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Abstract 

This paper examines the challenges related to integrating machine learning (ML) development with 
software development lifecycle (SDLC) models. Data-intensive development and use of ML are 

gaining popularity in information systems development (ISD). To date, there is little empirical 

research that explores the challenges that ISD practitioners encounter when integrating ML 
development with SDLC frameworks. In this work we conducted a series of expert interviews where we 

asked the informants to reflect upon how four different archetypal SDLC models support ML 

development. Three high level trends in ML systems development emerged from the analysis, namely, 

(1) redefining the prescribed roles and responsibilities within development work; (2) the SDLC as a 
frame for creating a shared understanding and commitment by management, customers, and software 

development teams: and (3) method tailoring. This study advances the body of knowledge on the 

integration of conceptual SDLC models and ML engineering. 

 

Keywords: Machine learning, AI, information systems development, software development lifecycles, 

SDLC 

1 Introduction 

The proliferation of machine learning (ML) in information systems (IS) imposes novel challenges for 

system development practices (Bawack and Ahmad, 2021; Akkiraju et al., 2020; Ishikawa and 
Yoshioka, 2019; Laato et al., 2022). Oftentimes contemporary ML development requires input from 

specialised developer roles, such as data engineers and data scientists (Jüngling et al., 2020). ML 

systems’ reliance on data, as well as other intrinsic phenomena including the inscrutability of the 

models (Asatiani et al., 2021), the models being probabilistic as opposed to deterministic and negative 
unintended consequences pose challenges for their development, governance and management 

(Holstein et al., 2019). In fact, prior literature (Jüngling et al., 2020) has conceptualised ML 

development to be a distinct area of software development, meaning that existing information system 

development (ISD) approaches may have to be tweaked to accommodate ML development. 

Recent literature has called for more research particularly on how to integrate the work of data 
scientists to software development lifecycle (SDLC) models (Ishikawa and Yoshioka, 2019; Jüngling 
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et al., 2020). In brief, SDLC models describe the stages that an IS goes through during its 

development. SDLC models can be seen to provide conceptual support for the development team, but 
also assist non-technical personnel (such as customers or upper management) to follow the 

development. In general, SDLC models give structure to software development and are a necessary 

support especially for larger and more complex projects (Turetken et al., 2011). Due to the lack of 

conceptual models for supporting ML development, following, managing, and governing ML 
development processes may be challenging for project managers and product owners (Ishikawa and 

Yoshioka, 2019). This can lead to several negative outcomes, one of which is the production of ML 

models with inherent biases. One of the most famous real world cases where an AI system failed was 
Microsoft’s Tay chatbot, which learned through conversing with Twitter users, and started producing 

racist tweets within 24 hours (Schlesinger et al., 2018). Since then, several advances have been made 

in counteracting such occurrences, for example, in the field of AI governance (Mäntymäki et al., 2022; 

Minkkinen et al., 2022), but literature on the management of ML development practices over the entire 
life cycle of an IS remains at its infancy (Ishikawa and Yoshioka, 2019; Jüngling et al., 2020). Against 

this background, we address the following research question (RQ):  

What are the challenges related to integrating ML systems with SDLC models from information 

systems development practitioners’ vantage point? 

To address this question, interviews were conducted with 19 highly experienced IS professionals. Our 

results contribute to ISD by advancing understanding of the challenges related to managing ML model 
development as part of the entire SDLC (Amershi et al., 2019; Jüngling et al., 2020). The remainder of 

the paper is structured as follows. The related work provides an overview of SDLCs and ML in the 

context of ISD. This is followed up by the research methodology and data collection and analysis 

approach. We then present our findings followed up by discussion and conclusions. 

2 Related Work 

2.1 Software development life cycle models 

SDLC models depict the involved development activities and their mutual relationships in the ISD 

process. SDLCs are mainly concerned with concrete software development, and do not take into 

related processes such as change and release management (Dennehy and Conboy, 2019; Raghunath et 
al., 2010). Instead, these are discussed at a higher level of abstraction, mainly the overall project 

management (ibid). Due to variance and complexity of software projects, pre-designed SDLC models 

are rarely followed strictly (Giardino et al., 2015). Instead, they provide an overall framework which 

can be adopted and adapted depending on the specific needs of the project at hand. 

Development of SDLC models in IS is rooted in the seminal literature of Royce (1970) and Rubin 
(1970). Since then, sequential SDLC models have remained in use among upper management while 

development teams have almost universally moved towards iterative approaches such as scrum 

(Srivastava et al., 2017). However, no single SDLC model can be considered a ‘silver bullet’ 
(Brookes, 1987) due to the highly unpredictable, multifaceted, and context-laden environment of 

software development (Lyytinen and Rose, 2006). Hence, choosing between different SDLCs is a 

context-dependent decision (Baseer et al., 2015).  

Previous literature has developed categorizations to classify different SDLCs. For example, Rani 

suggests five categories, namely, (1) waterfall models; (2) V-models; (3) iterative models; (4) spiral 
models; and (5) agile models (Rani, 2017). A literature review by Baseer et al. (2015), in turn, 

identified 20 categories of SDLC models, many of which were developed before the year 2000, and 

are now considered obsolete. Moreover, within the SDLC categories, there is variance in the included 

steps. For example, some waterfall models include as many as 13 stages, while others only include 6 

(Mantei and Teorey, 1989).  

Since ISD rarely follows a predictable rigid pattern, the steps in the SDLC often need to be returned to 

(Paasivaara et al., 2012). One of the first popular models to present an iterative approach was the spiral 
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model, where development was done in cycles that form an outward expanding spiral (Boehm, 1988). 

Since then, several agile and iterative approaches have been proposed and adopted into practice (Dima 
and Mason, 2018). While iterative software development is suitable for most software projects, 

especially those within an unknown territory for developers or project owners, iterative models have 

their drawbacks with regard to SDLC management. Agile methods have been criticised for the lack of 

long-term holistic support, as planning is done in short cycles and may be blind to long term and large 
scale goals (Baseer et al., 2015; Katayama and Goldman, 2011). To address this issue, frameworks 

such as scaled agile framework (SAFe) (Turetken et al., 2011) and the scrum of scrums (a scrum 

meeting of scrum projects) have been developed (Paasivaara et al., 2012). These approaches seek to 
combine the agility preferred by development teams with more linear or sequential visualisations 

preferred by upper management. 

A recent challenge in the SDLC research has been the shift in the software industry towards 

continuous development and operations (DevOps) (Ebert et al., 2016; Virmani, 2015). Whereas agile 

approaches combine the design and development phases, DevOps combines the development and 
operation phases via utilising continuous integration and delivery to automate and remove extra steps 

between software development and pushing the system into production (Virmani, 2015). Another 

change in the field of SDLC research is the microservice approach of building software systems from 

smaller, sometimes pre-developed, blocks (Ebert et al., 2016; Nagy et al., 2017). This means parts of 
an IS can be developed individually, ready-made blocks can be utilised, and each part can be 

conceptualised to follow their own SDLC.  

To bring a more concrete look into SDLC models, next we discuss four popular models that can be 

considered archetypal: waterfall (Balaji and Murugaiyan, 2012), spiral (Boehm, 1988), scrum 

(Srivastava et al., 2017; Rising and Janoff, 2012), and DevOps (Ebert et al., 2016). 

Waterfall: There are  multiple versions  of the  waterfall model  (e.g. Royce, 1970; Balaji and 
Murugaiyan, 2012; Matkovic and Tumbas, 2010). Here we refer to an often cited version as described 

by Balaji and Murugaiyan (2012). The stages of this model follow each other in a linear, sequential 

order. The waterfall model is practical due to its simplicity and linear progression. This makes the 

model easy to follow, and can provide a useful overview of the project. However, this model is 
criticised for being poor at visualising situations where developers need to return to earlier stages 

(Matkovic and Tumbas, 2010). To address this issue, some versions of the waterfall model include 

iterative elements. However, we present the model in its core form, including analysis, design, 
development, testing, implementation and maintenance stages. The six key stages are described in 

Figure. 1. Each stage can be seen as containing tasks which the development team needs to take care 

of. While the model in Figure. 1 is sequential, in practice developers often return to earlier phases. 

 

Figure 1.    A straightforward waterfall SDLC model 

Spiral: To resolve the issues of rigidity and lack of plasticity in the waterfall model, iterative 

structures were introduced to SDLC models (Matkovic and Tumbas, 2010). One of the first and most 

cited of these models is the spiral model (Boehm, 1988). Similarly to other SDLC models, there are 
several variations of the spiral model. Here we present the interpretation of Boehm as described in his 

seminal work A Spiral Model of Software Development and Enhancement (Boehm, 1988). The overall 

outline of the spiral model is displayed in Figure 2 (left). In this conceptualization, the ISD project 

iterates through four phases: (1) determining and clarifying objectives; (2) identification of risks and 
resolving them; (3) developing, coding and testing the solutions; and (4) planning the next iteration. 

With each new iteration/cycle in the spiral, the cumulative costs of the project increase. At the same 
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time, the developers and project management continuously learn new information regarding the 

project. In the planning phase, the project starts out with a rough concept plan, which is then worked 
into a development plan, and later into a test and operation plan. As an iterative model, feedback from 

customers, developers and administration can be involved in each cycle - and the development tasks 

and schedule can be adjusted accordingly (Nilsson and Wilson, 2010). 

 

 

Figure 2.    The Spiral SDLC model (left) and scrum (right). 

 

Scrum: Scrum (Figure 2, right) is one the most popular agile frameworks used in ISD. It resembles the 

spiral model in that software development happens in cycles, which in scrum are called sprints 

(Srivastava et al., 2017). A single sprint lasts typically somewhere between a week and a month, 

during which the development team implements a working version of the system they are developing 
(Rising and Janoff, 2000). The Scrum process starts with sprint planning, which involves aspects such 

as project goals, selecting tools and looking at the sprint backlog. The team then decides what they are 

going to work on and proceed to the sprint. A ‘standup meeting’ takes place each day of the sprint, 
whereby the project team discusses work in progress and any related concerns (e.g., defects, 

impediments to flow). At the end of the sprint is a review where the artefact is presented, and new 

potential tasks are added to the sprint backlog. Testing is done during the sprint, and it is not a phase 
of its own. During the sprint review, the team can also provide estimations of project completion dates 

and discuss them with customers and upper management (Rani, 2017). 

DevOps: DevOps (Figure 3) is a popular contemporary software development and management 

paradigm that integrates the previously distinct development and operation stages of software     

development (Ebert et al., 2016). The goal of DevOps is to deliver software products to customers as 
quickly as possible, to avoid manual needless labour and to guide software development towards 

efficient practices (Ebert et al., 2016, Virmani, 2015). The success that big tech companies such as 

Google and Amazon have had with the approach has accelerated its popularity and adoption in smaller 

businesses and a wider range of projects and products (Ebert et al., 2016). DevOps builds on the 
concept of a continuous delivery pipeline, where building, testing, quality assurance, verification and 

development are all automated (Virmani, 2015). However, the rapid deployment process of DevOps 

can make the approach unsuitable to be applied in systems with high security requirements (Ebert et 

al., 2016). 

The DevOps process is cyclical, but in each cycle there are sequential steps that are taken. 
Development work of individual components is continuously integrated to the full system and shared 

between other contributors (Virmani, 2015). The build goes through a set of tests and quality 

monitoring, all of which are automated as far as possible. Feedback and data from system use is 
collected via monitoring tools. Based on this, constant planning takes place that guides the 
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development of the system (Virmani, 2015). It is worth noting that recently a popular re-

contextualization of DevOps in the context of ML development (coined MLOps) has emerged 
(Karamitsos et al., 2020). MLOps intends to bridge design, model development and operations, and 

apply DevOps principles to ML development. In practice, similarly to DevOps, MLOps focuses on 

building automated pipelines that streamline processes involved in ML model development including 

data extraction and curation, model training, continuous testing and monitoring. While MLOps is a 
promising development from the perspective of integrating ML in SDLC models, at this paper’s level 

of abstraction, we focus on broad challenges in an attempt to also explain the reasons why MLOps has 

proliferated among data scientists and ML engineers (Valohai, 2021). 

 

Figure 3. A popular hourglass visualisation of DevOps. 

2.2 Machine learning in software development 

ML is a broad term that encompasses various computer-based data-mining and interpretation 
techniques used for uncovering complex patterns, particularly in large and complex sets of data 

(Mitchell, 1997; Mohri et al., 2018; Shalev-Shwartz and Ben-David, 2014) to extract insights for 

classification, prediction, and decision-making purposes (e.g., Chinnamgari, 2019; Cui et al., 2006). 

ML can be divided into subcategories such as supervised; unsupervised; semi-supervised; transfer; and 
reinforcement; learning (Chinnamgari, 2019). Today, ML is applied to solve a wide variety of real 

world problems, for example, in finance (Henrique et al., 2019) and cybersecurity (Laato et al., 2020; 

Salloum et al., 2020), and depending on the specific use case, some ML approaches work better than 
others (Caroline Cynthia and Thomas George, 2021). Depending on the business case, the ML 

development may involve a great deal of data curation, annotation and experimentation, while other 

cases may be more straightforward. In general, ML system development is distinctively different from 
“standard” software engineering, due to, for example, the importance of data and the models being 

probabilistic as opposed to deterministic (Akkiraju et al., 2020; Ishikawa and Yoshioka, 2019). 

The two key concepts of this paper, ML and SDLC models, are both simplified abstractions of 

complex real-world phenomena (Dignum, 2019). The growing popularity of ML development in ISD 

brings new characteristics to the development practices and the developed systems which may not yet 

be reflected in existing SDLC models. Three novel features of ML systems may be highlighted: 
Autonomy, referring to how ML systems may make decisions on how to operate in their environment 

independently from human guidance, interactivity, referring to the increased reciprocal interaction of 

ML systems with their environments, and adaptability, meaning that if the ML system is updated with 
new models trained with new data, the system as a whole displays characteristics of learning from its 

environment (Dignum, 2020). The inscrutability of, in particular more complex deep neural networks, 

means understanding them is often only possible indirectly via test data sets, or sometimes via 

explainable AI techniques (Asatiani et al., 2021; Holstein et al., 2019).  
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Data scientists and ML engineers are key actors in ML development. The most commonly associated 

activities of these roles such as working with data, feature engineering, tweaking model parameters, 
creating test data sets and so forth are largely different from standard programming more typically 

done by software engineers (Jüngling et al., 2020). For this reason, research is needed on whether and 

how existing popular SDLC models support and can accommodate ML model development work 

(ibid). Looking at the four archetypal SDLC models discussed in Section 2.1, the more linear models 
may be of limited benefit in describing the sometimes experimental and iterative work of data 

scientists. By contrast agile approaches such as scrum may provide inadequate support for 

management to control and understand the ML development work. While such general statements can 
be made, more detailed insights into the interplay between conceptual SDLC models and ML 

development are needed.  

3 Methodology 

3.1 Data collection 

We chose an expert interview approach to solicit expert views on how ML development work should 
be integrated into SDLC models. For guiding the interviews, we used the four archetypal SDLC 

models reviewed in Section 2.1 as a basis for the discussion. While recent literature suggests most 

contemporary ML system development follows the MLOps paradigm (Tamburri, 2020; Valohai, 

2021), we felt that asking the experts to reflect on how ML fits into other popular conceptual SDLC 
models would produce rich data that could serve as a base for more nuanced and even surprising 

discoveries. We selected the four SDLC frameworks based on the criteria of prominence and 

popularity, and they were the following: waterfall (Balaji and Murugaiyan, 2012), spiral (Boehm, 
1988), scrum (Srivastava et al., 2017; Rising and Janoff, 2012), and DevOps (Ebert et al., 2016). 

While waterfall and spiral models are rarely used by developers themselves, they remain preferred 

tools for software project management (Dima and Maassen, 2018; Niederman, 2021). By contrast, 

agile and DevOps approaches are widely used in contemporary software development.  

We employed ‘purposeful sampling’ (Seidman, 2019) to recruit practitioners with experience in AI 
technologies and SDLCs. As a recruitment criteria, the participants had to have at least 5 years of 

industry experience working closely with either ML engineering or SDLC management. We began by 

reaching out to three academic experts with on-going industry collaboration, and asked them to 
provide and suggest names for interviews. We then asked the suggested experts to be interviewed and 

for them to suggest further names. We performed interviews until we felt that no new significant or 

contradicting information had emerged during the last three interviews, resulting in the final number 

of 19 interviews (see Table 1). The interviews were conducted remotely via Zoom or Teams by the 
first author. The duration of interviews ranged between 45 and 115 minutes. Interview notes were 

taken during and immediately after the interviews, and all interviews were recorded and transcribed.  

 

 ID Job title  Sector type Years of industry experience  

1 Data & security specialist Public  5 

2 Chief technology officer Private 11 

3 Professor of data science  Public 16 

4 Competence lead Private 10 

5 Senior data scientist Private 20 

6 Senior software developer Private 13 

7 Data science research fellow Public 15 

8 Director of AI-startup Private 20 

9 Professor of software engineering Private 20 
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10 Systems architect Private 6 

11 Actuary   Private 7 

12 Professor of software engineering Public 26 

13 Professor of data science Public 29 

14 Director of software development  Private 22 

15 Senior software developer Private 26 

16 AI consultant expert Private 11 

17 Data project lead Private 12 

18 Director of AI-startup Private 15 

19 Professor of software engineering Public 21 

Table 1. Profile of interviewees  

The interviews were conducted as semi-structured interviews (Coombes et al., 2009). Interviewees 

were presented one SDLC model at a time, and the same set of thematic questions was asked 
regarding each model: (1) first-hand experiences with the model; (2) evaluation of the positive and 

negative aspects of the model; and (3) the ability of the model to meaningfully describe ML model 

development work and the characteristics of ML systems. Each of these three questions was followed 
by a set of clarifying questions adapted according to the interviewees’ responses. The interviews 

primarily focused on the third theme: the suitability of the models to describe ML system 

development. After going through the four SDLC models, the interviewees were asked to synthesise 
their thoughts by comparing the four presented models with each other and to evaluate which of the 

four models best accommodates ML model development and why.  

With regard to the four discussed models (e.g., waterfall, spiral, scrum, and DevOps), the interviewees 

had varying experiences and knowledge. All participants were familiar to some degree with waterfall, 

scrum and DevOps, while spiral was less known. Larger differences were exhibited in the participants’ 
knowledge and experience concerning ML engineering. The variance in participants’ backgrounds 

could be considered an advantage, as it produced rich and varied data  During the interviews, the 

participants discussed various strengths and weaknesses of the models, in particular with regards to 

ML development. They supported their arguments with real-world examples from projects and 

business cases in which they had been involved. 

3.2 Data analysis 

We approached data analysis inductively, guided by the RQ: what are the challenges related to 

integrating ML systems with SDLC models? As is typical with inductive qualitative analysis, we began 
the analysis by familiarising ourselves with the interview material. This was done by listening to the 

interview recordings and reading through the notes and transcriptions. During this stage we made 

additional notes about interesting observations, remarks and our own emerging thoughts related to the 
RQ. In the second step, we coded the transcribed data to mark concrete challenges and issues in 

integrating ML system development into conceptual SDLC models. The coding was performed by the 

first author. Here we already attempted to move beyond the four archetypal models and sought to 
identify more universal challenges as opposed to those specific to a certain conceptualisation. These 

codes described issues mentioned by the participants such as the lack of shared vision between (1) 

development teams; and (2) management or customers; and that the role of a data scientist was not 

always easy to define. 

In the third step of the analysis we took the coded basic level ideas and collated them into broader 
level themes (Braun and Clarke, 2006). All authors participated in this process. We began from the 

codes identified in the previous step and proposed various conceptualisations that would best describe 

the data. Through iteration and discussions we arrived at three large themes, which all had interplay 
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with one another and which can be considered to represent areas of focus when merging ML 

development with SDLC conceptualisations.  

4 Findings 

The thematic analysis led to the discovery of findings in three broad themes: (1) the redefinition of 

prescribed roles and responsibilities in SDLC models, (2) the use of MLOps as a frame for creating a 
shared understanding and commitment for management and software teams, and (3) a shift from 

adherence-based SDLC approaches towards value-based approaches (see Figure 4). We present and 

discuss our findings within each of these three high-level themes below. 

 

Figure 4. The three key themes and related content identified through thematic analysis. 

4.1 Redefining the prescribed roles and responsibilities in SDLCs 

The first theme involves the redefinition of roles and responsibilities related to SDLCs. Most of the 

interviewees involved in technically developing ML systems reported that they mostly work alongside 

other engineers and follow the SDLC model of the entire development team. For example, with scrum, 
their sprint tasks could be quite different, but they would follow the same sprint and meeting 

schedules. A data scientist could also get support for some aspects of their work from the other team 

members. While the role of a data scientist was singled out by the informants, several participants 
implied that the roles in development teams can be fluid depending on the task at hand and team 

composition. Even in the primary role of a data scientist, the activities could vary considerably 

between projects, as the following quotation illustrates:  

"I’ve been doing everything [from data extraction to model training and production]. But sometimes 

we have distinct roles. For example, we had a case where I was together with another data scientist, I 
was the person who pumped information from the clients and took care of the background stuff while 

the other guy worked more on data processing and that end." (P5) 

Despite drawing a parallel between specialised development roles and the role of a data scientist, some 

interviewees brought up AI-specific SDLC models, and data mining process models such as CRISP-

DM and the Essence theory of software engineering. An interviewed professor of software engineering 
was particularly critical about the idea of there ever being a model that would fit all or even most 

software development cases and even challenged the idea of advocating for any specific SDLC model:  

"I’ve tried to understand for years why we are still going to this direction where someone presents yet 

another SDLC model and again we hear cheering for it from the advocates of the new model. There 

are always unique structures and organisations and there will always be the need to fit and apply 

SDLC models into that context." (P12) 



Laato et al. /Integrating ML with SDLC models 

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 9 

The interviewees also brought up aspects that indicate that there is an ongoing convergence between 

the roles of data scientists and software engineers. For example, the interviewed director of software 
development (P14) stated that as the processes of creating certain standard ML systems are increasing 

in maturity, they are simultaneously becoming a part of the toolkit of regular software developers. 

Similarly, data scientists are adopting the same tools (e.g., git for version control and CI/CD pipelines) 

as software developers. The interviewed actuary (P11) stated that they use many professional software 
development tools to integrate their work into the company’s IT systems. Moving beyond these 

examples, several of the interviewees argued that knowledge and understanding of data, in general, is 

becoming a core requirement not only for data scientists, but also for software developers and upper 

management. 

Furthermore, analysis of the interview data suggests that integration of ML engineering into software 
development is piling pressure on software developers to personally develop their skill set to learn 

how to manage large data sets and train basic ML models. The Data Project Lead (P17) was an 

advocate for the need for all engineers to learn the basics of ML model development:  

"Let’s say it this way that everyone should know PyTorch and the basic algorithms that when they 

have a challenge, and they know even a little bit about these techniques, they start seeing situations 
where [ML] can be applied. And of course it should not be thrust in there by force if no value is 

added, but in my opinion it should be in control. And with this I mean an engineer approach of 

applying with PyTorch, TensorFlow or whatever, ML for solving a specific solution." (P17) 

Taken together, the broader theme arising from the interviews with regards to the presubscribed roles 

in software development is that they appear to be in flux. The proliferation of data-intensive 
development is pressuring upper management to acquire an understanding of how to best make use of 

new opportunities, as well as how the development of ML systems and their SDLC should be 

managed. Simultaneously data scientists are in the process of increasing the level of maturity of their 
activities, as challenges such as AI governance and auditing, model biases and interpretability of the 

models seem pertinent in most AI systems. In this complex, constantly transforming landscape, new 

software roles are likely to emerge, formed and shaped by new emerging technologies such as new 

ML approaches, digital platforms and the overall surrounding digital infrastructure.  

4.2 MLOps as a frame for creating a shared understanding and 
commitment by management and software teams 

The second theme relates to the creation of shared understanding and commitment among 
management and software project teams, and particularly the role of the recent MLOps model in this 

process. Here we provide a synthesis of the interviews regarding each of the archetypal SDLC models, 

followed up by why the interviewees in general picked MLOps as the most potent approach to ML 
system development. However, the interviewees did not consider any of the archetypal SDLC models 

to be obsolete. Individual interviewees expressed views in support of the spiral model, waterfall as 

well as the more recent agile approaches, DevOps and MLOps.  

The waterfall model for ML engineering: Initially the researchers were surprised that a couple of 

participants favoured the waterfall model over alternatives. The interviewed data science research 

fellow argued for the usefulness of the waterfall model as follows:  

"Of course I should not probably say this, but the waterfall model is the most readable. You have to 
remember I’ve not been involved in very big software projects or the industry, so from that point of 

view I don’t have knowledge of how to get a project of 100 people to actually work. (–) But I would 

say that instead of slavishly following any of the presented models, I prefer knowing the steps involved 

in the development process." (P7) 

Interviewees reported several positive and negative aspects concerning the waterfall model that were 
more universal than just related to ML development, such as the waterfall model being good for 

projects where the developers knew exactly what they were going to do beforehand. Interviewees 

agreed that the waterfall visualisation is the simplest one and, therefore, can be used to quickly obtain 
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an overview of the development work. It may be adopted to provide a brief overview of what needs to 

be done and at what stages. When asked about the model’s suitability for ML engineering in 
particular, the following quotation from a professor of data science illustrates the majority opinion 

particularly well:  

"None of these is superior and I’m sure the waterfall is also a good model if you have a very accurate 

picture about what you are doing, but of course I have never really felt like I would have, unless the 

problem is really simple." (P3) 

The Spiral model for ML engineering: One of the main criticisms towards the spiral model was the 

fixed size of quadrants, and that this issue was not easily solvable, as adjusting the quadrants to match 
the workload would make the conceptualization unreasonably confusing. However, interviewees 

argued that such an iterative structure could actually be quite suitable for supporting ML development. 

For example, a data scientist working for a private software consulting company said the following:  

"I like the simple approach and the engineer-like clarity [of the spiral model]. (–) In a certain way the 

cyclical work is presented well here, as if peeling an onion one layer at a time, or rather growing an 

onion one layer at a time. It is a good description of ML model development." (P5) 

Scrum for ML engineering: Some of the interviewees challenged the conception of viewing scrum as 
an SDLC model. Instead, they considered it as "A way of doing software". None of the interviewees 

denied the usefulness of iterative development, but emphasised that scrum was not the only available 

iterative model and referred to other agile practices as potential alternatives. Related to scrum being a 
way of working, interviewees said they were using scrum together with DevOps in their work, and 

also saw this as the most promising approach when working towards a potentially new SDLC model 

that would accommodate the characteristics of ML model development.  

DevOps for ML engineering: The principles of continuous integration and delivery (CI/CD) in 

DevOps were seen to align with ML model engineering, as reported in extant literature (e.g., 
Karamitsos et al., 2020). Most of the interviewees, particularly those working in the industry, stated 

that almost all their work these days follows DevOps. However, DevOps has gained popularity 

independently of the rise of ML model engineering. With regards to DevOps, participants sometimes 

discussed it with the concept of MLOps interchangeably. Interviewees appreciated how the operation-
side was taken into account in DevOps/MLOps, and considered it essential in ML development. The 

following quotation highlights this:  

"From the viewpoint of my work, in the real world that constantly changes, the model here that shows 

a DevOps- approach would be best. (–) When the system is in production we can follow it, and from 

there we can get a trigger that we now need to react and do something." (P11) 

The proliferation and use of MLOps: Moving beyond the individual models, one of the issues often 

brought up in the interviews was the lack of understanding between software engineers, data scientists, 
customers and project management. In particular, informants who held developer positions,  argued 

that managers who do not understand the basics of the technologies involved in a project are in no 

place to lead the project. When synthesising the arguments across all the interviews, MLOps emerged 
as a promising SDLC frame which could simultaneously work as the backbone of development, but 

also as a conceptualization for the upper management on the state of the IS. Going even further, the 

interviewed data project lead (P17) spoke for the importance of integrating governance and automated 
testing into MLOps pipelines, hence automating the roles of external auditors and managers to an 

extent. In this way, MLOps has the potential to bridge the chasm between management, customers, 

data scientists and software development teams. 

4.3 ML and SDLC method tailoring   

The third theme can be summarised as a shift from adherence-based SDLC approaches towards 

method tailoring (Campanelli and Parreiras, 2015; Dingsøyr et al., 2019). One of the challenges that 

software development teams encounter is the strict requirement to adhere to the SDLC approach (e.g., 
daily standup, two-week sprint, retrospective) as prescribed by the method creator, without 
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considering the socially embedded contextual nature of software development practices. However, the 

interview data suggests that development teams are in practice quite liberal in applying the theoretical 
models in practice, meaning they adapt each of the models for the specific use case and context. For 

example, a senior software developer working for a large software consulting company (P6) reported 

that “they always follow some iterative development approach”, preferably Scrum, but that their 

clients may not have the sufficient level of maturity nor willingness to participate in the Scrum 
process. Hence software development teams aim adjust their SDLC approach to accommodate the 

customers’ capability and needs, but this is not always straightforward. Issues arise when technologies 

and development practices advance faster than customers’ understanding and maturity, as indicated by 

the quote below: 

“As I said earlier, the development of product management is highlighted significantly – wheather you 
are doing a service or software products, or these kinds of systems that we have. And it is also 

challenging from the business viewpoint to implement – you can imagine that the [redacted] company 

that is used to buying our [product], they expect us to deliver the product that is mostly hardware. And 
when we say that there’s now software involved as well and you should even pay extra for it, they are 

not ready at all. It’s a change, but we just have to go with it (laughs).” (P14) 

According to the interviewees, ML engineering consists of various activities that require specialized 

skills, most important of which are data collection and data engineering, as well as model development 

and testing. Particularly among larger companies, the work of ML engineers may also consist of 
providing a pipeline where the latest champion model is provided for use to the rest of the system 

development team. The interviewed data project lead (P17) illustrates this with an example from their 

company where two data scientists work relatively independently from the rest of the team during 

Scrum sprints, but would always seek to integrate their work to the rest of the product at the end of the 
sprint. In doing so, the data scientists were subjected to the same SDLC procedures as the rest of the 

team. The ML development practices are hence being guided by specific development tools and aims, 

and may follow a rigid structure despite not following any specific SDLC model:  

“We have a clear setup, time windows, tasks and everything - we provide our work to the pipeline 

where they move onward and are integrated in the system. (...) Of course there’s a lot of tests and 

testing involved.” (P11) 

As ML engineers and data scientists are already working in development teams following established 

SDLC models, and furthermore, software engineers are feeling the pressure to learn the basics of ML 

model development, it is clear that ML model development has already been integrated into existing 

SDLC models at the level of practice. The requirement to bring ML under a strict SDLC process 
involved aspects such as performing governance activities, audits, rigorous testing and consequently 

improving the level of maturity of the ML system development processes and making ML 

development a standard and basic part of the overall ISD. The following quote illustrates this: 

“The [company we’re working with] have this nice saying that they want to make AI development 

boring. I like that. There was this mystification around AI – it was a hype technology but no one really 
understood what it was about. We’re now at a stage where companies are really seriously building AI 

tools and systems that they actually use and now suddenly we have to think about compliance, 

governance, auditing and so forth.” (P8) 

With the arrival of MLOps, construction of CI/CD pipelines and use of version control tools such as 

Delta Lake, it appears that there is a shift in software development that goes beyond the integration of 
ML engineering into SDLCs, that overall can be characterised as a shift towards value-based 

approaches. The on-going integration of the work of data scientists to the rest of the software 

development team is currently largely done at the level of individual projects based on their needs, but 
there are also conceptual advances from the direction of cloud service providers and academia. In the 

future we may see increasing influence of the cloud service providers on the development work as 

suggested by the following quotes: 
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“[Cloud services] are pushing - marketing their own APIs and management solutions. There is 

TensorFlow and it uses Google’s TPUs and it is a whole ecosystem that hugely helps in [ML] 

development.” (P5) 

“It’s a value question perhaps that what kinds of software is useful to be in the hands of the company 
and what should be acquired from elsewhere. Let’s say that you start doing everything bottom-up, all 

the lower end libraries and frameworks from the start, then that is defininently a strategic decision for 

the company. I mean if you start doing fundamental things yourself, it has to provide significant added 

value to the customer (…). I see that the treshold from this kind of from scratch development work is 
only higher and higher. It’s getting more and more difficult to justify a decision not to, for example, 

utilize cloud platforms.” (P2) 

5 Discussion 

Our results contribute broadly to the IS literature on SDLC management (e.g., Dennehy and Conboy, 

2018; Griva et al., 2020). On a general level, the findings from the interviews suggest that ML 

development is becoming increasingly integrated into ISD practices. The results underscore the fact 
that there are different types of unique characteristics (e.g. probabilistic software, inscrutability of the 

models) and contextual factors (the huge demand for high quality training data) involved in basically 

all ML system development projects. Similar to the rest of ISD, it is highly unlikely that a single 
SDLC will turn out to be the only feasible conceptualization for guiding ML system development. The 

interviewees highlighted that the archetypal SDLC models are significantly modified when used in 

practice, with company culture, project needs and skillsets of the stakeholders all influencing which 

approach to take. Altogether, there was a consensus among interviewees that there were use cases for 
each of the four presented SDLC models in ML system development. However, this being said, the 

MLOps approach showed promise in serving as a conceptualization that can bring both developers and 

management to have a shared, unified understanding of the ISD process. 

The current study makes three principal contributions to the body of literature on the integration of 

ML engineering into conceptual SDLC models (Jüngling et al., 2020; Amershi et al., 2019). First, our 
findings suggest that there is an ongoing redefinition of prescribed developer roles with regards to ISD 

involving ML. The work of data scientists is being integrated into various IS, including also high-risk 

systems. This transition forces data scientists to adopt practices from software engineering and 
integrate their work with ISD practices. In this complex process, the prescribed roles of software 

engineers and data scientists are converging, and possibly new roles are created, such as an 

ombudsman responsible for AI governance (e.g., Floridi et al., 2018). Second, our findings highlight 
MLOps as a unifying frame for creating a shared understanding and commitment for management and 

software teams. MLOps is based on constructing CI/CD pipelines and on automating the creation of 

ML systems, with the aim of making ML system development more mature (Valohai, 2021). MLOps 

is said to have been born out of the necessity to streamline and guide ML engineering to become 
suitable for industry use (Tamburri, 2020). Our results underscore that instead of relying on simplified 

descriptions of the development process, management should ensure they understand what the 

developers are doing and use the same frame as the developers (e.g. MLOps) for managing ML 
development projects. Third, our findings support previous findings (e.g., Giardino et al., 2015; 

Kemell et al., 2018) that no single SDLC model is universally superior due to differences in software 

projects, aims, goals, organisational context, team profiles, and responding to continuous change 

requests from customers. However, our findings also indicate that not all SDLCs are of equal use, and 
the ISD in general is moving away from adherence-based SDLC approaches towards value-based 

approaches – of which a good example is the proliferation of the DevOps/MLOps paradigms. 

Our findings also have practical implications. First, they suggest that the SDLC model that guides 

development work may act as a shared frame for the development team, management and customers. 

For this to happen, management and customers need to accrue knowledge of both SDLC models and 
ML development. Second, we found evidence that there was convergence between prescribed 

developer roles within ML development teams in that software engineers feel pressure to learn to 
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utilise basic ML APIs in their development work, and similarly data scientists are pressured to be able 

to integrate their work and the models they produce as part of the larger IS. Third, the interviewed 
informants seemed almost unanimous in that no single SDLC would be suitable for all projects and 

purposes. Hence, purely adherence-based development practices may be even less frequent in the near 

future. 

As with all research, however, we acknowledge this study has some limitations. In particular, we point 

out two limitations, which also provide opportunities for future research. The first relates to our 

interview methodology, where we drew knowledge from experts in either ML systems or SDLC 
models. While with our sampling we reached a saturation, complementary viewpoints may be 

obtained through other approaches such as case studies. Due to the nature of the data we did not 

perform checks for inter-rater reliability and the rich data left room for other interpretations. For these 
reasons we encourage future research to continue this line of inquiry. In particular we see value in 

involving theoretical lenses in the analysis to better ground the study to existing knowledge 

frameworks. The second limitation relates to our approach that was grounded on the SDLC research 
tradition, which inevitably directed the focus of the empirical inquiry. Future research could advance 

understanding of the role of the external factors (e.g., national culture, regulated environments) that 

could help developers better account for possible external obligations and demands that ultimately 

affect the ISD activities. Future research could also examine the ML system development process 
from one abstraction level higher than the SDLC to better account for the influence of organisational 

and environmental factors on the ML system development process.  

6 Conclusion 

The proliferation of ML systems, among other changes in the software development industry, has 

implications on popular SDLC models, and this transition is ongoing. Our findings to the RQ: “What 

are the challenges related to integrating ML systems with SDLC models from ISD practitioners’ 
vantage point?” highlight the heterogeneity of needs and contextual factors with respect to ML 

development as well as the accommodation and management of ML systems. This, in turn, creates a 

need for tools and conceptual support to manage the life cycle of ML systems. Our results highlight 
the variability in ML system development and the importance of flexibility in choosing the approaches 

to support the development activities. The proliferation of data-intensive development and 

probabilistic systems pose challenges not only for developers, but also for the management. To 

alleviate issues pertaining to the lack of understanding between developers and management, our 
findings highlight MLOps as a promising conceptualization that helps all stakeholders involved in the 

ISD acquire a shared vision.   

Our findings support the interpretation that ML development is increasingly converging with 

contemporary software development. ML systems are being developed according to similar principles 

that have already been established in software system production. For ML system development, SDLC 
models continue to possess largely the same benefits and drawbacks as with any system development. 

We conclude that contemporary SDLC models seem to effectively accommodate ML system 

development, but we also note that adjustments have been made in the industry as indicated by the 

conceptual transformation of the DevOps paradigm into MLOps.  
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