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Abstract

To pave the path for sustainable mobility, Information Systems are a promising tool to encourage users to
adopt more sustainable mobility behavior. In this study, we investigate how potential demand management
interventions affect the economic and environmental metrics of a multi-modal vehicle sharing operator.
To this end, we narrow our focus on two important user characteristics, namely the users’ flexibility
and willingness to pay an additional premium for more environmentally sustainable vehicles. Our study
employs a combined discrete-event and multi-agent simulation approach, which we calibrate with real-
world rental data of leading free-floating vehicle sharing platforms. The results show that it is economically
and ecologically disadvantageous for both the society and the fleet operator to simply increase users’
mode choice flexibility. However, we clearly observe that this picture flips once users are willing to pay a
surcharge to rent more environmentally sustainable vehicles.

Keywords: multi-modal mobility, sustainable mobility, agent-based simulation, sharing economy

1 Introduction

Mobility is the backbone of modern societies, ensuring social and economic welfare, but it is still far
from being sustainable. In 2016, the transportation sector was one of the biggest polluters accounting for
27% of greenhouse gas emissions in Europe (European Environment Agency, 2018). In addition, cars
stuck in traffic jams are not only inefficient and misused to some extent, but also produce up to 80% more
greenhouse gas emissions compared to free traffic conditions (Treiber, Kesting, and Thiemann, 2008).
Thus, stressed motorists and more severe health complications are the consequences of congested roads
(Currie and Walker, 2011). In a recent report, the World Economic Forum has proposed introducing and
implementing actual cost pricing mechanisms in urban cities to manage mobility demand by using pricing
information that factor in the externalities incurred by a trip (Eckhard et al., 2021). London, for example,
has already successfully introduced a precursor to this concept in the form of congestion pricing (Leape,
2006). In this context, shared mobility services might play a pivotal role in urban mobility systems as
these business models pass on the marginal cost of a trip to users.

Free-Floating Vehicle Sharing (FFVS) platforms are a promising instantiation of the aforementioned
shared mobility services and are poised to become an integral part of future urban mobility networks.
They offer the platform-based rental of vehicles with the prospect of increasing vehicles utilization. Users
can typically pick up and drop off vehicles anywhere within a confined operating area. The entire rental
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process, from searching to renting to payment, is handled via an app. Information Systems (IS) have
a crucial role in the success of such platforms as, on the one hand, they enable the access of users to
vehicles to fulfill their mobility tasks, and on the other hand, they support platform managers in strategical,
tactical, and operational challenges (Brendel et al., 2017; Lu, Chen, and Shen, 2018; Willing et al., 2017).
Presently, we observe that several FFVS operators have extended their vehicle fleet by adding more
differentiated vehicle types in order to cater to their users’ individual trip needs, signifying the role of IS
in the success of such businesses. For example, Tier1 started their offering with electric kick scooters and
now also offers electric scooters.

From an economic and an environmental perspective, it is naturally attractive for the fleet operator
to understand how she can selectively steer the demand for particular types of vehicles to achieve an
overarching target (e.g., sustainability or profit-maximization). Current Green IS research shows that IS
can be utilized in a targeted manner to introduce more environmentally sustainable business practices
(Seidel, Recker, and Brocke, 2013). Similarly, FFVS platform operators can apply IS-based mechanisms
to appropriately steer users’ vehicle choices, for example, by presenting the environmental impact of
each vehicle mode. However, current research offers little evidence on the degree of effectiveness of such
demand management mechanisms for nascent multi-modal FFVS platforms. In this study, we adopt the
perspective of such a multi-modal vehicle sharing fleet operator that offers incumbent shared electric
vehicles for rental, namely electric kick scooters, scooters, and cars2. To ensure comparability, we exclude
bikes from this study, given that they require physical activity, even if they have an assisting electric
motor. Our overall objective is to explore whether it is economically and environmentally worthwhile
to integrate IS-enabled behavioral interventions to manage users’ mobility demand. Specifically, the
impact of interventions on two user characteristics is interesting to investigate. First, Reck et al. (2021)
reveal that users’ mode choice behavior in vehicle sharing platforms is mainly dominated by the distance
to be covered. However, the results also indicate that users may switch to other types of vehicles for
certain distances. Hence, we examine how users’ flexibility to substitute a vehicle impact economic and
environmental measures. Second, transportation literature reveals that environmentally-friendly users are
willing to pay a premium to use more sustainable means of transportation (Gaker et al., 2011). Due to
the upcoming changes in the urban mobility sector and the associated efforts to make that sector more
sustainable, it is both academically and practically important to identify, examine, and quantify potentially
relevant factors for the transformation process of urban mobility. Thus, exploring how varying proportions
of environmentally-friendly users in the population impact fleet performance is also engaging. Formally,
we seek to answer the following research question: How and to what extent do user characteristics (i.e.,
willingness to switch means of transportation and to pay a premium for greener alternatives) impact the
economic and environmental metrics of a multi-modal FFVS operator?

To answer this question, we draw on discrete-event and agent-based simulation techniques due to the
prevailing complexity of urban mobility systems and their non-linear relationships (e.g., Ketter et al.,
2016; W. Axhausen, Horni, and Nagel, 2016). We calibrate the simulation environment using a unique
observational dataset of rental transactions for shared kick scooters, scooters, and cars that we have
collected over a period of six months in Berlin, Germany. Precisely, to realistically predict users’ mode
choice behavior, we estimate a multinomial logistic regression model.

Our contributions are twofold. First, we conceptualize and set up a multi-modal mobility simulation
in the realm of FFVS to provide a grounded basis to examine interventions in a highly complex and
interwoven socio-technical system. Second, we examine and quantify to what degree potential demand-
side management mechanisms through Green IS initiatives influence the profitability and environmental
footprint of FFVS operators.

1 https://www.tier.app/de/
2 The difference between electric kick scooters and scooters is that in the former the driver has to remain to stand and in the
latter she has to sit down. Also, electric scooters drive substantially faster than electric kick scooters and are therefore subject to
mandatory helmet usage regulations in many cities.
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We proceed as follows. We begin by positioning our work in the realm of Green IS and Shared Mobility
and provide a review of the pertaining literature. Next, we explain our discrete-event and agent-based
simulation model from the perspective of a user (demand-side) and an operator (supply-side). We then
present our simulation results and conclude by discussing the implications and limitations of this work.

2 Background and Related Work

Our work is generally positioned in Green IS (Brocke et al., 2013) and in the intersection with sustainable
mobility (Brendel and Mandrella, 2016). Particularly, this study uses methods grounded in IS (e.g.,
Ketter et al., 2016) to understand and analyze the impact of vehicle sharing user preferences and how
potential intervention strategies might lead to more sustainable mobility behavior. Therefore, we review
the literature on Green IS and its applications on sustainable mobility systems where IS-enabled methods
can support the better organizational performance of such systems. Also, we present the background of
FFVS systems to explain in detail how we make the core assumptions of our model for simulating the
traffic environment and user behavior, and clarify our contribution to bridging the current gap.

2.1 Green IS and Intersections with Sustainable Mobility Systems

Over the past few decades, the IS community has studied how to improve the efficiency and productivity
of a wide variety of organizations (Hitt and Brynjolfsson, 1996). In light of rising climate change concerns,
environmental sustainability has gained great attraction in different fields, including IS. The study of
IS for environmental sustainability comprises two research directions: Green IS and Green IT (Brocke
et al., 2013; Dedrick, 2010). As the largest stream, Green IS (also covering our study) refers to the
studies investing in designing and implementing IS to improve environmental sustainability (Malhotra,
Melville, and Watson, 2013). Nevertheless, Bjorn-Andersen et al. (2016) highlight a lack of actionable
and impactful IS solutions to tackle the coming environmental challenges at global scale.

The transportation system, as one of the main contributors to climate change, is an interesting domain for
Green IS researchers to employ IS as an enabler for green and sustainable mobility systems (Hildebrandt et
al., 2015). Kang et al. (2020) have already shown how technological factors of IT-enabled service systems
can affect the service performance in a changing ecosystem such as ride-hailing services. Electromobility
and the associated charging challenges are one of the main areas in mobility research that attracts IS
scholars to pave the path toward a mass adoption of electric vehicles (EVs) by providing business models
to integrate with the energy sector (Brandt, Wagner, and Neumann, 2012), developing charging network
to provide distributed non-home charging opportunities (Ahadi et al., 2021), and designing pricing
mechanisms to avoid additional loads from EVs (Valogianni et al., 2020). In the same direction Hanelt,
Busse, and Kolbe (2017) show that in addition to supporting green technologies such as EVs, IS can
improve the organisational performance of eco-innovations to support the business transformation toward
sustainability. An example in the mobility domain is the application of IS in shared mobility services,
where IS has the potential to exploit the sustainable impacts of such services by supporting digitalization
(e.g., booking or paying) and decision-making problems from the fleet operators’ perspective (e.g., fleet
and infrastructure development and fleet operating). This is also true for ride-hailing services in which the
support side (drivers) also can benefit from IS. Using discrete choice experiments, Hong et al. (2020) show
how influencing factors such as ensuring wage and information security encourage drivers to sacrifice
their flexibility by committing minimum working hours, which is also varied among different driver
populations.

Green IS has also been embraced by the design science (DS) community (Rai, 2017). DS researchers have
brought forward numerous concrete and actionable IS artifacts targeted at solving pressing sustainability
issues. For example, Willing et al. (2017) propose a decision support system (DSS) to address service
region design and fleet sizing problems of shared cars, Brendel et al. (2017) compute carsharing pricing
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areas and analyze its effect on spatial vehicles availability, and He, Hu, and Zhang (2020) and Kahlen
et al. (2017) provide models that avoid unbalanced networks by making appropriate repositioning and
recharging decisions. Additionally, a crucial requirement of using IS as a DSS to improve the system
performance is having an accurate understanding of users’ preferences (Bichler, Gupta, and Ketter, 2010).
As shown by Willing, Brandt, and Neumann (2017), rental transaction data are a particularly valuable
asset in successfully modeling user behavior. Having access to big historical trip data of shared vehicles
allows the researchers to describe the mobility demand and trip patterns more accurately, which is a core
input for our model in this study to approximate the demand for shared vehicles in urban areas.

Apart from designing DSS, many researchers advocate that IS can reduce the adverse environmental
effects of unsustainable behaviors (Elliot, 2011; Melville, 2010). The Energy Informatics discipline is a
well-known example that investigates the development of IS to improve the energy consumption behavior
of business and private users. In this direction, Oppong-Tawiah et al. (2014) combine design science and
experimental approaches to study the use of mobile applications encouraging pro-environmental behaviors
by reporting their energy usage patterns in a working place. Also, Loock, Staake, and Thiesse (2013)
simulate the energy-efficient behavior of private consumers and show that a proper feedback system
can significantly affect energy conservation in private households. A few recent papers also contribute
to encouraging more environmental modes of mobility by developing intervention strategies. Flüchter
and Wortmann (2014) investigate the impact of an IS-enabled social normative feedback intervention
on the intrinsic motivation of participants of an e-bike commuting competition. Diederich et al. (2019)
design an artifact to steer users to more sustainable mobility behavior and show that a persuasive and
human-like design of the communicating agent with users could positively impact using more sustainable
types of vehicles. However, to the best of our knowledge, there is no specific Green IS discipline and
not many related works studying interventions on users’ mobility behavior and the resulting impacts on
environmental sustainability.

2.2 Free-Floating Vehicle Sharing Systems

Among the numerous shared mobility services, FFVS enjoys a lot of popularity as it offers nearly the
flexibility of owning a private vehicle while circumventing high acquisition costs. Users typically use an
app to find a vehicle nearby, pick it up and drop it off anywhere within a predefined service area. While
all sustainable benefits such as reducing private car ownership, FFVS might also have a negative side. As
an example, Becker, Ciari, and Axhausen (2017b) show that most of the free-floating carsharing trips are
on routes that are connected using public transportation, which might be interpreted as negative impact on
public transportation usage. Also, Luo et al. (2021) conclude similar results for e-scooter trips; in other
words, they claim that e-scooters might compete with bus systems while replacing riding and walking trips
that can negatively affect users health (Thoreau, 2015). Admittedly, their results are not generalizable, but
their study rings a bell to pay more attention to FFVS fleet management to avoid such negative impacts.
This idea could even gain more importance when a combination of different FFVS modes is offered. To
date, most of the providers have been offering a homogeneous fleet with individual vehicle types such as
cars, scooters, electric kick scooters, and bikes. Recently, novel companies (e.g., Go, Tier, and Lime) have
entered the smart mobility market, providing numerous vehicle types in a joint platform.

Due to their flexible nature, a key aspect of (multi-modal) FFVS platforms is understanding users’ behavior.
Researchers show that the rental patterns of shared vehicles vary among different modes, where contextual
factors, including purpose, time, and location, play a significant role. For example, using spatial demand
description Li et al. (2018) and Reck et al. (2021) show that shared vehicles are primarily utilised close to
the city center and particular Point-of-Interests. Also, using time-series and temporal analysis, researchers
demonstrate that except holidays, most of the rentals occur during peak hours while there is daily and
monthly seasonality (Ciari, Bock, and Balmer, 2014; Du and Cheng, 2018). For more details, we refer
readers to the work of Liao and Correia (2020).

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania. 4



Demircan et al. / Analysis of Multi-Modal Vehicle Sharing

In another group of papers, traditional transportation research shows that the mode choice decision
of users is generally formed along multiple dimensions. The traffic volume (Van Exel and Rietveld,
2009), environmental conditions (Gebhart and Noland, 2014), convenience (Aziz et al., 2018), and trip
characteristics (Du and Cheng, 2018; Heilig et al., 2018) are the most notable and influential determinants.
To shape the users’ choice model, we use the findings of Guidon et al. (2019) and Reck et al. (2021).
The authors show that users regard shared vehicles only as a viable option if they are located within
walking distance of 300 to 500 meters. Also, they specify that the mode choice process of FFVS users
is primarily dominated by the distance to be covered and the time of the day, which is considered in
detail in our present research. Next, individual user characteristics are another set of explanatory factors.
Many researchers show that socio-demographic features (e.g., age, income) have an effect on users’ mode
choice decisions (Le Vine and Polak, 2019; Müller, Correia, and Bogenberger, 2017). Lastly, Li and
Kamargianni (2020) investigate latent characteristics and show that users with more willingness of being
a green traveler prefer more sustainable vehicles with higher probabilities, supporting our assumption of
considering diverse user populations.

3 Methodology

We now lay out our combined discrete-event and agent-based simulation strategy to answer the proposed
research question. The study of urban mobility – a socio-technical system – is largely considered a
wicked problem owing to the presence of numerous complex and nonlinear relationships (Ketter et al.,
2016; Schroer et al., 2022). Therefore, simulation-based research methods are suitable for modeling
and analyzing urban mobility systems such as vehicle sharing platforms (Becker, Ciari, and Axhausen,
2017a; W. Axhausen, Horni, and Nagel, 2016). Inspired by the architecture of MatSim, an agent-based
urban transportation simulation framework developed by W. Axhausen, Horni, and Nagel (2016), three
constituents need to be modeled, namely the user’s perspective (demand side), the operator’s perspective
(supply side), and the underlying mobility infrastructure. Specifically, we focus our analysis on one single
FFVS platform offering shared electric kick scooters, scooters and cars in one region, namely Berlin,
Germany. In the following, we describe the modeling details of the first two perspectives, where the latter
is implicitly specified.

3.1 Demand: User Perspective

We begin by explaining the user’s demand perspective. Users are the consumers of available rental vehicles
to fulfill their mobility demands. The goal of a user in the mobility system we have modeled is to get
from A to B under given boundary conditions. The quantity of users arriving in the system differs in
both temporal and spatial dimensions. Thus, we partition the time of day into four-hour buckets (Γ) and
discretize the geographic area in scope using a geodesic grid with a hexagon radius of approx. 1.3km
represented by the set H . Consequently, we model users’ mobility demand as a spatio-temporal (non-
stationary) Poisson process with arrival rate λth, where t ∈ Γ and h ∈ H (Shortle et al., 2018). We term
the arrival region and time of each user i as oi ∈ H and ti ∈ Γ, respectively. To determine the destination
di of each trip, we draw on a multinomial distribution with di ∼ Mult|H |(1,{p1, . . . , p|H |}| t ∈ Γ, o ∈H ),
considering the possible destinations as outcome categories (ph). The pertaining outcome probabilities are
dependent on the trip origin (o) and the time of the day (t). Taken together, the trip demand of user i is
specified by the triplet (oi, di, ti). These preceding relationships motivate the discrete-event nature of the
proposed simulation environment. However, more differentiated user behavior, such as nonlinear mode
choice decisions, cannot yet be captured following this discrete-event approach and requires agent-based
simulation paradigms (Railsback, Lytinen, and Jackson, 2006; Zhang et al., 2020).

Hence, we turn our attention to the mode choice decision of users in the multi-modal vehicle sharing
simulation. Theoretically, users have access to three different shared vehicle modes, namely kick scooters,
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Figure 1. Mode choice behavior between cars and scooters using a multinomial logistic regression
model considering a substitution bandwidth given by β .

scooters, and cars. However, Reck et al. (2021) show that in FFVS systems, users primarily choose the
vehicle mode based on the distance to be covered from their origin to the destination. Other determinants
play a subordinate role. Our explanatory investigations also reveal that kick scooters are on average used
for short distance trips (∼ 1km), scooters for medium distance trips (∼ 2-3km), and cars for medium-long
distance trips (∼ 4-5km) as depicted in Figure 2. In order to factor in this realization, we represent the
users’ mode choice behavior by estimating a multinomial logistic regression model, where the explanatory
variable is the euclidean distance of user trip i (i.e., the distance between oi and di) and the discrete
output refers to the available vehicle modes. Here, we make the assumption that the mode choice decision
process is not influenced by vehicle supply. In other words, a user determines the preferred vehicle type
based on trip distance, and if the desired vehicle type is not available nearby, she foregoes (i.e., leaves
the system) the trip leading to a missed trip and missed revenue for the operator. However, taking a
closer look at Figure 2, the users’ vehicle choice process is not a clear-cut decision. We clearly observe
overlapping rental trip patterns where different vehicles have been used for similar distances. For example,
cars and scooters deem suitable for rental trips between 3km and 4km. These observations motivate us to
introduce and factor in substitution effects in users’ mode choice process. We assume that a user’s choice
process is neutral with respect to two or more vehicle types for her trip, provided that the resulting vehicle
choice probabilities do not deviate substantially. Recall that the vehicle choice probabilities depend on the
explanatory variables, which in our case corresponds to the trip distance. Following and extending the
ideas of Mahajan and Ryzin (2001), we integrate a substitution boundary β ∈ [0,1] and operationalize
substitution effects in our mode choice process as follows. After having determined the mode choice
probabilities {pim}M

m=1 for the available vehicles modes m ∈ M, we set vehicle type m as a feasible vehicle
option for user i if the respective choice probability pim is greater than the dominant choice probability
max{pim}M

m=1 adjusted by the predefined substitution boundary β as defined in the following Equation 1.

p̂im :=

{
1, pim ≥ max{pim,}M

m=1 −β ,

0, otherwise.
(1)
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Figure 1 provides a concise illustration of the resulting substitution process with a substitution boundary
of β = 20%, however, for the sake of clarity only for scooters and cars. In situations where the vehicle
choice probabilities fall within the dashed red line representing the substitution region (we termed it
substitution bandwidth), users are neutral whether to rent a scooter or a car for their rental trip. The
resulting dashed orange line also reveals that a substitution case might happen for trips with a distance to
be covered of 2km and 4.5km.

Lastly, we allow two types of users in the simulation to capture the heterogeneity of different populations
in cases where substitution effects emerge. Basically, we assume that if the user can decide between
several vehicles types due to substitution effects, the user prefers the cheapest alternative for her trip. We
coin this user group as price-sensitive users. On the other hand, current literature suggests that a growing
proportion of users are willing to pay a premium to opt for vehicles that are more sustainable (Gaker et al.,
2011). Consequently, we also include users in our simulation environment, who invariably choose a more
sustainable vehicle when multiple vehicle types are suitable for their trip. Sustainability of vehicles in
the present context is defined by the energy consumption of the considered vehicles per distance unit
(kWh/km). We consider vehicles that use less energy for the same distance to be more sustainable. We
term this user group as environmentally-friendly users. Users are then assigned to either the first or second
population group based on a Bernoulli distribution B(θ), where θ ∈ [0,1] corresponds to the probability
of belonging to the environmentally-friendly user group.
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Figure 2. Trip distance distribution for a) kick scooters, b) scooters, and c) cars.

3.2 Supply: Operator Perspective

We now turn our attention to the operator of the multi-modal FFVS fleet. The overarching goal of a
fleet operator is, naturally, to maximize profit through the rental of vehicles, which depends largely on
the availability of vehicles at locations and times where and when exactly vehicles are in demand by
customers. In order to ensure the availability of demanded vehicles, the operator must offer a certain
number of (different) vehicles for short-term rental. We presume that a total of N vehicles are provided,
where N = ∑

M
m=1 Nm, and Nm,∀m ∈ M, corresponds to the number of vehicles of type m. The optimal

determination of the fleet size is a dedicated research question on its own and has already been solved in
the literature for mono-modal fleets (Benjaafar et al., 2021; George and Xia, 2011), and thus is not part of
the present research. We assume a reasonable fleet configuration based on existing empirical studies (e.g.,
Demircan, Muires, and Ketter, 2021).

To ensure vehicle availability, the operator must allocate vehicles across the operating area according to
the user’s mobility demand. In this context, the operator must take account of the demand heterogeneity
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as different types of vehicles are demanded at different places and times. In our simulation, we impose a
heuristic vehicle allocation approach. We assume that the operator allocates the different types of vehicles
to regions h ∈ H based on spatially differentiated demand patterns. The core rationale is to place more
vehicles in regions where trip rentals for vehicle type m are high. Accordingly, we specify for each vehicle
type m a dedicated multinomial distribution with rm ∼ Multm

|H |(Nm,{pm
1 , . . . , pm

|H |}). Using historical
rental activity data, we estimate the distribution with the help of maximum-likelihood methods. After,
we employ for each vehicle type m under consideration the pertaining distribution to sample Nm vehicle
allocations in a spatial dimension. Eventually, all vehicles in scope (i.e., N vehicles) are initially allocated
to a region h in order to meet expected customer demand.

Throughout the day, shared vehicles circulate within the operating area, leading naturally to demand
and supply imbalances as vehicles are moved from high-demand areas to low-demand areas. As a result,
users’ demands in the following business days may not be effectively met. To counteract, operators
typically rely on relocation strategies with dedicated service workers. These service workers relocate
vehicles daily (or multiple times a day) from low-demand areas to high-demand areas to recover the
initially defined vehicle allocation (or a similar fleet state). In the present simulation, we assume that
the vehicle sharing operator employs a daily relocation strategy to recover the initial vehicle allocation
state. Furthermore, rented vehicles consume electricity to fulfill the mobility requests of users. Again, we
assume that the fleet operator utilizes service workers to ensure that fleet vehicles are fully charged on
a daily basis. Taken together, we summarize the operational costs incurred as DailyOpexm taking into
account the differentiated cost structures for different vehicle types. In addition to operating costs, capital
costs incurred for the acquisition of vehicles are also a crucial cost factor. We break down the cost of
capital to a daily level by considering the common depreciation periods. We term this vehicle-specific
capital cost as DailyCapexm.

The revenue of a vehicle sharing fleet operator corresponds to the sum of all respective trip revenues
during the considered period (Kahlen et al., 2017; Nair and Miller-Hooks, 2011). Typically, the revenue of
a trip is calculated by the trip duration times a minute rental price. Rental prices are differentiated among
different vehicle modes. For example, while the rental price per minute for a shared car at ShareNow
is 0.26C/min, the rental price for a shared scooter at Emmy corresponds to 0.23C/min. Hence, we can
define the daily revenue with vehicle type m of a fleet operator as DailyRevenuem = ∑

Km

k=1 ∆k ∗αm, where
Km is the total number of daily trips with vehicle mode m, ∆k is the rental duration in minutes of trip
k, and αm refers to the rental price per minute for mode m. Eventually, we can define the overall profit
function of the fleet operator as follows.

DailyPro f it :=
M

∑
m=1

Km

∑
k=1

∆k ∗αm −
( M

∑
m=1

Nm ∗ (DailyCapexm +DailyOpexm)
)

(2)

3.3 System Level Dependant and Independent Variables

In this section, we briefly present the dependent and independent variables of our simulation environment
relevant to addressing the research question. The two independent variables of the simulations are
the SubstitutionBoundary (i.e., β ) and the structure of the PopulationType (i.e., θ ). The dependent
outcome variables of interest can be grouped into economic and environmental indicators. From an
economic perspective, we examine the DailyPro f it and ServiceQuality of the fleet operator under varying
substitution boundaries and population types. The former is defined in Equation 2, the latter is defined as
the fraction of fulfilled rental trips divided by total trip requests (i.e., ∑ServedTrips

∑TripRequests ). Further, we investigate
the impact of different specifications of the independent variables on the overall EnergyConsumption
to operate the fleet and meet users’ mobility demand. To do so, we calculate the energy consumption
for each trip based on the travelled distance (e.g., meter) times the energy consumption per spatial unit
(e.g., kWh/meter), whereas the trip-level energy consumption depends on the selected vehicle. We expect
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that the total energy consumption decreases as the users’ mode choice flexibility increases, and users are
willing to pay a green premium to rent more sustainable vehicles modes in cases where multiple vehicle
types are suitable for a trip.

4 Numerical Experiments

In this section, we first describe the considered historical data used and the specification of the simulation
environment. We then present and discuss the experimental scenarios and the resulting findings.

4.1 Data & Specification of the Simulation Environment

In the following, we provide an overview of the data used and the specification of our simulation
environment. In order to model users’ mobility behavior, we have collected a unique dataset of rental
transactions of Tier (shared electric kick scooters), emmy (shared electric scooters), and ShareNow (shared
cars) via their respective APIs. The collection process was performed using web scrapers. These companies
were (and some are still) one of the leading providers in terms of market share for the respective vehicle
classes in Berlin, Germany. We extracted information of available vehicles in five-minute intervals over a
period of slightly less than six months, from 01th October 2019 to 20th March 2020 for Berlin, Germany.
We observe for each vehicle the exact spatial location (latitude, longitude), vehicle type along with
temporal information. Using these availability data of vehicles, we approximated vehicle trip information.
While being used by a user, a vehicle is no longer available and visible in the app. We harness this
circumstance to spot rental trips, which allow us to derive the origin, the destination, the duration of
rental trips. Our dataset consists of 1,983,246 car trips; 173,212 scooter trips; 375,181 kick scooter trips.
Using these rental transactions, we then determined the Poisson and multinomial stochastic processes
to model spatio-temporal user arrivals and origin-destination routes, respectively. Further, we estimated
a multinomial logistic regression model representing the mode choice decision process of users. Note
that we have aligned the alternative specific constants to compensate for the unequal sample sizes of each
mode. We further assume that the maximum willingness to walk to rent a kick scooter is 200m (Reck et al.,
2021), for a scooter 350m, and 500m for a car (Herrmann, Schulte, and Voß, 2014). Contrary to Wortmann
et al. (2021), we argue that an acceptable walking distance of 500m for scooters is presumably too high,
which is why we decided to take the mean between the acceptable walking distance of kick scooters and
cars (i.e., 350m). We now turn to the specification of the vehicle fleet. We assume that the fleet operator
employs three types of shared electric vehicles, namely kick scooters, scooters, and cars. The entire fleet
consists of 4,500 vehicles, with equal representation of each vehicle type (i.e., Nm = 1,500). The rental
prices are set to 0.19C/min for kick scooters, 0.23C/min for scooters, and 0.26C/min for cars and are in
line with current market rental prices of leading vehicle sharing providers. Current literature (Wortmann
et al., 2021) and industry reports (Heineke et al., 2019; Steinmann et al., 2019) estimate daily operational
(capital) costs of 10.72C (0.8C) for kick scooters, 5.2C (2.44C) for scooters, and 21.01C (8.85C) for
vehicle sharing operators. The surprising fact that scooters have lower daily operational costs than kick
scooters is due to the fact that kick scooters need to be collected, charged, and relocated more frequently
than scooters. We calibrate the average velocity of each vehicle (incl. reservation time adjustments) based
on the findings of Demircan, Muires, and Ketter (2021), more precisely, we set the average velocity of kick
scooters to 47m/min, of scooters to 133m/min, and of cars to 158m/min. This also implies that on average
cars are more affordable than scooters, and scooters are more affordable than kick scooters when average
velocities are factored in. The battery capacities (and the energy consumption) of kick scooters, scooters,
cars are set to 0.46kWh (0.012kWh/km), 4.8kWh (0.048kWh/km), and 17.6kWh (0.197kWh/km). An
overview of the vehicle-level specification is provided in Table 1. Lastly, we set the time horizon of our
simulation environment to one day (i.e., T = 1440min).
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Parameter Kick Scooter Scooter Car Source

Number of Vehicles (Nm) 1,500 1,500 1,500 Derived from Demircan, Muires, and Ketter
(2021).

Rental Price (C/min) 0.19 0.23 0.26 Official website of leading providers. 3

Exp. Daily Revenue (C/vehicle) 13.26 11.73 43.68 Derived from Demircan, Muires, and Ketter
(2021).

Daily Operational Cost (C/vehicle) 10.72 5.2 21.01 Derived from Heineke et al. (2019), Steinmann
et al. (2019), and Wortmann et al. (2021).

Daily Capital Cost (C/vehicle) 0.8 2.44 8.85 Derived from Heineke et al. (2019), Steinmann
et al. (2019), and Wortmann et al. (2021).

Avg. Velocity (m/min) 47 133 158 Derived from Demircan, Muires, and Ketter
(2021).

Battery Capacity (kWh) 0.46 4.8 17.6 Specification from official supplier website.4

Energy Consumption (kWh/km) 0.012 0.048 0.197 Specification from official supplier website.2

Acceptable Walking Distance 200m 350m 500m Herrmann, Schulte, and Voß (2014) and Reck
et al. (2021).

Table 1. Parameter specification for shared kick scooters, scooters, and cars in the simulation.

4.2 Results

We begin by presenting the different experimental instances considered, then continue to explore the
summary statistics, and lastly turn our attention to the influence of the SubstitutionBoundary and
PopulationType on economic and environmental system-level outcome measures of the fleet opera-
tor, namely DailyPro f it, ServiceQuality, and EnergyConsumption using regression analysis.

We consider in total eight different experimental instances, where we vary the SubstitutionBoundary β

from 0% to 20% with a gradual increment of 5%. Also, we either set the PopulationType to completely
price-sensitive (i.e., θ = 0) or to completely environmentally-friendly (i.e., θ = 1). Next, we simulate
all eight different simulation instances and keep all other parameters fixed within these simulation runs
and evaluate the resulting economic and environmental metrics. We then apply a Monte Carlo approach
(Mooney, 1997) and repeat the simulation of the eight experimental instances 100 times to recover a
sample distribution of the outcome variables.

We next explore the summary statistics of the simulation results for economic and environmental metrics
reported on Table 2 and 3. Our results reveal a striking relationship. An increase of users’ mode choice
flexibility (i.e., β ) generally leads to less revenue and TotalPro f it as they typically then opt for the
more affordable vehicle option. We only observe an increase in TotalPro f it once users also exhibit the
willingness to pay a premium for more sustainable vehicles. This is also reflected in the disaggregated
revenue calculation, as we find that the revenue from shared car rentals is more distributed among the other
types of vehicles as more users become flexible and environmentally friendly. Additionally, irrespective
of the PopulationType, we observe that the ServiceQuality considerably increases (from 80% to 88%)
when users are willing to use alternative transportation modes for their trip.

Our results indicate not only from an economic perspective but also from an environmental lens remarkable
benefits as reported in Table 3. As users’ flexibility in mode choice grows, EnergyConsumption increases
from 6,416 kWh to 7,594 kWh to serve all rental trips. However, our results indicate that this finding is
moderated again by the PopulationType; more specifically, we reveal that more environmentally-friendly
users lead to a considerable reduction in EnergyConsumption (i.e., from 6,414 kWh to 5,656 kWh with a
substitution boundary of β = 0.2). We similarly notice this tendency in the number of kilometers driven
and the time spent on the road with environmentally more harmful vehicles. For example, if users are
willing to switch to more sustainable vehicle types (and momentarily pay a surcharge) and are more
flexible in terms of their vehicle preferences, a system-wide reduction of 36% in kilometers traveled
with cars are attainable. In addition, we determined how many of the trips made could be replaced by

3 https://www.tier.app/ (Kick Scooter), https://emmy-sharing.de (Scooter), https://www.share-now.com/ (Car).
4 https://eu.okai.co/products/es200 (Kick Scooter), https://www.govecs-scooter.com (Scooter), https://www.smart.com/ (Car).
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Price-Sensitive Population Sustainable Population

β = 0.00 β = 0.05 β = 0.10 β = 0.20 β = 0.00 β = 0.05 β = 0.10 β = 0.20

Exp. Total Revenue (C) 90,891 90,839 90,760 90,305 90,891 93,670 96,277 100,867
By Kick Scooter (C) 9,827 8,413 7,108 4,530 9,827 11,574 13,540 18,135
By Scooter (C) 17,437 14,311 10,840 5,930 17,437 21,516 25,166 31,713
By Car (C) 63,627 68,116 72,811 79,845 63,627 60,579 57,571 51,018

Exp. Total Profit (C) 17,346 17,294 17,215 16,760 17,346 20,125 22,732 27,322
Exp. Service Quality 0.8 0.82 0.84 0.88 0.8 0.82 0.84 0.88
Exp. Daily Fulfilled Trips 12,214 12,502 12,795 13,319 12,214 12,517 12,816 13,298
Daily Missed Trips 2,990 2,701 2,409 1,883 2,990 2,675 2,365 1,863

Table 2. Summary statistics of the economic key measures for different population types (θ ) and varying
substitution boundaries (β ).

Price-Sensitive Population Sustainable Population

β = 0.00 β = 0.05 β = 0.10 β = 0.20 β = 0.00 β = 0.05 β = 0.10 β = 0.20

Total Energy Consumption (kWh) 6,416 6,744 7,081 7,594 6,416 6,249 6,075 5,656
By Kick Scooter 14 12 10 6 14 17 20 27
By Scooter 488 400 303 166 488 602 704 887
By Car 5,914 6,332 6,768 7,422 5,914 5,631 5,351 4,742

Total Trip Distance (km) 50,991 51,615 52,193 53,106 50,991 51,878 52,592 53,410
By Kick Scooter 1,922 1,622 1,350 822 1,922 2,296 2,723 3,733
By Scooter 10,159 8,337 6,316 3,455 10,159 12,535 14,662 18,476
By Car 38,910 41,656 44,527 48,828 38,910 37,046 35,207 31,200

Total Trip Duration (h) 6,024 5,979 5,932 5,840 6,024 6,257 6,480 6,892
By Kick Scooter 681 575 479 292 681 814 966 1,324
By Scooter 1,264 1,037 786 430 1,264 1,559 1,824 2,298
By Car 4,079 4,366 4,667 5,118 4,079 3,883 3,690 3,270

Kick Scooter Trips (Nks) 2,058 1,854 1,649 1,206 2,058 2,291 2,533 3,042
Kick Scooter ≻ Scooter 0 28 50 40 0 476 955 1,909
Kick Scooter ≻ Car 0 0 0 14 0 0 0 1,278

Scooter Trips (Ns) 4,134 3,741 3,126 1,649 4,134 4,695 5,126 5,748
Scooter ≻ Kick Scooter 0 646 1,302 1,054 0 191 385 793
Scooter ≻ Car 0 163 361 793 0 1,593 3,297 5,502

Car Trips (Nc) 6,022 6,907 8,020 10,464 6,022 5,531 5,158 4,507
Car ≻ Kick Scooter 0 0 0 1,809 0 0 0 170
Car ≻ Scooter 0 1,697 3,495 7,058 0 264 547 1,025

Table 3. Summary statistics of environmental key measures for different population types (θ ) and
varying substitution boundaries (β ).

alternative vehicle types for different substitution boundary values β . If a rental trip was made with vehicle
type m, but could also be made with type m′, we have denoted this in Table 3 as m ≻ m′.

Lastly, we lay out the results of the regression analysis to uncover the influence of SubstitutionBoundary
and PopulationType on economic and environmental system-level metrics. Since the regression is
specified in terms of a log-linear relationship, the regression coefficients SubstitutionBoundary and
PopulationType can be approximately interpreted as the percentage change in the economic and envi-
ronmental outcome metrics for one unit change in the respective coefficients. Accordingly, three linear
regression models using a Gaussian error distribution are estimated. Our estimated models are significant
with excellent R2 values between 91% (TotalPro f it, Column (1)) and 97.8% (ServiceQuality, Column
(2)). First, from an economic lens, we find that a unit increase in users’ mode choice flexibility (i.e.,
SubstitutionBoundary) leads to 0.2% less TotalPro f it for the fleet operator. Having users that are envi-
ronmentally friendly and are willing to pay a surcharge for more sustainable means of transport lead in
general to 2% more TotalPro f it. In fact, we find a significant interaction effect between PopulationType
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and SubstitutionBoundary. In case that the users are environmentally-friendly (i.e., θ = 1), a unit increase
of users’ mode choice flexibility (β ) leads to additional 2.4% TotalPro f it. We also identify that an unit
increase of β increases the ServiceQuality by 0.4%. Adopting the environmental lens, we show that
generally an increase in users’ mode choice flexibility β leads to an increase of EnergyConsumption.
However, again, we reveal that this pattern is moderated by PopulationType. If the PopulationType is
assumed to be more environmentally friendly (i.e., θ = 1) and more flexible in terms of mode choice, we
observe a system-wide reduction of 1.5% per unit increase of β . In summary, users mode choice flexibility
is only preferable for the operator and as a society if the users are also willing to switch from cheaper
(and presumably more comfortable) alternatives to more costly but sustainable means of transportation.

Dependent variables (log-transformed):
Economic Environmental

Total Profit Service Quality Energy Consumption

(1) (2) (3)

Substitution Boundary (β ) −0.002∗∗∗ 0.004∗∗∗ 0.008∗∗∗

(0.0004) (0.00003) (0.0001)

Population Type (θ ) 0.019∗∗∗ 0.001∗∗ −0.002
(0.006) (0.001) (0.002)

Sub. Boundary * Pop. Type (β ∗θ ) 0.024∗∗∗ 0.00004 −0.015∗∗∗

(0.001) (0.00005) (0.0001)

Constant 9.763∗∗∗ −0.218∗∗∗ 8.772∗∗∗

(0.004) (0.0004) (0.001)

Adjusted R2 0.914 0.978 0.970

Note: Sample Size N = 800 ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4. Regression results of substitution boundary (β ) and population type (θ ) on economic and
environmental performance metrics.

5 Discussion and Conclusion

This study investigates whether it is economically and environmentally worthwhile to engage in IS-
enabled interventions to foster green practices among users in a shared mobility context. We propose
a discrete-event and agent-based mobility simulation to model a multi-modal FFVS platform (supply)
and associated users (demand). We consider two important user characteristics to investigate whether
interventions are valuable. First, we examine users’ mode choice flexibility and pertaining substitution
effects. Second, we explore the users’ willingness to pay a green premium to rent more environmentally
sustainable vehicles. We, then, assess the impact of both user characteristics on multiple economic (i.e.,
profit, service quality) and environmental (i.e., energy consumption) metrics relevant to the fleet operator.
We calibrate our simulation environment using real-world rental transactions for shared kick scooters,
scooters, and cars from leading FFVS operators from Berlin, Germany. Overall, our work contributes to
the body of literature at the intersection of Green IS and urban mobility research. We do so by providing
a conceptual framework to simulate the behavior of shared mobility users, shared mobility operators,
and potential intervention mechanisms. In particular, our contribution lies in quantifying the impact of
promising user interventions on the profitability and environmental footprint of FFVS operators.

Our results reveal an important dilemma regarding the two user characteristics considered. We show that
increasing users’ mode choice flexibility and thus their willingness to substitute a vehicle is environmen-
tally detrimental as more users prefer vehicle choices that are generally cheaper (there are also other
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influencing factors such as traffic congestion and parking availability varied among different populations,
which are out of this work’s scope). In the current market environment with the current rental prices per
minute, a shared car is on average cheaper than a shared scooter for medium long distances, which are
the most probable trips with vehicle substitution, simply because a car can move faster, even considering
traffic time. Thus, if the users are still price-sensitive but more flexible in mode choice, this leads to more
rentals of cheaper vehicles that are more environmentally unsustainable. In total, significantly more energy
is consumed and more trips are conducted by shared cars. Economically, the total profit hardly changes
while service quality improves significantly. This means that with the current price schemes, and with
a high penetration of price-sensitive users, the fleet operators can only leverage the users’ substitution
effect to address more trips (higher acceptance rate), which on the other hand, reduces total profits and
increase environmental costs. Therefore, to positively affect the economic and environmental metrics, it is
significantly valuable to consider users’ substitution effect and characteristics as an influencing criterion
for a better price tariff design. However, we clearly observe that this picture flips once users are willing
to pay a surcharge to rent more environmentally sustainable vehicles. In total, substantially less energy
is consumed to meet users’ mobility demand as more and more users switch from shared cars to other –
less detrimental – vehicle types. These findings corroborate similar studies on the impact of introducing
MaaS platforms to foster unbiased mode choice decisions (Becker et al., 2020; Sochor, Karlsson, and
Strömberg, 2016). For the fleet operator, it is also attractive from an economic point of view to engage in
an incentive mechanism to encourage users to opt for more sustainable but also more expensive vehicles,
as the overall profit increases remarkably.

Our study has several implications for managers and researchers alike to understand the impact of user
characteristics on the economic and environmental performance of FFVS platforms. In light of growing
sustainability concerns, fleet operators should explore and employ different incentive regimes to steer
users’ mobility demand from unsustainable modes to more sustainable modes, even if the former are
momentarily more affordable. A convenient way to do this would be to display the energy consumption
of each mode for the requested trip. Another option would be to use nudging techniques by listing
the most sustainable modes first (Lehner, Mont, and Heiskanen, 2016; Seidel, Recker, and Brocke,
2013). In addition, operators could adjust current rental prices by internalizing the externalities incurred,
ultimately making the more sustainable vehicles more affordable (Cramton, Geddes, and Ockenfels,
2018). Scientifically, our present findings have important implications for designing IS artifacts to manage
users’ demand in urban mobility research (e.g., Hevner et al., 2004). From a theoretical point of view,
our simulation-based evidence contributes to a deeper understanding of configurations of socio-technical
systems (Bostrom and Heinen, 1977; Leavitt, 1965). To be more precise, urban mobility systems constitute
a socio-technical system whose configuration depends on different constituents such as the available
vehicles and the user characteristics (Canitez, 2019). Our study widens the current understanding of the
impact of the aforementioned constituents on economic and environmental measures for businesses and
society. It motivates the IS community to develop and test actionable intervention mechanisms.

Our research does not come without limitations. The current mode choice model incorporates only the
travel distance, as recent research shows that this factor is most decisive. In the future, we will integrate
other factors, like the time of day, trip purpose, number of passengers, and the environmental impact
of each mode to better reflect the users choice behavior. Going further, we assume that the user has
frictionless access to different mobility platforms and has near-perfect information about their trip options,
namely which vehicles are available nearby, which vehicle is more sustainable, and which is cheaper.
However, this assumption is indeed largely justified in the near future given the proliferation of Mobility-
as-a-Service apps, such as Google Maps, FreeNow, or Urbi. Furthermore, in the current study we assume
that we can effectively influence the user’s willingness to pay a green surcharge and user’s mode flexibility
with the help of IS-enabled incentive systems. Future work, however, must clarify how such incentive
systems should be designed and assessed their efficacy. Last, we invite other scholars to replicate the
research work utilizing data from other regions to corroborate the generalizability of our findings.
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