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GENERALIZED REPRESENTATION OF
ELECTRONIC HEALTH RECORDS FOR
UNPLANNED HOSPITAL READMISSION

Research Paper

Sanjay K, Indian Institute of Technology Madras, India, t.k.sanjay@gmail.com

Nargis Pervin, Indian Institute of Technology Madras, India, nargisp@iitm.ac.in

Abstract

Unplanned hospital readmissions soon after a person is discharged indicate the poor performance
of the healthcare. Previous attempts of readmission prediction pose it as a binary classification
problem and largely ignore the previous history. This study proposes a novel neural network
architecture called Sequential Readmission Predictor with Multitasking (SRPM), to enhance the
existing readmission prediction models. We retain the previous admission history of a patient by
learning a latent representation for the patient, which could be used for every new admission by
the same patient. Our proposed model uses a multitask neural network model that simultaneously
models it as a binary classification problem and as a regression problem that predicts the exact
days of readmission. By doing so, the error information from the regression task augments the
classification task. The results show a promising improvement of up to 6.59% in AUCROC and
19% in F1 score over four benchmark methods.

Keywords: Electronic Health Record, hospital readmission, healthcare, multitask recommender.

1 Introduction

Advances in healthcare information systems have increased over the years worldwide. They
help improve the quality and efficiency of the healthcare system, enhance interactions between
patients and providers, and enable greater access to the latest advancements in treatments. A
major component of healthcare information systems is the Electronic Health Record (EHR). As
per U.S. Department of Health and Human Services, EHRs are real-time, patient-centered records
that make information available instantly and securely to authorized users. EHRs can contain a
patient’s medical history, diagnoses, medications, treatment plans, immunization dates, allergies,
radiology images, and laboratory and test results. The recent shifts in healthcare policy such as
The ACA have recommended health practices to focus on preventive care to improve the overall
health of the population (Wager, Lee, and Glaser, 2021). The work by Hillestad et al. (2005)
suggests that widespread adoption of EHR could lead to many health and safety benefits and
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could bring down the global healthcare costs by $81 billion annually. Evaluating risk assessment
of the patient, finding disease correlations, drug interactions, etc. P. B. Jensen, L. J. Jensen, and
Brunak (2012) are examples of important use cases where machine learning algorithms were
utilized on EHR data.
In this context, deep learning techniques are well suited to analyze high dimensional data that are
sequential in nature (e.g., text data, as order of words in sentences are important to determine
context), and the sequences are of variable length. Specifically, this proves to be extremely useful
to build models on EHR data where for every patient, there are varying lengths of medical records
like the list of diagnosis, medical procedures, and the drugs prescribed for the patient during their
stay. The pioneering work by Rajkomar et al. (2018) employs a deep learning technique to predict
inpatient mortality, readmissions, length of stay in the hospital, and discharge diagnosis.
A typical EHR record for a patient spans multiple tables and each EHR record is characterized by
high-dimensionality (14,000 diagnostic codes by International classification of diseases (ICD-9)),
temporality (variable length), and sparsity (they span across multiple tables and not every patient
has an entry in all the table) Cheng et al. (2016). Modeling such irregular high dimensional
data poses a significant challenge using popular modeling choices like XGBoost and LightGBM.
These methods ignore all the sequential information and consider only the patient’s admission
level statistic to predict the outcome. To tackle this issue, we propose a deep learning architecture,
where all the tables linked to each record of a patient’s admission are represented as an embedding
and fed to a final model that predicts the readmission probabilities.

2 Related work

Electronic health records are instrumental in enhancing patient care through health information
technology (Manga and J. Sun, 2020). The role of EHR in big data analytics is addressed in several
contexts, including that of clinical decision-making (Amarasingham et al., 2014; Wickramasinghe,
Moghimi, and Schaffer, 2017) and medication management (Hernandez and Yuting Zhang, 2017),
to predict diseases (Manias et al., 2018), specific applications in mental health (Hahn, Nierenberg,
and Whitfield-Gabrieli, 2017) and precision public health (Khoury et al., 2018). However, since
our objective is to predict the unplanned readmission probability, we have restricted the literature
to risk assessment, disease prediction, length of stay prediction, and unplanned readmission using
EHR data. The first work using neural networks to predict disease called Deep patient (Miotto
et al., 2016) arrive at a patient representation using a three-layer stacked autoencoder. Each
encoder finds a latent representation for the patient’s medications, diagnosis, and procedures. The
patient representation is then used as input to a random forest classifier, predicting the probability
of developing a future disease. Since this approach uses autoencoders that are unsupervised
models, the representation is more generic and is not focused on a particular task. Random forests
to predict the readmission probability are used by Deschepper et al. (2019) and Wong et al. (2021)
where they find the variable importance of the features. They have shown that diagnosis, drugs,
and procedures are the crucial factors in predicting readmission probability. While random forests
are better explainable than neural networks, their predictive ability is restricted to tabular data. A
CNN-based technique is presented in Cheng et al. (2016), where each patient is represented as a
longitudinal event matrix having time in the x-axis and ICD9 code for diagnosis in the y-axis.

Thirtieth European Conference on Information Systems (ECIS 2022), Timis, oara, Romania 2



Modeling EHR for Hospital Readmission

Three convolutional kernels are slid on top of each other, followed by a final fully connected
layer to arrive at the vector representation used for predictive modeling. This work, however,
does not consider the time difference between the events, which is essential to know if the events
have any relation in common. This is addressed in the paper by DeepR (Nguyen et al., 2017),
where each visit of a patient to a hospital is made of a set of ICD9 codes for diagnosis and
procedures. The ICD9 codes are then converted to embedding using Word2Vec. Thus, each visit
is made of a stack of vectors, and multiple such visits make a medical record. The time difference
between the visits is also provided as a vector. To learn a meaningful representation of the medical
record, a 1D CNN is slid on the stack, and the final vector obtained through max-pooling is used
to classify readmission. This representation, however, lacks patient-specific attributes like age,
gender, etc. To overcome this, an extension to DeepR was done by (Balan U, Gandhi, Rammohan,
et al., 2021) where static features of the patient like age, sex, ethnicity, etc. are given as input to
the last layer of the LSTM or CNN on top of sequential features like diagnosis and procedures
data. Although static features are critical, they do not have a sequential relationship between
themselves and therefore, feeding it as the last layer to an LSTM that takes sequential elements
may not give a maximum improvement in performance. To overcome this, we posit a model
where the output of the sequential representation using GRUs is concatenated with the static
feature representation would be beneficial. Multitask learning has been successfully applied in
mortality prediction Si and Roberts (2019) and Yu et al. (2019), implying that learning multiple
tasks is better than learning a single task. While Si and Roberts (2019) has the auxiliary task of
predicting mortality at different periods (after six months, one year, etc.), Yu et al. (2019) uses the
auxiliary task as predicting a sequence of critical physiological measurements within the first 24
hours of admission. The secondary tasks in both works are not very closely related to the primary
tasks, which may not result in maximum improvement in primary task performance. We address
this by having the secondary task as predicting the exact days of readmission after discharge,
which complements the primary task of readmission prediction within 30 days.

3 Dataset Description and preprocessing

We used the freely available de-identified health-related dataset MIMIC III, which contains the
clinical data of 58,976 admissions of 46,520 patients admitted to the Beth Israel Deaconess
Medical Center in Boston, Massachusetts, between 2001 and 2012. Out of all the patients, 7537
patients had been readmitted more than once, making the average readmission rate 1.27 per patient.
Since only 16.2% of the patients were readmitted, highlighting that the dataset is imbalanced
towards the task at hand, we bootstrapped the records of readmitted patients to match those who
were not readmitted. The MIMIC dataset is normalized across multiple tables, and we used four
important tables: the admissions, diagnosis, procedures, and prescriptions. The admissions table
is the main table that contains patients’ features like gender, age, date of admission, and discharge.
As each feature can take a single value for a patient admission, we call them static features. The
diagnosis, procedures, and prescriptions tables contain the sequence of diagnosis, procedures,
and prescriptions undergone by the patient admission, and so we call them sequential features.
The subsections below go through the preprocessing steps for each of them.
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Static Features Description
Subject ID Identifier for a patient
Admission ID Identifier for an admission
Age Age of the patient (D)
Duration Difference between the time when patient was admitted and dis-

charged in hours (D)
Total Duration Sum of all previous admissions in hours (D)
Previous admissions Count of all previous admissions (D)
Admission type Describes the type of the admission: ‘Elective’, ‘Urgent’, ‘Newborn’

or ‘Emergency’
Admission location Previous location of the patient prior to arriving at the hospital. It

can take one of 9 possible values
Discharge location Location at which patient is discharged. It can take one of 17 possible

values
Insurance It can take one of 5 possible insurance options
Language Native language of the patient. It can take one of 75 possible values
Marital status It can take one of 7 possible values.
Ethnicity It can take one of 41 possible values
ICU duration Difference between the time when patient was admitted in ICU and

discharged from ICU in hours (D)
Disease Indicates the type of disease. It can take one of 15691 possible

values.
Expire flag Indicator for patient died

Sequential Features
Prescriptions National Drug Code for the drugs sequence prescribed to the patient.
Diagnosis ICD9 code for diagnosis sequence
Proceedures ICD9 code for Proceedures sequence
(D) - Derived features

Table 1. Static and Sequential features of a patient

3.1. Static features

Each record of the admissions table contains a unique admission ID used to connect with the
other three tables. From the static features in the admission table, we did feature engineering
to arrive at derived features, which are listed in Table 1. Since the disease column that lists
the type of disease has a cardinality of 15691, it is encoded using both one-hot encoding to
get a sparse representation and an embedding layer to get a dense representation. The sparse
representation is used to memorize certain combinations whereas the dense representation is used
for generalization. All other categorical variables have low cardinality and are one-hot encoded,
and numerical variables are standardized.
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Sample Input

Patient_id Admission_id Duration Total dura-
tion

Prescriptions Diagnosis Proceedures

55357 119355 857 518 641039425 V3401 9390
63323038810 769 9915

Previous
admissions

Admission
type

Admission_location 338002304 9992 966

2 Urgent Phys referral 517293025 7742 9983
74978901 7793 9955

Discharge loca-
tion

Insurance Language Marital_status 63323022110 76518

Home health
care

Private English Married 641039425 77081

87036503 V502
Ethnicity ICU dura-

tion
Disease Expire_flag 87040303 V290

Black/African
American

52 Laryngeal
Edema

0 V053

6910
Sample Output

Readmission Probability Exact days of readmission
0.15 92

Table 2. Sample input and output

Statistic Value
# Mean diagnosis per admission 11.03
# Mean procedures per admission 4.59
# Mean drugs administered per patient admission 82.77
# Unique ICD9 codes for Diagnosis 6984
# Unique ICD9 codes for Procedures 2009
# Unique Drugs 4525

Table 3. Statistics of sequential features

Figure 1. Variable length sequences are padded with zeros to the left to get a fixed-length representation

3.2. Sequential features

The sequential features of the patient admission are contained in the diagnosis, procedures, and
prescriptions table. The diagnosis table has the sequence of diagnoses undergone by a patient
identified by ICD9 codes. The prescriptions table contains the list of drugs administered to the
patient while admitted to the hospital. Finally, the procedures table contains the procedures done
on the patient coded by ICD9 code for procedures. The list of sequential features used in the

Thirtieth European Conference on Information Systems (ECIS 2022), Timis, oara, Romania 5



Modeling EHR for Hospital Readmission

experiment is shown in Table 1, and their basic statistics are listed in Table 3. Each admission ID
has an associated sequence of records in the diagnosis, procedures, and prescriptions tables, and
a sample of the input features and associated output are shown in Table 2. To map the sequence
of features to a single admission ID, we group them by admission ID and pad it with zeros to the
left such that the sequences are of fixed length ‘T’. Any sequence which is greater than the ‘T’ is
truncated on the left such that the recent events are on the right, and shorter length sequences are
zero-padded to the left as shown in Figure 1. The features are tokenized, and if a particular token
appears in the test set but is not present in the train set, it is treated as out of vocabulary token and
handled appropriately.

4 Model Architecture

The architecture consists of a memory augmented Gated Recurrent Unit (GRU) for modeling
sequential features and a feed-forward network for modeling static features and hence called
sequential readmission predictor. The overall model architecture is shown in Figure 2. The
sequential and static features of the patient are then concatenated and passed through a feed-
forward neural network. It is then passed through two towers of feed-forward networks. The
tower on the left (Task A) is used for binary classification, which predicts the probability of
readmission, while the tower on the right (Task B) predicts the exact days of readmission. Since
both towers share a common layer, the error gradients from Task B will adjust the weights in the
common layer to complement task A. The details of the architecture are described below.

4.1. Embedding Layer

The embedding layer is a lookup table that takes the category number as input and produces
a vector representation of the category. After converting the data in each of the diagnosis,
prescriptions and procedures table into fixed-length sequences ‘T’, it is fed to an embedding layer
to get the latent vector representation {e1, . . .et , ....eT} where ‘t’ is the timestep and et ∈ Rd×1.
The final embedding matrix after passing through the embedding layer can be given as,

E =


e1
...
et
...

eT

 ∈ Rd×n

In this way we obtain an embedding representation for each patient ep ∈ Rd1 , drugs ed ∈ Rd2

procedures et ∈ Rd3 and diagnosis es ∈ Rd4 where d1, d2, d3, d4 are the embedding dimensions
and is set to vocab0.25 where vocab is the cardinality of the categorical variable.

4.2. Gated Recurrent unit (GRU)

GRU is an advanced variant of neural network that is helpful in modeling sequence data. The
embedding matrix output from the previous layer is fed as input to the GRU which produces a
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Figure 2. Architecture of our proposed model SRPM. The GRUs are patient personalized by initializing
it with a linear transformation of the patient embeddings.

vector output at each timestep. Formally, at each timestep, the GRU takes the embedding vector
et , the previous hidden state vector ht−1 and computes the current hidden state ht given by

ht = GRU(et ,ht−1), t = 1, ...,T

The initial hidden state h0 of the GRU is initialized to a linear transformation of the patient
embedding

h0 = W0ep

This way, the GRU can have prior knowledge about the patients’ historical data rather than having
a random vector as the initial state. We found that having such an initialization improved the
overall AUCROC by 7%. The final output of the GRU is

H =Concat(h0, ...,hT )

The embedding output from the drugs, procedures, and diagnosis is fed as input to the three
GRUs, and the outputs obtained are H1,H2 and H3

4.3. Multitask Learning

The input static features Xs is sent through a series of feed forward neural network (FFN) with
ReLU activation to obtain Hs. The disease feature in Xs is represented both as one-hot encoding
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and as an embedding ex.

Hs = ReLU ((XsW1 +b1)W2 +b2)

H =Concat (H1,H2,H3,Hs,ex)

H = LayerNorm(ReLU(HW3)+b3)

Multitask learning is proven beneficial when the final prediction tasks have a lot of similarities
with an auxiliary task. This is because learning to optimize for both the tasks jointly will help
share parameters that complement each other. Since readmission on the 3rd day and the 28th
day are the same when considering readmission probability within 30 days, there is a loss of
information that could be complemented by an auxiliary task B, which is to learn the exact days
of readmission. To implement this, the output from the GRUs and Hs are then concatenated and is
then fed as input for two tasks which are Task A and Task B. The Task A tower consists of a stack
of FFNs with LayerNorm, and the Task B tower also consists of such a stack. Both the towers
share a common FFN network at the bottom layer. The task-specific parameters are learned in the
separate tower parameters. The output O1 after passing through tower A is given as,

o1 = ReLU(FFN(H))

ŷ1 = Sigmoid(FFN(LayerNorm(o1)))

Similarly for the secondary task B, the output is,

o2 = ReLU(FFN(H))

ŷ2 = FFN(LayerNorm(o2))

4.4. Model Prediction and Loss function

We use two loss functions for the two tasks of the model to learn the weights from training.
For task A, we use the Binary Cross-Entropy loss (BCE Loss) as the optimization objective to
predict the readmission probability within 30 days. BCE Loss takes the output probability ŷi and
the actual label yi, which is either 0 or 1 and produces an output depending on how close the
prediction is to the actual label. It is given by,

BCE Loss =− 1
N

N

∑
i=1

yilog(ŷi)+(1− yi)log(1− ŷi)

The output from the auxiliary task B is trained using Mean Squared Loss (MSE Loss) and the
loss function given by,

MSE Loss =
1
N

N

∑
i=1

(yi− ŷi)
2
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5 Experiment Details

5.1. Baselines

We compare our model Sequential Readmission Predictor with Multitasking (SRPM) with the
baselines briefly described below,
• Logistic Regression applies logistic function to model the static variables.

• DeepR (Nguyen et al., 2017) encodes visits comprised of ICD9 codes of diagnosis and
procedures using word2vec and applies a CNN on top to classify.

• Hybrid DeepR (Balan U, Gandhi, Rammohan, et al., 2021) is an extension to DeepR where
static features are used in the last layer.

• PURE (Balan U, Gandhi, Rammohan, et al., 2021) uses Bidirectional LSTM to model the
sequential features

5.2. Experimental Setup

Python version 3.7.3 has been used on a Windows system with a 1.99 GHz Intel Core i7 processor
and 32GB RAM for the experiments. We used TensorFlow version 2.3.1 to implement our model
and scikit-learn (Pedregosa et al., 2011) for preprocessing.

Model AUC Accuracy Sensitivity Specificity Precision F1 F1 Improvement
Logistic 0.72 0.71 0.98 0.2 0.2 0.33 NA
DeepR 0.86 0.83 0.94 0.62 0.62 0.75 127%
Hybrid DeepR 0.88 0.86 0.97 0.64 0.64 0.77 3%
PURE 0.91 0.87 0.97 0.67 0.67 0.79 3%
SRPM 0.97 0.96 1 0.88 0.88 0.94 19%

Table 4. Performance of baseline methods across metrics

Figure 3. AUCROC plot for all the models.
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TRP of Models
FPR Logistic DeepR Hybrid DeepR PURE SRPM
0.1 0.283 0.533 0.541 0.684 0.968
0.2 0.457 0.744 0.782 0.856 0.982
0.3 0.6 0.868 0.907 0.941 0.984
0.4 0.704 0.936 0.976 0.977 0.986
0.5 0.799 0.966 0.986 0.988 0.991
0.6 0.881 0.979 0.993 0.993 0.996
0.7 0.927 0.986 1 1 1
0.8 0.969 1 1 1 1
0.9 0.996 1 1 1 1
1 1 1 1 1 1

Table 5. Comparison of AUCROC values for the different models

The early stopping criteria have been considered for all experiments, and the patience parameter
was set to 4. Adam optimizer was used with a learning rate of 0.001 and batch size 16, which
resulted in the best performance. The model hyperparameters are tuned based on the validation
set via randomized search, and the learning rate was set using the learning rate scheduler.
Regularization techniques like Layer normalization and dropout were also applied to reduce
overfitting and improve test performance. The data is split into train and test in the ratio 80:20,
and the 20% of the train set is used as the validation set. The model results are averaged over ten
runs, and in each run, a different seed value is set to ensure generality. AUCROC score, accuracy,
sensitivity, specificity, precision, and F1 metrics are used to evaluate our model’s efficacy, and the
results are reported in the Table 4. The AUCROC plot is shown in Figure 3 and the actual values
are reported in Table 5. We have used the F1 score along with the AUCROC metric for the target
of readmission prediction.

6 Ablation study

This section describes how individual components of the AI system contribute to the overall
performance of the system. We do this by introducing a series of model increments A to F as
listed in Table 6 to arrive at the final model. Adding one increment on top of another resulted
in better accuracy, and there is no particular meaning to the order in which we have listed. We
found that using the static features alone (A) gave an improved performance, as reported in
Table 7. Since the data is imbalanced, adding bootstrapping to it (A+B) gave a significant boost
in performance. We found that bootstrapping the minority class to 10 times the size resulted in
maximum improvement.
On top of the static features and bootstrapping, adding the sequential features (A+B+C) using
the GRU outputs at all the timesteps further helped to improve F1 score by 11%. We also tried
modeling the sequential features using transformer architectures (Vaswani et al., 2017) and
bidirectional LSTM, but that did not give as much improvement as GRU. We believe this is
because GRU uses fewer parameters and so it does not overfit the data. Adding the initial hidden
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Model increment Notation
Static features A
Bootstrapping B
Sequential features C
With initial state h0 D
Embedding for diagnosis E
Multitasking F

Table 6. Short notation for increments

Increments AUC Accuracy Sensitivity Specificity Precision F1 F1 Improvement
A 0.88 0.85 0.92 0.48 0.44 0.60 NA
A+B 0.9 0.87 0.94 0.56 0.55 0.69 17%
A+B+C 0.91 0.89 0.97 0.68 0.64 0.77 11%
A+B+C+D 0.95 0.92 0.97 0.71 0.72 0.83 7%
A+B+C+D+E 0.96 0.94 0.98 0.78 0.82 0.89 8%
A+B+C+D+E+F 0.97 0.96 1 0.88 0.88 0.94 5%

Table 7. Performance improvement with successive inclusion of model increments

Figure 4. t-SNE projection of embedding weights.

state (A+B+C+D) of the GRU h0 to a linear transformation of the user embedding resulted in
a 7% improvement in F1 score. There was a increase in improvement in F1 score by 8% when
we used diagnosis embedding on top of one-hot encoding (A+B+C+D+E). Figure 4 shows the
projection of embedding weights in 2D space using t-SNE. Visual inspection of the weights shows
that the embedding vectors of diseases with readmission tend to club together, and those that do
not require readmission are separate proving that there is an implicit relation between diseases
which cause readmission and which do not. Finally, adding multitask layer (A+B+C+D+E+F) to
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the model improved the F1 score by 5% making it 0.94.

7 Conclusion

In this work, we have proposed a novel architecture called Sequential Readmission Predictor with
Multitasking (SRPM) that incorporates prior knowledge about the patients’ information to classify
whether a patient will have readmission after discharge. We achieved a significant improvement
in the classification accuracy by bootstrapping the dataset to offset the imbalance towards the
target. Inclusion of sequential features further enhanced the performance which is in line with
previous works. Further, consideration of the patient embedding as an initial state to the GRU
performed better than random initialization or zero initialization. This validates our reasoning
to integrate the past information seamlessly into our model without overfitting. Inclusion of the
embedding of the disease feature and one-hot encoding also improved the accuracy further. The
t-SNE projection shows a clear grouping of diseases and goes in line with our intention to capture
implicit connections between the diseases. Finally, using multitask learning with the auxiliary
task of predicting the readmission days proves beneficial as we get much better performance
than having a single task. We observed a gradual improvement with the addition of incremental
changes proposed in our model. Some limitations of our study are that our model may not perform
as well for new records which do not have a medical history. Since we replace unseen sequence
tokens (which do not appear in the train set) that appear in the test set with out-of-vocabulary
tokens, the models’ performance is limited to that extent. We believe this recipe could also
work for other tasks like mortality prediction, next disease prediction, etc., and it directs to an
interesting future work.
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