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Abstract
Methods and software components for developing novel IT solutions based on artificial intelligence (AI)
technology are broadly available to organizations of any size. However, as AI typically requires large
amounts of data, smaller organizations are at a disadvantage compared to large competitors as the
latter often have more training and test data at their disposal. Collaboration and data sharing between
multiple smaller actors might offer a solution to this issue, but also poses a potential risk to privacy and
confidentiality. Our research considers the concept of federated learning, which enables collaborative
training without exchanging the actual data. Still, the benefits of value co-creation within federated AI
ecosystems are unclear. To shed light on this topic, we present a data-driven analysis using the example of
sales forecasting in retail. We show that three types of benefits can be expected in federated AI ecosystems,
namely collaboration, privacy preservation, and generalizability.

Keywords: Federated Learning, Value Co-creation, AI Ecosystem, Deep Learning.

1 Introduction

Artificial intelligence (AI) has a steadily increasing influence on our everyday life (Schmidt et al., 2019).
This holds, among others, for the retail sector (Grewal et al., 2021; Guha et al., 2021), where consumer
products can nowadays easily be ordered by talking to a voice assistant, smart recommender systems
suggest suitable complementary products, and chat-bots provide adequate answers to any detailed question
about a specific product type. The proliferation of AI in the retail industry is expected to continue in
the years to come due to the rich potential for both new market entrants and well-established companies
alike to shape and boost their competitive position (Grewal et al., 2017; Guha et al., 2021; Jöhnk et al.,
2021). A recent report from McKinsey & Company (Chui et al., 2018) indicates that the use of the more
sophisticated deep learning (DL) technologies as opposed to rather traditional AI technologies will further
increase the added value by an estimated 87%.
However, despite this economic potential, some retailers shy away from using advanced DL technologies
(Mahmoud et al., 2020; Oosthuizen et al., 2021; Shankar et al., 2021), which may be attributed to multiple
reasons. Besides the sheer complexity and lack of immediate interpretability of the generated models
(Adadi and Berrada, 2018; Oosthuizen et al., 2021; Samek and Müller, 2019), DL also requires large
amounts of data to achieve high-level performance if trained from scratch (Bengio et al., 2017; Najafabadi
et al., 2014). This may become particularly difficult for small and medium-sized enterprises (SMEs)
which, regarding the availability of sufficient heterogeneous data, are often at a disadvantage compared to
their larger competitors when it comes to training a data-hungry DL model (Bauer et al., 2020; Ulrich
et al., 2021). The issue of insufficient data for training and testing may ultimately lead to a competitive
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disadvantage for retailers that do not have rich and accessible data pools at their disposal or even turn
into a showstopper for new entrants. Against this backdrop, the collaboration of multiple companies
through data sharing seems like a promising remedy. However, as data sharing may pose a severe data
fraud risk and violate data privacy rights, many companies are reluctant to collaborate with others in their
DL projects (Mahmoud et al., 2020; Sheller et al., 2020).
The emerging concept of federated learning (FL) promises to mitigate these risks (McMahan et al.,
2017). FL denotes a new machine learning (ML) approach where a central service provider connects and
coordinates multiple data owners (e.g., companies) in the joint training of a large DL model through the
exchange and aggregation of just the estimated model weights but not the underlying raw data (Kairouz et
al., 2021). Thus, FL enables decentralized and collaborative training of a DL model in a privacy-preserving
manner without the exchange of the actual data (Kairouz et al., 2021; Sheller et al., 2020). In addition,
due to its emphasis on collaboration, FL opens up avenues for the creation of federated AI ecosystems
to jointly solve DL tasks and improve the DL models and to ultimately create an added value for all
participants in the ecosystem (Röder et al., 2021). Drawing on literature regarding the service-dominant
logic and service innovation further substantiates the idea of leveraging federated AI ecosystems because
value originates from the utilization and recombination of operant resources (e.g., knowledge) from
multiple entities (Vargo and Lusch, 2004, 2008; Vargo et al., 2008). Furthermore, innovations do not
emerge from isolation but rather from collaboration (Lusch and Nambisan, 2015). Therefore, participating
in a federated AI ecosystem holds the potential for SME retail companies to sustain or regain their
competitiveness and satisfy customers through new and innovative products and services.
Nevertheless, the design of an ecosystem—especially a federated AI ecosystem—can be very complex
and challenging by itself as it involves a number of various structural, architectural and strategic decisions
on multiple levels (Adner, 2017; Lusch and Nambisan, 2015). It is hence essential for both—researchers
and practitioners—to be aware of the types of benefits expected from value co-creation within federated
AI ecosystems and how these values relate to a participating company’s size (Lusch and Nambisan, 2015).
However, to the best of our knowledge, there are hardly any studies examining the possible business
benefits of federated AI ecosystems, particularly in a retail context. Such research could assist practitioners
in deciding whether it is worthwhile to establish or participate in a federated AI ecosystem and at the
same time open up promising avenues for further research regarding the actual design of federated AI
ecosystems.
To address this gap in the literature, our research investigates the value provided by federated AI ecosys-
tems by the example of the retail industry. For this purpose, we compare three different types of models,
namely a federated learning model, a centralized model, and multiple isolated models to solve a highly
relevant AI task in the retail sector—the prediction of future sales for multiple retail stores (Ali, 2013;
Huang et al., 2014; Na et al., 2019). Thereby, we aim to answer the following research question:

RQ Which types of value are created for retail companies participating in a federated AI ecosystem for
joint sales forecasting?

Therefore, in the following sections, we first cover the conceptual foundations of our research and hereafter
review related studies regarding FL in the area of the retailing industry and FL ecosystems to highlight
the research gap. Subsequently, we describe our methodology along the principles put forward by Müller
et al. (2016) for conducting a data science study to answer the formulated research question. Finally, we
conclude our study and give an outlook on future research avenues.

2 Conceptual Foundations

2.1 Ecosystems

The ecosystem concept has its roots in biology, but was later transferred to the management and IS research
discipline. An ecosystem can generally be described as a set of parties that interact while being mutually
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dependent on each other’s capabilities in order to achieve a shared value proposition (Adner, 2017; Adner
and Kapoor, 2010; Lusch and Nambisan, 2015; Pappas et al., 2018). Service ecosystems in particular
originate from a service-dominant logic and provide the analytical basis for understanding how actors
co-create value (Lusch and Nambisan, 2015; Trischler et al., 2020; Vargo and Lusch, 2017). From this
perspective, the exchange of services rather than goods poses the foundation of any economic exchange
with services referring to the utilization of own resources (e.g., knowledge) for the creation of value for
oneself and others (Lusch and Nambisan, 2015; Vargo and Lusch, 2004, 2008; Vargo et al., 2015; Vargo
and Lusch, 2017). Based on this rationale, a service ecosystem can be described as a largely self-contained
and self-adjusting system consisting of loosely coupled actors that share a common institutional logic
with the goal to generate added value for themselves and each other through the exchange of services
(Lusch and Nambisan, 2015; Vargo and Lusch, 2014, 2016). To foster the exchange of services, Lusch
and Nambisan (2015) suggest service platforms as a means to simplify the interaction between individual
actors with their resources and thereby highlight the dual role of information technology as an operand
and operant resource to enable and form value co-creation respectively.

2.2 Federated Learning

The concept of FL was first introduced by McMahan et al. (2017) and can be broadly described as a ML
setting in which multiple parties (e.g., mobile devices or organizations) jointly solve a ML task without
sharing their sensitive data (Kairouz et al., 2021). To achieve this goal, the parties join forces under
the coordination of a neutral service provider (e.g., a university) to collaboratively train an ML model
(Kairouz et al., 2021). Hereby, the data of the individual parties remains privately with the respective
party and is not shared for training purposes (McMahan et al., 2017). To facilitate the learning task, the
service provider initiates a ML model which is shared with all participating parties (McMahan et al.,
2017). Subsequently, each party trains a local model based on private data to then send the model weights
back to the service provider (Kairouz et al., 2021; McMahan et al., 2017). Once the service provider
receives the local weights, they are aggregated to update the initially shared global model (McMahan
et al., 2017). Finally, the service provider shares the updated global model with the participating parties
and the process can be repeated all over again until an acceptable model performance is achieved (Kairouz
et al., 2021; McMahan et al., 2017).

3 Related Work

Regarding the objective of the present study (i.e., to identify the types of value created within federated
AI ecosystems by the example of the retail industry) related work can be broadly separated into two
streams: (i) research on the application of FL in retail and (ii) studies concerning value creation within
federated AI ecosystems. To collect the related literature, we conducted two literature reviews by loosely
following the guidelines put forward by Vom Brocke et al. (2009). From the initial (i) 471 and (ii) 762

hits respectively, we sort out publications that do not meet the formal (e.g., books and patents) nor
thematic requirements (i.e., (i) implementation in the retail sector; (ii) value creation within federated AI
ecosystems) to ultimately obtain just seven relevant research articles.
In terms of FL applications in retail Ahmed et al. (2021b) develop a DL model utilizing FL for customer
transaction classification for multiple domains (e.g., retail and healthcare). Similarly, Ahmed et al. (2021a,
2022) use the same DL model for collaborative customer clustering in commerce. Besides, Singh et al.
(2021) employ another DL-based model (i.e., BERT) to determine customer compliance through social
media data. However, when it comes to the evaluation, the aforementioned publications compare their

1 Google Scholar search on November 8, 2021: intitle:"federated learning" AND "retail“
2 Google Scholar search on November 8, 2021: “federated Learning” AND ("ecosystem" OR "ecosystems") AND (“value
creation” OR "value co creation" OR "value co-creation")
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respective models against other FL approaches, disregarding the added value compared to local approaches.
Nevertheless, Singh et al. (2021) additionally report on the model performance in relation to a centralized
model, revealing a slightly inferior performance of the FL approach.
Regarding value creation within federated AI ecosystems, we find this research stream to be in its infancy.
This view is supported by the literature predominantly pointing towards the use of FL both inside and
across enterprise boundaries to collaboratively build federated AI ecosystems (Fink et al., 2021; Röder
et al., 2021). While the first-mentioned article is concerned with a rather conceptual view regarding
the benefits of industrial AI ecosystems (Fink et al., 2021), the latter is directed towards federated AI
ecosystems driven by edge intelligence in particular (Röder et al., 2021). In contrast, Idé and Raymond
(2021) focus on blockchain and FL-based platforms for value and insights creation.
In sum, our review of the literature indicates that a significant research gap still exists regarding the
benefits in terms of value generated through a federated AI ecosystem in general and in a retail context in
particular. Consequently, the following sections focus on these benefits in more depth.

4 Research Approach

To address our research question, we conduct a data-driven sales forecasting in the context of the retailing
industry. For the sake of transparency and reproducibility, we employ the methodology proposed by
Müller et al. (2016) since these guidelines ensure traceability when carrying out data science projects
within the field of information systems research. The steps comprise the phases of setting the research
goals by anchoring the endeavor appropriately, (5.1) collecting the necessary data, (5.2) conducting the
actual analysis, and (5.3) interpreting the results. Figure 1 illustrates this proceed.

Figure 1. Research Approach in a Nutshell (based on Müller et al. (2016)).

To begin with, Müller et al. (2016) recommend adequately aligning the project with the central research
question. As we are concerned with the analysis of the value of federated AI ecosystems on the retailing
industry as opposed to rather traditional DL setups, we choose to compare three different types of
setup scenarios—namely, (i) centralized, (ii) isolated, and (iii) federated. Through this, we firstly aim
to elaborate on the value of privacy preservation by comparing (i) and (iii). Moreover, we highlight the
value of collaboration within the scenario (iii), that is, the federated AI ecosystem opposed to the scenario
(ii). Lastly, we investigate the associated generalization potential through collaboration (i.e., scenario
(iii)) compared to no participation whatsoever (i.e., scenario (ii)). To this end, we make use of a publicly
available dataset—again for the purpose of reproducibility—with historic sales data from multiple retail
stores (cf. Section 5.1) to finally predict future sales for the upcoming month. However, prior to the
actual analysis, we prepare the dataset through an extensive data cleansing phase (cf. Section 5.2.1) by
rectifying the effects of previous extraordinary events (Fildes et al., 2006). Deeply interwoven with this
step is the subsequent explanatory data analysis (5.2.2) which aims to better understand the data at hand
(Tukey et al., 1977). Now, with the objective of comparing the various scenarios outlined above, we train
multiple predictive DL-based models accordingly (cf. Section 5.2.3). Regarding this, we provide detailed
information on the data partitioning for the various setups, the algorithms, and evaluation metrics were
chosen to finally present the evaluation results obtained. Lastly, we interpret these results to shed light on
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the value added to the retail companies through collaboration within federated AI ecosystems (cf. Section
5.3).

5 Retail Case Example

5.1 Data Collection

In the retail sector, companies increasingly hold records about past sales. This data is frequently used
to predict future sales and thereby fulfill demand timely without overfilling warehouses. However, this
data is highly sensitive and critical to competition (Clifton and Marks, 1996). In addition, the DL-driven
models to be investigated in the subsequent case example require large amounts of data for training.
As a consequence, there is a scarcity of adequate data in the retail industry to conduct transparent and
reproducible research. One publicly available dataset, however, provides sufficient data and is therefore
well-suited for the overall research goal of this analysis. To be more precise, we use the openly accessible
sales data supplied by the 1C Company data on Kaggle3. The dataset comprises sales data from 60
different retail shops covering 34 months from January 2013 to October 2015, totaling more than 2.9
million store-to-item sales pairs. In addition, further information about the items (e.g., name, category,
and price), as well as the names of the stores are available.

5.2 Data Analysis

5.2.1 Data Cleansing and Preparation

In order to ensure data and model quality alike, an important step is to analyze the data for errors and
inconsistencies (Rahm and Do, 2000; Zhang et al., 2003). Therefore, we conduct a preliminary descriptive
analysis (cf. Table 1), which reveals that the dataset contains 7,356 negative item sales (e.g., returns) and
3,414 rather high daily item sales in single stores. Since we are only interested in predicting future sales,
we omit these negative values. In addition, regarding the latter rather high values up to 2,169 item sales, it
seems striking that the 99.9-th percentile equals 20. This is why we choose to omit all values above this
percentile to finally obtain the cleaned up version of the dataset (Hodge and Austin, 2004). As mentioned
before, our goal is to predict the monthly item sales at the store and item level. For this purpose, we sum
up the monthly sales counts per item and shop for a more aggregated version of the data.

Statistic Minimum Median Mean Maximum Variance Skewness Kurtosis
Value -22.0 1.00 1.24 2169 6.85 272.83 177,477.79

Table 1. Descriptive Statistics.

5.2.2 Exploratory Data Analysis

To gain a deeper understanding for the aggregated data, we conduct an exploratory data analysis (Tukey
et al., 1977). Therefore, we first explore the total item sales (cf. left-hand side of Figure 2). As a result, we
found that monthly sales are subject to fluctuations and reach the annual peak around Christmas time.
In addition to this annual trend, item sales continuously decrease over time which may be caused by the
Russian economic crisis during this time span (Viktorov and Abramov, 2020). As these results indicate,
overall item sales are influenced by both seasonality and trends. Thus, we decompose the time series to
further investigate these effects for the item sales. The right-hand side of Figure 2 reveals that seasonality
accounts for 2,060.31 of monthly item sales on average, while the underlying long-term sales trend is
negative.

3 Available at: https://www.kaggle.com/c/competitive-data-science-predict-future-sales
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Figure 2. Overall and Decomposed Time Series for Item Sales.

By analyzing the sales on shop-level—with a few notable examples given in Figure 3—we find the total
and monthly sales to differ extremely. Another remarkable aspect not depicted in Figure 3 is the rather
high difference regarding the number of unique items per store.
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Figure 3. Monthly Sales per Shop.

Since not all shops did seamlessly record sales, we can broadly distinguish between three groups of stores.
The first set of shops comprises of sales data over the total period of observation. We therefore refer
to these shops as consistently open. The second group (i.e., closed shops) refers to stores with a lack
of sales data at some point in the recording period until its end. Moreover, some shops only sold items
during a specific time span. Thus, we assigned these stores to this group as well. Contrary, some shops
just started recording item sales within the investigation period. We therefore declare these incidents
as recently opened stores. Lastly, we notice some shops recording product sales for a certain period,
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followed by no sales for another one, only to have sales resumes afterwards. Based on this, we regard
these stores as temporally closed (e.g., due to a major shop renovation), which is why we include them in
the group of recently opened stores. The following Table 2 provides an overview of the number of shops
per group—each with an average for the number of monthly items and unique items sold.

Shop Group # Shops Mean Monthly Sales Mean Monthly Unique Sales
Constantly Opened Shops 32 2,275 1,042
Closed Shops 16 2,469 1,131
Recently Opened Shops 12 1,725 783

Table 2. Overview on Shop Groups.

A further examination of Figure 3 also demonstrates that across the entire observation period, some
stores (e.g., store 25) consistently generated significantly higher sales than others (e.g., store 56). This
suggests that—solely based on total sales—the stores may also differ significantly in their sizes. Since
the total amount of sales is a popular and suitable proxy to infer the company size (Dang et al., 2018),
we can divide the shops into three categories in terms of size. It is important to note that we only use the
constantly opened shops for this purpose, as the lack of sales data for the other two shop groups (cf., Table
2) may lead to distortions (Dang et al., 2018). The first shop-size category consists of eight small shops
with up to 43,291.50 total sales (i.e., 25.0-th percentile), whereas the eight large shops can each record a
remarkable amount of more than 66,822.0 total sales (i.e., 75.0-th percentile). For the remaining 16 stores,
the total number of sales remained within the 25- to 75-percentile range, so we grouped them as medium
size stores. Table 3 provides further information regarding the sales distribution within the three shop-size
groups. However, the minimum and maximum sales values indicated within a group do not necessarily
meet the mentioned limits, as these were estimated based on the total sales of all constantly opened shops.

Shop Size Group # Shops Minimum Sales Mean Sales Maximum Sales
Small Shops 8 26,386.00 35,951.50 41,244.00
Medium Shops 16 43,974.00 54,443.87 66,414.00
Large Shops 8 68,046.00 121,745.25 234,274.00

Table 3. Overview Shop Size Groups of Constantly Opened Shops.

5.2.3 Model and Evaluation Setup

For the purpose of model evaluation, the choice of appropriate metrics is crucial (Gneiting, 2011).
Regarding univariate time series forecasting, we can choose from a wide range of error-based measures.
These include but are not limited to scale-dependent squared and absolute measures as well as scale-
independent percentage measures—each with its respective advantages and disadvantages (Gneiting,
2011; Hyndman and Koehler, 2006). As the dataset under investigation contains rows with zero item sales,
percentage-based metrics like the mean absolute percentage error are not suitable (Hyndman and Koehler,
2006). Contrastingly, the frequently employed scale-dependent error measures do not suffer from this
disadvantage and are highly useful for the performance comparison of various methods (Hyndman and
Koehler, 2006). Against this backdrop, we opt for two of these scale-dependent measures—namely, mean
absolute error (MAE) and root mean squared error (RMSE). The metrics are accessed as follows:

MAE = (
1
n
)

n

∑
i=1

|yi − xi|

RMSE =

√
1
n

n

∑
i=1

(xi)2
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Here, yi represents the prediction for the i-th instance whereas xi is the true value in this respect. The
variable n stands for the total number of instances i to be compared.
As for the model deployed, time series forecasting tasks are increasingly facilitated by DL models.
Among the rather popular models are convolutional neural networks (CNNs) and long short-term memory
networks (LSTMs) since these models are capable to efficiently deal with noisy time series data (Fawaz
et al., 2019; Livieris et al., 2020; Wang et al., 2017; Xue et al., 2019). Whereas CNNs are known for
learning local trend features, LSTMs can capture long term dependencies (Xue et al., 2019). By combining
both models, some authors like Livieris et al. (2020) demonstrated superior performance for time series
predictions. Accordingly, we adopt the second CNN-LSTM type proposed by Livieris et al. (2020) for
this study.
In order to explore the value created by federated AI ecosystems and thereby address the initially
formulated research question, we train multiple CNN-LSTM models for the previously described sce-
narios—namely, (i) centralized, (ii) isolated, and (iii) federated—to evaluate their global, local and
generalized predictive performance (Ek et al., 2021). Before training the models, we select the constantly
opened shops (cf. Table 2) to then split this subset into a training (i.e., month 1 until 32), validation (i.e.,
month 2 until 33) and holdout set (i.e., month 3 until 34) to prevent information leakage (Hastie et al.,
2009; Shmueli and Koppius, 2011). Thereby the last month of each set respectively represents the target
value. In addition, to access the generalized predictive performance of the models, we employ the subset
of the recently opened shops as a holdout-generalization set. Here, it should be noted, that we only use
stores with item sales records that encompass more than just one month.
Since the training and evaluation setup for FL models can be thoroughly complex (Ek et al., 2021), we
further elaborate on this in more detail in the following to ensure transparency. For all the models created,
we use the Adam optimizer (Kingma and Ba, 2014)—even as the server optimizer for the FL model
(Reddi et al., 2020).
Centralized Training. We train the centralized CNN-LSTM on the combined training set of all constantly
opened shops over 50 epochs with a batch-size of 32. To access the predictive performance before the
final evaluation, we monitor the model’s performance for the combined validation set. Moreover, to
prevent over-fitting, we employ the model’s loss for the validation-set as an early stopping criterion. The
centralized model converges after 24 epochs.
Isolated Training. To obtain the isolated models, we train a CNN-LSTM model for every shop from
the constantly opened shops subset in separation given its respective training set—again over 50 epochs
with a batch-size of 32. Likewise, we monitor the validation loss as described previously and utilize an
early stopping rule to prevent over-fitting. Consequently, we receive 32 local models, which on average
converge after 11 epochs.
Federated Training. As generally the case for FL, we set up a simulation environment consisting of
one FL service provider and 32 locally dispersed clients (one per constantly opened shop)—with each
one taking hold of its data to thus maintain privacy (Ek et al., 2021; Kairouz et al., 2021). The federated
CNN-LSTM is subsequently trained collaboratively for 50 global rounds based on the aggregated model
updates—weighted by the clients data quantity—from five local learning epochs per client. Once more,
we use a batch size of 32 and monitor the loss for the validation set. Since FL models opposed to local
models naturally require more time to converge (e.g., due to additional global epochs) in order to achieve
good performance, we do not employ early stopping (Bonawitz et al., 2019). In line with this, the global
model takes up to 35 epochs to converge. As we are interested in the effects of the above models regarding
the global, local and generalizable predictive performance, we conduct three different types of evaluations.
These are explained in the following.
Global Evaluation. Through this, we want to determine whether a FL model is capable to provide
accurate global predictions. Furthermore, we want to access the extant as to which trade-offs exist between
the (i) centralized and (iii) federated model. Hence, we evaluate these models performance for the test
dataset of all constantly opened shops.
Local Evaluation. The local evaluation contributes to understanding the value created by FL for already
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participating organizations in a federated AI ecosystem and also highlights the trade-off towards centralized
model training. To this end, we test the predictive power of the (i) centralized, (ii) isolated, and (iii)
federated models against the individual test data of every constantly opened shop in separation. Here,
each isolated model is benchmarked with its respective test data.
Generalized Evaluation. To assess the generalizability of the (i) centralized, (ii) isolated and (iii)
federated models, we access their performance for the recently opened shops. Similarly to the local
evaluation, each model is compared to the individual data per shop. Thereby, we highlight the value
created through FL for new participants.

Evaluation Setting Model RMSE MAE

Global Evaluation
Centralized 0.61 0.17
Isolated NA
Federated 0.62 0.20

Local Evaluation
Centralized 0.56 ± 0.13 0.16 ± 0.04
Isolated 0.61 ± 0.14 0.21 ± 0.05
Federated 0.57 ± 0.14 0.20 ± 0.04

Generalized Evaluation
Centralized 1.19 ± 1.11 0.47 ± 0.51
Isolated 2.21 ± 1.09 1.46 ± 0.67
Federated 1.21 ± 1.13 0.50 ± 0.51

Table 4. Evaluation Results.

According to the evaluation results (cf. Table 4), we find that the centralized model outperforms the other
two for every evaluation setting. In terms of the global evaluation, the centralized model achieves an
RMSE of 0.61 and is thereby slightly better compared to the federated model with 0.62. Note that the
MAE values are shown for completeness purposes only as they do not represent the main evaluation
criterion since we are searching for a reasonable prediction performance for outliers. Now, regarding
the local evaluation setting, the centralized model again is barely better than the federated one with an
mean RMSE of 0.56 opposed to 0.57. Likewise, the centralized model produces the least errors for the
generalized evaluation setting. At first glance, it seems as if the models over-fit in the context of the
generalized evaluation setting. Thus, we encourage to take a deeper look into the spread between the
prediction errors. Consequently, we closely examine the descriptive statistics regarding the RMSE for
each model in the following (cf. Table 5).

Evaluation Setting Model Minimum 25 % quantile Median 75 % quantile Maximum

Local Evaluation
Centralized 0.38 0.46 0.55 0.59 0.96
Isolated 0.42 0.51 0.59 0.64 1.01
Federated 0.37 0.47 0.57 0.59 0.99

Generalized Evaluation
Centralized 0.51 0.55 0.61 1.16 3.98
Isolated 0.48 1.68 2.28 2.67 4.45
Federated 0.52 0.56 0.60 1.19 4.06

Table 5. RMSE Distribution Generalized and Local Evaluation.

In this respect, we find the median RMSE values for the centralized (i.e., 0.55) and federated model (i.e.,
0.57) to be approximately on the same level compared to the local evaluation. This allows us to conclude,
that these models do not over-fit within the generalized evaluation setting. This also holds for the other
statistics provided with the above table for these models. As for the isolated model, however, we notice
a significant difference compared to the other two models—with the exception of the minimum value.
Furthermore, we recognize a slightly lower median RMSE value for the federated model compared to the
centralized model.
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In summary, our results attribute superior performance to both—centralized and federated models—over
the once trained in isolation. Additionally, we recognize a drastically worse forecasting capability for the
local models opposed to the others with regards to recently or reopened shops. Counter to shops with
small amounts of historical sales data, the centralized and federated models especially provide outstanding
performance.

5.3 Result Interpretation and Discussion

According to Müller et al. (2016), the interpretation of the results represents the final step in a data science
project. For this purpose, we now discuss our findings in light of existing theory and literature. We start
with explaining the (i) value of privacy preservation. In the centralized setup, all data must be transferred
and accumulated for global model training, whereas in the context of the FL setup the data are kept by the
sovereign owners (Kairouz et al., 2021; McMahan et al., 2017; Yang et al., 2019). Bearing in mind the
potential harm associated with open data sharing (Hann et al., 2007), FL offers a possible solution to data
holders. However, as FL may affect the overall predictive performance, one has to carefully evaluate the
worthiness of such an approach. In our study, we find the performance differences between the federated
and centralized setups of being marginal (cf. Table 4). As these results are in line with previous work (e.g.,
Idé and Raymond (2021), McMahan et al. (2017), Sheller et al. (2020), and Yang et al. (2019)), we deduce
that there is a performance trade-off between centralized and federated approaches based on privacy
preservation. Consequently, the value of privacy preservation for parties within federated AI ecosystems
can be determined by this trade-off through RMSE median comparison for example (cf. Figure 4). In this
regard, according to the local evaluation, we can conclude that the value of privacy preservation accounts
for a deviation of 2.09% of the median model performance.

Figure 4. Values of Co-creation within Federated AI Ecosystems.

Next, we investigate the (ii) value of collaboration. The concept of FL is based on the idea, that multiple
parties jointly solve a ML task, whereas in an isolated approach each party pursues this task on its own
(Kairouz et al., 2021; McMahan et al., 2017; Sheller et al., 2020). Based on literature on value co-creation
in the information systems research domain, a collaboration is successful if it is able to produce a specific
outcome (Kotlarsky and Oshri, 2005). Since FL enables to collaboratively train a global model, we argue
that the model is successful if it outperforms the local instances (Bogdanova et al., 2020). Regarding our
analysis, we find the federated model to clearly overtake the isolated models on average (cf. Table 4),
which again is consistent with previous related research (e.g., Sheller et al. (2020)). Thus, we infer that a
federated AI ecosystem also holds a value of collaboration, which is also depicted in Figure 4 and results
in a median model performance difference of 4.32% for our example.
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Lastly, we shed light on the (iii) value of generalizability. In general, DL models require a vast amount
of data in order to achieve generalizability (Sandfort et al., 2019). In this regard, the principle of FL is
based on implicit data utilization, whereas the isolated models can only rely on their respective dataset.
Following the literature on the service-dominant logic through an ecosystems perspective (Lusch and
Nambisan, 2015; Vargo and Lusch, 2004, 2008; Vargo et al., 2015; Vargo and Lusch, 2017), which
ascribes a dual role to each actor in an ecosystem (i.e., consuming and producing), we argue that a FL
model can benefit from the shared knowledge (i.e., in the form of model weights) through the inclusion of
new clients while these clients in turn benefit equally from the FL model. In this context our study reveals
that the federated setting provides a better generalization performance for completely new retail shops
in comparison to the isolated models (cf. Table 4). This behavior corresponds to the results of Ek et al.
(2021). We therefore conclude that a federated AI ecosystem further holds the value of generalizability
for both—the ecosystem itself and new participants. Again, this value can be measured by comparing the
performance gap between the federated and isolated approaches based on the median RMSE prediction
errors, which turns out to be quite impressive by a difference of 280% (cf. Figure 4).
In this context, it is of particular interest to examine how these values—namely, the value of privacy
preservation, the value of collaboration and the value of generalizability—relate to the size of a company
(cf. Table 3). In our example, the federated averaging algorithm used to aggregate the client updates
employs a weighting based on the data quantity used for training (McMahan et al., 2017). Thus, we
assume that the proposed values within federated AI ecosystems are equally tied to the store size, as the
model is more adjusted to the stores that provide more data for the training procedure. With this in mind,
we now examine the results of the local evaluation at the shop size level (cf. Figure 5). We find that the
value of privacy preservation decreases slightly with increasing company size (i.e., median performance
difference: small shops 2.83%, medium-sized shops 2.39% and large shops 2.12%). This indicates that
smaller companies may face a greater privacy-performance trade-off by participating in a federated AI
ecosystem opposed to larger companies. With regard to the comparison between isolated and federated
model training, the value of collaboration does not increase linearly with the shop size. Interestingly,
although the median performance delta between medium-sized shops (i.e., 6.52%) and large shops (i.e.,
6.94%) is rather small, a considerable drop can be observed for the small shops (i.e., 4.25%). Accordingly,
it is evident that larger as well as medium-sized companies obtain a greater value of collaboration. Hence,
this value is comparatively limited for small companies in the federated AI ecosystem. Therefore, we
conclude that the values a company can derive directly from participating in a federated AI ecosystem
(i.e., privacy preservation and collaboration) depend on the resources (i.e., data) the company itself is
willing or able to contribute to the ecosystem.

Figure 5. Value of Privacy Preservation and Collaboration per Shop Size.

Regarding the value of generalization, Figure 6, in contrast, depicts a different picture. Accordingly,
the participation of small shops in a federated AI ecosystem yields to an astonishing generalization
performance gain of 627.20%, while the performance gains for large shops are similarly remarkable with
302.90%. Interestingly, the performance increases for medium-sized companies are comparatively low at
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64%. Thus, we draw the conclusion, that the benefit for a company from participating in a federated AI
ecosystem may not solely be determined by the resources (i.e., data) it can contribute to the ecosystem.
Since medium-sized companies represent half of the stores in our sample, whereas small and large stores
each represent a fourth (cf., Table 3), we presume that the value of generalization for a company may
be determined by its disparity from the prevailing client characteristics and data distribution within a
federated AI ecosystem.

Figure 6. Value of Generalizability per Shop Size.

6 Conclusion and Outlook

Advanced DL technologies offer great potential for organizations and evermore outperform the rather
traditional AI methods (e.g., ML). However, to fully unleash this value, DL algorithms require vast
amounts of data in the first place to achieve a sufficiently high performance. Since companies—especially
SMEs or novel market entrants—do not possess such rich data resources, the promised value associated
with DL often remains untapped. This disadvantage may have far-reaching consequences and could
ultimately diminish or even take away the market position of these companies. One way to counteract
this adverse scenario for companies is to collaborate by data sharing. Yet, due to privacy concerns,
this approach is rarely chosen. Therefore, this article highlights the emerging concept of FL to provide
organizations with the option to collaboratively train DL models through weight sharing (i.e., the federated
AI ecosystem) without the sacrifice of privacy violations. Because the setup and coordination of such a
system can be thoroughly complicated, it is crucial for responsible decision-makers to communicate the
expected benefits accordingly—which are as yet largely unclear. Therefore, we investigate these effects
for the case of a multi-store retailer predicting item sales. As a result, we identified three kinds of values,
namely collaboration, privacy preservation, and finally generalization and demonstrated how these values
are tied to the size of a company.
Regarding the limitations, first and foremost the present analysis is dependent on the specific implemen-
tation, that is the use case (i.e., retail dataset), preprocessing steps, algorithms, evaluation metrics, DL
model architecture, and FL averaging method. Emphasizing the latter point, a different weighting policy
(e.g., uniformly over all clients—opposed to data volume dependent) could lead to other results (Kairouz
et al., 2021). In particular, given the relationship between the value of collaboration and company size, it
seems reasonable to assume that a uniform weighting policy may boost small companies participating in
the federated AI ecosystem, whereas the opposite could be true for larger companies. In contrast, the value
of privacy-preservation reveals minor variations due to company size, which may also apply for different
weighting policies. Likewise, the value of generalizability may also be influenced by another weighting
policy and another server optimizer might change the forecast as well (Reddi et al., 2020). Furthermore,
the practical utility of federated AI ecosystems and its inherent value are limited by the training and con-
vergence time of the FL model. Since in our example the FL model requires the most epochs to converge,
there is a clear trade-off between convergence time and performance. This is particularly noticeable for
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the isolated models of small companies, as they benefit proportionally the least from participating in a
federated AI ecosystem—apart from generalizability— but require disproportionately more resources
(e.g., computational resources per training epoch) compared to isolated training. Therefore, despite the
generated values, participation in a federated AI ecosystem might not always be economically viable for
specific companies.
Despite the aforementioned limitations, our study holds valuable implications for both—researchers and
practitioners. With regard to the former, we connect the research streams of FL with the service-dominant
logic and ecosystems to explore the values created or co-created though the participation in a federated
AI ecosystem. Thereby, we contribute to the body of knowledge through three explored types of values
(e.g., the values of collaboration, privacy preservation, and generalization) and their association to the
companies size. In particular, we highlight that, both—the value of collaboration and the value of privacy
preservation—are positively influenced to the companies size, while the value of collaboration a company
can capture may be driven by it’s variation from predominant client sizes and data distributions within a
federated AI ecosystem. These values can easily be transferred to other domains and applications—aside
from the retail sector—to encourage participation within the context of a federated AI ecosystem. With
regards to the practical implications, we first attribute a high utility to FL for the task of sales forecasting
in retail. Here, the potentially complex process of administration (e.g., architectural decisions) can be
shifted to the central service provider and thereby lower the barriers to entry for new collaborators to the
federated AI ecosystem. Moreover, our analysis reveals, that companies of different size mutually benefit
from each other through the collaboration within an federated AI ecosystem, which makes it apparent for
practitioners that the joint formation in such ecosystems is a valuable and effective approach, regardless
the size of the company. In addition, we attribute high performance to CNN-LSTM models for time series
forecasting.
In conclusion, our paper opens up promising avenues for further research concerned with federated AI
ecosystems. To this end, we first want to encourage to investigate and verify the effects for other datasets,
domains (e.g., finance or healthcare) and likewise other tasks (e.g., fraud detection or predictive mainte-
nance). Second, since the performance of the FL model seems to decrease slightly on our generalization
data, the question arises how the inclusion of the respective additional clients may affect the overall
performance of a federated AI ecosystem. As this type of question is a prime example of the network
effects research stream (Economides, 1996; Katz and Shapiro, 1994; Kumar et al., 2021; Parker and
Van Alstyne, 2005), a fruitful future work could investigate how the total number of participating clients
or their respective data quality affect the values of a federated AI ecosystem. Thereby, such a research
could contribute to a deeper understanding regarding the interactive nature of value co-creation within a
federated AI ecosystem. Third, it is relevant to clarify what motivates or hinders companies to participate
in a federated AI ecosystem. To this end, future work grounded in qualitative or quantitative research
approaches could examine the factors that influence entrepreneurial decisions to adopt and participate in
such ecosystems. Furthermore, the questions of how to design an ecosystem and a platform respectively
to enable and enhance value co-creation through FL and the role of the service provider for the federated
AI ecosystem could be analyzed more in depth as well. In addition, it would be useful to investigate
how to design more appropriate metrics for performance comparison between centralized, federated, and
local models, since for example training times, resource utilization, and network-related factors may be
considered as well (Kairouz et al., 2021). Moreover, to overcome reservations on the client side due to a
lack of traceability regarding the FL models predictions, trust-enabling methods should be investigated
thoroughly—specifically for federated AI ecosystems as well.
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