetooth security
threats and solutions: a survey. International Journal of Distributed and Parallel
Systems 3, 1 (2012), 127.

[35] Michael Ossmann. 2019. Project Ubertooth. https://github.com/greatscottgadgets/
ubertooth, Accessed: 2019-10-21.

[36] John Padgette. 2017. Guide to Bluetooth security. NIST Special Publication 800
(2017), 121.

[37] Qualcomm. 2019. Expand the potential of Bluetooth. https://www.qualcomm.
com/products/bluetooth, Accessed: 2020-01-27.

[38] Phillip Rogaway. 2011. Evaluation of some blockcipher modes of operation. Cryp-
tography Research and Evaluation Committees (CRYPTREC) for the Government of
Japan (2011).

[39] Mike Ryan. 2013. Bluetooth: With Low Energy Comes Low Security. In Proceed-
ings of USENIX Workshop on Offensive Technologies (WOOT), Vol. 13. USENIX,
4–4.

[40] Ben Seri and Gregory Vishnepolsky. 2017. The Attack Vector BlueBorne Exposes
Almost Every Connected Device. https://armis.com/blueborne/, Accessed: 2018-
01-26.

[41] Ben Seri, Gregory Vishnepolsky, and Dor Zusman. 2019. BLEEDINGBIT: The hid-
den Attack Surface within BLE chips. https://armis.com/bleedingbit/, Accessed:
2019-07-24.

[42] Yaniv Shaked and Avishai Wool. 2005. Cracking the Bluetooth PIN. In Proceedings
of the conference on Mobile systems, applications, and services (MobiSys). ACM,
39–50.

[43] Da-Zhi Sun, Yi Mu, and Willy Susilo. 2018. Man-in-the-middle attacks on Secure
Simple Pairing in Bluetooth standard V5. 0 and its countermeasure. Personal and
Ubiquitous Computing 22, 1 (2018), 55–67.

[44] Maximilian von Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens
Grossklags. 2021. Method Confusion Attack on Bluetooth Pairing. In Proceedings
of Symposium on Security and Privacy (S&P). IEEE.

[45] Ford-LongWong, Frank Stajano, and JolyonClulow. 2005. Repairing the Bluetooth
pairing protocol. In Proceedings of International Workshop on Security Protocols.
Springer, 31–45.

[46] Joshua Wright. 2018. I Can Hear You Now - Eavesdropping on Bluetooth
Headsets. https://www.willhackforsushi.com/presentations/icanhearyounow-
sansns2007.pdf, Accessed: 2018-10-30.

[47] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave Jing Tian, Antonio Bianchi,
Mathias Payer, and Dongyan Xu. 2020. BLESA: Spoofing Attacks against Re-
connections in Bluetooth Low Energy. In 14th USENIX Workshop on Offensive

Technologies (WOOT).
[48] Apple WWDC. 2019. What’s New in Core Bluetooth. https://developer.apple.

com/videos/play/wwdc2019/901, Accessed: 2020-01-27.
[49] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. 2020.

Breaking Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks. In
29th USENIX Security Symposium (USENIX Security 20). 37–54.

A APPENDIX
A.1 Implementation of CTKD KDF
We implemented CTKD’s KDF, following the Bluetooth standard [14,
p. 1366]. This implementation is not required to conduct the attack,
but it is useful to check that CTKD keys are correctly derived.
Our implementation is written in Python 3, uses the PyCA crypto-
graphic module [7], and successfully passes the test vectors in the
Bluetooth standard [14, p. 1650].

𝐾𝐵𝐿𝐸 =

{
𝑓 (𝑓 (𝑡𝑚𝑝2, 𝐾𝐵𝑇) , 𝑏𝑟𝑙𝑒) if h7 is supported
𝑓 (𝑓 (𝐾𝐵𝑇 , 𝑡𝑚𝑝2) , 𝑏𝑟𝑙𝑒) otherwise

𝐾𝐵𝑇 =

{
𝑓 (𝑓 (𝑡𝑚𝑝1, 𝐾𝐵𝐿𝐸) , 𝑙𝑒𝑏𝑟) if h7 is supported
𝑓 (𝑓 (𝐾𝐵𝐿𝐸 , 𝑡𝑚𝑝1) , 𝑙𝑒𝑏𝑟) otherwise

KDF uses the function f(𝑎, 𝑏). This function is implemented as
AES-CMAC(𝑘𝑒𝑦, 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡) and depends on the negotiation of h7
via the AuthReq flag [14, p. 1567]. When CTKD is run from BT, then
𝐾𝐵𝐿𝐸 is computed by calling f two times with different input. If the
devices support the h7 key conversion function, then f is called once
with the “tmp2” and KBT, and then a second time using the output
of the first call and “brle”, Otherwise, if h7 is not supported in the
first f call the inputs are swapped. A similar logic with different
inputs is used when CTKD is run from BLE to compute 𝐾𝐵𝑇 (see
equations above).

https://asset-group.github.io/disclosures/sweyntooth/sweyntooth.pdf
https://asset-group.github.io/disclosures/sweyntooth/sweyntooth.pdf
https://www.intel.com/content/www/us/en/products/wireless.html
https://www.intel.com/content/www/us/en/products/wireless.html
https://github.com/greatscottgadgets/ubertooth
https://github.com/greatscottgadgets/ubertooth
https://www.qualcomm.com/products/bluetooth
https://www.qualcomm.com/products/bluetooth
https://armis.com/blueborne/
https://armis.com/bleedingbit/
https://www.willhackforsushi.com/presentations/icanhearyounow-sansns2007.pdf
https://www.willhackforsushi.com/presentations/icanhearyounow-sansns2007.pdf
https://developer.apple.com/videos/play/wwdc2019/901
https://developer.apple.com/videos/play/wwdc2019/901

Table 3: BLUR attacks evaluation results. The first three columns show the device’s producer, model, and OS. The following
two columns state the Bluetooth chip’s producer and model. The sixth column tells the Bluetooth version of the target device.
The seventh column indicates the attacker’s role. The last three columns contain a checkmark (✓) if a device is vulnerable to
the relevant BLUR attack.

Device Chip Bluetooth BLUR Attack

Producer Model OS Producer Model Version Role MI/SI MitM US

Cypress CYW920819EVB-02 Proprietary Cypress CYW20819 5.0 Peripheral ✓ ✓ ✓

Dell Latitude 7390 Win 10 PRO Intel 8265 4.2 Peripheral ✓ ✓ ✓

Google Pixel 2 Android Qualcomm SDM835 5.0 Peripheral ✓ ✓ ✓

Google Pixel 4 Android Qualcomm 702 5.0 Peripheral ✓ ✓ ✓

Lenovo X1 (3rd gen) Linux Intel 7265 4.2 Peripheral ✓ ✓ ✓

Lenovo X1 (7th gen) Linux Intel 9560 5.1 Peripheral ✓ ✓ ✓

Samsung Galaxy A40 Android Samsung Exynos 7904 5.0 Peripheral ✓ ✓ ✓

Samsung Galaxy A51 Android Samsung Exynos 9611 5.0 Peripheral ✓ ✓ ✓

Samsung Galaxy A90 Android Qualcomm SDM855 5.0 Peripheral ✓ ✓ ✓

Samsung Galaxy S10 Android Broadcom BCM4375 5.0 Peripheral ✓ ✓ ✓

Samsung Galaxy S10e Android Broadcom BCM4375 5.0 Peripheral ✓ ✓ ✓

Samsung Galaxy S20 Android Broadcom BCM4375 5.0 Peripheral ✓ ✓ ✓

Xiaomi Mi 10T Lite Android Qualcomm 9312 5.1 Peripheral ✓ ✓ ✓

Xiaomi Mi 11 Android Qualcomm 10765 5.2 Peripheral ✓ ✓ ✓

Sony WH-1000XM3 Proprietary CSR 12414 4.2 Central ✓ ✓ ✓

Sony WH-CH700N Proprietary CSR 12942 4.1† Central ✓ ✓ ✓

† CTKD was backported by the vendor to Bluetooth 4.1.

	Abstract
	1 Introduction
	2 Bluetooth Classic (BT) and Low Energy (BLE)
	3 Cross-Transport Key Derivation
	3.1 Introduction about CTKD
	3.2 CTKD Protocols for BT and BLE

	4 Threat Model
	4.1 System Model
	4.2 Attacker Model and Goals

	5 BLUR Attacks
	5.1 Root Causes
	5.2 Attack Strategy
	5.3 Impersonation and MitM Attacks
	5.4 Unintended Session Attacks

	6 Implementation
	6.1 Attack Scenario
	6.2 Attack Device

	7 Evaluation
	7.1 Setup
	7.2 Results

	8 Countermeasures
	8.1 Countermeasures in the Bluetooth standard and their ineffectiveness
	8.2 Our Countermeasures
	8.3 Key Tampering Countermeasure PoC

	9 Related Work
	10 Conclusion
	References
	A Appendix
	A.1 Implementation of CTKD KDF

