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Abstract 
Digital convergence is frequently discussed in research. The concept of convergence describes how 
formerly separate areas are increasingly merging. So far, however, we have only a rudimentary 
understanding of digital convergence for several reasons. First, digital convergence is not clearly 
conceptualized and used differently across contexts. Second, we have little insight into what is 
converging and at what pace. We conceptualize digital convergence by arguing that its sociotechnical 
nature requires jointly considering technical and social aspects. Our analysis of a longitudinal patent 
data set covering 31 years and 677,045 patents from 124 industries shows that (1) industry boundaries 
defined by the Standard Industrial Classification (SIC) are dissolving as companies interact with 
technological knowledge outside their industrial boundaries. (2) Specific technology classes defined in 
the International Patent Classification (IPC) increasingly cite - and converge with - other technology 
classes. We close by highlighting promising avenues for future research on digital convergence. 
Keywords: Digital convergence, Patent analysis, Digital innovation, Technological distance, Digital 
transformation 

1 Introduction 
Digital technology leads to rapid changes in the competitive environment (Karimi and Walter, 2015), 
requiring organizations to transform established structures and routines (Wessel et al., 2021). In 
particular, digital technology requires a new perspective on the established modular product architecture 
towards a layered modular product architecture (Yoo et al., 2010). Whereas the modular logic describes 
the tight interlocking of different physical components, the layered modular architecture consists of four 
layers (devices, networks, services, contents), which are only loosely coupled and can be updated and 
recombined easily (Yoo et al., 2010). The ability to recombine different components flexibly within and 
across the layers offers nearly endless possibilities for new value creation (Henfridsson et al., 2018). 
Since the four layers of digital technology do not require product-specific knowledge, existing 
technological, organizational and even industrial boundaries are increasingly blurring (Lusch and 
Nambisan, 2015; Nambisan et al., 2017).  

These blurring boundaries lead to different forms of convergence, which in the most general sense is the 
“[m]erger and blending of previously separate entities or fields into one” (Hund et al., 2021b, p. 9). 
When formerly disparate technologies and use contexts are converging to create innovative products 
(for example, internet-, communication-, and payment-capabilities in smartphones) (Yoo et al., 2012), 
these technical changes also have far-reaching social implications, for example, at the industrial level, 
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where companies have to engage with knowledge from different industries and even find themselves 
competing in new markets. Traditional business expansion describes how companies enter a new 
industry by competing with incumbents under the same industry regulations, whereas convergence 
describes how organizations compete while drawing on different resources and acting according to 
different industry regulations (Seo, 2017). For example, the acquisition of Skype has put Microsoft in 
direct competition with incumbent companies in the telecommunication sector (Yoo et al., 2010). Thus, 
extant literature argues that digital technology generally drives convergence across various levels and 
domains, not only in highly digitalized domains (cf. Yoo et al., 2012; Tilson et al., 2010; Seo, 2017).   

However, in light of the “general dearth of empirical and theoretical analyses of digital convergence” 
(Tilson et al., 2010, p. 751), some even conclude that: “[c]onvergence, as a phenomenon, has been an 
overused and over-hyped term” (Bonnet and Yip, 2009, p. 53). While previous research has discussed 
various forms of convergence due to digital technology (e.g., Yoo et al., 2012; Seo, 2017; Lyytinen et 
al., 2016), we have only a rudimentary understanding of the concept for two reasons. First, while 
convergence is currently applied across various contexts such as products (e.g., Yoo et al., 2012), 
devices and networks (e.g., Tilson et al., 2010), as well as entire industries (e.g., Seo, 2017), digital 
convergence is often referenced but not clearly conceptualized. For example, a recent review on 
convergence highlights the “the advent of the so-called digital convergence” (Sick and Bröring, 2022, 
p. 4) but does not define how the concept differs from other types of convergence in the context of 
technology. Therefore, in a first step towards the creation of ‘next-generation’ IS theory (Burton-Jones 
et al., 2021), we develop a conceptualization of digital convergence by highlighting its sociotechnical 
nature, which requires considering “technical artifacts as well as the individuals/collectives that develop 
and use the artifacts in social […] contexts” (Sarker et al., 2019, p. 696). Accordingly, digital 
convergence comprises the dissolution of technological boundaries (i.e., the technical side) and the 
dissolution of market or industrial boundaries (i.e., the social side). Second, due to a lack of empirical 
validation, we have little insight into what is converging and at what pace. Hence, while it is possible 
that technological or industrial domains are converging on a larger scale, it is also possible that 
convergence is limited to only a few high-profile examples. Moreover, to date, we do not know whether 
convergence is occurring at the same pace and scale in every industry or whether industries embrace or 
resist convergence relative to other industries.  

Using a longitudinal analysis of patent data spanning 31 years, 677,045 patents, and 12,956,753 patent 
comparisons from 124 industries, we can show that (1) industry boundaries as defined by the Standard 
Industrial Classification (SIC) are increasingly but differentially dissolving as companies interact with 
technological knowledge from outside their industrial boundaries. (2) There are specific technology 
classes, defined in the International Patent Classification (IPC), that increasingly cite – and thus 
converge with - other technology classes.  

The next section provides an overview of existing literature on convergence before outlining our 
method. We then present our results and discuss their theoretical implications. Finally, we discuss our 
findings and highlight the sociotechnical nature of digital convergence. We conclude by developing 
promising avenues for future research. 

2 Theoretical Background  
IS research frequently highlights that digital technology drives convergence on various levels, such as 
the product and industrial level (e.g., Yoo et al., 2012; Nambisan et al., 2017; Seo, 2017) but in general, 
convergence “can be driven by market pull, technology push or regulatory push/pull or a combination” 
(see Sick and Bröring, 2022, p. 5). The concept of convergence is frequently used (Bonnet and Yip, 
2009), especially since “[t]echnological progress, particularly in the realm of ICT, is often mentioned 
as one of the main sources to start and feed convergence processes” (Sick and Bröring, 2022, p. 5). 

For example, since the seminal article of Kodama (1992), the concept of technology convergence has 
received considerable attention across various disciplines. Technology convergence is “defined as the 
spillover and blending of technological knowledge across previously distinct disciplines” (Jeong et al., 
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2015, p. 842). While IS research does not refer to technology convergence, most types of convergence 
addressed in IS research are closely related to or direct consequences of technology convergence. At the 
product level, digital technology facilitates technology convergence since it exhibits a layered modular 
architecture, which “[…] extends the modular architecture of physical products by incorporating four 
loosely coupled layers of devices, networks, services, and contents” (Yoo et al., 2010, p. 724). Since 
each layer's specific physical and digital components are only loosely coupled, they can be combined 
and recombined at ease. For example, on the device layer, there is the hardware (physical component) 
but also the software (digital component) necessary to control and use the hardware (Henfridsson et al., 
2018).  

Traditionally, specific devices were tightly coupled with specific networks and services (Seo and Sherif, 
2009). However, in the case of digital technology, the components across the four layers are only loosely 
coupled and can be flexibly combined and recombined (Yoo et al., 2010). This flexibility is 
characteristic for digital innovation and shakes up established assumptions about innovation since 
product boundaries cannot be defined upfront (Henfridsson et al., 2018; Kallinikos et al., 2013). 
Recombining digital and physical components results in the creation of smart products, which drive two 
types of convergence on the product level. First, device convergence occurs since smart products bring 
together various functions related to information processing, previously held by multiple devices (Tilson 
et al., 2010). For example, “a smartphone can afford voice call, photo taking, games, and many other 
capabilities that a user could possibly need (e.g., emulating beer drinking, serving as a flashlight)—all 
on a single device” (Yoo et al., 2012, p. 1399). Second, there is network convergence since a single 
network can transmit and support basically any type of information by an almost unlimited amount of 
smart products (Tilson et al., 2010).  

Furthermore, convergence decreases the “distance between applied science and technology 
development” (Curran et al., 2010, p. 387) by bringing together knowledge from various disciplines, 
which, on the industrial level, drives digital business convergence (Seo, 2017). Here, digital technology 
enables organizations to experiment with new product features (Austin et al., 2012) to identify new 
product-market combinations (Curran et al., 2010). By bringing together technologies from various 
backgrounds, organizations encounter a distribution of control over and knowledge about a digital 
innovation across multiple actors – a phenomenon Yoo et al. (2010) termed doubly distributed. Doubly 
distributed means that (1) control over digital innovation does typically not reside within one company 
but is distributed across various actors, and (2) knowledge about the digital innovation is distributed 
across various disciplines (Yoo et al., 2010). Since control over and knowledge about a digital 
innovation is not held by a single company, close collaboration with external actors and engagement 
with increasingly distant areas of knowledge is no longer optional (Lyytinen et al., 2016; Boland et al., 
2007). The pressure to engage with increasingly distant areas of knowledge fosters new approaches to 
access and combine different types of knowledge (Hund et al., 2021a), which is leading to blurring 
organizational boundaries (Nambisan et al., 2017) and to the convergence of entire industries where 
firms are competing in the same market but draw from a different set of resources and are regulated by 
different industrial regulations (Tilson et al., 2010; Seo, 2017).  

Thus, digital convergence encompasses technical and social aspects, which must be considered jointly. 
In the context of this paper, we, therefore, define digital convergence as the merger of technological 
knowledge across established technical and social boundaries. Technical boundaries are defined by the 
IPC classification, social boundaries are defined by the SIC classification. 

A better understanding of digital convergence would therefore provide important insights when trying 
to understand novel products that transcend established product and industry boundaries or when 
defining organizational strategies. The same for new forms of industry regulation, for example, “should 
Vodafone (a British multinational telecom operator) consider Skype as its rival even though it does not 
have the same license nor is it affected by the same regulations (e.g., taxation) as Vodafone?” (Seo, 
2017, p. 690).  
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3 Methodology 
In the following, we first define patents and address the logic behind patent classification systems before 
explaining the necessary steps in data collection, cleaning, and analysis.  

3.1 Patent data 

Patents have long been established as an objective, non-financial indicator to measure the value of 
innovation and relevant factors influencing innovation. Among others, patents have been used to analyze 
the role of software patents on firm value (Chung et al., 2019; Chung et al., 2015), how organizational 
networks affect innovation outcomes (Ahuja, 2000; Ahuja and Katila, 2004), and how lone inventors 
perform in comparison to collaborative efforts (Ahuja and Katila, 2004). Recently, patents have also 
been used to uncover the positive impact of digital mergers and acquisitions on firm performance 
(Hanelt et al., 2021). A patent can be understood as a “temporary monopoly awarded to inventors for 
the commercial use of an invention” (Jaffe et al., 1998, p. 185). To organize different types of patent 
domains, the International Patent Classification (IPC) system provides a structure of four different levels 
(Section, Class, Subclass, Group), as depicted in Figure 1 below. These patent categories can be used to 
measure whether a patent is cited from a similar technological field or whether the patented technologies 
are from completely different fields. Patents in a particular patent category may be considered more 
similar than those in other patent categories (Jaffe, 1986; Kay et al., 2014).   
 

 
       Figure 1.  Overview of the IPC levels based on wipo.int1 

To collect the required data, two main data sources are accessed: Patent data from the USPTO (United 
States Patent and Trademark Office) and Standard Industrial Classification (SIC) from “Electronic Data 
Gathering, Analysis, and Retrieval system” (EDGAR) of the Security and Exchange Commission 
(SEC). 

The publicly available patent data of the USPTO is accessed via its archive BDSS (Bulk Data Storage 
System) 2. Available patent data was downloaded in XML format and imported, processed, and loaded 
into a MySQL database. We focus on the 500 most capital-intensive companies in the U.S. as 
represented in the Standard & Poor's 500 Index (S&P500), a capitalization-weighted market index 
measuring the stock performance of the 500 strongest companies listed on the U.S. stock exchanges. 
The index changes whenever the underlying stock price (and thus, the cumulative market value) changes 
(Kawaller et al., 1987). The index data used for this work was taken from the website 
markets.businessinsider.com3, which provides real-time stock market data. Furthermore, the associated 
SIC codes of each company filing patents are obtained through a web crawler that searches the EDGAR4 

                                                      
1 https://www.wipo.int/classifications/ipc/en/ [last accessed: 06.07.2020] 
2 https://bulkdata.uspto.gov/ [last accessed: 12.11.2021] 
3 https://markets.businessinsider.com/index/s&p_500 [last accessed: 02.01.2020] 
4 https://www.sec.gov/edgar/searchedgar/companysearch.html  [last accessed: 12.11.2021] 

https://www.wipo.int/classifications/ipc/en/
https://bulkdata.uspto.gov/
https://markets.businessinsider.com/index/s&p_500
https://www.sec.gov/edgar/searchedgar/companysearch.html
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system. SIC codes are four-digit numeric codes issued by the U.S. government to corporate entities to 
identify the company's primary business. The classification was developed to facilitate data collection, 
presentation, and analysis and promote consistency and reproducibility in the display of statistical data 
gathered by a variety of private organizations and state agencies. The SIC system covers all branches of 
the economy (Haas, 1977) and divides the economy into 11 divisions, divided into 83 two-digit main 
groups, which are further divided into 416 three-digit industry groups and finally into 1005 four-digit 
industries5. For our purposes, the primary US-SIC code of each company is used since it indicates the 
primary line of business of a company. According to the SEC, the code definition that generates the 
company's highest revenue at a given location in the past year determines the primary SIC code of a 
company. After collecting all the necessary S&P500 data via a crawler, we merged it with the patent 
data to construct our final data set.  

3.2 Data Cleaning 

Five data cleaning procedures have to be performed after collecting and merging the patent and company 
data to obtain a workable data set, as described in Figure 2. 

 

 
Figure 2.  Data Cleaning Process 

(1) In a string check, the entries of the searched companies are checked for a match with the respective 
entry of the recognized company. Since the crawler saves the data in a CSV format, the check was 
performed in Microsoft (MS) Excel. However, the program itself can only detect unique matches. There 
are marginal differences in the available data, e.g., between the search term "Facebook" and the found 
company "Facebook Inc.". In particular, the legal additions to company names lead to errors during 
verification. Therefore, an additional add-in called "Fuzzy Lookup" for MS Excel is loaded, which can 
calculate the match in percent. In total, 29 incorrect entries of the 504 companies are identified. These 
companies marked as incorrect are manually searched again in the EDGAR database to correct the 
errors. In most cases, the error is that the searched company is not prioritized first by the website but 
since the crawler selects the first search entry, such errors can occur and must be corrected manually. In 
addition, the S&P500 index occasionally lists several shares of the same company, as companies may 
bring different shares to market that differ in price, number and voting rights per share. Class A shares 
are more expensive and have more voting rights per share than Class B and C shares6. Since the shares 
belong to the same company despite their different classifications, they are combined into one company 
for later analysis. This concerns the companies Alphabet Inc (Class A/C), Discovery Inc (Class A/C) 
and Under Armour Inc (Class A/C).  

(2) So-called M&As (Merger and Acquisitions), Holdings, and simple name changes were manually 
coded and streamlined. For example, the holding “Alphabet Inc” was assigned the alias “Google” since 
it represents the wholly-owned subsidiary Google LLC, formerly known as Google Inc. (3) The different 
datasets are merged and checked for double and NULL values across all relevant variables. (4) 
Subsequently, the individual datasets are checked for duplicates and NULL values after each merge. 
Empty cells, incl. cells containing an empty “ “ string, are flagged with NULL and excluded from further 
processing. (5) Finally, the data set is checked again for correctness, and individual patents are excluded 
if, for example, there are faulty IPC classes. This concerns especially older patents. The final dataset 

                                                      
5 https://www.sec.gov/info/edgar/siccodes.htm [last accessed: 12.11.2021] 
6 https://www.investopedia.com/terms/c/classashares.asp [last accessed: 12.11.2021] 

Checking crawled 
S&P 500 sample 
on correctness

Identifying 
holdings & subsidiaries

Checking on 
double & NULL values 

after each merge

Checking on 
false IPC values

Initial check on 
double & NULL values

1 2 3 4 5

https://www.sec.gov/info/edgar/siccodes.htm
https://www.investopedia.com/terms/c/classashares.asp
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contains 13,095,311 patent comparisons, which can be evaluated over the years from 1989 to 2019 by 
inspecting their IPC classes.  

3.3 Data Analysis 

Technology convergence is measured by using the so-called technological distance between patents. 
Patents are filed for various technologies, which are categorized within different IPC classes. 
Technological distance describes how far different technology fields are apart from each other based on 
differences in the IPC classes, which is a key indicator of understanding innovation (Breschi et al., 
2003). For example, if the cited patents originate from the same technological environment (e.g., within 
the same subgroup on the 4th level as depicted in Figure 1), the technological distance is small and 
indicates incremental innovation. This small distance implies that existing technology is enhanced or 
improved within the same technological environment (Kay et al., 2014). If the cited patents originate 
from rather different technological environments (e.g., from different 1st level sections), they differ 
more clearly i.e., show a higher technological distance, which indicates a rather radical innovation 
(Olsson, 2005). To frame it in our words, it indicates technology convergence which refers to the 
combination of technological knowledge across previously distinct disciplines (Jeong et al., 2015). 

Data analysis aims to calculate the technological distance between a patent and the patents it cites. The 
mathematical basis for calculating this technological distance is explained. Then the technical 
implementation of the data evaluation is discussed. The technological distance between a patent and its 
cited patents is calculated by comparing the respective IPC classes. To do so, and since patents may 
have multiple IPC classes assigned, we focus on the primary IPC class to avoid overweighting individual 
patents. The IPC classes of the existing patents are divided into these four levels (𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛), according to 
Figure 1, and their respective levels are compared to calculate the distance (𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 ). For example, the 
first level of the original patent is compared with the first level of the cited patents. The same is repeated 
for the 2nd, 3rd, and 4th level. The distance value (𝑇𝑇𝑇𝑇𝐼𝐼𝐻𝐻𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) is based on the formula of (Caviggioli, 
2016; Trajtenberg et al., 1997):  

𝑇𝑇𝑇𝑇𝐼𝐼𝐻𝐻𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝐼𝐼𝐼𝐼𝐼𝐼1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗  𝑤𝑤1 + 𝐼𝐼𝐼𝐼𝐼𝐼3𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗  𝑤𝑤2 + 𝑊𝑊𝐼𝐼𝐼𝐼𝑊𝑊5𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝑤𝑤3 + 𝑊𝑊𝐼𝐼𝐼𝐼𝑊𝑊35𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝑤𝑤4 

𝑤𝑤𝑤𝑤𝑤𝑤ℎ:  𝑤𝑤1 = 𝑤𝑤3 > 𝑤𝑤2 = 𝑤𝑤4  

Compared to the WIPO (World Intellectual Property Organization) classification, which groups all 4-
digit IPC codes into 35 fields with activities belonging to 5 macro areas (Electrical Engineering, 
Instruments, Chemistry, Mechanical Engineering, and Other Fields), the IPC classification allows a 
significantly more granular analysis. Therefore, instead of the combination of IPC and WIPO, only the 
IPC classes are used for analysis.  

The weights 𝑤𝑤𝑤𝑤 are ordered hierarchically, which means that the weighting for the 1st level of the IPC 
hierarchy is weighted stronger than the weighting for the 2nd level, et cetera. Since the respective four 
hierarchy levels of the IPC class are equidistant, the concluded weights 𝑤𝑤 in the technological distance 
formula are set to 0.4, 0.3, 0.2, and 0.1 for 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, and 𝑤𝑤4, respectively. After these adjustments, 
the following formula and conditions for calculating the technological distance result: 

𝑇𝑇𝑇𝑇𝐼𝐼𝐻𝐻𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝐼𝐼𝐼𝐼𝐼𝐼1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗  𝑤𝑤1 + 𝐼𝐼𝐼𝐼𝐼𝐼2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗  𝑤𝑤2 + 𝐼𝐼𝐼𝐼𝐼𝐼3𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝑤𝑤3 + 𝐼𝐼𝐼𝐼𝐼𝐼4𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝑤𝑤4 

𝑤𝑤𝑤𝑤𝑤𝑤ℎ: 𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 ∈ {0,1}  

𝑤𝑤𝑤𝑤𝑤𝑤ℎ: 𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛+1  ≠ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 = 1  

𝑤𝑤𝑤𝑤𝑤𝑤ℎ:  𝑤𝑤1 > 𝑤𝑤2 > 𝑤𝑤3 > 𝑤𝑤4  
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𝐼𝐼𝐼𝐼𝐼𝐼1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,  𝐼𝐼𝐼𝐼𝐼𝐼2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝐼𝐼𝐼𝐼𝐼𝐼3𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 and 𝐼𝐼𝐼𝐼𝐼𝐼4𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 are dummy values equal to 1 if the compared patents 
have different IPC sections (first level), IPC classes (second level), IPC subclasses (third level), or IPC 
groups (fourth level).  

Furthermore, the distance between two sub-levels, i.e., levels 2, 3, and 4, can only be the same (value = 
0) if the parent level does not differ, i.e., also has the value 0. The following example illustrates this 
condition: The two IPC classes, A01B33 and A02B33, are given. This results in the value 0 on level 1 
(𝐼𝐼𝐼𝐼𝐼𝐼1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), since both levels are identical (A). Level 2 (𝐼𝐼𝐼𝐼𝐼𝐼2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) has the value 1 because the levels 
are different (01, 02). Level 3 (𝐼𝐼𝐼𝐼𝐼𝐼3𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) (B) and Level 4 (𝐼𝐼𝐼𝐼𝐼𝐼4𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) (33) are identical, but only if they 
are not considered in the context of the entire IPC class. Since both classes already differ at level 2, they 
cannot have the same value in the hierarchically subordinate levels. Thus, the value 1 is obtained for 
level 3 and level 4. The technological distance for the filtered patents is calculated, based on the formula 
defined above. The distance value is stored and is thus always associated with the respective patent 
number. After calculation, all distance values are added up. The sum of all distance values is then divided 
by the number of analyzed patents. The resulting quotient reflects the technological distance of the 
filtered patent scope:   

∑ 𝑇𝑇𝑇𝑇𝐼𝐼𝐻𝐻𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖
𝑛𝑛
𝑖𝑖=1

∑𝑤𝑤
 

After the program code is executed, the result of the quotient, the comparisons between primary and 
cited patents, and the number of analyzed patents is obtained. The latter serves to get a better 
understanding of the analyzed data.  

4 Results 
The analysis yields two key findings: First, most industries as defined by the SIC classification, 
increasingly transcend industrial boundaries by engaging with increasingly distant technological 
knowledge. Second, specific technology classes defined by the IPC classification are converging by 
increasingly citing patents from other IPC classes. 

4.1 Transcending Industrial Boundaries By Engaging With Increasingly 
Distant Areas of Expertise   

Our first key result shows that most industries increasingly transcend their established boundaries (as 
defined by the SIC classification) to engage with more distant areas of expertise (as defined by the IPC 
classification). Specific industries are typically characterized by their respective customers and products, 
with products being based on dominant technologies typically used in that industry. Thus, when 
technological distance increases within an industry, the dominant technology is increasingly 
complemented or extended by technologies typically prevalent in other industries. By calculating the 
number of primary patents, the number of total patent comparisons (the comparison of each primary 
patent with all its cited patents), the ratio of cited patents (how many patents a primary patent cites on 
average for this year), and the technological distance for every single year within the period of 1989-
2019, we can depict the general increase in technological distance. Table 1 provides an exemplary 
overview of the analyzed period in five-year increments. 
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Year No. Primary 
Patents 

No. 
Comparisons 

Ratio of  
Cited Patents 

Technology  
Distance 

2019 51,382 1,075,741 20.936 0.456 

2014 42,385 1,055,255 24.897 0.440 

2009 22,436 466,145 20.777 0.410 

2004 18,750 275,379 14.687 0.420 

1999 11,649 125,373 10.763 0.387 

1994 8,006 61,900 7.732 0.390 

1989 5,288 29,400 5.560 0.391 

Table 1: Overview of the analyzed periods in five-year increments 

 

Figure 3 below illustrates the increased technological distance per year when not differentiating between 
different SIC codes from 1989 to 2019. In addition, the calculated linear model is shown with the darker 
dashed line. As indicated by the increasing numbers depicted in column five of Table 1, the overall 
technological distance within the sample across all industries is increasing.  

 

 
Figure 3.  Increasing technological distance per year across all SICs 

 

By considering the three-digit SIC codes, we also gain a more detailed insight into the changes in the 
individual industries. Figure 7 below shows the changes in technological distance parallel to the number 
of published patents over 31 years analyzed for all SIC codes with at least 20 values per year for 
technological distance. The top two quadrants show industries with an increasing technological distance 
between 1989 and 2019 in their patents, combined with a decreasing number of published patents (top 
left) or an increasing number (top right). The bottom two quadrants show industries with decreasing 
technological distance, on the one hand with a decreasing number of new patents per year (bottom left), 
on the other hand with an increasing number (bottom right). 
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Figure 4.  Technological distance and number of published patents per SIC 

The results show the varying extent of the technological distance between different industry groups. 
Overall, 46 out of 62 industries have seen an increase in technological distance in their patents from 
1989 to 2019. The more vertically centered the industries, the smaller the increase/decrease in published 
patents over this period. In many cases, the increase in technological distance is accompanied by an 
increase in published patents (upper right quadrant). Industries 384, 366, 367, 737, and 357 are not 
shown in Figure 4 because they are much further to the right in the upper right quadrant and show an 
increase in technological distance and a very large increase in published patents. However, this is not 
always the case. 371 (motor vehicles and motor vehicle equipment) and 481 (telephone 
communications) stand out in particular as they show both an increase in technological distance in 
combination with a sharp decrease in published patents. 

4.2 Technology Convergence: Citation Patterns Between Different IPCs 

We now turn to the convergence of specific technologies defined by the IPC. As displayed in Figure 1, 
the IPC is "a hierarchical system in which all technical knowledge for the field of inventions is divided 
into sections, classes, subclasses, main groups, and subgroups, in descending order of hierarchy" 
(DPMA 2020). 

Looking only at the highest level of the hierarchy7 (i.e., the section level, ranging from A-H), each IPC 
section most frequently cites patents from its own first-level IPC section. For example, patents classified 
in IPC section H (Electricity) most often cite other patents classified in section H. However, looking 
more closely at the second level of the hierarchy (i.e., the class level), we can see that some sections 
also frequently cite technology classes from other sections. For example, section H also cites 422,042 

                                                      
7 For a full overview of all IPC sections and classes: 
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20210101&symbol=none&menulang=en&lang=en&viewmode=f
&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=sma
rt [last accessed: 12.11.2021] 

https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20210101&symbol=none&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20210101&symbol=none&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart
https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20210101&symbol=none&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart
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patents from G6 (Computing; Calculating or Counting). Figure 5 below shows the three most frequently 
cited technology classes at the second level for each section. Each bar is labelled with the total number 
of patents cited. 

 

Figure 5.  Most frequently cited second level class per first-level section 

While the three most frequently cited IPC classes (2nd level) in sections B (Performing operations, 
Transporting) and F (Mechanical Engineering, Lighting, Heating, Weapons, Blasting) are from the same 
main section, other sections frequently cite classes from other sections. For example, the third most 
frequently cited classes in Sections A (Human necessities), C (Chemistry, Metallurgy), and H 
(Electricity) each come from a different section (marked in blue). In Sections D (Textiles, Paper) and E 
(Fixed constructions), only the most frequently cited class stems from the same section, whereas the 
second and third most frequently cited classes are from other sections (marked in green). The most cited 
technology class in section G (Physics) is from another section (marked in red). These results already 
indicate increasing convergence between different technology sections, even at the first hierarchical 
level. For example, within section G (Physics), there is a strong trend towards implementing knowledge 
from section H (Electricity) or, more specifically, from class H4 (Electric communication technique).  

Furthermore, when moving the analysis to the second level of the IPC hierarchy, we can see which 
specific technology classes cite other technology classes. Figure 6 below depicts the three most 
commonly cited technology classes, excluding self-citations for all eight sections. For example, we can 
now see that within section H (Electricity), particularly the class H4 (Electric communication technique) 
heavily cites patents from G6 (Computing; Calculating or Counting), which explicitly includes various 
digital technologies. At the same time, patents within G6 also cite patents from H4 to a high degree, 
indicating a strong trend toward (digital) convergence between these two technology classes. 
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Figure 6: Most frequently cited IPC class per second-level IPC class 

5 Discussion 
In the following, we first discuss the implications of our findings and potential limitations before 
presenting some avenues for future research.  

5.1 Implications 

Our investigation began by arguing that digital convergence is a sociotechnical phenomenon that 
encompasses the technical dimension as indicated by the increasing convergence of different IPC 
classes, as well as the social dimension as indicated by organizations located in different markets 
(defined by the SIC), who are increasingly transcending their established industrial boundaries to access 
more distant technological knowledge. Therefore, our conceptualization of digital convergence 
highlights the need to jointly consider technical and social aspects, which has been recommended to 
examine sociotechnical phenomena (Sarker et al., 2019). To address both aspects, we build upon the 
general concept of technology convergence, which is about transferring technological knowledge to 
formerly disparate contexts (Jeong et al., 2015). The IPC classification is used to identify knowledge 
transfer between different technology classes to examine the technical side. The SIC classification is 
used to identify knowledge transfer between different industrial fields to examine the social side. Digital 
convergence as a concept is therefore closely related to the concept of technology convergence but 
enables a conceptual differentiation between technical and social aspects. Therefore, we are in line with 
Tilson et al. (2010, p. 749), who argue that “we need to distinguish carefully digitizing - a technical 
process - from digitalization - a sociotechnical process of applying digitizing techniques to broader 
social and institutional contexts”.  

Based on our empirical findings, we make two key contributions: First, our findings corroborate the 
theoretical discussions from extant research regarding the dissolution of industrial boundaries (i.e., the 
social side) (cf. Seo, 2017; Nambisan et al., 2017; Tilson et al., 2010). We show that organizations 
within specific industries, defined in the SIC, access, on average, more distant knowledge domains (see 
Figure 3). Since industries are usually defined in terms of their specific markets and products, with the 
products being based on the dominant technologies used in that industry, an increasing technological 
distance indicates that technologies from other areas of expertise increasingly complement the dominant 
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technology. Furthermore, while we show that the average technological distance is increasing over the 
years, this is not the case in every industry. In fact, there exists a remarkable spread among different 
industries, as depicted in Figure 4. Our results show that convergence occurs across various industries 
at a different pace and scope. Individual industries (e.g., 371 & 481) even engage with technological 
knowledge from increasingly distant areas of expertise despite a sharp decrease in published patents. 
This could indicate that the published patents within these industries are the basis for increasingly radical 
innovation rather than incremental innovation.  

Second, our findings also support the argument that digital phenomena such as digital innovation 
“regularly exhibit convergence […], requiring the combination of heterogeneous knowledge” (Hanelt 
et al., 2021, p. 8). Thus the phenomenon of convergence, which has been theoretically investigated 
numerous times (e.g., Yoo et al., 2012; Lyytinen et al., 2016; Fichman et al., 2014), is, in fact, 
empirically observable. Our analysis reveals that some technology sections heavily draw on other 
sections' insights even on the highest level of the IPC hierarchy. For example, the most frequently cited 
technology class in the technology section G (Physics) stems from section H (Electricity), as depicted 
in Figure 5. When considering the second level of the IPC hierarchy, we can see that specific technology 
classes located in different technology sections such as G6 (Computing; Calculating or Counting) and 
H4 (Electric communication technique) frequently cite each other. This supports the increasing 
convergence of technology classes across technological boundaries in general and digital convergence 
since G6 explicitly encompasses digital technologies.Furthermore, the increasing “spillover and 
blending of technological knowledge across previously distinct disciplines” as illustrated by the 
increasing technological distance (Jeong et al., 2015, p. 842), addresses an interesting tension in IS 
literature. On the one hand, knowledge is increasingly distributed across specific actors from different 
domains (Yoo et al., 2012) but, on the other hand, knowledge is “interwoven, increasingly inseparable 
[…], questioning the fault lines between established knowledge domains” (Hanelt et al., 2021, p. 6). 
According to our results, the general trend supports the latter argument that a clear distinction between 
different knowledge domains is increasingly difficult. 

As with any research, this study has limitations that provide opportunities for future research. Our initial 
sample consists of almost 13 million patent comparisons, however, this only represents a fraction of the 
globally accessible patent data. The limitation to the S&P500 was chosen to demonstrate the 
methodology on a prominent sample and hopefully encourage future, more encompassing research. 
Moreover, the analyzed sample may still contain residual noise in the data set despite a thorough 
cleaning phase. Furthermore, the current dataset represents a snapshot. The companies included in this 
study are from the S&P500 as of January 2020. The S&P500, as a moving index, may add or remove 
companies on an ongoing basis. In addition, new patents are filed every year and must be included in 
future analyses. Besides, we focused on the primary IPC class of each patent, which can also be 
addressed in future analyses. Finally, while we show how industries transcend their established 
boundaries, an in-depth analysis of the convergence of specific industries is beyond the scope of this 
study. Apart from these limitations, our results allow us to make suggestions for future research by 
providing guidance on where and how relevant data can be collected and analyzed. This allows future 
studies to differentiate between companies and obtain an even more granular picture of digital 
phenomena.  

5.2 Avenues for future research 

Considering the sociotechnical nature of digital convergence enables future research to emphasize “the 
technical or the social side […] without losing sight of the other” (Hund et al., 2021b, p. 13). In the 
following, we develop some avenues for future research. 

As discussed above, we measured technology convergence using the classic patent measurement 
“technological distance”. Technological distance describes how far different technology fields are apart 
based on differences in the IPC classes, which is a key indicator of understanding innovation (Breschi 
et al., 2003). A small technological distance implies that a certain patent only cites other patents from 
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the same technological domain (Kay et al., 2014). In that case, the technological knowledge domain 
boundaries reflected by the IPC categorization are kept and reinforced. If a patent cites other patents 
from different domains, such as a patent of “Electricity” citing another patent from “Physics”, the 
technological distance is larger, and different technological domains are combined to form a new patent. 
In this example, the new patent is an “Electricity” patent but informed by “Physics” sections. In these 
cases, technological boundaries are crossed, and knowledge from different domains converges. Apart 
from using patent data to measure technology convergence, we came across further opportunities that 
provide promising avenues for future research. While technological distance reflects technology 
convergence, it might also be used as a starting point to measure the heterogeneity of knowledge which 
extant research puts forth as the main characteristic of digital innovation. Heterogeneity, similar to 
technological distance, could be measured based on patent citations. An adapted measure for 
technological diversity (Vasudeva and Anand, 2011) seems appropriate. Technological diversity can be 
measured at different levels of analysis: patent class, company, industry. For patent class, all citations 
of all patents of a certain patent class are pooled and compared to the number of citations referring to 
patents within the respective patent class. The higher the number, the more citations come from outside 
the respective patent class. In addition, the number of citations could be differentiated by cited patent 
classes. This measure would account for heterogeneity in how many other patent classes and how many 
patents from outside a respective patent class are cited across all patents of a respective patent class. It 
would measure how heterogeneous the knowledge basis of certain patent classes is. In a similar vein, 
heterogeneity of the knowledge base of a certain company or industry could be measured. 

To measure industry convergence (Yoo et al., 2012), two data sources are needed: One for industry 
classifications and another one for patents to pool all patents of a certain industry, e.g., based on 2-digit 
or 3-digit SIC codes, and identification of all patent citations within the respective industry. Within the 
cited patents, the filing company is identified, and in another step, the corresponding primary SIC code 
of the filing company. Finally, the analysis regarding the industry under investigation shows how many 
of its patent citations relate to patents filed by companies of other SICs and to which SICs these 
companies belong. Eventually, it can be demonstrated how strongly industry A relies on patents filed 
by companies of industry B, and so on. If the cross-citation between certain industries is quite strong, 
the technological basis across these industries seems similar. This, in turn, drives the convergence of 
products based on these technologies and may result in the convergence of industries exhibiting 
overlapping product-market combinations. Accordingly, such measures could reflect industry 
convergence in line with recent studies in IS, indicating that the increasing digitalization blurs industrial 
boundaries and challenges the separation of firms and industrial categories. 

In a similar vein, it would be possible to identify groups of companies that are part of different industries 
but exhibit a technological basis that is more similar to one another than the technological basis of 
companies outside of these groups. However, they may belong to the same industry as specific 
companies of the group. Thus, firms sharing similar characteristics across industries form a new set of 
competitors that may also explain differences in measures such as sales growth across classic industries 
(Seo, 2017).  

6 Conclusion 
In this paper, we take a closer look into the phenomenon of digital convergence. Our analysis of a 
longitudinal patent data set covering 31 years and 677,045 patents from 124 industries allows us to make 
two key contributions: First, industry boundaries as defined by the Standard Industrial Classification 
(SIC) are increasingly dissolving as companies increasingly interact with technological knowledge from 
outside their industrial boundaries (Figure 3 and 4). Second, as defined in the International Patent 
Classification (IPC), specific technology classes increasingly cite - and thereby converge with - other 
technology classes (Figure 5 and 6). Thereby, we highlight that digital convergence is a sociotechnical 
phenomenon encompassing both technical and social change and conclude by outlining particularly 
promising avenues for future research. 
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