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Abstract 

Today, humans and machines successfully interact in a multitude of scenarios. Facilitated by 

advancements in artificial intelligence, increasing driving automation may allow drivers to focus on 

non-driving-related tasks (NDRTs) during the automated ride. However, conditionally automated 

driving as a transitional state between human-operated driving and fully automated driving requires 

drivers to take over control of the vehicle whenever requested. Thus, the productive use of driving time 

might come at the cost of increased traffic safety risks due to insufficient and insecure human-vehicle 

interaction. This study aims to explore the take-over performance and risk potential of different NDRTs 

(auditory task, visual task on regular display, visual task with mixed reality hardware) while driving. 

Our study indicates the hazard potential of visual vs. auditory distraction and multitasking vs. sequential 

tasking. Our findings contribute to understanding what influences the acceptance and adoption of 

automated driving and inform the design of safe vehicle-human take-overs.  

Keywords: Automated Driving, Human-Vehicle Interaction, Multitasking Behavior. 

1 Introduction 

Following years of digitalization, we today live in a world in which humans and machines successfully 

interact in a multitude of scenarios. In recent years, many hybrid human-machine settings, for example, 

in the contexts of robotics or (mobile) personal support systems, have reached a productive state and 

greatly impact individuals, organizations, and society. Carried by technological advancements, the 

socio-technological transformation we currently go through has changed the way humans live and work. 

New human-machine interfaces let people perform their tasks more efficiently and even allow for the 

simultaneous execution of multiple tasks. But multitasking is a double-edged sword. Although it can be 

viewed as an efficiency boost, multitasking may cause reduced performance in each of the single tasks 

(Miller and Durst, 2014). In some settings, this may entail severe consequences. A prominent example 

is the current transitional state between fully human-operated driving and fully automated driving 

(Stephanidis et al., 2019). In this transitional state, commonly referred to as conditionally automated 

driving, the artificially intelligent vehicle drives autonomously in most scenarios but may request the 

driver to take over control in unknown or complex traffic situations. Currently, the traffic regulations in 

most countries require human drivers to fully focus on the road, permitting drivers only a few exceptions 

for non-driving-related tasks (NDRTs) which cause limited cognitive load, for example, hands-free 

phone calls or listening to the radio (Charlton, 2009). Due to reduced requirements regarding the driver’s 

attention, increased driving automation creates demand for a wider scope of action for individuals 
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operating conditionally automated vehicles (Stephanidis et al., 2019). Recently, the United Nations 

(UN) Regulation No. 157 (United Nations, 2021), which has become effective in the European Union, 

Japan, and Canada as of January 2021, has laid the cornerstone for greater flexibility in the execution of 

NDRTs while driving. Extending current traffic regulations, the new regulation allows drivers of 

conditionally automated vehicles during the automated ride to shift their attention away from the road 

and towards other visually demanding tasks. 

While this allows productive use of otherwise unproductive driving time, the risks associated with this 

regulatory change cannot yet be fully assessed. A decade ago, when driving automation was significantly 

less advanced, the WHO found that mobile phone use during driving increases the risk of car crashes by 

a factor of four (World Health Organization, 2011). Although conditionally automated vehicles are 

equipped with powerful assistance systems that can prevent crashes and increase driving safety in many 

scenarios, these vehicles cannot yet respond adequately to all conceivable traffic situations. Instead, they 

have a defined automation zone in which they are confident to work reliably (e.g., on the highway). But 

whenever the vehicle is about to leave this automation zone, the vehicle requests and initiates a take-

over to the human driver, causing a safety-critical interaction between the human and the vehicle. As of 

now, take-overs between the vehicle and the driver are still a regular occurrence. Therefore, drivers need 

to be ready to take control of the vehicle whenever requested, as the vehicle may come into a critical 

situation it cannot solve on its own. Thus, if it is not ensured that drivers can react in time, the productive 

use of driving time might come at the cost of increased safety risks (Seppelt and Victor, 2016). 

These safety risks do not remain unnoticed by potential users. Various studies focus on the acceptance 

and adoption of automated driving list safety concerns and a lack of trust among the most relevant 

inhibitors of automated vehicle acceptance (Bornholt and Heidt, 2019; Ernst and Reinelt, 2017; Hein et 

al., 2018). An extended version of the technology acceptance model includes trust and reliability as key 

factors for the adoption of safety-critical technology applications such as automated driving (Hutchins 

and Hook, 2017). Although the possibility to take control of the vehicle may increase trust (Lackes et 

al., 2020; Keller et al., 2021), performant vehicle-human take-overs are one of the major challenges of 

conditionally automated driving (Casner et al., 2016). While drivers executing an NDRT are typically 

less attentive to the road complicating the take-over (NHTSA, 2013), different NDRTs may have 

different effects on the driver’s reaction (Dogan et al., 2019; Radlmayr et al., 2019; Zhang et al., 2019). 

To produce relevant knowledge on the safety risks associated with different NDRTs, the present study 

contrasts the take-over performance of three NDRTs. These three NDRTs differ in regard to their 

multitasking potential (sequential tasking vs. multitasking) and sensory input channel (auditory vs. 

visual NDRT). Our research can unravel the hazard potential of various NDRTs, formatively inform 

traffic regulations with respect to driving safety, and indicate regulative rules increasing trust in 

automated vehicles. The study elaborates on the research question: 

How do different non-driving-related tasks during conditionally automated driving influence the 

driver’s take-over performance in critical situations? 

We conduct a within-subjects behavioral experiment investigating the effects of different NDRTs on the 

driver’s take-over performance in various driving scenarios. Participants operate a simulated automated 

vehicle that drives autonomously in these scenarios and requests the participant to take control of the 

vehicle in a critical traffic situation. We evaluate the driver’s reaction to the situation comparing auditory 

and visual tasks at different levels of multitasking potential. The selection of these tasks is aligned with 

what is permitted by currently effective traffic regulations in the European Union. The remainder of this 

paper is structured as follows. Section 2 establishes a common understanding of the theoretical 

background and derives hypotheses. Section 3 presents the experimental design, procedure, and 

measurements. Section 4 describes the statistical results. Section 5 discusses the findings, contributions, 

and limitations before section 6 concludes with an outlook on further research. 

2 Theoretical Background and Hypotheses Development 

Automated driving refers to the idea that vehicles move without the intervention of a human driver 

(SAE, 2016). For this, automated vehicles need to perceive their surroundings, interact with the 
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environment, handle incomplete information, and adapt to unpredictable changes (Kolodko and Vlacic, 

2003). With the constant evolution of technologies such as artificial intelligence, machines are on the 

verge of effectively performing these functionalities (Biondi et al., 2019). But despite promising 

developments, fully automated vehicles not requiring a driver ready to take control are still dreams of 

the future. The SAE J3016 standard (SAE, 2016) defines six maturity levels (0 to 5) as stages of 

development to fully automated driving (level 5). As of now, conditionally automated driving (level 3) 

is becoming reality and automated vehicles can perform the entire dynamic driving task within a certain 

automation zone. Level 3 is the first level allowing drivers to reduce the attention devoted to the traffic 

situation (Marinik et al., 2014; Trimble et al., 2014) and to occupy themselves with an NDRT (Gold et 

al., 2018b) such as reading a newspaper (Kuehn et al., 2017) or playing a video game (Wu et al., 2020). 

However, in case of errors or events that leave the defined automation zone, the vehicle cannot guarantee 

to lead to a state of minimal risk (Tellis et al., 2016). Hence, the driver must be prepared that the vehicle 

may warn them and hands over control to them with a sufficient time budget to manage the situation 

(Kuehn et al., 2017). Since the time budget is a crucial factor, critical (Lotz et al., 2020) or unplanned 

(Lee and Yang, 2020) take-over requests following unforeseeable events like a technical issue or a 

disabled car ahead are of special interest (Lee and Yang, 2020; Lotz et al., 2020). Consequently, this 

interaction between driver and vehicle, the take-over, is vital for the driver’s as well as for the other 

traffic users’ safety. It needs to enable the driver to intervene as soon as possible to prevent a crash, for 

example, by braking or changing the lane (Radlmayr et al., 2019). 

The take-over from an automated vehicle to its driver is one of automated driving’s utmost challenges 

(Kuehn et al., 2017; Radlmayr et al., 2019; Zhang et al., 2019) and is subject to thorough scientific 

investigation. Thus, it requires a carefully designed human-vehicle interface that can enable an effective 

take-over (Lee and Yang, 2020). In the event of a take-over, the driver must build up the necessary 

awareness of the situation as quickly as possible and act accordingly. This process can be divided into 

three steps, where first the driver perceives visual objects, then processes them based on the individual 

goals and make a prediction for future states and events, and finally acts based on the individual goals 

and predictions (Wolfe et al., 2019). Taking this process into account, a central concept to validate the 

take-over is the take-over performance (TOP). Adhering to Gold et al. (2018a), we refer to TOP as the 

interplay of various factors of an individual’s response to a take-over request. This includes the take-

over time, the minimum time to collision, brake application, and crash incidence. Previous research has 

examined influencing factors on the TOP such as human factors like age (Wu et al., 2020), trust in 

automation (Hergeth et al., 2016), or driving experience (e.g., Lotz et al., 2020). 

 

Figure 1. Visual illustration of take-over (inspired by Zhang et al., 2019)) 

Previous studies investigating the TOP (e.g., Kuehn et al., 2017; Marberger et al., 2018; Lee and Yang, 

2020) mutually agree that the time budget available for the driver to acquire control of the vehicle after 

a take-over request is crucial to prevent crashes. Thus, they demand that the vehicle needs to inform the 

driver as soon as possible. However, the time budgets tested in previous studies differ greatly (Zhang et 

al., 2019) ranging from three (Vogelpohl et al., 2016) to 15 seconds (Kuehn et al., 2017). The time 

budget is indeed essential for the safety in level 3 automated driving, yet the take-over time depends on 
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multiple factors (Zeeb et al., 2015), specifically, the driver, the environment, the vehicle, and the human-

vehicle interface (Vogelpohl et al., 2016). In practice, the available time budget is limited naturally as a 

take-over request can only start as early as an event occurs that makes the vehicle leave its specified 

automation zone. Therefore, independently of the specified threshold, there will be situations in which 

there is not enough time to prevent a crash. Hence, conditionally automated driving needs to strive for 

the quickest possible reaction to prevent severe outcomes. 

The TOP depends on various factors (Borojeni et al., 2017; Lee and Yang, 2020; Kujala et al., 2021). 

For instance, the environment inside (Horberry et al., 2006) and outside of the vehicle such as the 

criticality of the traffic situation (Lotz et al., 2020) affect the driving performance. Additionally, 

physiological factors like age (Wood, 2002), fatigue (Philip et al., 2005), or the driver’s speed in 

processing information (Roenker et al., 2003) may influence driving. More generally, the TOP depends 

on the driver’s mental model as there is the need to evaluate the environment including several sources 

of uncertainty like the intentions of other road users (Brechtel et al., 2014). There are different 

approaches to model the overall task difficulty of both single tasks and multiple tasks. One of these 

theories is the mental workload theory, which assumes that a person has limited mental resources 

available, which can be partially or fully demanded by single or multiple tasks depending on the task 

difficulty. Comparing the available mental resources with the demand for mental resources for one or 

multiple tasks there is a critical region if the demand of the tasks is higher than the available resources. 

In this case, the performance of the tasks will degrade, but it is uncertain which task performance will 

degrade and to what extent (Wickens, 2008). When focusing solely on driving, the driver continuously 

– in part subconsciously – assesses the environment, for instance, knowing automatically that they pass 

a traffic light. Therefore, the driver possesses some situational awareness which refers to the driver’s 

awareness “of the current and future driving conditions facing the vehicle” (Petersen et al., 2019, p. 5). 

In the case of performing an NDRT during automated driving level 3, the driver does not focus on the 

environment and, hence, has a lower situational awareness (Atwood et al., 2019; Marberger et al., 2018). 

Therefore, the driver needs to process more data to obtain the same level of awareness as a driver that 

mainly focuses on driving. In the context of the mental workload theory (Wickens, 2008), the execution 

of an NDRT while driving will lead to an increase in the demand for mental resources at the moment of 

the take-over request. If the demand for mental resources is higher than the available mental resources, 

it leads to a degradation of the respective task performance (i.e., the TOP). With respect to situational 

awareness, the task of generating situational awareness may compete with the NDRTs for the supplied 

mental resources, which means that a high mental workload may lead to worse situational awareness 

(Tsang and Vidulich, 2006). Therefore, we argue that the evaluation of the environment will not be of 

the same quality. Consequently, performing an NDRT likely affects the TOP. Following previous 

research (e.g., Dogan et al., 2019; Kun et al., 2017) and to establish a common ground, we hypothesize 

as follows. 

H1: Performing an NDRT negatively affects the TOP. 

Previous empirical studies have investigated the effects on the TOP utilizing various NDRTs such as 

different distraction tests (Lee et al., 2021), writing emails (Dogan et al., 2019), reading a newspaper 

(Kuehn et al., 2017), playing a video game (Kuehn et al., 2017; Wu et al., 2020), or watching a video 

clip (Dogan et al., 2019; Wu et al., 2020). Performing those NDRTs requires the driver to primarily 

focus on the NDRT instead of the traffic. In the case of a take-over request, the driver stops the NDRT 

and focuses on the vehicle and the traffic environment. Hence, those NDRTs follow the paradigm of 

sequential tasking as the driver either focuses on the NDRT or the driving. By definition, level 3 

automated driving does not require the driver to devote attention to the automated driving at any time 

and hence, sequential tasking is presumably compatible with level 3 automated vehicles. However, 

presently with vehicles up to level 2 automation, drivers may only perform NDRTs that allow parallel 

monitoring of the driving, for example, listening to a podcast or talking to another passenger. These 

tasks refer to the paradigm of multitasking which means that both tasks (i.e., NDRT and driving) are 

executed simultaneously (Goldstein, 2015). We, thus, call such NDRTs multitasking-compatible. While 

it is scientifically disputable if this is real multitasking (Goldstein, 2015), in general, multitasking has 

an arguable bad reputation as it leads to worse performances of each task when compared to a sequential 
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execution (Buser and Peter, 2012). Nevertheless, in the context of manual driving, previous research 

(Villalobos-Zúñiga et al., 2016) provides evidence that the integration of a head-up display, a mixed 

reality device commonly used in vehicles, decreases the distraction of the investigated NDRT and has a 

rather small effect on the driving performance. Adapting this to the context of conditionally automated 

driving, multitasking-compatible NDRTs might allow the driver to evaluate the traffic environment to 

some extent and hence, obtain situational awareness. This information head start might be an advantage 

in the evaluation process at a take-over request. Therefore, we pose that it leads to a less time-consuming 

or a more precise evaluation ultimately yielding a better TOP. 

H2: Performing a multitasking-compatible NDRT has a weaker negative effect on the TOP than 

performing a sequential NDRT. 

The literature distinguishes four forms of driving distraction (Pettitt et al., 2009; World Health 

Organization, 2011): visual distraction, which refers to a shift of the visual focus away from the road, 

auditory distraction caused by focusing on auditory signals, cognitive distraction, denoting a shift of the 

cognitive focus away from the road, and biomechanical distraction, which is the case when the driver 

takes his hands off the human-vehicle interface (e.g., the steering wheel). Some studies suggest that 

there are no significant differences in the TOP between NDRTs that allow the driver to visually monitor 

the driving environment, for example, using a HoloLens for video calls during the automated ride (Kun 

et al., 2017), and such that also demand their full visual attention (Radlmayr et al., 2019). However, this 

is disputable because eyesight is a crucial factor for driving performance (Roenker et al., 2003; Wood, 

2002). As people usually cannot focus their visual sight on two different things simultaneously (Duncan, 

1984), the driver cannot glimpse at the environment when performing an NDRT demanding visual 

attention. Even if he could see and process these two different visual sources at the same time, for 

example, with the use of a HoloLens, it is likely that the task performances will degrade, since both 

tasks inherit both a visual and a perceptual-cognitive activity causing a higher mental workload because 

of the similarity of the tasks in means of the resource demands (Wickens, 2008; Tsang and Vidulich, 

2006). Hence, at a take-over request, the driver must start out of the blue to evaluate the environment 

leading to an increase in the demanded mental resources. Consequently, the take-over time rises when 

performing a visual NDRT (Zhang et al., 2019). The lab experiment of Radlmayr et al. (2019) confirms 

this by showing a significant deterioration of driver availability when performing a visual-motoric 

NDRT. Furthermore, the driver availability does not decrease for cognitive (e.g., listening to a podcast) 

or physical NDRT (Radlmayr et al., 2019). Hence, we hypothesize as follows. 

H3: Performing a non-visual NDRT has a weaker negative effect on TOP than performing a visual 

NDRT. 

Overall, in H1, H2, and H3, we pose that greater situational awareness can lead to a better TOP and 

NDRTs reduce situational awareness. However, previous empirical research is inconsistent regarding 

the effect of NDRT. In some studies, there are significant effects (Zhang et al., 2019) whereas others 

cannot identify a clear role for NDRTs (e.g., Dogan et al., 2019; Radlmayr et al., 2019). The results of 

Kun et al. (2017), for example, might be influenced by the limited use of the HoloLens in the experiment 

since in this study the NDRT was to participate in a video conference. Therein, it is arguable whether 

the participants in their experiment might have attended the video conference without visually focusing 

on the video stream but focused primarily on the driving task instead. Hence, we argue that attention to 

the NDRT influences the effects of NDRT and explains empirical inconsistencies. We state that an 

increase of attention to the NDRT while maintaining the same attention towards the driving task leads 

to a higher demand for mental resources. In mental workload theory, this can lead to a degradation of 

one or both task performances (Wickens, 2008). Accordingly, a high mental workload can have a 

negative impact on situational awareness which can cause a decrease in quality in decision making 

(Endsley, 1995) and thus also influence the TOP. 

H4: High attention to the NDRT has a stronger negative effect on the TOP than low attention to the 

NDRT. 
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3 Research Methodology 

Our within-subject behavioral laboratory experiment investigates the effect of different NDRTs on the 

driver’s TOP in automated driving level 3. The participants operate a level 3 automated driving simulator 

and undergo three experimental conditions, each of which draws the participants’ attention to a different 

NDRT – auditory multitasking-compatible task, visual multitasking-compatible task, visual sequential 

task – and one control condition with no NDRT. Corresponding to our hypotheses, our study aims to 

investigate if there are differences in the TOP (as an indicator for traffic safety) across the four 

conditions. Our experimental design is inspired by previous studies (e.g., Blanco et al., 2015; Kun et al., 

2017; Radlmayr et al., 2019). It combines their ideas of investigating the TOP in automated driving level 

3 and testing the applicability of a HoloLens in automated driving. We recruited participants from the 

authors’ families and friends. Alike Underwood et al. (2013), we selected only participants with a valid 

driver’s license and at least 2 years of driving experience whose job does not predominantly involve 

driving. Additionally, to assure the validity of the driving and NDRTs, we ensured that none of the 

participants possessed any kind of driving restriction or unresolved visual or auditory impairment. We 

did not provide any incentive for participation but asked the participants to support our scientific inquiry. 

3.1 Procedure 

As displayed in Figure 2, at the beginning of the experiment, each participant performs a test run of the 

three NDRTs: the visual sequential task which requires the participants to execute a visual attention test 

on an additional display, the visual multitasking-compatible task which requires the participant to 

perform the same test while having a HoloLens on allowing them to keep an eye on the road, and the 

auditory multitasking-compatible task which involves an auditory attention test. These test runs allow 

the participants to get accustomed to the tasks they later need to execute while driving and their controls. 

We refer to this phase as the learning phase. Subsequently, the participants traverse twelve driving 

scenarios (three scenarios for four different NDRT conditions). While the conditions appeared in 

randomized order, the driving scenarios for each condition were preserved in a fixed order. Following 

UN Regulation No. 157 (United Nations, 2021), NDRTs automatically stop as soon as the vehicle 

requests the driver to take control. Then, we capture and evaluate the driver’s reaction to the traffic 

situation. After the scenarios, in the benchmarking phase, the participants only perform the NDRT 

without the driving task. Since all mental resources are available, this enables us to determine the 

individual maximum task performance and compare it to the task performances within scenarios with 

an NDRT. Finally, the participants answer a survey focusing on socio-demographics. 

 

Figure 2. Experimental Procedure 

3.2 Experimental Setup 

In the course of the experiment, each participant operated a simulated automated driving level 3 vehicle 

through 12 driving scenarios (four conditions with three scenarios each). The participants operated the 

simulation visible on a 55” screen with the help of a steering wheel and brake, and accelerator pedals. 

At the beginning of the experiment, the participant was instructed in detail to only intervene when a 

take-over signal sounds. Until this signal, they should focus on the test and complete it as well as 
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possible, whereby they are informed that after each scenario they will be asked questions about the 

traffic situation after the take-over signal sounds. In this way, we achieve that the drivers divided their 

attention between the driving scenario and a second task, just as in reality. 

To create the driving scenarios, we implemented a technical backbone based on the CARLA Urban 

Driving Simulator from Dosovitskiy et al. (2017). In each of these scenarios, an automated vehicle steers 

autonomously through a city's scenery and traffic situations until the vehicle requests the driver to take 

over control. This take-over request triggers at some point in time which is fixed for each scenario but 

differs between the various scenarios. To reduce experimental bias, we expand this time slot of 

requesting the take-over compared to alike studies (e.g. Borojeni et al., 2017: 30 to 40 seconds) and 

request the take-over between 30 and 60 seconds after the start of each scenario. The vehicle does not 

require any interaction from the driver before the take-over request. All participants were presented with 

the same twelve scenarios in the same sequence. 

When the participant is requested to take control, the vehicle keeps moving with unchanged velocity 

and direction for three seconds. Then the simulator captures the driving reaction of the participant which 

is made up of braking, accelerating, and steering. While all scenarios are unique, each block of three 

scenarios comprises similar traffic situations with one or two critical scenarios with a time to a collision 

of 3 seconds at the time of the take-over request and one or two scenarios with a lower criticality where 

no reaction of the participant was needed, so that the participants could not get used to simply braking 

hard after a take-over request but had to react validly. We decided to include these “fake scenarios” to 

address a limitation from Blanco et al. (2015) that having only scenarios which require an action might 

limit the participants’ cognitive effort and, thus, could distort the results. In selecting the critical 

scenarios, we follow the description of scenarios for automated driving level 3 of Gold et al. (2018b) 

and select scenarios allowing “maximum driver performance” by exposing the driver to a dangerous 

situation requiring a fast reaction like driving through a red light which requires immediately braking. 

While the participants were informed that not all scenarios required an intervention, they had no 

information about other patterns or the frequency of the scenarios. To prevent learning effects across 

similar scenarios, the participants did neither see the effect of their intervention nor receive any feedback 

on their performance. We informed the participants about this design decision before the experiment. 

In three of the four NDRT conditions, the participant needs to perform a task based on an attention test. 

This task had to be done on the numeric keypad of a wireless keyboard. While the visual sequential 

condition used the same keyboard and input logic as the visual multitasking condition, instead of the 

HoloLens, an additional monitor was placed slightly diagonally below the large screen with the 

simulation in a similar ratio as a car’s navigation system to the windscreen. In the visual attention test, 

the participants had the opportunity to revise the input by repeatedly pressing the same key or to continue 

with the next test field by pressing the “0” key if the test field took less than 7 seconds to complete. 

3.3 Measures 

We determine the driver’s TOP in line with Gold et al. (2018a) from the measures of take-over time, 

brake application, and crash incidence. Take-over time refers to the “time between the take-over request 

and the maneuver start” (Gold et al., 2018a, p.3). It is measured as the time that elapses between the 

request and the participant’s first intervention. The brake application is a binary measure denoting 

whether the intervention includes braking. The crash incidence is a binary measure indicating whether 

the vehicle would have been involved in an accident following the participant’s intervention or not. 

Their fourth measure, the minimum time to collision, represents the minimum time remaining until a 

traffic accident happens in case all road users continue their current trajectories. Since we set the take-

over request to be 3 sec in advance of a collision, the minimum time to collision is the result of 3 seconds 

minus the take-over time. Thus, we do not include the minimum time to a collision as a measure. 

To contrast the TOP with the attention dedicated to the NDRTs, each NDRT implements an attention 

test. In the two conditions with visual NDRTs (visual sequential and visual multitasking), participants 

perform the d2 attention test (Schmidt-Atzert, 2004) which is a task that requires a visual focus and is a 

valid measure of individuals’ attention. The test contains a grid in which the letters ‘d’ and ‘p’ are 
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arranged in rows and marked with one or two strokes. The task is to cross out all ‘d’s with two strokes 

but none else. For better readability in the HoloLens, we modified the test for the visual multitasking 

and sequential tasks in the way that we use fewer rows per test grid. In the condition of auditory 

multitasking, the participants perform a self-constructed audio-based task. To resemble the procedure 

in the d2 attention test, participants listen to an audiotape consisting of German words with minimal 

phonemic contrast, that is, words that differ only in small phonetic differences (Swadesh, 1936). 

Therefore, we selected pairs or tuples of words that start with one of the letters ‘b’, ‘p’, ‘d’, or ‘t’ and 

can easily be mistaken with another word from the list (e.g., “Dart” and “Part”). The participants are 

instructed to press a specific key whenever they hear a word starting with one of the letters ‘d’ or ‘b’ 

and another key when they hear a word that starts with ‘p’ or ‘t’. This task is similar to the visual NDRTs 

in the way that it also requires the participant to be attentive to small visual, respectively audible, 

differences, alters stimuli that require different actions and involves a tactile element. For each NDRT 

run, we measure the maximum points achievable in that run and the points achieved. Points are given in 

the visual NDRT for all ‘d’s that should have been crossed out and in the auditory NDRT for every 

correctly classified word. In the control condition with no NDRT, there is no additional attention test so 

that the driver may dedicate their full attentive capacity to the traffic. 

4 Results 

In the lab experiment, we collected valid scenario data sets for a total of 14 participants – 4 females and 

10 males. A preliminary power analysis assuming a twenty percent increase of take-over time in the 

NDRT conditions compared to the no NDRT condition with a baseline of 1 second, a power of 0.80 and 

an alpha of 0.05 suggested a minimum sample size of 10 participants. The age span of our sample is 19 

to 52 years with an average of 25 years. In terms of driving experience, all participants have a driving 

license for a minimum of 2 and a maximum of 32 years (on average, 7 years). Overall, we collected 168 

scenario data points (14 participants with 12 scenarios each). Among these data points, 13 data points 

across 8 different participants have been excluded from further analysis because the participant 

intervened before the take-over request. Of the remaining 155 valid scenario data points, 67 data points 

belong to low-criticality scenarios not demanding an immediate reaction from the driver. Hence, we 

focus on the remaining 88 scenario data points when analyzing the TOP for critical situations. Each data 

point contains the steering wheel angle as well as the brake and accelerator pedal position every 30 

milliseconds. We derive the TOP based on these data. Additionally, each data point contains the 

attention devoted to the NDRT (i.e., the score achieved in the NDRT). 

Table 1 illustrates the averages by the scenarios of the gathered data. Simplifying the comparison of all 

NDRTs combined and no NDRT, the column ‘all NDRTs’ shows the average of the three different 

NDRTs. Table 1 shows that the average take-over time rises when performing an NDRT. For critical 

scenarios, the participants applied the brake less frequently when performing an NDRT, yet vice versa 

for non-critical scenarios. The crash incidence rises by 4 % indicating that in 42 % of the scenarios with 

an NDRT a crash would have happened. Despite the trend in the aggregated measures for all NDRTs, 

the picture is rather ambiguous for the different NDRTs. 

 
 

no NDRT 
all 

NDRTs 

visual 

sequential 

visual 

multitask. 

auditory 

multitask. 

TOP critical  

take-over time 0.87 sec 1.45 sec 1.55 sec 1.31 sec 1.48 sec 

brake application  81 % 73 % 77 % 64 % 78 % 

crash incidence 38 % 42 % 36 % 55 % 35 % 

TOP non-critical 
take-over time 1.21 sec 1.73 sec 1.85 sec 1.89 sec 1.42 sec 

brake application 41 % 38 % 41 % 18 % 56 % 

Measured 

attention  

scenarios - 16.32 15.59 14.64 18.74 

ratio to benchmark - 84 % 79 % 90 % 83 % 

Table 1. Overall descriptive measures of the TOP and attention – averages by scenario 
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We evaluate the attention devoted to all NDRTs combined based on a calculated attention score for each 

NDRT. This score represents the ratio of the correctly classified stimuli (true positive or true negative) 

out of all classified stimuli. To factor in that the participants could influence the speed of the test, we 

weigh this ratio by the amount of correctly classified tests. The scores are normalized to take the length 

of the different scenarios into account. To balance individual predisposition, we compare the score with 

the individual attention scores measured in the benchmark phase. Table 1 indicates that the ratio of 

scenarios to benchmark normalized by time varies in dependence on the NDRT.  

To analyze the effect of attention to the NDRT on the TOP in critical scenarios, we divide the scenarios 

into two groups. For this, we argue that a ratio of scenarios to the benchmark of 90 % depicts that the 

participant devoted almost as much attention to the NDRT in the specific scenario as during the 

benchmark phase. Hence, we assign scenarios with a ratio to the benchmark of at least 90 % into the 

‘high’ attention category and those with less than 90 % to ‘low’. This classification leads to 54 scenarios 

with ‘high’ and 34 scenarios with ‘low’ attention. To assess the hypotheses, we only consider the critical 

scenarios as the less critical scenarios did not require the participants to react as soon as possible and 

might falsify the evaluation of the TOP. For the statistical analysis, we employ one-sided paired t-tests. 

There is a maximum of 8 critical scenario data points for each participant, two for each scenario (i.e., 

the three NDRTs and the control condition with no NDRT). Accordingly, if we compare no NDRT with 

all NDRTs, there are 2 (no NDRT) times 6 (the three NDRTs) pairs. Analogously, comparing visual 

multitasking to auditory multitasking only leads to a maximum of 2 times 2 pairs for each participant. 

For H1, we compared each NDRT individually and all NDRTs aggregated to no NDRT. Table 2 

provides the p-values of the paired one-sided t-tests and the degrees of freedom (df). It depicts that 

performing an NDRT significantly affects the take-over time compared to not executing an NDRT (p < 

.001). This remains significant when comparing the individual NDRTs. Consequently, we provide 

evidence that the performance of an NDRT increases the take-over time. Yet, this does not translate to 

brake application and crash incidence. Hence, we can only partly support H1. It is remarkable though, 

that in the case of visual multitasking the results of the t-tests are significant for all TOP dimensions. 

 Comparing … to no NDRT 

TOP visual sequential visual multitask. auditory multitask. all NDRTs  

-- take-over time (lower) < .001 < .001 < .001 < .001 

-- brake application .449 .002 .721 .063 

-- crash incidence  .129 .002 .615 .014 

df 106 104 106 318 

Table 2. P-values of paired one-sided t-tests for H1. 

In terms of H2, Table 3 compares multitasking-compatible NDRTs, respectively auditory and visual 

multitasking, with visual tasking. It provides evidence that the take-over time is significantly lower for 

multitasking-compatible NDRTs. As the results for brake application and crash incidence are not 

significant though, we find only partial support for H2. Analyzing the NDRTs individually, the results 

show that for auditory multitasking the take-over time and the crash incidence are significantly lower. 

Yet, as the brake application is not significantly higher, we can only partly support that auditory 

multitasking has a better TOP than visual sequential tasking. Also, in contrast to our hypothesis, visual 

multitasking has a significantly lower brake application than visual sequential tasking. 

 Comparing … to visual sequential tasking 

TOP auditory multitask. visual multitask. multitasking-compatible NDRTs 

-- take-over time .023 .208 .024 

-- brake application .178 .997 .878 

-- crash incidence .031 .925 .345 

df 107 107 215 

Table 3. P-values of paired one-sided t-tests for H2. 
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Table 4 illustrates the results for H3. It illustrates that the non-visual NDRT leads to a significantly better 

TOP in all aspects when compared to visual NDRTs. Hence, the data support H3. This also partly 

transfers to the two visual conditions, yet the sample size might be too small to show significant effects 

on the take-over time of visual multitasking and brake application for visual sequential tasking. 

 Comparing … to auditory multitasking 

TOP visual sequential visual multitask. visual NDRTs 

-- take-over time .023 .065 .007 

-- brake application .178 <.001 <.001 

-- crash incidence .031 <.001 <.001 

df 107 114 222 

Table 4. P-values of paired one-sided t-tests for H3. 

As for the previous hypotheses, we analyze H4 using paired one-sided t-tests. Contrary to our 

expectations, high attention to the NDRT comes with a lower average take-over time than in the case of 

low attention. This effect is significant (df = 68, p = .046) depicting that higher attention to the NDRT 

leads to a faster take-over time. Regarding the further dimension of TOP, low attention to the NDRT 

entails a higher brake application (df = 68, p = .150) and a lower crash incidence (df = 68, p = .186) but 

these effects are not significant. 

5 Discussion 

Diving deeper into the results, our analysis yields several interesting findings regarding the interaction 

between humans and vehicles in the context of automated driving. Most importantly, our findings 

indicate that the allowance of NDRTs during conditionally automated driving may lead to rising traffic 

safety risks. The rules imposed by the UN Regulation No. 157 (2021) seem to fall short to mitigate the 

increased safety risks associated with unplanned take-overs from the automated vehicle to its human 

driver. Instead, our findings indicate that lawmakers should consider more nuanced policies concerning 

traffic safety, for example, by restricting the execution of NDRTs that demand high attention from the 

driver. Also, questions of liability in the case of critical take-over scenarios should be clarified and 

communicated. In the following, we discuss our results more specifically. 

Performing NDRTs is a trade-off between safety and productivity. Within the results, Table 2 

depicts that NDRTs significantly increase the take-over time (H1: p < .001) and crash incidence (H1: p 

= .014); brake application (H1: p = .064) is also significant to a 10 % confidence level. Adhering to H1, 

these results show that the execution of NDRTs reduces the TOP. In addition, the scenario’s ratios to 

the benchmark depict that the participants do not devote the same level of attention to the NDRT while 

driving as they do during the benchmark. Consequently, performing an NDRT during driving is less 

efficient. Hence, the opposite effect is also conceivable: the need to split the attention between traffic 

and NDRT might reduce the quality of the NDRT to a level that requires the driver to redo the NDRT 

after the ride, making a sequential execution more efficient. 

Communicating the criticality of a take-over request is vital. Table 1a shows that the TOP is lower 

in non-critical situations compared to critical situations. While this aggregated result is not surprising as 

there is no urgency, it is interesting that the participants apply the brake in 41 % of the non-critical 

scenarios although there is no need to. Braking is not condemnable in general but there are scenarios 

like driving on a crowded highway in which unnecessary braking is not recommendable. It might even 

cause an accident if the vehicle is closely followed by another vehicle. Hence, the driver needs to be 

aware of the take-over request’s criticality. Our study suggests that emphasis should be placed on 

designing human-vehicle interfaces that reliably communicate the take-over’s assessed criticality to the 

driver to prevent accidents and contribute to increased driving safety. 

Criticality and high attention lead to displacement activities. In the comparison of critical and non-

critical scenarios, we observe that on average a lower take-over time occurs in critical scenarios. This 

finding coincides with previous studies (e.g., Lotz et al., 2020; Marberger et al., 2018) posing that the 
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situation’s criticality reduces the take-over time. In H4, we further claim that higher attention to the 

performed NDRT negatively affects the TOP. To test this hypothesis, we divided all scenarios into two 

groups, one including all scenario observations where the participants directed high attention to the 

NDRT and another one comprising those observations in which the drivers dedicated low attention to 

the NDRT. We see that the take-over time is on average lower across all NDRTs for high attention than 

for low attention and that this difference is significant (H4: p = .046). For all these scenarios, the driver 

either needs to process a lot of information at once (high attention on NDRT) or has little time to validate 

them (high criticality). Hence, we argue that such take-over requests might overstrain drivers and put 

them under stress. This can lead to displacement activities that manifest in quick (low take-over time) 

but not necessarily good reactions (higher crash incidence). Our experiment supports this reasoning as 

there is a higher crash incidence with high attention to the NDRT. Although this difference is not 

significant (H4: p = .186), this might be due to the rather small sample size.  

Visual multitasking is not (yet?) better than visual sequential tasking in terms of TOP. To test H2, 

we compare the TOP indicators for visual sequential tasking with the visual and auditory multitasking-

compatible conditions. H2 investigates if performing a multitasking-compatible NDRT has a lower 

negative effect on the TOP than performing a sequential NDRT. Table 3 indicates that multitasking-

compatible NDRTs go along with a significant lower take-over time (H2: p = .024) than sequential tasks, 

yet the quicker reaction does not lead to a significantly better reaction in terms of brake application (H2: 

p = .878) or crash incidence (H2: p = .345). Especially when comparing visual sequential and 

multitasking, it is noticeable that multitasking has a better take-over time (p = .208) but a higher crash 

incidence (p = .925) and significantly worse brake application (p = .997). This observation accords with 

studies that did not find a difference between visually distracting and visually not distracting tasks (Kun 

et al., 2017; Radlmayr et al., 2019) or between hand-held and hands-free mobile phone use (World 

Health Organization, 2011). Additionally, it corresponds to the previously outlined observation on 

displacement activities. Indeed, this might be an explanation for our observations because for the 

majority of the participants wearing a HoloLens was a new experience that might have strained them. 

Since the adoption of mixed reality devices is currently growing and they become a frequent element of 

human-machine interfaces, we are interested to see follow-up comparisons in the future. 

Should we reconsider allowing visual NDRTs? In H3, we derive that performing a non-visual NDRT 

has a lower negative effect on the TOP than performing a visual NDRT. Our results clearly support this 

hypothesis for take-over time (H3: p = .007), brake application (H3: p < .001), and crash incidence (H3: 

p < .001). This indicates that visual NDRTs as newly permitted by the UN Regulation No. 157 (2021) 

reduce the TOP and, hence, impair the driver’s safety in comparison to previously permitted NDRTs. 

As it is comprehensible that drivers want to take full advantage of the automation zone and behave more 

freely, permitting such NDRTs seems unreasonable when they correlate with lower TOP and, thus, 

reduced safety for all road users. The same counts, however, for auditory NDRTs which reportedly 

increase the risk of car crashes by a factor of four (World Health Organization, 2011).  

5.1 Contribution & Implications 

Our research contributes to research by enabling a deeper understanding of the safety risks associated 

with conditionally automated driving as an emerging and successful application of artificial intelligence. 

This knowledge advances information systems research by indicating potential ways for increasing the 

acceptance and adoption of automated vehicles. 

As a highly societally relevant hazard responsible for thousands of deaths across the globe every year, 

traffic safety requires rules, forbearance, and care to work out to everybody’s benefit. Although driving 

automation has the advantage to eliminate the notable risk of human error, the current transitional state 

in conditionally automated driving adds new risks depending on the interaction between vehicles and 

drivers. Potential users of automated driving apparently feel threatened by these risks and uncertainties, 

currently limiting the acceptance and adoption of conditionally automated driving (Bornholt and Heidt, 

2019). A better understanding of what influences the success of vehicle-human take-overs could help 

build users’ trust. Our research contributes to this by delivering insights into the effects of NDRTs on 
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the TOP. Our research expands on the findings of fellow researchers presenting contradicting results 

related to the effect of NDRTs (Zhang et al., 2019). It abstracts from individual tasks by analyzing 

common factors for the effects or rather non-effects of certain NDRTs. For this, we investigate how the 

NDRT’s potential for multitasking and addressed sensory channels – visual and auditory – affect the 

TOP. Hence, our study has the potential to lay an important cornerstone to better understand how 

NDRTs influence TOP and, thus, driving safety in conditionally automated driving. 

Besides the theoretical contribution, our research has several practical implications. Aiming to establish 

a common theoretical ground for universal regulations, our research contributes to discussions regarding 

recent laws balancing the trade-off between driver safety and driver’s freedom during automated driving 

level 3. Lawmakers can take our research as a starting point for deriving the hazard potential associated 

with different NDRTs and for defining what NDRTs should be permitted in level 3 automated driving. 

Besides its implications for lawmakers, our research underpins the need for careful design of the take-

over request. Car manufacturers may learn from our study to what extent the performance of NDRTs 

during automated driving might impair the driver’s ability to effectively take over control of the vehicle. 

Further, they can take this as an inspiration to redesign the vehicle’s interfaces to both humans and their 

devices with an emphasis on driving safety in the case of take-overs. This might be achievable by 

combining NDRT and vehicle controls in a smart steering wheel. Lastly, car and device manufacturers 

should jointly work on interfaces and standards that facilitate the communication between the vehicle 

and the devices used for NDRTs. Thereby, early warnings of possible take-overs could be presented at 

the device used for the NDRT and allow the driver to catch up with the current traffic situation. 

5.2 Limitations & Further Research 

Although we performed the behavioral study with the necessary care, some limitations reduce the 

validity of our results. First, the limited scope of the experiment cannot represent the vast number of 

drivers and possible traffic situations but only consider a small subset. Although the obtained sample 

(14) is slightly larger than the samples of similar experimental studies (e.g., 9 for Borojeni et al., 2017 

and Ekman et al., 2018, 10 at Kun et al., 2017) and the minimum sample size suggested by our power 

analysis, we primarily focused on specific critical traffic situations that might occur in automated 

driving. This reduction in complexity though offers better comparability between the tested scenarios. 

However, a field experiment cannot guarantee the repeatability of always the same scenarios. For this 

reason and because a field experiment would have violated existing laws in our country, we used a 

driving simulator and employed a laboratory experiment. To prevent learning effects across the 

scenarios, the participants did not receive any feedback on their TOP. Instead, the driving scenarios 

stopped as soon as the participant intervened. While this increases the comparability of the results in 

different scenarios, the participants’ motivation to actively influence the scenario could decrease and, 

thus, worsen the measurement results concerning a quick and effective intervention. The 

operationalization of the visual multitasking condition through a HoloLens requires drivers to switch 

between a far and a near focal point. This might have contributed to the low difference in TOP between 

the two visual conditions. Furthermore, even though our analysis assesses all proposed hypotheses, 

model-based analysis such as ANCOVA might add additional value by providing a greater overview. 

In the investigation of multitasking-compatible NDRTs during automated driving level 3, we still see 

substantial potential for further research. A greater amount of different traffic scenarios and road 

sceneries, for instance, might allow more detailed insights into the effect of NDRTs on the TOP. 

Similarly, the use of a more realistic simulator that directly simulates the driving reactions and the 

resulting traffic situations would lead to better transferability into practice. First, the participants would 

get clear feedback on their reactions, since they would see the effects of their reactions. Second, it would 

be easier to validate the reactions of the participants, since it would be easier to evaluate which resulting 

traffic situation a participant's reaction led to. Additionally, the experiment can also be extended to other 

groups of people, for example, novice drivers, to check whether the findings obtained in this paper also 

apply to these groups of people. In addition, the adoption of technical devices rises with their use. For 

most of the participants, it was the first time using a HoloLens. Since this may have influenced our 
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results for visual multitasking, recruiting more participants who are familiar with the HoloLens may 

result in a better TOP for performing an NDRT with a HoloLens. Furthermore, in our experiment, we 

noticed that in absence of any take-over request some participants took over the driving process. 

Consequently, it is arguable that the reason for this interference is trust-related and that the participants 

did not trust autonomous driving enough. This underpins ongoing trust-related research in autonomous 

driving (e.g., Ekman et al., 2018) and provides evidence for individual design for every maturity level 

(0 to 5) to fully automated driving. 

6 Conclusion 

Once the dawn of conditionally automated driving has come, drivers may use otherwise passive driving 

time by performing more and more NDRTs while driving. Despite the tremendous potential for 

additional productivity arising from the use of mixed reality devices (here, the Microsoft HoloLens) to 

facilitate multitasking, drivers need to be prepared to take control of the vehicle at all times. Our study 

investigated the effects of different NDRTs (auditory task, visual task on regular display, and visual task 

in HoloLens) on the TOP in critical traffic situations as well as the hazard potential for driving safety 

associated with the drivers’ behavioral adaptation. We employed a behavioral experiment in which 

participants operate a simulated automated vehicle and evaluate their reaction when the vehicle requests 

them to take over control at some point in time. During the automated ride, the different NDRTs distract 

the driver. We find that NDRTs with a visual component impair the TOP more than auditory NDRTs, 

yet UN Regulation No. 157 (2021) suggests that visual NDRTs shall be allowed for conditionally 

automated driving. Visual NDRTs might enable greater productivity during driving but also come with 

greater risk. This trade-off must be taken into account with great care to prevent severe consequences. 
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