
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ECIS 2022 Research Papers ECIS 2022 Proceedings

6-18-2022

INTEGRATING MACHINE LEARNING WITH SOFTWARE INTEGRATING MACHINE LEARNING WITH SOFTWARE

DEVELOPMENT LIFECYCLES: INSIGHTS FROM EXPERTS DEVELOPMENT LIFECYCLES: INSIGHTS FROM EXPERTS

Samuli Laato
University of Turku, sadala@utu.fi

Matti Mäntymäki
University of Turku, matti.mantymaki@utu.fi

Matti Minkkinen
University of Turku, matti.minkkinen@utu.fi

Teemu Birkstedt
University of Turku, teemu.birkstedt@utu.fi

A.K.M. Najmul Islam
LUT University, najmul.islam@utu.fi

See next page for additional authors

Follow this and additional works at: https://aisel.aisnet.org/ecis2022_rp

Recommended Citation Recommended Citation
Laato, Samuli; Mäntymäki, Matti; Minkkinen, Matti; Birkstedt, Teemu; Islam, A.K.M. Najmul; and Dennehy,
Denis, "INTEGRATING MACHINE LEARNING WITH SOFTWARE DEVELOPMENT LIFECYCLES: INSIGHTS
FROM EXPERTS" (2022). ECIS 2022 Research Papers. 118.
https://aisel.aisnet.org/ecis2022_rp/118

This material is brought to you by the ECIS 2022 Proceedings at AIS Electronic Library (AISeL). It has been
accepted for inclusion in ECIS 2022 Research Papers by an authorized administrator of AIS Electronic Library
(AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/ecis2022_rp
https://aisel.aisnet.org/ecis2022
https://aisel.aisnet.org/ecis2022_rp?utm_source=aisel.aisnet.org%2Fecis2022_rp%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/ecis2022_rp/118?utm_source=aisel.aisnet.org%2Fecis2022_rp%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Authors Authors
Samuli Laato, Matti Mäntymäki, Matti Minkkinen, Teemu Birkstedt, A.K.M. Najmul Islam, and Denis
Dennehy

This article is available at AIS Electronic Library (AISeL): https://aisel.aisnet.org/ecis2022_rp/118

https://aisel.aisnet.org/ecis2022_rp/118

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 1

INTEGRATING MACHINE LEARNING WITH SOFTWARE

DEVELOPMENT LIFE CYCLE MODELS: INSIGHTS FROM

EXPERTS

Research Paper

Samuli Laato, University of Turku, Turku, Finland, samuli.laato@utu.fi

Matti Mäntymäki, University of Turku, Turku, Finland, matti.mantymaki@utu.fi

Matti Minkkinen, University of Turku, Turku, Finland, matti.minkkinen@utu.fi

Teemu Birkstedt, University of Turku, Turku, Finland, teemu.birkstedt@utu.fi

A.K.M. Najmul Islam, LUT University of Technology, Lappeenranta, Finland,

najmul.islam@lut.fi

Denis Dennehy, Swansea University, Swansea, Wales, denis.dennehy@swansea.ac.uk

Abstract

This paper examines the challenges related to integrating machine learning (ML) development with
software development lifecycle (SDLC) models. Data-intensive development and use of ML are

gaining popularity in information systems development (ISD). To date, there is little empirical

research that explores the challenges that ISD practitioners encounter when integrating ML
development with SDLC frameworks. In this work we conducted a series of expert interviews where we

asked the informants to reflect upon how four different archetypal SDLC models support ML

development. Three high level trends in ML systems development emerged from the analysis, namely,

(1) redefining the prescribed roles and responsibilities within development work; (2) the SDLC as a
frame for creating a shared understanding and commitment by management, customers, and software

development teams: and (3) method tailoring. This study advances the body of knowledge on the

integration of conceptual SDLC models and ML engineering.

Keywords: Machine learning, AI, information systems development, software development lifecycles,

SDLC

1 Introduction

The proliferation of machine learning (ML) in information systems (IS) imposes novel challenges for

system development practices (Bawack and Ahmad, 2021; Akkiraju et al., 2020; Ishikawa and
Yoshioka, 2019; Laato et al., 2022). Oftentimes contemporary ML development requires input from

specialised developer roles, such as data engineers and data scientists (Jüngling et al., 2020). ML

systems’ reliance on data, as well as other intrinsic phenomena including the inscrutability of the

models (Asatiani et al., 2021), the models being probabilistic as opposed to deterministic and negative
unintended consequences pose challenges for their development, governance and management

(Holstein et al., 2019). In fact, prior literature (Jüngling et al., 2020) has conceptualised ML

development to be a distinct area of software development, meaning that existing information system

development (ISD) approaches may have to be tweaked to accommodate ML development.

Recent literature has called for more research particularly on how to integrate the work of data
scientists to software development lifecycle (SDLC) models (Ishikawa and Yoshioka, 2019; Jüngling

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 2

et al., 2020). In brief, SDLC models describe the stages that an IS goes through during its

development. SDLC models can be seen to provide conceptual support for the development team, but
also assist non-technical personnel (such as customers or upper management) to follow the

development. In general, SDLC models give structure to software development and are a necessary

support especially for larger and more complex projects (Turetken et al., 2011). Due to the lack of

conceptual models for supporting ML development, following, managing, and governing ML
development processes may be challenging for project managers and product owners (Ishikawa and

Yoshioka, 2019). This can lead to several negative outcomes, one of which is the production of ML

models with inherent biases. One of the most famous real world cases where an AI system failed was
Microsoft’s Tay chatbot, which learned through conversing with Twitter users, and started producing

racist tweets within 24 hours (Schlesinger et al., 2018). Since then, several advances have been made

in counteracting such occurrences, for example, in the field of AI governance (Mäntymäki et al., 2022;

Minkkinen et al., 2022), but literature on the management of ML development practices over the entire
life cycle of an IS remains at its infancy (Ishikawa and Yoshioka, 2019; Jüngling et al., 2020). Against

this background, we address the following research question (RQ):

What are the challenges related to integrating ML systems with SDLC models from information

systems development practitioners’ vantage point?

To address this question, interviews were conducted with 19 highly experienced IS professionals. Our

results contribute to ISD by advancing understanding of the challenges related to managing ML model
development as part of the entire SDLC (Amershi et al., 2019; Jüngling et al., 2020). The remainder of

the paper is structured as follows. The related work provides an overview of SDLCs and ML in the

context of ISD. This is followed up by the research methodology and data collection and analysis

approach. We then present our findings followed up by discussion and conclusions.

2 Related Work

2.1 Software development life cycle models

SDLC models depict the involved development activities and their mutual relationships in the ISD

process. SDLCs are mainly concerned with concrete software development, and do not take into

related processes such as change and release management (Dennehy and Conboy, 2019; Raghunath et
al., 2010). Instead, these are discussed at a higher level of abstraction, mainly the overall project

management (ibid). Due to variance and complexity of software projects, pre-designed SDLC models

are rarely followed strictly (Giardino et al., 2015). Instead, they provide an overall framework which

can be adopted and adapted depending on the specific needs of the project at hand.

Development of SDLC models in IS is rooted in the seminal literature of Royce (1970) and Rubin
(1970). Since then, sequential SDLC models have remained in use among upper management while

development teams have almost universally moved towards iterative approaches such as scrum

(Srivastava et al., 2017). However, no single SDLC model can be considered a ‘silver bullet’
(Brookes, 1987) due to the highly unpredictable, multifaceted, and context-laden environment of

software development (Lyytinen and Rose, 2006). Hence, choosing between different SDLCs is a

context-dependent decision (Baseer et al., 2015).

Previous literature has developed categorizations to classify different SDLCs. For example, Rani

suggests five categories, namely, (1) waterfall models; (2) V-models; (3) iterative models; (4) spiral
models; and (5) agile models (Rani, 2017). A literature review by Baseer et al. (2015), in turn,

identified 20 categories of SDLC models, many of which were developed before the year 2000, and

are now considered obsolete. Moreover, within the SDLC categories, there is variance in the included

steps. For example, some waterfall models include as many as 13 stages, while others only include 6

(Mantei and Teorey, 1989).

Since ISD rarely follows a predictable rigid pattern, the steps in the SDLC often need to be returned to

(Paasivaara et al., 2012). One of the first popular models to present an iterative approach was the spiral

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 3

model, where development was done in cycles that form an outward expanding spiral (Boehm, 1988).

Since then, several agile and iterative approaches have been proposed and adopted into practice (Dima
and Mason, 2018). While iterative software development is suitable for most software projects,

especially those within an unknown territory for developers or project owners, iterative models have

their drawbacks with regard to SDLC management. Agile methods have been criticised for the lack of

long-term holistic support, as planning is done in short cycles and may be blind to long term and large
scale goals (Baseer et al., 2015; Katayama and Goldman, 2011). To address this issue, frameworks

such as scaled agile framework (SAFe) (Turetken et al., 2011) and the scrum of scrums (a scrum

meeting of scrum projects) have been developed (Paasivaara et al., 2012). These approaches seek to
combine the agility preferred by development teams with more linear or sequential visualisations

preferred by upper management.

A recent challenge in the SDLC research has been the shift in the software industry towards

continuous development and operations (DevOps) (Ebert et al., 2016; Virmani, 2015). Whereas agile

approaches combine the design and development phases, DevOps combines the development and
operation phases via utilising continuous integration and delivery to automate and remove extra steps

between software development and pushing the system into production (Virmani, 2015). Another

change in the field of SDLC research is the microservice approach of building software systems from

smaller, sometimes pre-developed, blocks (Ebert et al., 2016; Nagy et al., 2017). This means parts of
an IS can be developed individually, ready-made blocks can be utilised, and each part can be

conceptualised to follow their own SDLC.

To bring a more concrete look into SDLC models, next we discuss four popular models that can be

considered archetypal: waterfall (Balaji and Murugaiyan, 2012), spiral (Boehm, 1988), scrum

(Srivastava et al., 2017; Rising and Janoff, 2012), and DevOps (Ebert et al., 2016).

Waterfall: There are multiple versions of the waterfall model (e.g. Royce, 1970; Balaji and
Murugaiyan, 2012; Matkovic and Tumbas, 2010). Here we refer to an often cited version as described

by Balaji and Murugaiyan (2012). The stages of this model follow each other in a linear, sequential

order. The waterfall model is practical due to its simplicity and linear progression. This makes the

model easy to follow, and can provide a useful overview of the project. However, this model is
criticised for being poor at visualising situations where developers need to return to earlier stages

(Matkovic and Tumbas, 2010). To address this issue, some versions of the waterfall model include

iterative elements. However, we present the model in its core form, including analysis, design,
development, testing, implementation and maintenance stages. The six key stages are described in

Figure. 1. Each stage can be seen as containing tasks which the development team needs to take care

of. While the model in Figure. 1 is sequential, in practice developers often return to earlier phases.

Figure 1. A straightforward waterfall SDLC model

Spiral: To resolve the issues of rigidity and lack of plasticity in the waterfall model, iterative

structures were introduced to SDLC models (Matkovic and Tumbas, 2010). One of the first and most

cited of these models is the spiral model (Boehm, 1988). Similarly to other SDLC models, there are
several variations of the spiral model. Here we present the interpretation of Boehm as described in his

seminal work A Spiral Model of Software Development and Enhancement (Boehm, 1988). The overall

outline of the spiral model is displayed in Figure 2 (left). In this conceptualization, the ISD project

iterates through four phases: (1) determining and clarifying objectives; (2) identification of risks and
resolving them; (3) developing, coding and testing the solutions; and (4) planning the next iteration.

With each new iteration/cycle in the spiral, the cumulative costs of the project increase. At the same

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 4

time, the developers and project management continuously learn new information regarding the

project. In the planning phase, the project starts out with a rough concept plan, which is then worked
into a development plan, and later into a test and operation plan. As an iterative model, feedback from

customers, developers and administration can be involved in each cycle - and the development tasks

and schedule can be adjusted accordingly (Nilsson and Wilson, 2010).

Figure 2. The Spiral SDLC model (left) and scrum (right).

Scrum: Scrum (Figure 2, right) is one the most popular agile frameworks used in ISD. It resembles the

spiral model in that software development happens in cycles, which in scrum are called sprints

(Srivastava et al., 2017). A single sprint lasts typically somewhere between a week and a month,

during which the development team implements a working version of the system they are developing
(Rising and Janoff, 2000). The Scrum process starts with sprint planning, which involves aspects such

as project goals, selecting tools and looking at the sprint backlog. The team then decides what they are

going to work on and proceed to the sprint. A ‘standup meeting’ takes place each day of the sprint,
whereby the project team discusses work in progress and any related concerns (e.g., defects,

impediments to flow). At the end of the sprint is a review where the artefact is presented, and new

potential tasks are added to the sprint backlog. Testing is done during the sprint, and it is not a phase
of its own. During the sprint review, the team can also provide estimations of project completion dates

and discuss them with customers and upper management (Rani, 2017).

DevOps: DevOps (Figure 3) is a popular contemporary software development and management

paradigm that integrates the previously distinct development and operation stages of software

development (Ebert et al., 2016). The goal of DevOps is to deliver software products to customers as
quickly as possible, to avoid manual needless labour and to guide software development towards

efficient practices (Ebert et al., 2016, Virmani, 2015). The success that big tech companies such as

Google and Amazon have had with the approach has accelerated its popularity and adoption in smaller

businesses and a wider range of projects and products (Ebert et al., 2016). DevOps builds on the
concept of a continuous delivery pipeline, where building, testing, quality assurance, verification and

development are all automated (Virmani, 2015). However, the rapid deployment process of DevOps

can make the approach unsuitable to be applied in systems with high security requirements (Ebert et

al., 2016).

The DevOps process is cyclical, but in each cycle there are sequential steps that are taken.
Development work of individual components is continuously integrated to the full system and shared

between other contributors (Virmani, 2015). The build goes through a set of tests and quality

monitoring, all of which are automated as far as possible. Feedback and data from system use is
collected via monitoring tools. Based on this, constant planning takes place that guides the

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 5

development of the system (Virmani, 2015). It is worth noting that recently a popular re-

contextualization of DevOps in the context of ML development (coined MLOps) has emerged
(Karamitsos et al., 2020). MLOps intends to bridge design, model development and operations, and

apply DevOps principles to ML development. In practice, similarly to DevOps, MLOps focuses on

building automated pipelines that streamline processes involved in ML model development including

data extraction and curation, model training, continuous testing and monitoring. While MLOps is a
promising development from the perspective of integrating ML in SDLC models, at this paper’s level

of abstraction, we focus on broad challenges in an attempt to also explain the reasons why MLOps has

proliferated among data scientists and ML engineers (Valohai, 2021).

Figure 3. A popular hourglass visualisation of DevOps.

2.2 Machine learning in software development

ML is a broad term that encompasses various computer-based data-mining and interpretation
techniques used for uncovering complex patterns, particularly in large and complex sets of data

(Mitchell, 1997; Mohri et al., 2018; Shalev-Shwartz and Ben-David, 2014) to extract insights for

classification, prediction, and decision-making purposes (e.g., Chinnamgari, 2019; Cui et al., 2006).

ML can be divided into subcategories such as supervised; unsupervised; semi-supervised; transfer; and
reinforcement; learning (Chinnamgari, 2019). Today, ML is applied to solve a wide variety of real

world problems, for example, in finance (Henrique et al., 2019) and cybersecurity (Laato et al., 2020;

Salloum et al., 2020), and depending on the specific use case, some ML approaches work better than
others (Caroline Cynthia and Thomas George, 2021). Depending on the business case, the ML

development may involve a great deal of data curation, annotation and experimentation, while other

cases may be more straightforward. In general, ML system development is distinctively different from
“standard” software engineering, due to, for example, the importance of data and the models being

probabilistic as opposed to deterministic (Akkiraju et al., 2020; Ishikawa and Yoshioka, 2019).

The two key concepts of this paper, ML and SDLC models, are both simplified abstractions of

complex real-world phenomena (Dignum, 2019). The growing popularity of ML development in ISD

brings new characteristics to the development practices and the developed systems which may not yet

be reflected in existing SDLC models. Three novel features of ML systems may be highlighted:
Autonomy, referring to how ML systems may make decisions on how to operate in their environment

independently from human guidance, interactivity, referring to the increased reciprocal interaction of

ML systems with their environments, and adaptability, meaning that if the ML system is updated with
new models trained with new data, the system as a whole displays characteristics of learning from its

environment (Dignum, 2020). The inscrutability of, in particular more complex deep neural networks,

means understanding them is often only possible indirectly via test data sets, or sometimes via

explainable AI techniques (Asatiani et al., 2021; Holstein et al., 2019).

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 6

Data scientists and ML engineers are key actors in ML development. The most commonly associated

activities of these roles such as working with data, feature engineering, tweaking model parameters,
creating test data sets and so forth are largely different from standard programming more typically

done by software engineers (Jüngling et al., 2020). For this reason, research is needed on whether and

how existing popular SDLC models support and can accommodate ML model development work

(ibid). Looking at the four archetypal SDLC models discussed in Section 2.1, the more linear models
may be of limited benefit in describing the sometimes experimental and iterative work of data

scientists. By contrast agile approaches such as scrum may provide inadequate support for

management to control and understand the ML development work. While such general statements can
be made, more detailed insights into the interplay between conceptual SDLC models and ML

development are needed.

3 Methodology

3.1 Data collection

We chose an expert interview approach to solicit expert views on how ML development work should
be integrated into SDLC models. For guiding the interviews, we used the four archetypal SDLC

models reviewed in Section 2.1 as a basis for the discussion. While recent literature suggests most

contemporary ML system development follows the MLOps paradigm (Tamburri, 2020; Valohai,

2021), we felt that asking the experts to reflect on how ML fits into other popular conceptual SDLC
models would produce rich data that could serve as a base for more nuanced and even surprising

discoveries. We selected the four SDLC frameworks based on the criteria of prominence and

popularity, and they were the following: waterfall (Balaji and Murugaiyan, 2012), spiral (Boehm,
1988), scrum (Srivastava et al., 2017; Rising and Janoff, 2012), and DevOps (Ebert et al., 2016).

While waterfall and spiral models are rarely used by developers themselves, they remain preferred

tools for software project management (Dima and Maassen, 2018; Niederman, 2021). By contrast,

agile and DevOps approaches are widely used in contemporary software development.

We employed ‘purposeful sampling’ (Seidman, 2019) to recruit practitioners with experience in AI
technologies and SDLCs. As a recruitment criteria, the participants had to have at least 5 years of

industry experience working closely with either ML engineering or SDLC management. We began by

reaching out to three academic experts with on-going industry collaboration, and asked them to
provide and suggest names for interviews. We then asked the suggested experts to be interviewed and

for them to suggest further names. We performed interviews until we felt that no new significant or

contradicting information had emerged during the last three interviews, resulting in the final number

of 19 interviews (see Table 1). The interviews were conducted remotely via Zoom or Teams by the
first author. The duration of interviews ranged between 45 and 115 minutes. Interview notes were

taken during and immediately after the interviews, and all interviews were recorded and transcribed.

 ID Job title Sector type Years of industry experience

1 Data & security specialist Public 5

2 Chief technology officer Private 11

3 Professor of data science Public 16

4 Competence lead Private 10

5 Senior data scientist Private 20

6 Senior software developer Private 13

7 Data science research fellow Public 15

8 Director of AI-startup Private 20

9 Professor of software engineering Private 20

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 7

10 Systems architect Private 6

11 Actuary Private 7

12 Professor of software engineering Public 26

13 Professor of data science Public 29

14 Director of software development Private 22

15 Senior software developer Private 26

16 AI consultant expert Private 11

17 Data project lead Private 12

18 Director of AI-startup Private 15

19 Professor of software engineering Public 21

Table 1. Profile of interviewees

The interviews were conducted as semi-structured interviews (Coombes et al., 2009). Interviewees

were presented one SDLC model at a time, and the same set of thematic questions was asked
regarding each model: (1) first-hand experiences with the model; (2) evaluation of the positive and

negative aspects of the model; and (3) the ability of the model to meaningfully describe ML model

development work and the characteristics of ML systems. Each of these three questions was followed
by a set of clarifying questions adapted according to the interviewees’ responses. The interviews

primarily focused on the third theme: the suitability of the models to describe ML system

development. After going through the four SDLC models, the interviewees were asked to synthesise
their thoughts by comparing the four presented models with each other and to evaluate which of the

four models best accommodates ML model development and why.

With regard to the four discussed models (e.g., waterfall, spiral, scrum, and DevOps), the interviewees

had varying experiences and knowledge. All participants were familiar to some degree with waterfall,

scrum and DevOps, while spiral was less known. Larger differences were exhibited in the participants’
knowledge and experience concerning ML engineering. The variance in participants’ backgrounds

could be considered an advantage, as it produced rich and varied data During the interviews, the

participants discussed various strengths and weaknesses of the models, in particular with regards to

ML development. They supported their arguments with real-world examples from projects and

business cases in which they had been involved.

3.2 Data analysis

We approached data analysis inductively, guided by the RQ: what are the challenges related to

integrating ML systems with SDLC models? As is typical with inductive qualitative analysis, we began
the analysis by familiarising ourselves with the interview material. This was done by listening to the

interview recordings and reading through the notes and transcriptions. During this stage we made

additional notes about interesting observations, remarks and our own emerging thoughts related to the
RQ. In the second step, we coded the transcribed data to mark concrete challenges and issues in

integrating ML system development into conceptual SDLC models. The coding was performed by the

first author. Here we already attempted to move beyond the four archetypal models and sought to
identify more universal challenges as opposed to those specific to a certain conceptualisation. These

codes described issues mentioned by the participants such as the lack of shared vision between (1)

development teams; and (2) management or customers; and that the role of a data scientist was not

always easy to define.

In the third step of the analysis we took the coded basic level ideas and collated them into broader
level themes (Braun and Clarke, 2006). All authors participated in this process. We began from the

codes identified in the previous step and proposed various conceptualisations that would best describe

the data. Through iteration and discussions we arrived at three large themes, which all had interplay

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 8

with one another and which can be considered to represent areas of focus when merging ML

development with SDLC conceptualisations.

4 Findings

The thematic analysis led to the discovery of findings in three broad themes: (1) the redefinition of

prescribed roles and responsibilities in SDLC models, (2) the use of MLOps as a frame for creating a
shared understanding and commitment for management and software teams, and (3) a shift from

adherence-based SDLC approaches towards value-based approaches (see Figure 4). We present and

discuss our findings within each of these three high-level themes below.

Figure 4. The three key themes and related content identified through thematic analysis.

4.1 Redefining the prescribed roles and responsibilities in SDLCs

The first theme involves the redefinition of roles and responsibilities related to SDLCs. Most of the

interviewees involved in technically developing ML systems reported that they mostly work alongside

other engineers and follow the SDLC model of the entire development team. For example, with scrum,
their sprint tasks could be quite different, but they would follow the same sprint and meeting

schedules. A data scientist could also get support for some aspects of their work from the other team

members. While the role of a data scientist was singled out by the informants, several participants
implied that the roles in development teams can be fluid depending on the task at hand and team

composition. Even in the primary role of a data scientist, the activities could vary considerably

between projects, as the following quotation illustrates:

"I’ve been doing everything [from data extraction to model training and production]. But sometimes

we have distinct roles. For example, we had a case where I was together with another data scientist, I
was the person who pumped information from the clients and took care of the background stuff while

the other guy worked more on data processing and that end." (P5)

Despite drawing a parallel between specialised development roles and the role of a data scientist, some

interviewees brought up AI-specific SDLC models, and data mining process models such as CRISP-

DM and the Essence theory of software engineering. An interviewed professor of software engineering
was particularly critical about the idea of there ever being a model that would fit all or even most

software development cases and even challenged the idea of advocating for any specific SDLC model:

"I’ve tried to understand for years why we are still going to this direction where someone presents yet

another SDLC model and again we hear cheering for it from the advocates of the new model. There

are always unique structures and organisations and there will always be the need to fit and apply

SDLC models into that context." (P12)

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 9

The interviewees also brought up aspects that indicate that there is an ongoing convergence between

the roles of data scientists and software engineers. For example, the interviewed director of software
development (P14) stated that as the processes of creating certain standard ML systems are increasing

in maturity, they are simultaneously becoming a part of the toolkit of regular software developers.

Similarly, data scientists are adopting the same tools (e.g., git for version control and CI/CD pipelines)

as software developers. The interviewed actuary (P11) stated that they use many professional software
development tools to integrate their work into the company’s IT systems. Moving beyond these

examples, several of the interviewees argued that knowledge and understanding of data, in general, is

becoming a core requirement not only for data scientists, but also for software developers and upper

management.

Furthermore, analysis of the interview data suggests that integration of ML engineering into software
development is piling pressure on software developers to personally develop their skill set to learn

how to manage large data sets and train basic ML models. The Data Project Lead (P17) was an

advocate for the need for all engineers to learn the basics of ML model development:

"Let’s say it this way that everyone should know PyTorch and the basic algorithms that when they

have a challenge, and they know even a little bit about these techniques, they start seeing situations
where [ML] can be applied. And of course it should not be thrust in there by force if no value is

added, but in my opinion it should be in control. And with this I mean an engineer approach of

applying with PyTorch, TensorFlow or whatever, ML for solving a specific solution." (P17)

Taken together, the broader theme arising from the interviews with regards to the presubscribed roles

in software development is that they appear to be in flux. The proliferation of data-intensive
development is pressuring upper management to acquire an understanding of how to best make use of

new opportunities, as well as how the development of ML systems and their SDLC should be

managed. Simultaneously data scientists are in the process of increasing the level of maturity of their
activities, as challenges such as AI governance and auditing, model biases and interpretability of the

models seem pertinent in most AI systems. In this complex, constantly transforming landscape, new

software roles are likely to emerge, formed and shaped by new emerging technologies such as new

ML approaches, digital platforms and the overall surrounding digital infrastructure.

4.2 MLOps as a frame for creating a shared understanding and
commitment by management and software teams

The second theme relates to the creation of shared understanding and commitment among
management and software project teams, and particularly the role of the recent MLOps model in this

process. Here we provide a synthesis of the interviews regarding each of the archetypal SDLC models,

followed up by why the interviewees in general picked MLOps as the most potent approach to ML
system development. However, the interviewees did not consider any of the archetypal SDLC models

to be obsolete. Individual interviewees expressed views in support of the spiral model, waterfall as

well as the more recent agile approaches, DevOps and MLOps.

The waterfall model for ML engineering: Initially the researchers were surprised that a couple of

participants favoured the waterfall model over alternatives. The interviewed data science research

fellow argued for the usefulness of the waterfall model as follows:

"Of course I should not probably say this, but the waterfall model is the most readable. You have to
remember I’ve not been involved in very big software projects or the industry, so from that point of

view I don’t have knowledge of how to get a project of 100 people to actually work. (–) But I would

say that instead of slavishly following any of the presented models, I prefer knowing the steps involved

in the development process." (P7)

Interviewees reported several positive and negative aspects concerning the waterfall model that were
more universal than just related to ML development, such as the waterfall model being good for

projects where the developers knew exactly what they were going to do beforehand. Interviewees

agreed that the waterfall visualisation is the simplest one and, therefore, can be used to quickly obtain

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 10

an overview of the development work. It may be adopted to provide a brief overview of what needs to

be done and at what stages. When asked about the model’s suitability for ML engineering in
particular, the following quotation from a professor of data science illustrates the majority opinion

particularly well:

"None of these is superior and I’m sure the waterfall is also a good model if you have a very accurate

picture about what you are doing, but of course I have never really felt like I would have, unless the

problem is really simple." (P3)

The Spiral model for ML engineering: One of the main criticisms towards the spiral model was the

fixed size of quadrants, and that this issue was not easily solvable, as adjusting the quadrants to match
the workload would make the conceptualization unreasonably confusing. However, interviewees

argued that such an iterative structure could actually be quite suitable for supporting ML development.

For example, a data scientist working for a private software consulting company said the following:

"I like the simple approach and the engineer-like clarity [of the spiral model]. (–) In a certain way the

cyclical work is presented well here, as if peeling an onion one layer at a time, or rather growing an

onion one layer at a time. It is a good description of ML model development." (P5)

Scrum for ML engineering: Some of the interviewees challenged the conception of viewing scrum as
an SDLC model. Instead, they considered it as "A way of doing software". None of the interviewees

denied the usefulness of iterative development, but emphasised that scrum was not the only available

iterative model and referred to other agile practices as potential alternatives. Related to scrum being a
way of working, interviewees said they were using scrum together with DevOps in their work, and

also saw this as the most promising approach when working towards a potentially new SDLC model

that would accommodate the characteristics of ML model development.

DevOps for ML engineering: The principles of continuous integration and delivery (CI/CD) in

DevOps were seen to align with ML model engineering, as reported in extant literature (e.g.,
Karamitsos et al., 2020). Most of the interviewees, particularly those working in the industry, stated

that almost all their work these days follows DevOps. However, DevOps has gained popularity

independently of the rise of ML model engineering. With regards to DevOps, participants sometimes

discussed it with the concept of MLOps interchangeably. Interviewees appreciated how the operation-
side was taken into account in DevOps/MLOps, and considered it essential in ML development. The

following quotation highlights this:

"From the viewpoint of my work, in the real world that constantly changes, the model here that shows

a DevOps- approach would be best. (–) When the system is in production we can follow it, and from

there we can get a trigger that we now need to react and do something." (P11)

The proliferation and use of MLOps: Moving beyond the individual models, one of the issues often

brought up in the interviews was the lack of understanding between software engineers, data scientists,
customers and project management. In particular, informants who held developer positions, argued

that managers who do not understand the basics of the technologies involved in a project are in no

place to lead the project. When synthesising the arguments across all the interviews, MLOps emerged
as a promising SDLC frame which could simultaneously work as the backbone of development, but

also as a conceptualization for the upper management on the state of the IS. Going even further, the

interviewed data project lead (P17) spoke for the importance of integrating governance and automated
testing into MLOps pipelines, hence automating the roles of external auditors and managers to an

extent. In this way, MLOps has the potential to bridge the chasm between management, customers,

data scientists and software development teams.

4.3 ML and SDLC method tailoring

The third theme can be summarised as a shift from adherence-based SDLC approaches towards

method tailoring (Campanelli and Parreiras, 2015; Dingsøyr et al., 2019). One of the challenges that

software development teams encounter is the strict requirement to adhere to the SDLC approach (e.g.,
daily standup, two-week sprint, retrospective) as prescribed by the method creator, without

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 11

considering the socially embedded contextual nature of software development practices. However, the

interview data suggests that development teams are in practice quite liberal in applying the theoretical
models in practice, meaning they adapt each of the models for the specific use case and context. For

example, a senior software developer working for a large software consulting company (P6) reported

that “they always follow some iterative development approach”, preferably Scrum, but that their

clients may not have the sufficient level of maturity nor willingness to participate in the Scrum
process. Hence software development teams aim adjust their SDLC approach to accommodate the

customers’ capability and needs, but this is not always straightforward. Issues arise when technologies

and development practices advance faster than customers’ understanding and maturity, as indicated by

the quote below:

“As I said earlier, the development of product management is highlighted significantly – wheather you
are doing a service or software products, or these kinds of systems that we have. And it is also

challenging from the business viewpoint to implement – you can imagine that the [redacted] company

that is used to buying our [product], they expect us to deliver the product that is mostly hardware. And
when we say that there’s now software involved as well and you should even pay extra for it, they are

not ready at all. It’s a change, but we just have to go with it (laughs).” (P14)

According to the interviewees, ML engineering consists of various activities that require specialized

skills, most important of which are data collection and data engineering, as well as model development

and testing. Particularly among larger companies, the work of ML engineers may also consist of
providing a pipeline where the latest champion model is provided for use to the rest of the system

development team. The interviewed data project lead (P17) illustrates this with an example from their

company where two data scientists work relatively independently from the rest of the team during

Scrum sprints, but would always seek to integrate their work to the rest of the product at the end of the
sprint. In doing so, the data scientists were subjected to the same SDLC procedures as the rest of the

team. The ML development practices are hence being guided by specific development tools and aims,

and may follow a rigid structure despite not following any specific SDLC model:

“We have a clear setup, time windows, tasks and everything - we provide our work to the pipeline

where they move onward and are integrated in the system. (...) Of course there’s a lot of tests and

testing involved.” (P11)

As ML engineers and data scientists are already working in development teams following established

SDLC models, and furthermore, software engineers are feeling the pressure to learn the basics of ML

model development, it is clear that ML model development has already been integrated into existing

SDLC models at the level of practice. The requirement to bring ML under a strict SDLC process
involved aspects such as performing governance activities, audits, rigorous testing and consequently

improving the level of maturity of the ML system development processes and making ML

development a standard and basic part of the overall ISD. The following quote illustrates this:

“The [company we’re working with] have this nice saying that they want to make AI development

boring. I like that. There was this mystification around AI – it was a hype technology but no one really
understood what it was about. We’re now at a stage where companies are really seriously building AI

tools and systems that they actually use and now suddenly we have to think about compliance,

governance, auditing and so forth.” (P8)

With the arrival of MLOps, construction of CI/CD pipelines and use of version control tools such as

Delta Lake, it appears that there is a shift in software development that goes beyond the integration of
ML engineering into SDLCs, that overall can be characterised as a shift towards value-based

approaches. The on-going integration of the work of data scientists to the rest of the software

development team is currently largely done at the level of individual projects based on their needs, but
there are also conceptual advances from the direction of cloud service providers and academia. In the

future we may see increasing influence of the cloud service providers on the development work as

suggested by the following quotes:

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 12

“[Cloud services] are pushing - marketing their own APIs and management solutions. There is

TensorFlow and it uses Google’s TPUs and it is a whole ecosystem that hugely helps in [ML]

development.” (P5)

“It’s a value question perhaps that what kinds of software is useful to be in the hands of the company
and what should be acquired from elsewhere. Let’s say that you start doing everything bottom-up, all

the lower end libraries and frameworks from the start, then that is defininently a strategic decision for

the company. I mean if you start doing fundamental things yourself, it has to provide significant added

value to the customer (…). I see that the treshold from this kind of from scratch development work is
only higher and higher. It’s getting more and more difficult to justify a decision not to, for example,

utilize cloud platforms.” (P2)

5 Discussion

Our results contribute broadly to the IS literature on SDLC management (e.g., Dennehy and Conboy,

2018; Griva et al., 2020). On a general level, the findings from the interviews suggest that ML

development is becoming increasingly integrated into ISD practices. The results underscore the fact
that there are different types of unique characteristics (e.g. probabilistic software, inscrutability of the

models) and contextual factors (the huge demand for high quality training data) involved in basically

all ML system development projects. Similar to the rest of ISD, it is highly unlikely that a single
SDLC will turn out to be the only feasible conceptualization for guiding ML system development. The

interviewees highlighted that the archetypal SDLC models are significantly modified when used in

practice, with company culture, project needs and skillsets of the stakeholders all influencing which

approach to take. Altogether, there was a consensus among interviewees that there were use cases for
each of the four presented SDLC models in ML system development. However, this being said, the

MLOps approach showed promise in serving as a conceptualization that can bring both developers and

management to have a shared, unified understanding of the ISD process.

The current study makes three principal contributions to the body of literature on the integration of

ML engineering into conceptual SDLC models (Jüngling et al., 2020; Amershi et al., 2019). First, our
findings suggest that there is an ongoing redefinition of prescribed developer roles with regards to ISD

involving ML. The work of data scientists is being integrated into various IS, including also high-risk

systems. This transition forces data scientists to adopt practices from software engineering and
integrate their work with ISD practices. In this complex process, the prescribed roles of software

engineers and data scientists are converging, and possibly new roles are created, such as an

ombudsman responsible for AI governance (e.g., Floridi et al., 2018). Second, our findings highlight
MLOps as a unifying frame for creating a shared understanding and commitment for management and

software teams. MLOps is based on constructing CI/CD pipelines and on automating the creation of

ML systems, with the aim of making ML system development more mature (Valohai, 2021). MLOps

is said to have been born out of the necessity to streamline and guide ML engineering to become
suitable for industry use (Tamburri, 2020). Our results underscore that instead of relying on simplified

descriptions of the development process, management should ensure they understand what the

developers are doing and use the same frame as the developers (e.g. MLOps) for managing ML
development projects. Third, our findings support previous findings (e.g., Giardino et al., 2015;

Kemell et al., 2018) that no single SDLC model is universally superior due to differences in software

projects, aims, goals, organisational context, team profiles, and responding to continuous change

requests from customers. However, our findings also indicate that not all SDLCs are of equal use, and
the ISD in general is moving away from adherence-based SDLC approaches towards value-based

approaches – of which a good example is the proliferation of the DevOps/MLOps paradigms.

Our findings also have practical implications. First, they suggest that the SDLC model that guides

development work may act as a shared frame for the development team, management and customers.

For this to happen, management and customers need to accrue knowledge of both SDLC models and
ML development. Second, we found evidence that there was convergence between prescribed

developer roles within ML development teams in that software engineers feel pressure to learn to

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 13

utilise basic ML APIs in their development work, and similarly data scientists are pressured to be able

to integrate their work and the models they produce as part of the larger IS. Third, the interviewed
informants seemed almost unanimous in that no single SDLC would be suitable for all projects and

purposes. Hence, purely adherence-based development practices may be even less frequent in the near

future.

As with all research, however, we acknowledge this study has some limitations. In particular, we point

out two limitations, which also provide opportunities for future research. The first relates to our

interview methodology, where we drew knowledge from experts in either ML systems or SDLC
models. While with our sampling we reached a saturation, complementary viewpoints may be

obtained through other approaches such as case studies. Due to the nature of the data we did not

perform checks for inter-rater reliability and the rich data left room for other interpretations. For these
reasons we encourage future research to continue this line of inquiry. In particular we see value in

involving theoretical lenses in the analysis to better ground the study to existing knowledge

frameworks. The second limitation relates to our approach that was grounded on the SDLC research
tradition, which inevitably directed the focus of the empirical inquiry. Future research could advance

understanding of the role of the external factors (e.g., national culture, regulated environments) that

could help developers better account for possible external obligations and demands that ultimately

affect the ISD activities. Future research could also examine the ML system development process
from one abstraction level higher than the SDLC to better account for the influence of organisational

and environmental factors on the ML system development process.

6 Conclusion

The proliferation of ML systems, among other changes in the software development industry, has

implications on popular SDLC models, and this transition is ongoing. Our findings to the RQ: “What

are the challenges related to integrating ML systems with SDLC models from ISD practitioners’
vantage point?” highlight the heterogeneity of needs and contextual factors with respect to ML

development as well as the accommodation and management of ML systems. This, in turn, creates a

need for tools and conceptual support to manage the life cycle of ML systems. Our results highlight
the variability in ML system development and the importance of flexibility in choosing the approaches

to support the development activities. The proliferation of data-intensive development and

probabilistic systems pose challenges not only for developers, but also for the management. To

alleviate issues pertaining to the lack of understanding between developers and management, our
findings highlight MLOps as a promising conceptualization that helps all stakeholders involved in the

ISD acquire a shared vision.

Our findings support the interpretation that ML development is increasingly converging with

contemporary software development. ML systems are being developed according to similar principles

that have already been established in software system production. For ML system development, SDLC
models continue to possess largely the same benefits and drawbacks as with any system development.

We conclude that contemporary SDLC models seem to effectively accommodate ML system

development, but we also note that adjustments have been made in the industry as indicated by the

conceptual transformation of the DevOps paradigm into MLOps.

References

Akinsola, J. E., A. S. Ogunbanwo, O. J. Okesola, I. J. Odun-Ayo, F. D. Ayegbusi, and A. A. Adebiyi
(2020). “Comparative Analysis of Software Development Life Cycle Models (SDLC).” in

Computer Science Online Conference.
Akkiraju, R., Sinha, V., Xu, A., Mahmud, J., Gundecha, P., Liu, Z, Xiaotong Liu and Schumacher, J.

(2020). “Characterizing machine learning processes: a maturity framework.” in Fahland D.,
Ghidini C., Becker J., & Dumas M. (eds.) International Conference on Business Process

Management, Seville, Spain.

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 14

Amershi, S., A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T.

Zimmermann (2019). “Software Engineering for Machine Learning: A Case Study.” in
Proceedings of the 41st International Conference on Software Engineering: Software Engineering

in Practice. ICSE-SEIP’19. Montreal, Quebec, Canada.

Asatiani, A., P. Malo, P. R. Nagbøl, E. Penttinen, T. Rinta-Kahila, and A. Salovaara (2021).

“Sociotechnical Envelopment of Artificial Intelligence: An Approach to Organizational
Deployment of Inscrutable Artificial Intelligence Systems.” Journal of the Association for

Information Systems 22 (2), 8.

Balaji, S. and M. S. Murugaiyan (2012). “Waterfall vs. V-Model vs. Agile: A comparative study on
SDLC.” International Journal of Information Technology and Business Management 2 (1), 26–30.

Baseer, K., A,. R. M. Reddy, and C. S. Bindu (2015). “A systematic survey on waterfall vs. agile vs.

leanprocess paradigms.” i-Manager’s Journal on Software Engineering 9 (3), 34.

Bawack, R.E. and Ahmad, M.O. (2021). "Understanding business analytics continuance in agile
information system development projects: an expectation-confirmation perspective", Information

Technology & People, Vol. ahead-of-print No. ahead-of-print.

Banerjee, S., Singh, J.P., Dwivedi, Y.K. and Rana, N.P. (2021). "Social media analytics for end-users'
expectation management in information systems development projects", Information Technology

& People, Vol. ahead-of-print No. ahead-of-print.

Boehm, B. W. (1988). “A spiral model of software development and enhancement.”, Computer 21 (5),
61–72.

Braun, V. and V. Clarke (2006). “Using Thematic Analysis in Psychology.” Qualitative Research in

Psychology 3 (2), 77–101.

Campanelli, A.S. and Parreiras, F.S. (2015). “Agile methods tailoring–A systematic literature
review”, Journal of Systems and Software, (110), 85-100.

Caroline Cynthia, P., & Thomas George, S. (2021). An outlier detection approach on credit card fraud

detection using machine learning: a comparative analysis on supervised and unsupervised learning.
In Intelligence in Big Data Technologies—Beyond the Hype (pp. 125-135). Springer, Singapore.

Chinnamgari, S. K. (2019). R Machine Learning Projects: Implement supervised, unsupervised, and

reinforcement learning techniques using R 3.5. 1st Edition. Birningham, UK.
Coombes, L., D. Allen, D. Humphrey, and J. Neale (2009). “In-depth interviews.” Research methods

forhealth and social care, 197–210.

Cui, G., M. L. Wong, and H.-K. Lui (2006). “Machine Learning for Direct Marketing Response

Models: Bayesian Networks with Evolutionary Programming.” Management Science.
Dennehy, D. and Conboy, K., (2018). “Identifying challenges and a research agenda for flow in

software project management”, Project Management Journal, 49 (6), 103-118.

Dennehy, D. and Conboy, K. (2019). "Breaking the flow: a study of contradictions in information
systems development (ISD)", Information Technology & People, 33 (2), 477-501.

Dignum, V. (2019). “Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible

Way.” Springer International Publishing.

Dignum, V. (2020). “Responsibility and Artificial Intelligence.” Oxford Handbook of Ethics of AI.
Oxford, Oxford University Press,

Dima, A. M. and M. A. Maassen. (2018). “From Waterfall to Agile software: Development models in

the IT sector, 2006 to 2018. Impacts on company management.” Journal of International Studies
11 (2), 315–326.

Dingsøyr, T., Dybå, T., Gjertsen, M., Jacobsen, A. O., Mathisen, T. E., Nordfjord, J. O., ... & Strand,

K. (2019). “Key lessons from tailoring agile methods for large-scale software development”, IT
Professional, 21(1), 34-41.

Ebert, C., G. Gallardo, J. Hernantes, and N. Serrano (2016). “DevOps.” IEEE Software 33 (3), 94–

100.

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., et al. (2018).
“AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and

Recommendations.” Minds and Machines, 28 (4), 689–707.

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 15

Giardino, C., N. Paternoster, M. Unterkalmsteiner, T. Gorschek, and P. Abrahamsson (2015).

“Software development in startup companies: the greenfield startup model.” IEEE Transactions on
Software Engineering 42 (6), 585–604.

Griva, A., Byrne, S., Dennehy, D., and Conboy, K. (2020). "Software Requirements Quality: Using

Analytics to Challenge Assumptions at Intel," IEEE Software.

Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature review: Machine learning
techniques applied to financial market prediction. Expert Systems with Applications, 124, 226-251.

Holstein, K., J. Wortman Vaughan, H. Daumé, M. Dudik, and H. Wallach (2019). “Improving

Fairness in Machine Learning Systems: What Do Industry Practitioners Need?” in Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems. CHI ’19. New York, NY,

USA

Ishikawa, F. and N. Yoshioka (2019). “How do engineers perceive difficulties in engineering of

machine learning systems? Questionnaire survey.” in 2019 IEEE/ACM Joint 7th International
Workshop on Conducting Empirical Studies in Industry (CESI) and 6th International Workshop on

Software Engineering Research and Industrial Practice (SER&IP).

Jüngling, S., M. Peraic, and A. Martin (2020). “Towards AI-based Solutions in the System
Development -Lifecycle.” in AAAI Spring Symposium: Combining Machine Learning with

Knowledge Engineering.

Laato, S., Farooq, A., Tenhunen, H., Pitkamaki, T., Hakkala, A., & Airola, A. (2020). AI in
cybersecurity education-a systematic literature review of studies on cybersecurity moocs. In 2020

IEEE 20th International Conference on Advanced Learning Technologies (ICALT) (pp. 6-10).

IEEE.

Laato, S., Mäntymäki. M., Islam, A.K.M.N., Hyrynsalmi, S. & Birkstedt, T. (2022) "Trends and
Trajectories in the Software Industry: Implications for the Future of Work", Information Systems

Frontiers.

Lyytinen, K. and Rose, G. M. (2006). "Information System Development Agility as Organizational
Learning," European Journal of Information Systems, 15:2, 183-199.

Karamitsos, I., S. Albarhami, and C. Apostolopoulos (2020). “Applying DevOps practices of

continuous automation for machine learning.” Information 11 (7), 363.
Katayama, E. T. and A. Goldman (2011). “From manufacture to software development: a comparative

review.” in International Conference on Agile Software Development.

Kemell, K.-K., A. Nguyen-Duc, X. Wang, J. Risku, and P. Abrahamsson (2018). “The essence theory

of software engineering–large-scale classroom experiences from 450+ software engineering BSc
students.” in International Conference on Product-Focused Software Process Improvement.

Mantei, M. M. and T. J. Teorey (1989). “Incorporating behavioral techniques into the systems

development life cycle.” MIS Quarterly, 257–274.
Matkovi ́c, P. and P. Tumbas (2010). “A comparative overview of the evolution of software

development models.” International Journal of Industrial Engineering and Management 1 (4),

163–172.

Minkkinen, M., Niukkanen, A., & Mäntymäki, M. (2022). What about investors? ESG analyses as
tools for ethics-based AI auditing. AI & Society, 1-15.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Series in Computer Science. New York:

McGraw-Hill.
Mohri, M., A. Rostamizadeh, and A. Talwalkar (2018). Foundations of Machine Learning. Second

edition. Adaptive Computation and Machine Learning. Cambridge, Massachusetts: The MIT Press.

Mäntymäki, M., Minkkinen, M., Birkstedt, T. et al. Defining organizational AI governance. AI and
Ethics (2022). https://doi.org/10.1007/s43681-022-00143-x

Nagy, D., L. Schultz, and T. Wiederker (2017). “Replace or revise? A case study investigating the

replacement of an organizational website.” in AMCIS2017 and eBusiness and eCommerce Digital

Commerce (SIGeBIZ).
Niederman, F. (2021). "Project management: openings for disruption from AI and advanced

analytics", Information Technology & People, Vol. ahead-of-print No. ahead-of-print.

Laato et al. /Integrating ML with SDLC models

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 16

Nilsson, A. and T. L. Wilson (2012). “Reflections on Barry W. Boehm’s “A spiral model of software

development and enhancement”.” International Journal of Managing Projects in Business.
Paasivaara, M., C. Lassenius, and V. T. Heikkilä (2012). “Inter-team coordination in large-scale

globally distributed scrum: Do scrum-of-scrums really work?” in Proceedings of the ACM-IEEE

international symposium on Empirical software engineering and measurement.

Ragunath, P., S. Velmourougan, P. Davachelvan, S. Kayalvizhi, and R. Ravimohan (2010). “Evolving
a new model (SDLC Model-2010) for software development life cycle (SDLC).” International

Journal of Computer Science and Network Security 10 (1), 112–119.

Raji, I. D., A. Smart, R. N. White, M. Mitchell, T. Gebru, B. Hutchinson, J. Smith-Loud, D. Theron,
and P. Barnes (2020). “Closing the AI Accountability Gap: Defining an End-to-End Framework for

Internal Algorithmic Auditing.” in Proceedings of the 2020 Conference on Fairness,

Accountability, and Transparency. FAT* ’20. New York, NY, USA

Rani, S. B. A. S. U. (2017). “A detailed study of Software Development Life Cycle (SDLC) models.”
International Journal of Engineering And Computer Science 6 (7).

Rising, L. and N. S. Janoff (2000). “The Scrum software development process for small teams.” IEEE

software 17 (4), 26–32.
Royce, W. (1970). “Managing the development of large software systems.” in Proceedings of the 9th

international conference on Software Engineering.

Rubin, M. L. (1970). “Introduction to the system life cycle.” Handbook of Data Processing
Management. Vol. 1.

Salloum, S. A., Alshurideh, M., Elnagar, A., & Shaalan, K. (2020). Machine learning and deep

learning techniques for cybersecurity: a review. In The International Conference on Artificial

Intelligence and Computer Vision (pp. 50-57). Springer, Cham.
Schlesinger, A., O'Hara, K. P., & Taylor, A. S. (2018). Let's talk about race: Identity, chatbots, and AI.

In Proceedings of the 2018 chi conference on human factors in computing systems (pp. 1-14).

Seidman, I. (2019). Interviewing as Qualitative Research: A Guide for Researchers in Education and
the Social Sciences. New York, NY: Teachers College Press.

Shalev-Shwartz, S. and S. Ben-David (2014). Understanding Machine Learning: From Theory to

Algorithms. New York, NY, USA: Cambridge University Press.
Srivastava, A., S. Bhardwaj, and S. Saraswat (2017). “SCRUM model for agile methodology.” in 2017

International Conference on Computing, Communication and Automation (ICCCA). IEEE.

Studer, S., T. B. Bui, C. Drescher, A. Hanuschkin, L. Winkler, S. Peters, and K.-R. Müller (2021)

“Towards CRISP-ML (Q): a machine learning process model with quality assurance
methodology.” Machine Learning and Knowledge Extraction 3 (2), 392–413.

Tamburri, D. A. (2020). “Sustainable MLOps: Trends and Challenges.” in 22nd International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, pp.
17–23.

Turetken, O., I. Stojanov, and J. J. Trienekens (2017). “Assessing the adoption level of scaled agile

development: a maturity model for Scaled Agile Framework.” Journal of Software: Evolution and

processs 29 (6), e1796.
Valohai (2021). Practical MLOps: How to Get Ready for Production Models. ebook URL:

https://valohai.com/mlops-ebook/ (visited on August 18th, 2021)

Virmani, M. (2015). “Understanding DevOps & bridging the gap from continuous integration to
continuous delivery.” in Fifth international conference on the innovative computing technology

Galcia, Spain.

	INTEGRATING MACHINE LEARNING WITH SOFTWARE DEVELOPMENT LIFECYCLES: INSIGHTS FROM EXPERTS
	Recommended Citation
	Authors

	tmp.1652332683.pdf.2988u

