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Abstract 

Free-floating carsharing (CS) services provide customers with a fleet of vehicles distributed within an 

operation area. These services gained popularity because of their positive impact on societal and 

personal mobility. Understanding determinants of customer demand is a key challenge for developing 

and applying vehicle relocation strategies to prevent the formation of undersupply areas. In this study, 

we merge possible features from publicly available data sources with historical demand from CS 

services situated in three different-sized cities. We train and test a Random Forest (RF) regressor 

estimating demand based on the enhanced dataset. Building on this demand prediction, we developed 

a relocation strategy that optimizes vehicle availability at anticipated demand points. Our strategy 

improved the reservation acceptance ratio in all three reference systems between 7.1 % and 15.6 %. 

Furthermore, the number of relocations compared to a deterministic relocation strategy could be 

reduced by 82.3 % and 20.6 % in two cities. 

 

Keywords: Free-Floating Carsharing, Relocation, Machine Learning, Big Data. 

1 Introduction 

CS services provide customers access to a fleet of shared vehicles, which are available for pick-up and 

drop-off within an operation area or at predefined stations and are mainly used for short-term rentals 

(Schmöller and Bogenberger 2020). Such services are a prime example of the sharing economy (Frey 

et al. 2019) and contribute to the necessary transformation of the mobility sector (Wittwer and Hubrich 

2018). On a societal level, CS reduces the amount of public space needed for parking, car traffic 

congestion, carbon dioxide emissions, and noise pollution when considering electric vehicle fleets 

(Amatuni et al. 2020; Wappelhorst et al. 2014). On an individual level, CS systems offer access to 

heterogeneous vehicle types, discharge responsibilities for privately owned cars and cut mobility 

expenses (Jochem et al. 2020). Compared to schemes based on designated rental stations, free-floating 

systems concurrently increase access flexibility and egress convenience, constituting important 

success factors of such systems (Wittwer and Hubrich 2018) and acceptance constraints to the wider 

adoption of CS (Hahn et al. 2020). Vehicle availability suffers from spatial and temporal imbalances 

of supply and demand. When analyzing the historical booking data of a free-floating CS system, we 
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determined that 85.9 % of the trips end at a different drop-off location compared to the pick-up 

location in a small-sized German city, which is likewise reported by Weikl and Bogenberger (2013). 

Various relocation strategies in which employees of the CS operator or incentivized users bring back 

the cars to high-demand locations are discussed in academia (Illgen and Höck 2019) to increase 

vehicle accessibility and address issues associated with drop-offs in low-demand areas. Thereby, the 

number and size of relocations must be economically viable to increase demand without losing sight 

of associated costs (Weikl and Bogenberger 2015). 

Although start-ups and established providers are already active in the domain of carsharing, there is 

still a need to enhance understanding and advance research on vehicle balancing strategies 

(Nansubuga and Kowalkowski 2021). Especially the conjunction between accurate demand forecasts 

and the current vehicle supply is often neglected in vehicle relocation models (Jian et al. 2019). 

The majority of existing research focuses on relocation optimization, mainly in station-based CS 

systems, while their business value is not validated or only validated within a single reference system 

(Illgen and Höck 2019). Most approaches primarily focus on classical baseline techniques instead of 

using the full potential of diverse data sources and new Machine Learning (ML) techniques. Existing 

research entailing neural networks or RF regressors to model CS mainly focuses on finding 

hyperparameters to minimize the quantitative prediction error (Cagliero et al. 2019; Cocca et al. 2020; 

Li et al. 2021). In contrast, such ML-based algorithms have not been turned into purposeful IT 

artifacts concerned with solving the business problem of vehicle relocations, including demonstrating 

economic value and managerial implications of the design method as suggested by Niederman and 

March (2012), and Rai (2017). Higher profitability through increased efficiency is essential to 

continuously expand CS networks and make them an integral part of sustainable future mobility 

(Illgen and Höck 2019). To address those research gaps and contribute to this field, our work aims at 

answering the following research question (RQ): 

RQ: How should data-driven vehicle relocations be designed to increase the business value of free-

floating vehicle fleets?  

To answer the RQ, we design, develop, and evaluate a ML-based relocation approach based on three 

real-world carsharing booking datasets from a small city, a large city, and a metropolis. We structure 

this paper as follows: Section 2 provides an overview of the fundamental literature regarding vehicle 

relocation solutions and demand modeling approaches. In section 3, we describe our research 

methodology, which follows the design science paradigm introduced by Hevner et al. (2004). This 

also includes the derivation of requirements on the design of our relocation strategy. The structure of 

our datasets, the data preparation and enhancement process, the model training and hyperparameter 

optimization, and the instantiation of our vehicle relocation strategy are presented in section 4. We 

evaluate our final artifact in the form of a simulation in three real-world CS systems presented in 

section 5. Afterward, we discuss theoretical and practical implications, as well as limitations and 

future research possibilities in section 6. We finish our paper by concluding our work in section 7. 

2 Literature Review 

To evaluate the current status quo of vehicle relocation research and demand and supply prediction 

solutions in CS and related domains, we conducted a literature review based on the approach by 

Webster and Watson (2002). Our literature base combines the research considered in the reviews by 

Cepolina et al. (2014), Illgen and Höck (2019), and Jorge and Correia (2013), extended by a keyword 

search in the databases of AIS e-library, Science Direct, IEEE Xplore, Google Scholar and MDPI 

(keywords: (“carsharing“ ∪ “car-sharing“ ∪ “car sharing”) ∩ (“relocation” ∩ “machine learning”)). 

The results are filtered depending on their title and abstract referencing the implementation of vehicle 

relocation algorithms or supply, demand, and prediction-based topics. Then, we conducted a backward 

search by reviewing the citations of the identified publications. We only considered publications after 

2010 to keep the focus on the latest relocation strategies. We analyzed the resulting set of 55 papers 



Machine-Learning Based Carsharing Relocations 

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 3 

and clustered them into one of two categories research on vehicle relocations (section 2.1) and 

demand prediction approaches (section 2.2). The first category mainly focuses on solutions for the 

relocation problem (46 papers) while the second one focuses on the identification of supply and 

demand factors in CS systems (9 papers). Since both categories are not clearly distinguishable, some 

papers handle relocations as well as supply and demand factors, so they are assigned to the cluster of 

their main topic to avoid duplicates. 

2.1 Vehicle Relocation Research 

Since the service quality of CS systems suffers from supply and demand imbalances (Weikl and 

Bogenberger 2014), the main operational challenge of CS providers is to relocate cars from low to 

high-demand areas. The resulting increase in customer acceptance and reduction of vehicle idle times 

is a key success factor for the rise of CS as a sustainable mobility option (Schmöller et al. 2015). 

Besides the CS ecosystem, rebalancing of vehicles is also discussed as redistribution in other domains 

like taxi or on-demand mobility service systems (Lei et al. 2020; Marouf et al. 2014; Smith et al. 

2013). However, the adaptability of such studies to the context of CS is limited (Illgen and Höck 2019; 

Schulte and Voß 2015): On the one hand, the physical relocation in such systems is less personal-

intensive, because trucks can be used to relocate multiple vehicles (e.g. e-scooter or bikes). On the 

other hand, the fleet size can be increased more easily, because the investment requirements are less, 

fewer regulations, and fewer/no parking fees need to be paid.  

According to the literature reviews of Cepolina et al. (2014), Illgen and Höck (2019), and Jorge and 

Correia (2013), relocation research commonly focuses on improving a CS system’s performance 

measures by finding decision variables that enhance the system’s capability to serve customers (e.g. 

leading to more accepted rental requests) and, subsequently, generate profits. The related customer 

behavior can be described with the transaction costs theory (Rindfleisch 2020). If customers face a 

decision for a means of transportation, they want to maximize their individual benefit (homo 

economicus). The walking distance to the next available vehicle can be considered a transaction cost. 

The gained utility of choosing the carsharing service must justify the initial effort to get to the car. 

Consequently, a carsharing system with effective relocations leads to small transaction costs and hence 

to sustainable business success. 

CS relocation strategies are modeled using (mixed-)integer/linear programming (Carlier et al. 2015; 

Gambella et al. 2018; Santos et al. 2017; Weikl and Bogenberger 2015), simulation- (Alfian et al. 

2017; Benarbia et al. 2020; Brendel et al. 2018; Kypriadis et al. 2020; Lopes et al. 2014), machine 

learning (Li et al. 2021) or combined approaches (Ait-Ouahmed et al. 2018; Wang et al. 2019; Zakaria 

et al. 2014). 

The majority of presented solutions (34/46) target station-based CS systems, where customers can 

pick-up and drop-off vehicles only at predefined stations. However, free-floating CS systems are more 

attractive to customers since they offer more flexibility (Niels and Bogenberger 2017), by providing 

station-independent drop-offs and pick-ups within operation areas of cities. Nevertheless, only a 

minority of presented relocation strategies (12/46) are adapted to such distribution models. 

Most presented research approaches are developed and evaluated based on historical booking data and 

system properties from a single real-world system (39/46). None of the presented strategies are applied 

to and evaluated in multiple systems. Furthermore, reference systems in cities with less than 200 000 

citizens are underrepresented (3/46). This is especially problematic since customers in large cities can 

rely on multiple mobility and CS options, while customers in small cities and rural areas are often 

dependent on a single provider (Shaheen et al. 2020).  

To conclude the status of carsharing relocation research, there is a gap in effective and adaptable 

relocation strategies for free-floating systems in small and medium sized cities. Presented research 

rarely uses real world data and is not challenged across multiple case studies. Thus, we focus on 

tackling the limitations of the presented research.  
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2.2 Data Driven Demand Prediction Approaches 

To identify and reduce imbalances in CS systems, many solutions are based on an upstream supply 

and demand concept (Cocca et al. 2020; Nair and Miller-Hooks 2011; Repoux et al. 2015; Schulte and 

Voß 2015; Weikl and Bogenberger 2015). Especially the following ML-based approaches show 

promising results in predicting user demand. 

Daraio et al. (2020) compare different ML techniques with classic deterministic approaches to predict 

car availability in a free-floating CS system in the following. They enhance historical booking data 

with additional weather, point-of-interest (POI), and neighborhood information. Cocca et al. (2020) 

aim to predict the demand in a free-floating CS system. In a first step, they compare ML techniques to 

predict future demand based on historical data. In a second step, the approach is extended by socio-

demographic data to help CS operators to decide whether to expand the operation area into the 

neighborhood or not. Cagliero et al. (2019) address the problem of forecasting the number of cars in a 

free-floating CS system, tested with real-world data from the Car2Go operator in Portland, Oregon. 

With the help of geographical positions, POI, and weather data, the authors formulate a multivariate 

regression problem. By comparing ML and baseline techniques, they identify RF Regression as the 

best approach for the analyzed context. Schmöller et al. (2015) focus on an empirical analysis of a 

free-floating CS system in the German cities Berlin and Munich. The authors use and prepare 

historical data to classify supply and demand factors. They identify, for example, that weather 

influences demand in free-floating systems and high-demand areas are often related to a high density 

of companies. Further, free-floating CS systems are mainly used by young people in small households, 

and the demand is low on Mondays but increases during the week based on their analysis. Li et al. 

(2021) propose a non-parametric learning algorithm and two-stage stochastic programming modeling 

technique to reduce the vehicle relocation rate. They assume customer demand from New York taxi 

travels and evaluate their model based on a fictive station-based CS system.  

The synthesis of features suggested by the five aforementioned studies builds the foundation of our 

data enhancement and informs our prediction design.  Even though those studies suggest features and 

ML techniques to implement demand prediction models, none utilized and evaluated a suggested 

model built on real-world data into a relocation strategy. The majority of studies (4/5) evaluate their 

prediction performance only based on ML models and do not prove their effectiveness regarding 

potential business impact. Thus, we aim in presenting the first machine learning based relocation 

strategy, which has been evaluated against business value across three different scenarios.  

3 Research Approach 

We follow a design science research approach that constitutes an effective and efficient problem-

solving paradigm that supports researchers in producing innovative ideas, practices, technical 

capabilities, and products for analyzing, designing, implementing, managing, and using information 

systems (Hevner et al. 2004). Our problem-solving process is executed in three iterations and 

structured with the interaction of relevance, design, and rigor cycles following Hevner (2007). We 

performed three iterations in total, starting with exploratory booking data analysis & enhancement 

(section 3.1), continuing with the implementation of supply and demand-based relocations (section 

3.2), and completing with an evaluation of our strategy in a carsharing simulation (section 3.3). 

3.1 Iteration 1: Perform Exploratory Booking Data Analysis & Enhancement 

The first iteration aims to understand the problem domain, pre-process the CS datasets from three 

different cities, and analyze correlations between the included data features. Starting with a relevance 

cycle, we performed three expert interviews with practitioners related to the CS industry. Two of the 

selected experts are responsible for the strategic fleet operation at two different carsharing providers, 

where the first is a local provider and the second is a global one. The third expert is an experienced 

and practice-oriented researcher in the domain of carsharing relocations. They confirm that relocation 

algorithms are required to tackle the issue of low user acceptance and vehicle idle times. Furthermore, 
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they state that the potential of available data sources goes beyond historical demand but is not 

unfolding completely yet. The requirements are summarized in Table 1 and build the foundation for 

the design of our data-driven demand prediction approach. 

No. Name Explanation 

R1 Publicity External used third-party data sources are publicly available; It must not be 

required to use proprietary data sources 

R2 Adaptability Adaptable for different CS systems in different cities 

R3 Specificity Observance of the individual spatial and temporal factors 

Table 1. Requirements for Data Enhancement. 

Within the rigor cycle, existing solutions and possible supply and demand factors are identified. The 

results of the rigor cycle informed our artifact design and were already presented in section 2. Besides 

that, the input of the design cycle is historical booking data from three different free-floating CS 

systems situated in a small city, a large city, and a metropolis. Following Géron's (2019) ML 

procedure model, the collected data points were subjected to an exploratory data analysis in the first 

step. Secondly, a data procurement, clustering, and enhancement process is performed based on these 

data points. While applying an agile implementation model and exchanging knowledge continuously 

with our partners, the first demand prediction model is developed. 

3.2 Iteration 2: Implement Supply and Demand based Relocations 

We follow Hevner et al. (2004) to create an implementable artifact within the second iteration instead 

of a highly abstract concept. More specifically, we transform the outputs of our demand prediction 

model into relocation recommendations. As part of our second relevance cycle, we validated that the 

features building our prediction model match the experience of the CS provider. Brendel et al. (2018) 

determined requirements for CS relocation strategies which are presented in Table 2. The requirement 

set is confirmed in our interview and therefore, also guides the implementation of our relocation 

strategy.  

No. Name Explanation 

R4 Availability Improving the vehicle acceptance ratio in the entire system  

R5 Necessity Only necessary relocations (e.g., a relocation should lead to a rental) 

R6 Automation Automation of decisions if and how a relocation should be performed 

R7 Transparency The system should supply humanly understandable outputs, providing 

transparency regarding their computation 

Table 2. Requirements for Relocation Strategy. 

Literature findings inform the artifact design about free-floating relocation strategies suitable to fulfill 

the requirement set. Like the first iteration, designing the relocation strategy is done by applying agile 

methods and validating its practicality with our partners. 

3.3 Iteration 3: Evaluate Strategy in Carsharing Simulation 

The goal of the third iteration is to evaluate whether our proposed relocation strategy fulfills the 

complete requirement set in the business contexts of the three CS providers. Therefore, we implement 

our artifact design into a Python based simulation environment. It determines the influence of 

relocation strategies on the CS system performance. To investigate the effectiveness of our suggested 

relocation strategy, we compare its performance by applying no relocations and a state-of-the-art 

deterministic approach. The goal of the optimization is to get the highest customer acceptance ratio by 

employing as less relocations as possible. To make the results generalizable, we do not consider any 

personnel, maintenance, or other system constraints for executing relocation recommendations. Our 
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research project is completed with a rigor-cycle, where we present our findings to the audience of our 

paper. 

4 Results 

In the following sections, we present the key findings of our DSR iterations. This includes the design 

of a demand prediction module (section 4.1), the design of our free-floating vehicle relocation 

approach (section 4.2), and the evaluation of findings in a simulation (section 5). 

4.1 Design of a Demand Prediction Module 

For the training and test of our ML-based demand prediction module and basis for the simulation-

based evaluation, we use a subset out of three historical booking datasets from different free-floating 

CS providers (R2). Dataset 1 and dataset 3 have been provided from the corresponding carsharing 

providers, while dataset 2 was crawled from a public booking platform. An analysis of dataset 

properties like median idle times, trip lengths, trip durations, and booking frequencies over time did 

not reveal significant differences to the empirical analysis of other carsharing data presented in 

literature (Costain et al. 2012; Schmöller et al. 2015). The properties of the considered CS systems are 

summarized in Table 3 and differ in timespan, number of rentals, city, and fleet size.  

Property Dataset 1 

Small-City 

Dataset 2 

Large-City 

Dataset 3 

Metropolis 

Approx. City Population  120 000 600 000 3 700 000 

Timespan Jan 2017 – Jul 2019 Feb 2020 – Nov 2020 Jan 2020 – Oct 2020 

Number of Bookings 64 812 180 143 1 361 138 

Fleet Size (Number of Cars) 31 198 1500 

Table 3. Overview CS Booking History Datasets 

A booking is defined as a rental with vehicle movement. Short-time reservations without actual car 

usage and service maintenance tours were excluded for datasets 1 and 3. An exception is a minimal 

number of private bookings from employees. Every entry consists of a car ID, the pick-up and drop-

off time, the pick-up and drop-off location as coordinates in the global positioning system (GPS), and 

the distance traveled by the rented vehicle in kilometers. To protect the privacy of their customers, the 

provider of dataset 3 applied a random noise of 200 meters on location related data columns.  

In free-floating CS systems, users can pick-up and return cars from anywhere inside the provider’s 

operation area (Wagner et al. 2015). We decide to set the spatial resolution of the prediction-model 

based on the user’s average willingness to walk a distance of 500 meters to pick-up an available 

vehicle (Herrmann et al. 2014). Thus, the optimal grid size is  

 
500

√2
  ≈ 353.553𝑚 per edge length, resulting in a maximum walking distance of 500 meters within the 

same squared cell (R2).  

The prediction model’s performance improves, the more potential decision variables of CS customers 

are included in the training set. Therefore, we enhance all three historical booking datasets with a 

synthesis of the features suggested by Cagliero et al. (2019), Cocca et al. (2020),  Daraio et al. (2020), 

and Li et al. (2021). Consequently, we enhance the dataset with hourly weather conditions like wind, 

clouds, rain, snow, and temperature from OpenWeather1, as well as time-dependent data like the 

weekday and time of the day (Cagliero et al. 2019; Daraio et al. 2020; Schmöller et al. 2015) (R1, R2, 

R3). Furthermore, we determine the POI density of every grid element by counting the number of 

 

1 Available under https://openweathermap.org/history-bulk 
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POIs included in the SLIPO2 dataset for every grid cluster (R1, R2, R3). Every booking is enhanced 

with the density of the drop-off and pick-up grid position (Cagliero et al. 2019; Daraio et al. 2020; 

Willing et al. 2017) (R2, R3). 

We complete the data preparation phase by performing an exploratory data analysis on the enhanced 

dataset (Géron 2019). The number of bookings in the previously introduced squared cells is the 

dependent variable that has to be predicted in the latter course. Therefore, it is examined whether the 

extended information about weather, temperature, POIs, and time has an impact on the number of 

bookings.  

Based on the findings of Cagliero et al. (2019), and Cocca et al. (2020), we cluster the enhanced 

dataset into a three-hour prediction horizon, which results in eight-time bins per day. Consequently, 

the sum of bookings per subset is added to every cluster (R2). The data preparation process is 

summarized in Figure 1.  

 

Figure 1. Summarized Data Preparation Process. 

After enhancing, preparing, and clustering the data set, an ML model is trained to predict the future 

demand. Adapting the findings of Cagliero et al. (2019), Cocca et al. (2020), and Daraio et al. (2020), 

we use an RF as a regressor (R2). The future demand is represented by the number of bookings per 

period and cluster as a dependent variable. It is explained by the other features like temporal, zone, 

POI density, or weather data as independent variables (R2, R3).  

To train the model, we apply the Gini impurity-based RF regressor included in the scikit learn Python 

package. The datasets are split randomly into two subsets for training and testing with a common 

80 % / 20 % allocation (Géron 2019). The independent variables for grid-position and timeslot have to 

be provided to the RF regressor to predict the future demand. It has to be noted that the training data 

set encompasses past weather conditions and temperature data. For future predictions, an online 

weather forecast can be used to fill this time-variant feature.  

To find the best performing hyperparameters for the RF regressor, a grid search in combination with 

cross-validation is used (Géron 2019). The winning hyperparameter configurations for the target-

functions of minimizing the mean absolute error (MAE) or root mean square error (RMSE) mentioned 

in Vandeput (2018) are listed in Table 4. 

 

2 Scalable Linking & Integration of big POi, available under http://www.slipo.eu/ 
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Optimizing 

Technique 

N Estimators Min Samples 

Split 

Min Samples 

Lead 

Max 

Depth 

Max 

Features 

Cagliero et al. (2019) 50 5 5 10 sqrt 

MAE optimized 50 3 3 20 sqrt 

RMSE optimized 700 16 5 26 sqrt 

Table 4. Grid Search Results for Dataset 1 in Comparison 

4.2 Design of a Free-Floating Vehicle Relocation Approach 

With the help of future demand predictions throughout the RF model, a relocation strategy is built on 

top. It aims to improve vehicle availability (R4) and can be integrated into the backend of the generic 

vehicle relocation information system (GRIS) framework presented in Figure 2 (Brendel et al. 2018).  

 

Figure 2: Generic Vehicle Relocation Information System (GRIS) adapted from Brendel et al. (2018) 

The positions of all available vehicles are always given at present time and represent the current 

supply. The system suggests relocations based on the predicted demand situation at a future timeslot of 

three hours. Zones that contain fewer cars than bookings expected are marked as undersupply zones, 

while zones that contain more cars than bookings expected are marked as oversupply zones. 

Displaying the predicted level of supply with a heatmap over the operation area enables informed 

decisions for operation managers (R7). To implement the automated suggestion of relocations, 

providers can define a prediction threshold, which represents the minimum level of predicted demand 

to request a relocation (R6). Consequently, the strategy suggests relocations from oversupply zones to 

undersupply zones (R6). The prediction threshold causes the algorithm to only trigger relocations to 

regions with high demands (R4, R5) and allows the adaption of its sensitivity to the requirements of 

the system operation (R2). The zones are presented in ascending ordered by their potential impact that 

is defined by the difference between predicted bookings and system status quo (R7). Every performed 

relocation to a zone where the difference of predicted bookings and available cars is greater than one, 

will lead to a rental under the assumption that the prediction of the RF model is correct (R5). An 

example of the relocation algorithm is presented in Figure 3. To adapt the relocation strategy to a 

practice implementation, optimization and policy constraints like personnel availability and 

maintenance requirements have to be incorporated. Guidance for a holistic implementation of a 

decision support system for relocations is given by Clemente et al. (2018).  
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Figure 3. Example of Relocation Algorithm. 

5 Evaluation 

Calculating metrics like MAE and RMSE helps optimize the developed demand prediction model 

iteratively. However, it is questionable if the downstream relocation solution also shows better results 

in an economic sense. Following the suggestion of Prinz et al. (2021), we implement the algorithm in 

an event driven simulation, allowing us to optimize the hyperparameter of the RF regressor and the 

aforementioned prediction threshold against the economic performance indicator of  acceptance ratio. 

The winning hyperparameter set is slightly different to the results from section 4.1. It is listed in  

Table 5 and taken as a parameter set for forthcoming simulations. 

Simulation Prediction 

Threshold 

N 

Estimators 

Min Samples 

Split 

Min Samples 

Lead 

Max 

Depth 

Max 

Features 

Small-City 1,2 

50 16 5 26 sqrt Large-City 1,4 

Metropolis 2,0 

Table 5. Final Hyperparameters for RF Demand Prediction and Relocation Strategy. 

Furthermore, we compare the performance of our relocation algorithm RF with the baseline system 

behavior B (no relocations) and a deterministic relocation approach DT as suggested by Brendel et al. 

(2018). Therefore, all approaches are implemented as part of an event driven simulation using similar 

system setups. We run the simulation for all three datasets, ensuring that the data used for the 

simulation have not been part of the test- and training data used to build the RF model. To make the 

simulation robust against initial vehicle distribution, it was reiterated fifty times with random initial 

vehicle distributions. The average results of the simulated system behavior are presented in Table 6. 

Simulation Small-City Large-City Metropolis 

Fleet Size 30 198 400 

Timespan 01.01.2019 - 05.08.2019 01.10.2020 - 24.11.2020 01.09.2020 - 31.10.2020 

Strategy B DT RF B DT RF B DT RF 

Relocations 0 780 138 0 44 588 0 6 088 4 832 

Acceptance  39.22 % 42.68 % 44.27 % 45.92 % 44.81 % 53.10 % 41.04 % 11.71 % 43.94 % 

• Strategies: B = Base-Case, DT = Deterministic-Case, RF = Random Forest-Case 

• Fleet-Size: The number of cars anticipated for the simulation.  

• Relocations: Total number of relocations. 

• Acceptance: Ratio of completed reservations and amount of booking requests (higher is better). 

Table 6. Results of the Simulation. 
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The results of the simulation show that our strategy improved the acceptance ratio in all three 

reference systems between 7.1% and 15.6% (R2, R4). Furthermore, the number of relocations 

compared to the deterministic relocation strategy are reduced by 82.3% for the small city and by 

20.6% for the metropolis (R2, R5). Moreover, it shows that the deterministic approach struggles to 

adapt to the large city and metropolis. The reason for that is, that it was originally designed for a small 

city system and that it needs further finetuning to better adapt. 

The impact of the selected strategy on the business value of the fleet can be determined by offsetting 

the individual relocation costs against the increased revenue from additional future bookings. This is 

highly individual, depending on the price model and whether and how an operator implements user-

based or operator-based relocations (Brendel et al. 2016; Di Febbraro et al. 2018). Especially for 

operator-based relocations other individual constraints like vehicle maintenance drives or certain staff 

availability have a high influence on the calculation of savings (Nourinejad et al. 2015). Effective 

relocation strategies also have indirect consequences for the future business value of a fleet, because 

vehicle availability is a key customer requirement on shared mobility systems (Herrmann et al. 2014). 

Customers who made bad experiences with vehicle availability will stop considering the carsharing 

service as a reliable means of transportation (Illgen and Höck 2019). In contrast, high vehicle 

availability also helps to attract new customer segments and consequently leads to the success of 

sustainable carsharing systems as part of future mobility. 

6 Discussion 

To answer our research question, we have addressed the challenge of vehicle relocations as part of the 

operation of free-floating CS systems. Within a structured literature review, we determined that 

datasets used in current solutions are mainly based on single system properties like historical 

bookings. Furthermore, traditional approaches are unreliable for relocation decisions, especially in 

free-floating CS systems, where demand is not cumulated on a few stations. To answer the research 

question, our DSR project with multiple evaluation steps demonstrated how big data could be used to 

improve the performance of free-floating CS systems from a customer and provider perspective. The 

following sections will present the study’s theoretical and practical implications and give its 

limitations and potential avenues for future research.  

6.1 Theoretical Implications 

We find developing data-driven relocation strategies for free-floating vehicle fleets is a rather novel 

and still ‘wicked’ problem (Gregor and Hevner 2013). Current publications in CS relocation research 

mainly focus on station-based CS systems, optimizing a single reference system, and are built on top 

of historical booking data. Thus, application domain maturity and solution maturity in vehicle 

relocation can both be regarded as low. The developed demand model and its application in a data-

driven relocation strategy and instantiation as part of a simulation can be classified as improvements 

according to Gregor and Hevner (2013). 

We synthesized the findings of Cagliero et al. (2019), Cocca et al. (2020), and Daraio et al. (2020) and 

demonstrated the development and evaluation of a data-driven relocation strategy for free-floating 

systems. Thus, we incorporated a machine-learning based demand prediction model with the GRIS 

framework presented by Brendel et al. (2018). In contrast to previously presented research, our 

presented relocation strategy is designed for free-floating systems and has proven effectiveness in 

three different sized case study settings based on real-world data. Implementing such a relocation 

strategy leads to a vehicle distribution where a customer’s transaction cost of picking up a car by foot 

does not exceed the gained utility for using the service. Relevance and rigor of our proposed design 

ensure a grounded contribution to the knowledge base that fits inside the green IS, operational 

research, and mobility domain.  



Machine-Learning Based Carsharing Relocations 

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 11 

6.2 Practical Implications 

Important factors in IS DSR are the creation of practice-oriented solutions that are applicable for 

similar problems and other use cases in real-world scenarios (Hevner et al. 2004). Primarily, our study 

contributes to practice by offering a new data driven approach to suggest vehicle relocations for 

operators of free-floating CS fleets, helping to balance vehicle supply and demand. It addresses the 

whole range of different backgrounds and fields of applications like the technical side for 

implementation, the management role for generic resource planning of relocations, and the operative 

view for real vehicle movement operations. The developed RF strategy proved its adaptability to 

different CS systems, its positive impact on the acceptance-ratio, and its potential to decrease the 

number of relocations in comparison to other approaches. The practical application is guaranteed 

through humanly understandable outputs, which allows providers to build operator-based and user-

based relocations on top of it. 

In combustion-engine-based fleets, reducing the number of relocations compared to deterministic 

approaches leads to a reduced carbon-dioxide footprint. Increasing the vehicle availability in areas 

with high customer demands help CS providers to convince customers, and be established as a 

sustainable means of transportation. Consequently, the number of privately owned vehicles can be 

reduced, and the number of trips performed by vehicles (Amatuni et al. 2020; Jochem et al. 2020). 

6.3 Limitations and Future Research 

Despite the rigorous execution of the DSR project and its various evaluations, we are aware of some 

potential limitations. Also, our findings have implications for future research. Therefore, we will 

outline these limitations and opportunities for future research in the following paragraphs. 

First, the applied evaluation was performed by a simulation based on three reference systems in 

Germany. The systems were seen isolated from other means of transport or competing for CS systems. 

Therefore, future research should engage practice partners to implement a field test to confirm the 

effectiveness of our relocation strategy. Future research could also consolidate our design knowledge 

into generalized design principles. 

Second, the demand prediction model was trained against historical bookings, which does not reflect 

complete customer demand since booking requests that have been unsatisfied in the past are not part of 

the training set. Especially for regions with high demand, we expect a gap between historical booking 

data and real customer demand, because cars might have been unavailable nearby. Furthermore, our 

model has not considered factors like mass events or opening hours of shops and POI. Future research 

should work on strategies to increase the meaningfulness of classes and features of the prediction 

model. Entry points to identify unsatisfied demand could be the use of telemetry data from CS 

provider apps. Spatiotemporal features could be enhanced by using visitor frequencies or opening 

hours from data sources like Google Maps.  

Third, our suggested relocation strategy ends by answering the question of which vehicle should be 

relocated to which position at a certain timeslot. The question of how the operation is performed is left 

unanswered, given that CS providers have limited relocation resources and must comply with other 

operational constraints like maintenance and recharging. Furthermore, including weather data in the 

model limits its long-term prediction to the availability and accuracy of weather forecasts. 

7 Conclusion 

Relocating vehicles in free-floating CS fleets is an operational challenge that requires data-driven 

managerial guidance. Overall, many approaches presented in related work focus on station-based CS 

systems or built data-driven optimization approaches that were not evaluated in a business domain. In 

this context, we tackled the problem of vehicle availability by developing a data-driven relocation 

strategy for free-floating CS systems by using real-world data. Based on requirements from practice 

and foundations from literature, we instantiated and evaluated a demand prediction model and a 
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respective relocation strategy. As for the theoretical perspective, we addressed a relevant real-world 

problem with a set of design decisions. Regarding the practical perspective, our research shows the 

potential of increasing the acceptance ratio of shared vehicle fleets up to 15.6 %. Thus, CS gets more 

attractive to customers, accelerating its establishment as sustainable means of transportation. Future 

research could consolidate our design knowledge into generalized design principles. Furthermore, the 

performance of our relocation algorithm could be investigated in a field test.  
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