
“Synthesizing Input Grammars”: A Replication Study
Bachir Bendrissou

CISPA Helmholtz Center For
Information Security

Germany
bachir.bendrissou@cispa.de

Rahul Gopinath
CISPA Helmholtz Center For

Information Security
Germany

rahul.gopinath@cispa.de

Andreas Zeller
CISPA Helmholtz Center For

Information Security
Germany

zeller@cispa.de

Abstract
When producing test inputs for a program, test generators
(“fuzzers”) can greatly profit from grammars that formally
describe the language of expected inputs. In recent years, re-
searchers thus have studiedmeans to recover input grammars
from programs and their executions. The GLADE algorithm
by Bastani et al., published at PLDI 2017, was the first black-
box approach to claim context-free approximation of input
specification for non-trivial languages such as XML, Lisp,
URLs, and more.
Prompted by recent observations that the GLADE algo-

rithm may show lower performance than reported in the
original paper, we have reimplemented the GLADE algorithm
from scratch. Our evaluation confirms that the effectiveness
score (F1) reported in the GLADE paper is overly optimistic,
and in some cases, based on the wrong language. Further-
more, GLADE fares poorly in several real-world languages
evaluated, producing grammars that spend megabytes to
enumerate inputs.

CCS Concepts: • Security and privacy→ Software reverse
engineering; • Software and its engineering→ Software
maintenance tools; Parsers.

Keywords: context-free grammar, inference, GLADE

ACM Reference Format:
Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller. 2022. “Syn-
thesizing Input Grammars”: A Replication Study. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (PLDI ’22), June 13–
17, 2022, San Diego, CA, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3519939.3523716

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00
https://doi.org/10.1145/3519939.3523716

1 Introduction
Generating test inputs for a program (“fuzzing”) is much
more effective if the fuzzer knows the input language of the
program under test—that is, the set of valid inputs that actu-
ally leads to deeper functionality in the program. Input lan-
guages are typically characterized by context-free grammars,
and the recent interest in fuzzing thus has fueled research
in recovering input grammars from existing programs.

The GLADE algorithm by Bastani et al., published in “Syn-
thesizing Input Grammars” at PLDI 2017 [6], automatically
approximates an input grammar from a given program. In
contrast to other approaches, GLADE does not make use of
program code to infer input properties. Instead, it relies on
feedback from the program whether a given input is valid or
not, and synthesizes a multitude of trial inputs to infer the
input grammar. GLADE claims substantial improvement over
existing algorithms both in terms of accuracy as well as in
terms of speed of inference. In particular, GLADE claims bet-
ter performance over even the current best regular language
inference techniques such as L-Star [4] and RPNI [20]. Fur-
ther, GLADE claims to be able to recover the input grammar
for complex languages such as Ruby, Python, and JavaScript
in a couple of hours[6, Figure 6.].

In recent work [18], however, Kulkarni, Lemieux, and Sen
found that the F1 scores—a measure for the accuracy of
the inferred grammar—produced by the GLADE tool were
much lower than the scores reported in the GLADE paper, for
instance XML (0.42 compared to 0.98) and Lisp (0.38 compared
to 0.97) [18, Table I].
This observation prompted us to investigate the GLADE

algorithm in detail. Given that the algorithm reported in
the paper is the central contribution, we reimplemented
the GLADE algorithm completely from scratch using the
algorithm description given in the paper [6].
We call the implementation by Bastani et al. GLADE-I1,

and we call our implementation GLADE-II to differentiate
both where there is ambiguity. We used our implementation
to evaluate synthesized grammars for programs given in
the original paper [6]. These include URL, Grep, Lisp, and
XML. We further evaluated GLADE-II on several other small
grammars such as different parenthesis grammars, Ints, Dec-
imals, and a few real-world complex grammars such as Lua,

1Available in GitHub [2].

https://doi.org/10.1145/3519939.3523716
https://doi.org/10.1145/3519939.3523716

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller

MySQL, Pascal, XPath, C, TinyC, Tiny, and Basic. Our evalu-
ation uncovers a number of problems and limitations, which
we summarize as follows.

1. The F1 score that we obtained from GLADE-II is much
lower than the F1 scores reported by Bastani et al. This
confirms the observation by Kulkarni et al. [18].

2. Bastani et al. use handwritten grammars for comput-
ing precision and recall. We found that the handwrit-
ten Grep grammar was far more permissive than the
program, resulting in spurious results.

3. The precision scores of simple real-world grammars
such as Decimals (0.84), and JSON (0.53) is lower than
expected considering the high values reported by
GLADE for other programs, and considering their sim-
plicity.

4. The recall of JSON (0.79) is lower than expected con-
sidering the simplicity of its specification.

5. Similar to Grep, the XML grammar used by GLADE-I
was more permissive than the actual XML specification.

6. GLADE is unable to learn and synthesize valid XML
even when a correct XML grammar is used to learn
from.

7. GLADE cannot learn trivial context-free languages such
as 𝑎𝑛𝑏𝑛 or the language of palindromes.

8. The synthesized grammars are extremely large, often
megabytes in size that enumerate inputs.

Our implementation GLADE-II and all experiments are
available online for inspection and replication.

2 Background
Formal specifications for input formats have a long tradition
in computer science. Beyond specifying input languages and
parsing inputs, grammars have been used for program input
generation [15], reverse engineering [7], program refactor-
ing [14], program comprehension [9, 21], and many more.
The potential of grammars for producing syntactically valid
inputs during test generation and fuzzing has raised inter-
est in methods that recover input grammars from programs
and/or given inputs.

An early result in grammar inference was the discovery by
Gold [10] that learning an accurate input specification from
exclusively positive examples was impossible, even when the
specification complexity was limited to regular languages;
even when negative examples are given, it is NP-hard [11].
Consequently, current practical approaches to inferring

context-free grammars inference all make use of program ex-
ecutions. “Whitebox” approaches analyze code and dynamic
control and data flow to extract compact input grammars
that follow the structure of input processing [12, 16, 19].
“Blackbox” approaches, in contrast, extract grammars from
membership queries, executing the program only to deter-
mine if an input is valid or not. Clark’s algorithm [8] uses a

minimally adequate teacher (which can be simulated by mem-
bership queries [4]) to learn a subclass of context-free gram-
mars. More recent “blackbox” approaches include GLADE by
Bastani et al. [6] and Arvada by Kulkarni et al. [18], both set
to learn general context-free grammars.
However, all “blackbox” approaches for learning general

context-free grammars are fundamentally limited: In 1995,
Angluin and Kharitonov showed that unless RSA encryption
is broken, there is no polynomial time prediction algorithm
with query memberships for context-free grammars [5]. To
be efficient, “blackbox” approaches thus need algorithms that
are tailored towards the features of commonly used input
languages.

3 The GLADE Algorithm
GLADE [6] is a grammar inference algorithm. It infers the
context-free grammar of a black-box oracle capable of saying
yes or no to membership queries. It also bootstraps itself with
a set of positive examples. The GLADE paper implies that it
can produce the context-free grammar even if the positive
examples given do not cover all “interesting behaviors”.

The GLADE algorithm starts with a seed input 𝛼𝑖𝑛 . Such a
single seed input (or a set of seed inputs) is a finite choice
grammar [17] with high precision (because it will never
generate an invalid input) but very low recall. From this,
GLADE performs a series of precision-preserving general-
ization steps that attempts to increase the recall. Each step
produces more and more general regular expressions.

While the algorithm attempts to preserve precision, doing
so during transformations is hard. This is because we only
have access to a membership oracle, and it is impossible to
guarantee that precision is preserved without an infinite
number of queries in general. Hence, GLADE uses a series of
heuristic checks to ensure that the candidate is potentially
precision preserving.

The GLADE algorithm has two main phases.

3.1 Phase I: Regular Expression Synthesis
In the first phase, the idea is to synthesize a representative
regular expression. The algorithm first attempts to generalize
substrings of the seed as repetition (rep) or alternation (alt).

The seed input 𝛼𝑖𝑛 is first annotated as [𝛼𝑖𝑛]𝑟𝑒𝑝 . Then the
following rules are followed to successively generalize the
internal substrings.

• Given any partly annotated string 𝑃 [𝛼]𝑟𝑒𝑝𝑄 such that
𝑃 is the non annotated prefix, 𝑄 is the non annotated
suffix, and the in between string 𝛼 is annotated with
rep, we first find all decompositions of 𝛼 of the form
𝛼1𝛼2𝛼3 where 𝛼2 ≠ 𝜖 . We then generate annotated
strings 𝑃𝛼1 ([𝛼2]𝑎𝑙𝑡) ∗ [𝛼3]𝑟𝑒𝑝𝑄 for every such decom-
position of 𝛼 . These along with the string 𝑃𝛼𝑄 be-
comes candidates for generalization.

“Synthesizing Input Grammars”: A Replication Study PLDI ’22, June 13–17, 2022, San Diego, CA, USA

• Next, for any annotated string 𝑃 [𝛼]𝑎𝑙𝑡𝑄 , for any de-
composition of 𝛼 of the form 𝛼1𝛼2 where neither of the
string is empty, generate 𝑃 ([𝛼1]𝑟𝑒𝑝 + [𝛼2]𝑎𝑙𝑡)𝑄 . These
along with 𝑃𝛼𝑄 becomes generalization candidates.

Shorter 𝛼1 constructions are preferred for generalization, fol-
lowed by longer 𝛼2 for repetitions. For alternations, shorter
𝛼1 constructions are preferred. The construction 𝑃𝛼𝑄 is last.

3.2 Phase II: Infer Recursive Properties
The idea here is to infer recursive properties and transform
the expression into a context-free grammar. The regular ex-
pression that was synthesized in Phase I is first translated
into a context-free grammar. Next, each pair of nontermi-
nals that were synthesized during Phase I corresponding
to repetition is equated and checked whether the resulting
language represents a valid generalization.

4 Evaluation
For evaluation, we wanted to ensure that the procedure we
followed was the same as Bastani et al. except for the new
implementation, and using the same grammar for precision
and recall. Hence, the first set of subjects are the original
four programs used by Bastani et al. for evaluation: URL,
Lisp, Grep, and XML. Out of these, we used the URL, and
Grep handwritten grammars as given by Bastani et al.2. We
tried to check the accuracy, but could only evaluate that of
the handwritten Grep grammar as this was the only binary
available3. The XML and Lisp grammars were written as Java
programs4. Since these are well known standard formats, we
used external grammars for these.

Next, we wanted to extend our evaluation to a few simpler
grammars so that we can understand the characteristics of
the algorithm in detail. Hence, the second set includes a few
simple grammars: Ints, Decimals, Floats, and JSON.

We then investigated GLADE behavior on a few parenthe-
sis variants: Palindrome, Paren, Bool Add, TwoParen, Two-
ParenD, TwoAnyParenD, BinParen, and BinAnyParen.
Finally, we wanted to find the performance of GLADE on

real-world complex grammars. Hence, the third set contained
ANTLR grammars obtained from the ANTLR repository [3]:
Lua, MySQL, Pascal, XPath, C, TinyC, Tiny, and Basic.
For the first, second, and third set of grammars, we pro-

duced 50 random inputs using the F1 fuzzer [13]. The random
exploration depth was set to 100. For ANTLR grammars, the
GLADE algorithm took an extremely large amount of time
to learn. Hence, we limited both the seed set and the indi-
vidual size. That is, for these, we only generated 10 seed
inputs with a maximum random exploration depth of 20.

2https://github.com/obastani/glade-full/blob/master/data/handwritten/
3https://github.com/obastani/glade-full/tree/master/data/prog
4https://github.com/obastani/glade-full/blob/master/src/glade/constants/
SyntheticGrammars.java

Note that GLADE claims not to require seed inputs that exer-
cise all interesting behaviors. For ANTLR grammars, we used
Grammarinator [15] as the input generator.

We use the same definitions of precision, recall, and the F1
score. We generate 1000 inputs from the synthesized gram-
mar and check how many of them were recognized by the
handwritten grammar for precision (P), andwe generate 1000
inputs from the handwritten grammar and check how many
were recognized by the synthesized grammar for recall (R).
The F1 score is calculated as F1 = 2×P×R

P+R
During the check for accuracy, we produced inputs from

the Grep handwritten grammar and checked how many of
these were accepted by the Grep binary. We found that only
33% of inputs were accepted. Given that the Grep grammar
is far from the actual input grammar of Grep binary, we
use Grep from now on to indicate that it is not the true
grammar. Similarly, GLADE-I uses a relaxed definition for
XML, allowing any number of root elements compared to the
XML specification as claimed in the GLADE paper [6]. since
XML is not the true XML grammar, we use XML to indicate
that it is not the true grammar either. Unlike Grep, however,
we also check whether GLADE can learn the XML grammar
with the single root node constraint. We mark this grammar
as XML.
We first used GLADE-II to synthesize grammars corre-

sponding to each of these grammars. The details of the
GLADE-II run are given in Table 1. LTime measures the total
amount of time in seconds of learning a grammar. Seeds Len
refers to the average length of the random seeds used in
learning a grammar. 𝜎 refers to the standard deviation of the
seed lengths. Checks lists the number of checks the algorithm
performed in the learning process.
Table 2 contains the precision, accuracy, and the corre-

sponding F1 score obtained by GLADE-II on each subject. It
also shows the size of the synthesized grammars in Kilobytes.
A few cells are empty (_) because the score is unavailable,
This is due to the large size of these synthesized grammars
which made parsing infeasible in a reasonable amount of
time and memory.

Table 3 describes the statistics of handwritten grammars5.
These were used as the black-box program (grammar+parser)
whose input grammar Glade-II was expected to learn.

Table 4 describes the synthesized grammar statistics. The
synthesized grammars are much larger and more complex
than the actual input grammars of the black-box programs.
The GLADE paper [6] does not report grammar sizes.

Why did we not evaluate our subjects with GLADE-I? As
we hinted in the introduction, the GLADE-I source is exceed-
ingly entangled, and it is hard to include new programs for
evaluation easily.

5Only ASCII symbols were considered.

https://github.com/obastani/glade-full/blob/master/data/handwritten/
https://github.com/obastani/glade-full/tree/master/data/prog
https://github.com/obastani/glade-full/blob/master/src/glade/constants/SyntheticGrammars.java
https://github.com/obastani/glade-full/blob/master/src/glade/constants/SyntheticGrammars.java

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller

Table 1. Glade-II Execution

Grammar LTime (s) Seeds Len 𝜎 Checks
URL 193 13.64 3.66 91,885
Lisp 1,463 13.93 13.20 81,769
XML 5,840 16.44 13.15 129,362
XML 618 15.22 9.64 73,272

O
rig

in
al

Grep 1,891 20.24 14.88 99,843
Ints 1 2.08 1.18 3,216
Decimals 15 3.72 2.20 21,292
Floats 16 5 2.45 22,827Si

m
pl
e

JSON 7,398 24.04 45.78 172,163
Palindrome 45 11.18 6.50 66,208
Paren 6,636 42.73 47.54 179,626
Bool Add 3,917 40.86 63.52 160,017
TwoParenD 2,976 28.8 45.42 100,696
TwoAnyParenD 2,469 28.22 36.07 162,034
BinParen 3,048 33.61 33.89 165,827Pa

re
nt
he
si
s

BinAnyParen 30,568 78.02 61.12 513,414
Tiny 3,935 39.7 15.35 60,574
Lua 59,006 111.7 135.29 247,296
Pascal 68,605 182 113.32 317,801
MySQL 73,261 99.2 129.59 177,153
XPath 5,866 67.3 41.04 89,341
C 12,982 110.5 292.31 143,282
TinyC 53,528 130.8 153.07 268,454Pr

og
ra
m
m
in
g

Basic 6,408 80.7 99.95 114,612

Table 2. Glade-II Scores

Grammar Precision Recall F1 Size (KB)
URL 0.687 1 0.81 296
Lisp 0.378 1 0.55 638
XML 0.55 0.96 0.7 976
XML 0.579 0.759 0.66 635

O
rig

in
al

Grep 1 1 1 2,000
Ints 0.983 1 0.99 14
Decimals 0.848 1 0.92 74
Floats 0.914 0.984 0.95 71Si

m
pl
e

JSON 0.531 0.797 0.64 594
Palindrome 1 0.19 0.32 13
Paren 1 1 1 280
Bool Add 1 0.891 0.94 173
TwoParenD 0.838 1 0.91 143
TwoAnyParenD 0.831 0.61 0.7 126
BinParen 0.778 1 0.88 194Pa

re
nt
he
si
s

BinAnyParen 0.623 1 0.77 575
Tiny 0.213 1 0.35 281
Lua 0.203 _ _ 1,400
MySQL 0.331 _ _ 4,600
Pascal 0.024 _ _ 1,800
XPath 0.654 _ _ 1,800
C 0.718 _ _ 3,700
TinyC 0.472 _ _ 1,300Pr

og
ra
m
m
in
g

Basic 0.365 _ _ 577

Table 3. Source Grammars

Grammar Non-terminals Rules Terminals
URL 13 119 73
Lisp 12 78 63
XML 13 142 65
XML 12 140 65

O
rig

in
al

Grep 12 155 91
Ints 5 16 10
Decimals 7 19 11
Floats 10 27 14Si

m
pl
e

JSON 27 159 101
Palindrome 2 6 8
Paren 3 5 3
Bool Add 4 7 5
TwoParenD 3 5 3
TwoAnyParenD 3 8 7
BinParen 4 7 3Pa

re
nt
he
si
s

BinAnyParen 4 9 7
Tiny 36 111 73
Lua 272 1,356 139
Pascal 604 1,108 109
MySQL 5,942 9,589 1,167
XPath 162 623 245
C 677 2,352 200
TinyC 28 83 53Pr

og
ra
m
m
in
g

Basic 628 1,174 286

Table 4. Synthesized GLADE-II Grammars

Grammar Non-terminals Rules Terminals
URL 436 7,604 78
Lisp 923 15,928 63
XML 1,086 24,938 65
XML 693 16,282 69

O
rig

in
al

Grep 993 54,756 91
Ints 49 297 10
Decimals 194 1,252 19
Floats 260 1,524 14Si

m
pl
e

JSON 1,418 10,727 114
Palindrome 46 89 44
Paren 1,635 3,549 3
Bool Add 1,097 2,224 9
TwoParenD 842 1,821 5
TwoAnyParenD 830 1,554 106
BinParen 1,188 2,625 12Pa

re
nt
he
si
s

BinAnyParen 3,514 7,260 120
Tiny 571 6,652 75
Lua 1,723 33,647 139
Pascal 2,975 41,648 134
MySQL 1,478 120,213 137
XPath 1,180 46,760 136
C 1,153 102,499 127
TinyC 2,294 30,126 162Pr

og
ra
m
m
in
g

Basic 1,298 13,683 135

“Synthesizing Input Grammars”: A Replication Study PLDI ’22, June 13–17, 2022, San Diego, CA, USA

The experiments were done on a machine with 8 Intel(R)
Core(TM) i7-6700K CPU @ 4.00GHz CPUs, with a memory
of 16GB. The operating system was Ubuntu.

5 Discussion
There are several limitations with the GLADE paper.

5.1 Dependence on Seeds
In its discussion of relevant research, the GLADE paper [6]
claims that some of the other grammar inference techniques
rely on positive examples that exercise all interesting behav-
iors. One can wonder whether this implies that the seeds
required by GLADE need not cover all interesting behaviors.
In our evaluation, the performance of GLADE is strongly de-
pendent on the features covered by seed inputs. A smaller
number of seeds results in lower recall (less variety) but
higher precision (less chance of making mistakes).

5.2 Reporting of Results
The F1 score as given in Figure 4 is never explicitly speci-
fied in figures. The most important information—precision
and recall of the synthesized grammars—are never reported
separate from F1.

5.3 Evaluation Results
The F1 score we obtain that is listed in Table 2 is much lower
than expected from the GLADE paper. The comparison of
scores for the original four programs—URL, Lisp, XML, and
Grep—is reported in Table 5.6 As we mentioned previously,
the evaluation of Grep by the GLADE paper is unreliable. The
problem is that it uses a handwritten grammar for computing
precision, and this handwritten grammar for Grep accepts a
much larger language than the actual Grep program. Hence,
the reported F1 score is highly inflated.
The precision scores for Decimals (0.85), and JSON (0.53),

and Tiny (0.21) are much lower than expected. These gram-
mars were not part of the original GLADE paper but were
added to investigate the capabilities of GLADE. While inves-
tigating the reason, we found that the merge strategy of
GLADE fails to preserve the precision in certain instances.
We also found that the number of checks used by GLADE is
often insufficient to correctly identify repetition generaliza-
tion. However, increasing the number of such checks will
adversely impact the speed of grammar learning.

5.4 Practicality of the Inferred Grammars
One of the strong claims ofGLADE is that the recovered gram-
mar can be immediately used for fuzzing. However, we found
that the size of the grammar generated is extremely large.
For example, learning Grep resulted in a 2MB grammar. The
6As the actual F1 score was not reported by Bastani et al. [6], we estimated
it from the graph [6, Figure 4(b)].
7The handwritten grammar used for computing precision is much more
permissive than the actual Grep grammar. Hence, the high F1 score.

Table 5. GLADE Learning Accuracy (F1 Score)

Grammar Language GLADE-I F1 Glade-II F1
URL Regular 0.92 0.81
Lisp Context-Free 0.97 0.55
XML Context-Free 0.98 0.7
XML Context-Free _ 0.66

O
rig

in
al

Grep Regular 0.93 1.007

problem with such large grammars is that it is essentially
enumerative. It cannot be feasibly used for parsing existing
seed files as the parsers we tried to use gave up on such large
grammars. Even grammar-based generators tend to have
trouble using such large grammars. This is especially notice-
able when considering the original grammars. For example,
Palindrome resulted in a 13 KB grammar, while the actual
grammar contains a single nonterminal and five rules.

The biggest surprise comes from the parenthesis languages.
These are trivial languages with less than five nonterminal
symbols. It should be trivial for GLADE to recover their gram-
mar. However, GLADE fares poorly in most both in terms
of accuracy (F1) and on the size of the grammars recovered,
thousands of nonterminal symbols, and hundreds of kilo-
bytes in size. On inspection, the GLADE recovered grammar
was strongly enumerating rather than abstracting.

5.5 Insights about the GLADE Algorithm
During our implementation of GLADE algorithm and the
subsequent evaluation, we found a number of insights about
the GLADE algorithm, and why it has problems with some
of the languages. These we describe in detail below.

1. The GLADE algorithm cannot learn a valid XML repre-
sentation. Even in the paper [6], the regular expression
synthesized – (<a(><a/><)*/a>)* – does not always
produce valid XML inputs as it lacks a root element.8

2. The heuristic checks specified by Bastani et al. is in-
sufficient even for XML which drove their design [6,
Section 8]. For example, given a seed <ab>, the first
generalization is <a*b/> and the second generaliza-
tion is <a*b*/> . The second generalization is impre-
cise because we can now construct </>. However, it is
accepted because the two required checks (<a/> and
<abb/>) pass [6, Section 4.3 Check Construction].

3. Merging can incur loss of precision. Consider, for ex-
ample, TwoAnyParenD. We start with a seed input
[()1], which is generalized to [()*1*] . During Phase
II, ()* and 1* are hence checked for unification. To
verify the new generalization, GLADE constructs two
checks [6, Section 5.3 Check Construction] – [111]

8Bastani et al.[6, Section 7 Limitations] incorrectly claims that it is valid
XML subset.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller

and [()()()]. Since both are valid, the new general-
ization is accepted. However, the resulting grammar
can now produce [1()] which is invalid.

4. In Phase II, only repetitions are considered for unifi-
cation. These are, however, insufficient in many cases.
ConsiderXML, and seed input hi.GLADE never
learns about hi because hi
is not a repetition. We found the same issue in Palin-
drome where the grammar is exclusively made up of
concrete enumerations.

5. The character generalization [6, Section 5.3 Check Con-
struction] can produce generalizations that do not pre-
serve precision. Consider the Grep grammar. We use
a] as a seed input. GLADE now constructs the check –
[] – which passes, producing [|a as a generalization
for the first index. Next, GLADE constructs the check
– aa – which passes, resulting in]|a as a generaliza-
tion for the second index, and the new generalized
language (a|[)(]|a) . However, this language loses
precision because it can produce [a which is invalid.

6 Threats to Validity
We acknowledge that our evaluation of the GLADE algorithm
is subject to the following threats.

Defects in the implementation. One of the largest threats
to our evaluation is the possibility that (1) we misun-
derstood some parts of the GLADE paper and/or (2)
we implemented the algorithm incorrectly. Given that
this is a software program, this is a possibility that
cannot be completely mitigated. We have tried to re-
duce the possible bugs as much as possible by carefully
documenting our code, reviewing our code multiple
times, investigating how simple grammars that exer-
cised each feature of the GLADE algorithm behaved,
and investigating a sample of inputs that reduced the
precision or recall of the synthesized grammar.

GLADE algorithm vs. tool. For investigating GLADE, we
also considered theGLADE tool supplied for replication.
However, the GLADE tool does not support extraction
or inspection of the inferred grammars, and we found
it prohibitively hard to extract the GLADE algorithm
code, as it is deeply entangled with code for custom
serialization and custom input generation provided
with GLADE. However, we note that our implementa-
tion achieves better F1 scores than Kulkarni et al. [18]
(who used the GLADE tool) for JSON (0.64 > 0.59),
XML (0.66 > 0.42), and Lisp (0.55 > 0.38). While the
evaluation of Kulkarni achieved higher precision for
TinyC (0.47 < 0.60), we note that the recall which is
an indication of the amount of actual abstraction is
surprisingly low (0.17).

Defects in the input generator. Another threat is that (1)
our input generator is faulty (generates invalid strings)

(2) or that it is biased (generates a skewed distribu-
tion of inputs). We have tried to mitigate it by using
off-the-shelf fuzzers such as the F1 fuzzer [13] and
Grammarinator [15]. Further, we have checked that
the strings that the fuzzers generate are parsed by the
same grammar.

Defects in the parser. Another threat is the possibility that
our parser may be defective, rejecting valid inputs or
accepting invalid inputs. We have mitigated this by
using an off-the-shelf well tested textbook parser [22].

7 Questions and Answers
Given that this is a replication study, questions may arise
about our procedure. Let us address the most important ones.

1) Why do we not use GLADE-I [2]?
Our focus is to replicate the GLADE paper, not its implemen-
tation, as we see the paper as the definite, archived, and cited
reference. ACM defines [1] replicability as: “For computa-
tional experiments, this means that an independent group
can obtain the same result using artifacts which they de-
velop completely independently.” Hence, we independently
implemented the same algorithm. We note that our effort
was prompted by the discovery that some of the GLADE F1
scores failed the reproducibility test for XML and Lisp when
attempted by other researchers [18] using the same artifacts
from GLADE-I (Section 6).

2) Is this a complete replication of the GLADE paper?
We attempt to replicate onlywhat we consider to be themain
result of the paper, which is the high accuracy achieved in F1
scores while learning different grammers. In particular, we
do not replicate the evaluation of L-Star or RPNI. Secondly,
we do not replicate the fuzzing experiments.

3) How do we know that the language 𝑎𝑛𝑏𝑛 could not
be learned by GLADE?
Note that 𝑎𝑛𝑏𝑛 can equivalently be defined as:
⟨S⟩ ::= ‘(’ <S> ‘)’ | 𝜖
We evaluated Palindrome (Figure 1) which is a trivial exten-
sion of the language 𝑎𝑛𝑏𝑛 . Palindrome is defined as:
⟨S⟩ ::= ‘(’ <S> ‘)’ | ‘[’ <S> ‘]’ | ‘’ <S> ‘’ | 𝜖
That is, Palindrome contains three pairs of parenthesis rather
just one pair. We analyzed different variations of the same
language with different pairs, and found that the particu-
lar pattern—nesting nonterminals without repetition—is not
learnable by GLADE.

4) How representative of real-world grammars are
JSON and Decimals?
We argue that both grammars are representative and simple:
Representativeness. Decimals numbers are a common com-

ponent in almost all programming languages. JSON is

“Synthesizing Input Grammars”: A Replication Study PLDI ’22, June 13–17, 2022, San Diego, CA, USA

one of the most popular data-interchange formats, sim-
ilar to XML and Lisp S-Expressions. Hence, we believe
that both the Decimals and JSON grammars are repre-
sentative of the real world.

Simplicity. The Decimals grammar is a regular grammar
containing only 19 rules, and 7 nonterminals (Table 3).
JSON is an LL(1) grammar that is a heavily reduced
subset of the actual JSON specification. It contains only
27 nonterminals and 159 rules. We believe that regular
grammars containing 11 rules should be considered
simple by any definition, and LL(1) grammars are one
of the simplest grammar classes under the Context-
Free Grammar umbrella.

5) Does your implementation of GLADE include the
optimizations from original GLADE implementation?
The only optimization mentioned in the GLADE paper [6] is
multiple-inputs optimization, which enables GLADE to learn
from multiple seed inputs. We have implemented that.

6) Is there a potential for non-determinism in the
GLADE learning?
As far aswe are aware, there is no potential for non-determinism
in the GLADE implementation. We contacted the GLADE au-
thors regarding our implementation. The only advice was
to be careful about the order in which the alternatives were
tried. We followed their advice and have implemented it ex-
actly as the paper mentions. If there are any avenues of non-
determinism influencing the grammar learning by GLADE,
the GLADE paper does not mention it.

7) Why do you not evaluate Learning Highly Recursive
Input Grammars [18] as well?
Our focus is on replication of GLADE. We do not claim that
our research is much more than that. Hence, evaluation of
Learning Highly Recursive Input Grammars is out of scope
for this study.

8) How dependent is GLADE on the seed selection?
The GLADE paper uses ambiguous language in this regard. It
says that it can produce the context-free grammar even if the
positive examples given do not cover all “interesting behaviors”.
However, the paper does not provide a definition of behavior.
Hence, we would not know how to validate (or invalidate)
this claim.

9) What is going wrong with GLADE and how can it be
addressed?
This paper is a pure replication study of the GLADE pa-
per. Hence, a detailed analysis of what is going wrong with
GLADE, and how to overcome it is out of scope for this study.

8 Conclusion
Recovering input grammars for existing programs is an im-
portant, yet challenging problem. The GLADE algorithm by
Bastani et al. is the first published approach that is set to
recover general context-free grammars using membership
queries alone. Having reimplemented the GLADE algorithm,
we find that the accuracy of the inferred context-free gram-
mars is much lower than originally reported, a discrepancy
recently also reported for the original GLADE tool [18]. Our
investigation details more issues with the GLADE algorithm;
notably, we show that its inferred grammars can be extremely
large and enumerative, indicating low usability for practi-
cal tasks such as parsing or producing inputs with general
fuzzers. Prospective users should also evaluate other gram-
mar mining approaches, such as the “blackbox” and “white-
box” approaches listed in Section 2.

Should theGLADE issues have been caught by the PLDI 2017
reviewers? In total, replicating and evaluating GLADE took us
more than six person-months; we cannot expect from review-
ers to spend all this time checking a paper. We hope, however,
that future authors search for and report weaknesses just as
they do for strengths, and that future reviewers appreciate
honesty just as they appreciate success.
Replication studies are still rare in our field. Indeed, it is

much more work to replicate a piece of research, especially
from a paper, than to implement a new alternative from
scratch (for which one may also get more credits). That extra
effort comes from the required quality assurance: Does the
reimplementation really exactly reflect the algorithm(s) as
stated in the paper? Of course, such quality assurance would
be expected from any piece of research; yet, it is the authors
of the replication study that would be challenged with such
questions, not so much the authors of the original paper. As
a community, we need to further encourage replication and
reuse of research results—by making tools and data available,
usable, understandable, and extensible. Such standards must
become the norm, not the exception.

Our annotated reimplementation GLADE-II and all experi-
mental data is available at:

https://doi.org/10.5281/zenodo.6326396

https://doi.org/10.5281/zenodo.6326396

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller

A Appendix

⟨S⟩ ::= ‘(’ ⟨S⟩ ‘)’ |‘[’ ⟨S⟩ ‘]’ |‘⟨’ <S⟩ ‘>’ |‘{’ ⟨S⟩ ‘}’ | 𝜖

Figure 1. Palindrome

⟨S⟩ ::= ⟨PS⟩
⟨PS⟩ ::= ⟨P⟩⟨PS⟩ | ⟨P⟩
⟨P⟩ ::= ‘(’ ⟨PS⟩ ‘)’ | ‘(’ ‘)’

Figure 2. Paren

⟨S⟩ ::= ⟨S⟩ ‘+’ ⟨S⟩ | ‘(’ ⟨S⟩ ‘)’ | ⟨D⟩
⟨D⟩ ::= 1 | 0

Figure 3. Bool Add

⟨S⟩ ::= ‘(’ ⟨S⟩ ‘)’ ⟨S⟩ | 𝜖

Figure 4. TwoParen

⟨S⟩ ::= ‘(’ ⟨S⟩ ‘)’ ⟨S⟩ | ⟨D⟩
⟨D⟩ ::= 1 | 1⟨D⟩

Figure 5. TwoParenD

⟨S⟩ ::= ⟨D⟩
| ‘(’ ⟨S⟩ ‘)’ ⟨S⟩
| ‘[’ ⟨S⟩ ‘]’
| ‘{’ ⟨S⟩ ‘}’

⟨D⟩ ::= 𝜖 | 1 | 1⟨D⟩

Figure 6. TwoAnyParenD

⟨S⟩ ::= ⟨PS⟩
⟨PS⟩ ::= ⟨P⟩⟨PS⟩ | ⟨P⟩
⟨P⟩ ::= ‘(’ ⟨PS⟩ ‘)’ | ⟨OS⟩
⟨OS⟩ ::= ‘1’ | ‘1’ ⟨OS⟩

Figure 7. BinParen

⟨S⟩ ::= ⟨PS⟩
⟨PS⟩ ::= ⟨P⟩⟨PS⟩ | ⟨P⟩
⟨P⟩ ::= ‘(’ ⟨PS⟩ ‘)’ | ‘[’ ⟨PS⟩ ‘]’ | ‘{’ ⟨PS⟩ ‘}’ | ⟨OS⟩
⟨OS⟩ ::= ‘1’ | ‘1’ ⟨OS⟩

Figure 8. BinAnyParen

⟨START ⟩ ::= ⟨INTEGER⟩
⟨INTEGER⟩ ::= ⟨DigitNZ⟩ ⟨DigitZs⟩ | ‘0’
⟨DigitZs⟩ ::= 𝜖 | ⟨DigitZ⟩⟨DigitZs⟩
⟨DigitZ⟩ ::= ‘0’ | ⟨DigitNZ⟩
⟨DigitNZ⟩ ::= [1-9]

Figure 9. Integer grammar

⟨START ⟩ ::= ⟨DECNUM⟩
⟨DECNUM⟩ ::= ⟨INT ⟩ ‘.’ ⟨DEC⟩
⟨DEC⟩ ::= ⟨DigitZs⟩⟨DigitNZ⟩ | ‘0’
⟨INT ⟩ ::= ⟨DigitNZ⟩⟨DigitZs⟩ | ‘0’
⟨DigitZs⟩ ::= 𝜖 | ⟨DigitZ⟩⟨DigitZs⟩
⟨DigitZ⟩ ::= ‘0’ | ⟨DigitNZ⟩
⟨DigitNZ⟩ ::= [1-9]

Figure 10. Decimal grammar

⟨START ⟩ ::= ⟨FLOAT ⟩
⟨FLOAT ⟩ ::= ⟨INT ⟩ ‘.’ ⟨EXT ⟩ | ‘.’ ⟨EXT ⟩ | ⟨INT ⟩ ‘.’
⟨EXT ⟩ ::= ⟨DEC⟩ | ⟨DEC⟩⟨LETTER⟩⟨OP⟩⟨INT ⟩ |

⟨DEC⟩⟨LETTER⟩⟨INT ⟩
⟨DEC⟩ ::= ⟨DigitZs⟩⟨DigitNZ⟩ | ‘0’
⟨INT ⟩ ::= ⟨DigitNZ⟩⟨DigitZs⟩ | ‘0’
⟨OP⟩ ::= ‘-’
⟨LETTER⟩ ::= ‘e’ | ‘E’
⟨DigitZs⟩ ::= 𝜖 | ⟨DigitZ⟩⟨DigitZs⟩
⟨DigitNZ⟩ ::= [1-9]
⟨DigitZ⟩ ::= ‘0’ | ⟨DigitNZ⟩

Figure 11. Float grammar

“Synthesizing Input Grammars”: A Replication Study PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] [n. d.]. Artifact Review and Badging – Version 1.1. https://www.acm.

org/publications/policies/artifact-review-and-badging-current.
[2] [n. d.]. GLADE Implementation and experiments. https://github.com/

obastani/glade-full.
[3] [n. d.]. Grammars written for ANTLR v4. https://github.com/antlr/

grammars-v4.
[4] Dana Angluin. 1987. Learning Regular Sets from Queries and Coun-

terexamples. Inf. Comput. 75, 2 (Nov. 1987), 87–106. https://doi.org/
10.1016/0890-5401(87)90052-6

[5] Dana Angluin and Michael Kharitonov. 1995. When Won’t Mem-
bership Queries Help? J. Comput. System Sci. 50, 2 (1995), 336–355.
https://doi.org/10.1145/103418.103420

[6] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Syn-
thesizing Program Input Grammars. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (Barcelona, Spain).
ACM, New York, NY, USA, 95–110. https://doi.org/10.1145/3140587.
3062349

[7] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. 2007. Poly-
glot: Automatic Extraction of Protocol Message Format Using Dynamic
Binary Analysis. In ACM Conference on Computer and Communica-
tions Security (Alexandria, Virginia, USA). ACM, New York, NY, USA,
317–329. https://doi.org/10.1145/1315245.1315286

[8] Alexander Clark. 2010. Distributional learning of some context-free
languages with a minimally adequate teacher. In International Collo-
quium on Grammatical Inference. Springer, 24–37. https://doi.org/10.
1007/978-3-642-15488-1_4

[9] Jean-Christophe Deprez and Arun Lakhotia. 2000. A Formalism to
Automate Mapping from Program Features to Code.. In IWPC. 69–78.
https://doi.org/10.1109/WPC.2000.852481

[10] E Mark Gold. 1967. Language identification in the limit. Informa-
tion and control 10, 5 (1967), 447–474. https://doi.org/10.1016/S0019-
9958(67)91165-5

[11] E Mark Gold. 1978. Complexity of automaton identification from
given data. Information and control 37, 3 (1978), 302–320. https:
//doi.org/10.1016/S0019-9958(78)90562-4

[12] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining
input grammars from dynamic control flow. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 172–183. https:
//doi.org/10.1145/3368089.3409679

[13] Rahul Gopinath and Andreas Zeller. 2019. Building Fast Fuzzers. CoRR
(2019). arXiv:1911.07707 [cs.SE] https://arxiv.org/abs/1911.07707

[14] Benedikt Hauptmann, Elmar Juergens, and Volkmar Woinke. 2015.
Generating refactoring proposals to remove clones from automated
system tests. In Proceedings of the 2015 IEEE 23rd International Con-
ference on Program Comprehension. IEEE Press, 115–124. https:
//doi.org/10.1109/ICPC.2015.20

[15] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammari-
nator: a grammar-based open source fuzzer. In Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case De-
sign, Selection, and Evaluation. ACM, 45–48. https://doi.org/10.1145/
3278186.3278193

[16] Matthias Höschele and Andreas Zeller. 2016. Mining Input Grammars
from Dynamic Taints. In IEEE/ACM International Conference on Auto-
mated Software Engineering (Singapore, Singapore). ACM, New York,
NY, USA, 720–725. https://doi.org/10.1145/2970276.2970321

[17] C Jacobs and D Grune. 1990. Parsing techniques: A practical guide.
Springer.

[18] Neil Kulkarni, Caroline Lemieux, and Koushik Sen. 2021. Learning
Highly Recursive Input Grammars. In 36th IEEE/ACM International
Conference on Automated Software Engineering. ACM New York, NY,
USA. https://doi.org/10.1109/ASE51524.2021.9678879

[19] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Reverse En-
gineering Input Syntactic Structure from Program Execution and Its
Applications. IEEE Transactions on Software Engineering 36, 5 (Sept.
2010), 688–703. https://doi.org/10.1109/TSE.2009.54

[20] José Oncina and Pedro Garcia. 1992. Identifying regular languages in
polynomial time. InAdvances in structural and syntactic pattern recogni-
tion. World Scientific, 99–108. https://doi.org/10.1142/9789812797919_
0007

[21] Václav Rajlich and Norman Wilde. 2002. The role of concepts in
program comprehension. In Proceedings 10th International Workshop
on Program Comprehension. IEEE, 271–278. https://doi.org/10.1109/
WPC.2002.1021348

[22] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and
Christian Holler. 2021. Parsing Inputs. In The Fuzzing Book. CISPA
Helmholtz Center for Information Security. https://www.fuzzingbook.
org/html/Parser.html Retrieved 2021-11-16 14:26:40+01:00.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/obastani/glade-full
https://github.com/obastani/glade-full
https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/103418.103420
https://doi.org/10.1145/3140587.3062349
https://doi.org/10.1145/3140587.3062349
https://doi.org/10.1145/1315245.1315286
https://doi.org/10.1007/978-3-642-15488-1_4
https://doi.org/10.1007/978-3-642-15488-1_4
https://doi.org/10.1109/WPC.2000.852481
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1145/3368089.3409679
https://arxiv.org/abs/1911.07707
https://arxiv.org/abs/1911.07707
https://doi.org/10.1109/ICPC.2015.20
https://doi.org/10.1109/ICPC.2015.20
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1145/2970276.2970321
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1109/TSE.2009.54
https://doi.org/10.1142/9789812797919_0007
https://doi.org/10.1142/9789812797919_0007
https://doi.org/10.1109/WPC.2002.1021348
https://doi.org/10.1109/WPC.2002.1021348
https://www.fuzzingbook.org/html/Parser.html
https://www.fuzzingbook.org/html/Parser.html

	Abstract
	1 Introduction
	2 Background
	3 The [1]GLADE Algorithm
	3.1 Phase I: Regular Expression Synthesis
	3.2 Phase II: Infer Recursive Properties

	4 Evaluation
	5 Discussion
	5.1 Dependence on Seeds
	5.2 Reporting of Results
	5.3 Evaluation Results
	5.4 Practicality of the Inferred Grammars
	5.5 Insights about the [1]GLADE Algorithm

	6 Threats to Validity
	7 Questions and Answers
	8 Conclusion
	A Appendix
	References

