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Abstract 

Digital innovations can improve various business processes, such as production planning and control 

(PPC). In the last years, prescriptive maintenance (PxM) emerged as a strategy to increase overall 

production performance, but an alignment of the PPC process with PxM has not been examined yet. To 

tackle this problem, a PxM-aligned PPC process is designed and evaluated in this study using a refer-

ence model development methodology, including a narrative literature review, a multivocal literature 

review, and eight expert interviews. The reference model shows where process elements benefit from 

PxM alignment, how alignment can be achieved from a process and output, data, function, and organi-

zation view, and where fits and gaps between theory and practice are. 

Keywords: Prescriptive Maintenance, Production Planning and Control, Reference Model, Prognostics 

and Health Management 

1 Introduction 

A production planning and control (PPC) process is the heart of every manufacturing company and 

entails tasks such as resource planning, sequencing, or capacity control (Schmidt and Schäfers, 2017) to 

respond to customer requirements (Jacobs et al., 2011). PPC relies on an efficient production schedule 

and high availability of machines to meet customer demands. However, sudden machine failures and 

unplanned breakdowns jeopardize on-time deliveries and cause increased costs (Sillivant, 2015). While 

increasing production complexity makes it challenging to determine the best production plan, in the 

digital age, the advances in Prognostics and Health Management (PHM) and the emergence of Predictive 

Maintenance offer new opportunities to optimize PPC (Kuhnle et al., 2019). Different decisions, such 

as continuing the production, shutting down a machine, or reducing workload, can be improved by a 

remaining useful life (RUL) estimation (Chebel-Morello et al., 2017; Herr et al., 2014). Ultimately, this 

leads to a Prescriptive Maintenance (PxM) strategy that does not only predict failures but elevates PPC 

decisions (Ansari et al., 2019), e.g., by maintenance-friendly capacity building, parts procurement, or 

load rebalancing, which increase production efficiency and performance. While there is much disjunct 

research on PxM and PPC, little has been done to combine both disciplines (Ansari et al., 2019). Also, 

while condition monitoring and prognostics are widely represented in literature, it is essential to pre-

scriptively apply the obtained knowledge in production and maintenance operations (Zhai et al., 2019), 

which only four percent of companies do (Institute of Technology Management, 2016; Nemeth et al., 

2018). 

As PPC is a process system, process models can reveal innovation potentials and help to increase flexi-

bility and efficiency (Becker et al., 2012), whereas reference processes constitute generic templates of 

these models that can be instantiated in different contexts using different views (Rosemann and van der 

Aalst, 2007). For instance, there are reference models such as the Aachen PPC model (Schuh and Gierth, 

2006), the Hanoverian supply chain model (Schmidt and Schäfers, 2017), and more (Hansmann, 2006; 
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Zelewski et al., 2008) that give universal recommendations on how to plan and control production. 

While these works specify requirements to conduct PPC, no work examines where production perfor-

mance can be elevated by integrating PxM in the PPC process (Ansari et al., 2019). Additionally, while 

manufacturers have implemented predictive maintenance for some time (Zhai et al., 2020), it has not 

been researched how prescriptive measures have been derived from condition monitoring, diagnostics, 

or prognostics in practice, even though practitioners stress the potential of improving production pro-

cesses through digitized maintenance (Roda et al., 2018). Therefore, this paper aims to design a PxM-

enabled PPC reference process based on theoretical and practical insights to tackle the following re-

search question: 

How should companies adopt PxM in their production planning and control process?  

As a scientific contribution, it should be highlighted which process elements benefit from PxM align-

ment, how alignment can be achieved, and where fits and gaps between theory and practice are. The 

developed model should also advance PHM and operations management research by showing how PxM 

can be applied to PPC. Practically, the reference process model should serve as a guideline to conduct 

PxM-aligned PPC and instantiate process models. 

The following section presents related work and three theories central to this work: PPC, PxM, and 

reference process modeling. Subsequently, section three introduces the reference process modeling 

methodology and subordinate methods used for this research. The penultimate section introduces a 

PxM-aligned PPC reference model, including multiple views. Lastly, the work is concluded in section 

five. 

2 Theoretical Foundations and Related Work 

PPC is defined as the process of determining the production plan that satisfies the sales plan while 

meeting time, monetary, and qualitative goals. Production control also allows synchronizing resources 

and customizing products in real-time (Arnold et al., 2008; Moeuf et al., 2018; Usuga Cadavid et al., 

2020). Pinedo (2012) focuses on core steps, such as master scheduling, material requirements and ca-

pacity planning, scheduling, dispatching, and shop floor management. While Oluyisola et al. (2020) 

agree on these steps, they also see sales and operations planning and purchasing as steps of PPC. All in 

all, there is no consensus on the PPC process, but there is agreement that a continuous flawless operation 

is essential for manufacturers, which is enabled through maintenance (Guillén et al., 2016).  

In the past, ‘traditional’ maintenance strategies were either reactive or scheduled (Guillén et al., 2016). 

The former strategy refers to letting a machine break down before it gets restored. Such a breakdown is 

always unplanned and disrupts a production plan set up beforehand. In contrast, scheduled maintenance 

means maintaining resources in regular intervals (Selcuk, 2017). Here, a wrong choice of intervals ne-

cessitates too early maintenance (waste of RUL) or reactive maintenance. 

One promising strategy that has emerged to tackle all these issues is condition-based maintenance 

(CBM) which supports PPC goals (Hadidi et al., 2012). CBM strategies can be generally distinguished 

into descriptive, diagnostic, predictive, and prescriptive maintenance (Ansari et al., 2020). Descriptive 

maintenance is looking at "What happened?" and tries to detect faults. Diagnostic maintenance is con-

cerned with "Why did it happen?" and failure diagnostics. Predictive maintenance is enabled by predict-

ing a machine's future through prognostics and answering the question "What will happen?". Lastly, 

prescriptive maintenance (PxM) transforms the previous insights into actionable results by answering 

the question "What should be done?" (Maguire et al., 2017).  

The differences between the four types can be visualized when looking at the PHM process (Figure 1). 

Here, PHM is not a maintenance strategy but a collection of techniques that provide input for the four 

CBM types (Guillén et al., 2016). Figure 1 shows that decision-making enables PxM where an appro-

priate PPC configuration is chosen based on results (e.g., detected components, diagnosed faults, or 

predicted RUL) from the previous PHM steps (Skima et al., 2019). While the three prior strategies make 

only maintenance decisions (i.e., when, what, or how to maintain), PxM is defined as condition-based 

decision-making that includes maintenance and operations (e.g., production or logistics decisions). It is 
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based on PHM information (e.g., condition monitoring, diagnostics, and prognostics) and uses decision 

models (Bougacha et al., 2018; Wesendrup and Hellingrath, 2020), e.g., optimization, operations re-

search methods (Bousdekis et al., 2018).  

While PPC can highly benefit from PHM decision-making and PxM (Chebel-Morello et al., 2017), pro-

duction and maintenance decisions are often optimized separately in the current literature (Ansari et al., 

2019; Broek et al., 2020). Moreover, there is no guidance on how the benefits of PxM can be achieved 

by integrating PHM decision-making into different steps of the PPC process, such as capacity planning, 

scheduling, or shop floor management. Here, process models can help to indicate improvement poten-

tials (Becker et al., 2012), especially as it was demonstrated that both disciplines already have their own 

disjunct processes. Process models typically comprise multiple views, such as the five views “process”, 

“output”, “data”, “function”, and “organization” of the architecture of integrated information systems 

(ARIS) proposed by Scheer (1999a). Views are pivotal to capturing the many facets of business pro-

cesses, structuring, and streamlining them (Scheer, 1999a). 

While process models are always specific to companies, reference processes can be further used as ab-

stract models and templates to instantiate process models in various practical contexts (Scheer, 1999b). 

Reference models are not established for joint PPC and PxM (or any other CBM type). Still, there are 

some related reference process models for either PPC or CBM (a non-exhaustive list can be found in 

Table 1). For instance, Voisin et al. (2010) developed a prognosis process for maintenance decision-

making. While they present steps to conduct prognostics from a processing and data view, they do not 

include any PPC function. The model of Bousdekis and Mentzas (2019) also lacks specific PPC func-

tions, but acknowledges that maintenance actions must be synchronized with production, logistics, and 

quality management. The model by Ansari et al. (2019) and Glawar et al. (2019) goes a step further and 

pinpoints connections to the PPC steps production planning, control, cost modeling, and spare parts 

management. However, it is foremost a model for PxM with connections to PPC (and not a PPC refer-

ence model) and does not enable instantiating PPC process models. 

On the other hand, Schuh and Gierth (2006) developed a comprehensive reference model of PPC ex-

tended by Schmidt and Schäfers (2017). It encompasses strategic, tactical, and operational PPC steps 

from master production scheduling to production control but does not integrate maintenance. In contrast, 

the standard IEC 62264 (International Electrotechnical Commission, 2016) specifies a data and process 

view of PPC and maintenance management, but it does not cover any CBM strategy. Therefore, a ref-

erence process model for PxM-aligned PPC is developed in this study to fill this gap. 

References PPC CBM 
Reference 

Process 

(Voisin et al., 2010) ○ ● ● 

(Bousdekis and Mentzas, 2019) ○ ● ◑ 

(Ansari et al., 2019; Glawar et al., 2019) ◑ ● ◑ 

(Schmidt and Schäfers, 2017; Schuh and Gierth, 2006) ● ○ ● 

(International Electrotechnical Commission, 2016) ● ○ ● 

Characteristic ○ = not met /  ◑ = partially met / ● = met 

Table 1.  Related works    

 

Figure 1.  PHM process (adapted from Guillén et al., 2016) 
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3 Research Design and Methods 

The method by Matook and Indulska (2009) was chosen to develop the reference process (Figure 2), 

which has been synthesized from many renowned works of reference modeling, encompasses seven 

phases and is, therefore, one of the more detailed methodologies (cf. Fettke, 2014). These seven phases 

of problem definition, requirement analysis, information gathering, setting conventions and rules, doc-

umentation, construction and design, and evaluation were concretized for this study as follows. 

Problem definition. The model's scope, purpose, and audience are defined in this phase (Matook and 

Indulska, 2009; Rosemann and van der Aalst, 2007). The scope should encompass the functional areas 

of PPC and (condition-based) maintenance. Further, the purpose is to indicate how to plan and control 

production using PxM. Lastly, the model’s audience includes practitioners with a production or mainte-

nance background who want to implement a PxM-aligned PPC process. Besides scientific knowledge, 

the model should also include practical evidence of PPC and PxM alignment to represent the practitioner 

perspective adequately and foster adoption.  

Requirement analysis. Here, existing reference models that fulfill the problem definition have been 

searched. A narrative literature review of articles on Google Scholar with synonyms belonging to the 

keyword groups "production planning and control", "prescriptive maintenance", and "reference pro-

cess" was carried out based on Paré et al. (2015). Ultimately, eleven PPC reference processes (no PPC 

reference process including any type of CBM was found) could be identified from which further model 

requirements were derived following Rosemann and van der Aalst (2007). First, because most models 

used a two-level structure (granularity), it was also adopted for the to-be-developed model. Lastly, the 

views process and output (subsection 4.1), data (4.2), function (4.3), and organization (4.4) are chosen 

and linked (4.5) based on Scheer (1999a).  

Information gathering. Because the eleven PPC models found in the previous phase did not regard PxM, 

information was gathered to examine how PxM can be integrated. Thus, five semi-structured expert 

interviews (Table 2) were held using the methodology by Myers and Newman (2007). Here, experts 

were searched on the professional networking sites Xing and LinkedIn using the search terms "produc-

tion" and "predictive maintenance". The experts were interviewed in person or digitally and recorded 

for around 45 minutes to identify the potentials of PxM. The meetings always followed a four-step 

ID Firm Archetype Size (employees) Role 

A Analytics provider** Micro (1-20) Data Scientist 

B Consulting* Fortune 500 Consultant 

C Manufacturer** Fortune 500 Production Manager 

D Manufacturer * Large (1001-5000) Data Scientist 

E Manufacturer * Large (1001-5000) Head of Maintenance 

F Manufacturer * Large (1001-5000) Industry 4.0 Engineer 

G Manufacturer * Large (1001-5000) Maintenance Planner 

H Platform provider** Fortune 500 Solution Architect 

  
*Semi-structured (construc-

tion and design) 
**Process mapping 

(evaluation) 

Table 2.  Interviewed experts 

 

Figure 2.  Research Design (Matook and Indulska, 2009) 
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structure (cf. Myers and Newman, 2007): a) the interview was opened, and researcher and interviewee 

introduced themselves, b) the purpose of the interview was explained, c) open questions about proces-

sual, technological, and organizational potentials, changes, and barriers of aligning PxM with PPC were 

asked, answered, and discussed, d) the meeting was closed. After the last interviews, no new concepts 

emerged, and no experts were contacted for further information gathering. The following sections indi-

cate information gained from experts with a superscripted expert ID (from Table 2). 

Parallel to the interviews, a multivocal literature review based on the methodology of Garousi et al. 

(2019) was used to identify opportunities of alignment between PxM and PPC. Beyond scientific 

sources, the review allows to include grey literature (e.g., company reports) to capture applications of 

PxM in practice and reveal research and practice gaps that explain a low adoption of prescriptive mainte-

nance. For the scientific sources, the titles, abstracts, and keywords of the databases Scopus and Web of 

Science were queried with ("prescriptive maintenance" OR "predictive maintenance" OR prognostic* 

OR "condition based maintenance" OR "remaining useful life") AND "production planning". Further, 

the Google search engine was queried with ("predictive maintenance" OR "prescriptive maintenance") 

AND "production" filetype:pdf for grey literature. As the Google search retrieved almost 150,000 results, 

the search was stopped after theoretical saturation was reached (cf. Garousi et al., 2019). The queries 

returned an initial pool of 69 scientific and 154 grey sources. Afterward, two reviewers predefined the 

exclusion criteria 'no access', 'no production context', 'no relation to PxM', and 'no relation to process' 

and applied them within a title, abstract, and full-text review, which reduced the initial pool to a final 

pool of 52 publications (24 scientific, 28 grey). 

Setting conventions and rules. Before analyzing the gathered information, rules must be set up to docu-

ment, construct and design the reference process. First, a glossary based on previously identified terms 

was created. For instance, different authors used the term Predictive Maintenance, CBM, PxM, and 

PHM interchangeably, which was delineated in the glossary. Further, the event-driven process chain 

notation proposed by Scheer et al. (2005) was used to model the final reference process because it is 

relatively simple to understand and supports multiple views. Moreover, it can be easily extended and 

used for reference modeling (Rosemann and van der Aalst, 2007; Thomas and Scheer, 2006).  

Documentation. In this phase, all information has been documented to guarantee consistency and trans-

parency of the later model. According to Webster and Watson (2002), a concept matrix was set up for 

the eleven models of the narrative review. The reference processes were analyzed and decomposed into 

process elements, each equating to a concept. For instance, the model by Pinedo (2012) included the 

concepts master scheduling, material requirements and capacity planning, scheduling, dispatching, and 

shop floor management. Moreover, the interviews were all transcribed in their original language (Ger-

man). Next, a data extraction form was documented to map the results from the interviews following 

Myers and Newman (2007) and the final pool of the review following Garousi et al. (2019). 

Construction and design. First, a ‘basic’ PPC reference process (without PxM) was synthesized and 

aggregated from the concept matrix defined in the last phase. The process was the basis to investigate 

how the different steps can be aligned with PxM using mapped interview and review data. Therefore, 

the data extraction form introduced in the previous phase was used to categorize statements from the 

interviews and review into the views process and output, data, function, and organization. Statements 

that discuss PxM-related changes related to the process view were assigned to the process categories 

and elements from the ‘basic’ reference process. The processual changes through PxM were then com-

bined with the ‘basic’ PPC process into one PxM-aligned PPC process. Statements that targeted the 

other views were inductively assigned whenever a new concept emerged from the material.  

Evaluation. Lastly, the PxM-aligned process was evaluated with three further expert interviews (Table 

2) using a process mapping methodology (Jacka and Keller, 2009). Here, broad expertise was deemed 

necessary, and thus, experts from firms that are knowledgeable of the alignment of PxM in different 

PPC contexts were chosen, including an analytics provider, a platform provider, and a world market-

leading manufacturer. Here, the different models were presented during the interviews, and the experts 

were asked to adjust the reference process and give further insights into the different areas of the model. 

Finally, the research design led to a multi-view PxM-aligned PPC reference process model. 
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4 Prescriptive Maintenance Aligned Production Planning and 
Control Reference Process 

4.1 Process and Output View 

On a control level, the PPC process comprises eight process categories (first level, further written in 

bold letters) and 17 process elements (second level, further written in italic letters) shown in Figure 3. 

Figure 3 also highlights process elements that can be aligned with PxM, which is explicated next. The 

numbers after each process category show the share of white (denoted w), grey literature (g), and experts 

(e) addressing each process category. 

For master production scheduling and demand management no improvements through PxM are re-

ported due to the long planning horizon of master production scheduling and the relatively shorter im-

pact of PxM. The master production schedule also integrates inputs from customer-specific capacity 

planning during demand management. 

PxM is moderately promising for requirements planning. Here, net requirements are calculated, and 

tactical capacity planning can benefit from PxM through synchronizing maintenance interventions to 

minimize costs by allocating production requirements so that multiple machines reach their end of life 

simultaneously (Zhai and Reinhart, 2018). Additionally, emerging production-free windows can be 

planned on a mid-term time horizon (Ansari et al., 2019; Busse et al., 2018; Henke et al., 2019; Schuh 

et al., 2020), which is beneficial for machines with turnover intervals of two to twelve weeksC, E. 

PxM is highly promising for source planning and is mainly addressed in grey literature. Here, require-

ments are forwarded, and raw materials and spare parts planning is performed for which prognostics-

based just-in-time spare parts delivery is an immense potential of PxMA, B, E, F, G (Busse et al., 2018; 

Microsoft, 2015). Further enabled by data-driven diagnostics, advanced PxM systems also determine 

spare part requirements autonomously (Henke et al., 2019; Leonard, 2020). There exist even solutions 

that provide the correct spare parts instantly via additive manufacturing (Schuh et al., 2020; Trebing + 

Himstedt, 2017); however, no research on this was identified. In contrast, when spare parts are not avail-

able before a breakdown, products that exert lower stress on assets can be produced to decelerate wear 

until the part is available (Zhai and Reinhart, 2018). Further, suppliers can diagnose faulty spare parts 

beforehand and, through PxM, deploy consignment stocks for their customersB or configure packages, 

comprising spare parts, lubricants, and tools matching to the faultsE. 

PxM is also highly relevant for production planning to make maintenance suggestions days to hours 

before a machine is shut downC. For instance, in-house requirements are used to calculate lot sizes, but 

instead of calculating fixed economic lot sizes, dynamic production quantities that factor in the RUL 

can be prescribed (Li et al., 2020; Wang et al., 2019) to synchronize maintenance interventions and 

changeovers (Denkena et al., 2012) and reduce overall cost.  

PxM-enabled lead time scheduling also generates production plans with economical maintenance win-

dows by incorporating the RUL (Grimstad, 2019), especially for bottleneck machines (Paprocka et al., 

2020). In the case of identical parallel machines, resources with increased costs (power, time) due to 

wear should be prioritized lower when scheduling operations (Morariu et al., 2020). Lastly, critical ma-

chines (e.g., high load, low RUL) are condition-monitored and flexibly rebalanced during operational 

capacity planningE (Henke et al., 2019; Paprocka et al., 2020). Here, a permanently available production 

can be envisioned through decisions based on a machine‘s RULB. While some promising approaches 

exist, the experts also stressed that PxM-enabled production planning is still mainly done manually. 

Production control was highly prevalent in all sources, and PxM has arguably the most potential here. 

After production is initiated, PxM can lead to better production control. PxM-enabled sequencing, which 

was mainly discussed in scientific literature, allows maximizing the total useful life of a machine (Rah-

mati et al., 2017, 2018; Zheng et al., 2013), and even the stress of different operations can be regarded 

(Ladj et al., 2016; Zhai et al., 2019) so that maintenance interventions can be combined (Denkena et al., 

2012; Zhai and Reinhart, 2018). Capacity control, mainly discussed by grey literature and experts, also 



Prescriptive Maintenance Aligned Production Process 

Thirtieth European Conference on Information Systems (ECIS 2022), Timisoara, Romania 7 

 

 

Figure 3. Process and output view 
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allows tuning the production rate to increase or inhibit the wear of the machine (Broek et al., 2020; Fritz 

and Brandner, 2019; Li et al., 2020; Messer, 2018; Müller, 2018; Njike et al., 2012; OSIsoft, 2020; 

Siemens, 2019; SitScape, 2018) and in this regard, slowing down machines to "make it" over the week-

end or until the next economic maintenance point has considerable potentialC. Further, production con-

trol activities can be delegated to autonomous cyber-physical production systems that can flush filters 

(Mulders and Haarman, 2017), relubricate (Schaeffler Technologies, 2019), or comprise a condition-

based failsafe mechanismE. Moreover, PxM-enabled assets should include a control architecture that 

can switch between maximum capacity and maximum cost-saving depending on the RULA, C. Unfortu-

nately, the experts stress that most potentials of PxM-enabled production control are not realized yet. 

PxM-aligned production monitoring can support a production flow by continuously measuring rele-

vant KPIs such as costs or lead times (AspenTech, 2019; Glawar et al., 2019) and prescribing actions. 

Production monitoring can also be used to identify leaks through machine condition dataC. Lastly, a 

potential of PxM-enabled production monitoring is the generation of information valuable for subse-

quent production stages by relating condition data and machine parameters to a productF. Vice versa, 

measuring product quality can also leverage PxM (Ansari et al., 2019) as PHM can be complemented 

by non-sensory quality information and product reject ratesA, D. While current research focuses on ana-

lyzing sensor values to predict failure times, it could also predict product quality. Vice versa, product 

quality data or production parameters could also complement a machine’s condition data to improve the 

RUL prediction. Further, it delivers valuable input for the prognostics algorithm, as different products 

are produced within different operating modes and reflected in the sensor dataE. Interestingly, PxM for 

production monitoring was almost not prevalent in literature but highlighted by most expertsA, C, D, E, F.  

Lastly, no applications of PxM for inventory management were reported. Here, the stocks of spare 

parts, finished and sourced products are controlled, and sales goods are issued before processing the 

shipment to the customer. 

4.2 Data View 

A PxM-aligned PPC process is typically enabled via data (italic letters) gained from multiple sources, 

as shown in Figure 4. For PxM and PPC, Ansari et al. (2019) and Do et al. (2006) distinguish between 

material, machine, and process data types that comprise many different data. Further, process data can 

also be distinguished into maintenance, production, logistics, and sales. Surprisingly, the latter two were 

not addressed by grey literature at all. 

Machine data comprises historical failure events (Qi and Tao, 2018), often supplemented failure modes 

(Ansari et al., 2019). More sophisticated PxM solutions also use natural language processing to gain 

insights from fault-related text or audioH (Glawar et al., 2019). Additionally, images and video can be 

processed to aid in locating and repairing the fault (OMRON, 2020), but this has not been discussed in 

white literature. Further, condition data was mentioned by almost all sources, either from sensorsC, G 

(Rødseth et al., 2017; Standardization Council Industrie 4.0, 2018) or experienceG (Do et al., 2006). 

Mulders and Haarman (2017) also argue that mature prescriptions use data from similar machines (i.e., 

fleet data). Further, environmental data (e.g., ambient temperature) can improve PxM (Schuh et al., 

2020). All condition data are then used to calculate PHM data, such as the degradation or RUL (Broek 
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et al., 2020) which is then used to plan downtimes (Birtel, 2017). Machine property and master data can 

then be used to reschedule productionD (Zarte et al., 2017). 

Next, material data includes product quality data that can be “exploited to predict machine problems” 

(Do et al., 2006, p. 41). Either direct measurements exceeding tolerances (Ansari et al., 2019), scrap 

ratesE, F (Schuh et al., 2020), or even imagesD can be used to pinpoint asset defects. Further, product 

properties (Do et al., 2006) or designs (Qi and Tao, 2018) can be used to estimate the wear and improve 

PPC prescriptions (e.g., producing less straining products on machines with high degradation). 

The third type, process data, comprises data generated in the primary and support processes of the value 

chain. For PxM and PPC, four process data subtypes are relevant (cf. Figure 4). First, production data 

comprises information about the planning and control of manufacturing, such as the production program, 

which must respect planned downtimes, breaks, weekends, holidays, personnel, and spare parts re-

sources (Denkena et al., 2012). Next, lot sizes (Li et al., 2020) and production schedules (Glawar et al., 

2019) are critical data that need to be aligned with PHM data. Concrete production orders are derived 

from schedules (Qi and Tao, 2018), which comprise job and operation data (Paprocka et al., 2020). PxM 

approaches can then prescribe optimal production sequences based on production and setup times (Wang 

and Lu, 2016) and energy data (Maguire et al., 2017). Lastly, production parameter dataB,E, such as the 

production rate (Broek et al., 2020), is crucial for PxM. Lastly, cost data can be considered for PxM-

enabled optimization of production decisions, such as setup or downtime costs (Wang et al., 2019). 

Secondly, maintenance process data can include historical maintenance interventionsC, which provide 

insights for future service plans (Birtel, 2017). In agreement with the production plan and PHM data, 

suitable times and actions are determined (Zheng et al., 2013) considering maintenance cost data, such 

as failure, maintenance (Wang et al., 2019), parts, and (external) personnel cost (Rødseth et al., 2017). 

Thirdly, logistics data must be considered when aligning PxM and PPC. Here, production orders and 

maintenance interventions can only be rescheduled when sufficient raw material inventory is available 

(Wang and Lu, 2016), and spare part orders, inventory, and demand data are aligned (Birtel, 2017), 

respecting lead times (Njike et al., 2012). 

Lastly, sales data is relevant, so PxM decisions do not minimize maintenance costs and neglect custom-

ers. Demand, backorders, and delivery dates (Wang and Lu, 2016) are crucial data that must be respected 

in the PPC process to decrease lost sales costs and penalties (Wang et al., 2020) and increase revenue 

(Li et al., 2020). 

4.3 Function View 

Of course, the data above are typically stored in application systems that incorporate “processing rules 

of a function” (Scheer, 1999b, p. 36). A functional application system landscape of the PxM-aligned 

PPC process is shown in Figure 5. 

The heart of PxM-aligned PPC is the cyber-physical production system. These are equipped with sensor 

technology (Balogh et al., 2018; Do et al., 2006; Rødseth et al., 2017; Schuh et al., 2020), can autono-

mously control the production and send preprocessed sensor data to a PxM system (Busse et al., 2018). 

Pressure, temperature, and vibration sensors are common, and wireless connectivity is crucial for a 

plant-wide connectionC. 

PHM systems run the steps of the PHM process (Figure 1) data treatment, condition monitoring, detec-

tion, diagnostics, and prognostics using data-driven techniques (statistical or machine learning) to gen-

erate PHM information (e.g., alerts, fault modes and effects, RUL predictions). This information is for-

warded to computerized maintenance management or manufacturing execution systems where PHM-

based decisions are made. PHM systems can be equipped with dashboards for less mature CBM strate-

gies (e.g., diagnostic, predictive); however, for PxM, dashboards are replaced by (semi-)autonomous 

decision-making functionsB. Here, the results of the PHM algorithms must be interpretable, i.e., by using 

explainable artificial intelligence (Jalali et al., 2020). Further, due to their novelty, systems are often 

proprietary, non-standardized, and use heterogeneous technology stacksB, D (AspenTech, 2019; Balogh 

et al., 2018; Busse et al., 2018; Morariu et al., 2020; Siemens, 2019). PHM systems can be integrated 
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into manufacturing execution, ERP (enterprise resource planning), or computerized maintenance man-

agement systems.   

General asset management is done via computerized maintenance management systems as soon as the 

RUL of a system necessitates a future action (Rødseth et al., 2017). Here, breakdowns are documentedB, 

and the maintenance schedule can be accessedE. The outputs are maintenance work orders that are au-

tomatically generated in coordination with the production planB. 

Work orders are typically transmitted from computerized maintenance management systems to the ERP 

system. ERP systems represent the highest layer of technology and encompass many business functions 

(Do et al., 2006; Zarte et al., 2017), such as spare parts management (Ansari et al., 2019). Here infor-

mation about customers, suppliers, sales, and material data can be combined in the joint maintenance 

and production planning (Zarte et al., 2017). 

Work orders from ERP can also be relayed to mobile application systems (Scheffels, 2018). Mobile 

devices are used as peripherals of the service technician to upload reports, pictures, and access machine 

manualsA, C, E or manage work orders or spare parts, e.g., by using solutions with direct interfaces to ERP 

systemsC, E. Mobile systems can be supported by more mature technologies that emerge in the plant, 

such as augmented realityH. While these systems are discussed mainly by experts, they are neglected in 

scientific works, e.g., due to a different focus on autonomous PxM-enabled PPC approaches in the lit-

erature. Still, the human is essential and can even leverage PxM by complementing diagnostics and 

prognostics algorithms through experience. 

Quality management systems are used as supporting systems. They can be a new information source for 

computerized maintenance management systems, as abnormal product quality can indicate progressive 

wear (Do et al., 2006). Here, a connection to PHM systems has not been reported, but quality reports are 

forwarded to ERP (Ansari et al., 2019). 

Penultimately, manufacturing execution systems link production planning with control (Glawar et al., 

2019). Thus, they have a connection functionC between ERP and shop floor systems and are central to 

PPCB. They enable autonomous PPC decisions, which are unfortunately often idealized and not feasible 

in practice and can only be tackled with plausibility analyses considering maintenance (Glawar et al., 

2021), e.g., by optimization, simulation (Gutschi et al., 2019), or digital twins (Melesse et al., 2021). 

Using PxM, the systems could receive and transform production plans into machine allocations and 

schedules based on RUL (Ladj et al., 2016; Morariu et al., 2020). Further, manufacturing execution 

systems drive production monitoring as they relate production parameters to productsE. 

Lastly, computer-aided  systems (e.g., computer-aided design) have another supporting role (Qi and Tao, 

2018). They can receive sensor data and production schedules to simulate stresses and wear of assets 

(McBeath, 2020) that improve the forecasts of PHM systems.  

 
Figure 5. Function view 
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All in all, the function view is aligned when looking at theory and practice. Some mismatches concern 

the white literature, which focuses on standardized architectures for PHM systems that have not yet been 

put into practice. This becomes noticeable, as many non-standardized, proprietary systems are presented 

in grey literature, while experts further criticize this widespread use of ‘homegrown’ solutions. Never-

theless, the experts also say that interfaces between application systems are standardized, with protocols 

such as OPC UA already heavily in use in practice. 

4.4 Organization View 

Lastly, an organizational perspective is crucial for successful PxM and dictates how well it can ulti-

mately be embedded into a manufacturer's process. Figure 6 demonstrates how a generic PxM-aligned 

PPC organization is structured. In the following, the different organizational units (italic letters) and 

their interactions are described.  

Within PxM, production closely cooperates with maintenance planners (Microsoft, 2015) and aligns the 

production plan with prognosticated capacities. As machine operators are highly familiar with the pecu-

liarities of their assetsB, they can also complement the maintenance crew by providing immeasurable 

knowledge, which increases flexibility (Do et al., 2006). Also, the first hypotheses of machine break-

downs come from them, which are then matched with the condition data by specialized employeesC. 

Further, machine personnel should carry out minor interventions according to Kaizen or the 5S meth-

odologyE, G, supported by Prescriptive Maintenance assistance tools (Henke et al., 2019).  

More complex interventions are done by maintenanceE, G. For instance, these can include relubrication, 

oil, oil filter, belt, or bearing exchangesE. Based on diagnostics, the complexity can be identified, and 

PxM can be used to schedule interventions, adjust available capacities based on the RUL (Rødseth et 

al., 2017), and combine maintenance interventions opportunistically (Ansari et al., 2019). Through PxM, 

a capable field technician is automatically assigned when maintenance demand is forecasted; the tech-

nician maintains the system using smartwatches, tablets (Scheffels, 2018), augmented reality (McBeath, 

2020), or remote assistance solutions (McBeath, 2020; Microsoft, 2017). Thus, "blue-collar" workers 

become increasingly "white-collar", as the accompanying tools require interpreting big dataB. This could 

be achieved via digital upskilling and explainable artificial intelligence, supporting PxM (Jalali et al., 

2020). Further, spare parts and tools are ordered and bundled by maintenance to be easily retrievedE or 

are 3D printed (Schuh et al., 2020). 

For spare parts, companies need to cooperate with external providers (i.e., suppliers or maintenance 

service providers) to identify whether parts or services can be supplied on timeE, or if production plans 

must be adjusted or machines slowed down to decrease stress and postpone their demands (Broek et al., 

2020). Also, maintenance sometimes needs to be outsourced to third-party providers or the original 

equipment manufacturerB, which is more costlyC, especially in the case of false positive predictionsB. 

 

Figure 6. The organization view 
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Thus, many companies still require engineering units because there is no automatic, data-driven way to 

diagnose faults with zero uncertaintyB. For instance, a centralized organization of experts can provide 

prognostics and diagnostics services to multiple plantsC. Should a machine behave abnormal, the engi-

neers analyze the RUL forecasts and failure behavior, aid decision-making, and give new insights to the 

PHM models. Here, experiential data from past logs can be retrieved via AI-enhanced approaches and 

integrated into decision models (Usuga-Cadavid et al., 2021). 

The analytics unit continuously adapts the data-driven PHM model (e.g., diagnostics or prognostics) 

whenever insights require a change (Glawar et al., 2019). Moreover, the analytics units either perform 

data-driven diagnostics and prognostics as standalone organizationsC or are integrated into other depart-

mentsB. In the case of external analytics providers, model adaptions, problems, or new sensors to be 

added should at least be discussed regularlyA.  

Lastly, PxM is a management topic and lighthouse project of many companies and is generally seen as 

value-addingE. However, managerial use case owners always decide whether an implementation is eco-

nomicalB. Either way, management support is crucial in implementing PxM for PPC. 

All in all, organizational literature on PxM-enabled PPC is lackluster, as roles beyond production, 

maintenance, and analytics were only discussed by the experts who gave much more input on how the 

PPC activities of different organizational units are changed through PxM. The experts also highlight 

poor knowledge sharing due to data security concerns and protectionism. 

4.5 Linked View 

Lastly, the presented views can be linked according to the architecture of integrated information systems 

(Scheer, 1999a), as exemplified for the process element sequencing shown in Figure 7. 

Input for sequencing is the production plan with production data such as orders, jobs, and operations. 

Then, machines capable of producing the ordered products are selected based on machine data. Depend-

ing on the properties of the products (material data) and the different stress levels their production 

causes, the jobs, and products can be sequenced on the different machines to control their end of life, 

e.g., synchronize it, or postpone it to the end of a shift or to a time point when spare parts are available. 

The whole sequencing process element is controlled via a manufacturing execution system, and the pro-

duction department is responsible for supporting it. In the end, an optimized production sequence is 

forwarded. 

5 Conclusion, Limitations, and Future Work 

In this work, the potentials of PxM-aligned PPC were identified. For that, a PxM-aligned PPC reference 

process model was designed following the seven-phase method of Matook and Indulska (2009). First, 

existing PPC reference process models were collected and merged into a ‘basic’ PPC model. Through 

expert interviews and a multivocal literature review, potentials of alignment between PPC and PxM 

were identified, and the ‘basic’ model was complemented. In an evaluation phase, the final model was 
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assessed and adapted via process mapping with further experts. In the end, a four-view reference process 

model with eight process categories and 17 process elements was constructed. It could be shown that 

PxM has a high potential for 8 of the 17 process elements. As a scientific contribution, it was highlighted 

which process elements benefit from PxM alignment, how alignment can be achieved, what research 

gaps exist, and where practical adoption lags. The developed model also advances PHM and operations 

management research by showing how PxM can be applied to PPC. Practically, the theoretical reference 

process model can serve as a guideline to conduct PxM-aligned PPC and can be used to instantiate 

specific process models. 

The conducted study has some limitations. First, the multivocal literature review was not exhaustive and 

could be extended using other databases or keywords. Additionally, the Google search was stopped as 

soon as theoretical saturation was reached, but whether or not relevant results can be found later depends 

on the Google page rank algorithm, which could also be biased (Langville and Meyer, 2012). Further, 

only German experts and no machine manufacturer were interviewed, which hinders a more objective 

overview of the practical application of PxM-aligned PPC. Moreover, the experts have a background in 

many different industries and company sizes, and it was not examined how far the results are general-

izable. Therefore, the presented results can only be used for further research and practice to a limited 

extent. Still, we think that the model is still valuable to identify promising business cases of PxM for 

PPC for different companies. 

Additionally, three expert interviews are not enough to thoroughly validate the model. For instance, 

Matook and Indulska (2009) propose a complex quality function-based evaluation approach evaluating 

five characteristics. While the three characteristics, generality, completeness, and understandability, 

have been validated to a certain extent, many authors suggest practical tests (e.g., Ahlemann and Gastl, 

2007) to further test the two other characteristics, flexibility and usability. 

Thus, a more robust evaluation and instantiation of the reference process model in case studies should 

be performed for future research. Also, extended literature reviews, expert studies, or surveys could 

further complement and validate the designed reference model. The model could also be used as a basis 

to concretize reference models specialized to different industries or company sizes. Additionally, the 

results led to multiple gaps that should be analyzed. First, it should be investigated how the practical 

adoption of PxM-enabled production planning, control, and monitoring can be fostered. Research should 

answer why production planning is still very manual in practice, why production control focuses on 

sequencing and not capacity control, and how production monitoring can be improved by linking sensor 

data, quality data, and production parameters. Further, especially source planning is disregarded by lit-

erature but rated as relevant by practitioners and should be incorporated in future research. Lastly, the 

processual changes introduced can lead to more resilient and sustainable production systems, and the 

actual effects should be demonstrated in future research. From a data view, it should be examined why 

logistics and sales data are not regarded in practice. In contrast, more research on supporting PxM and 

PPC with image, video, and text data should be done, which was seen as a considerable potential in 

practice. Further, almost no sources discussed the role of experiential data in PxM-enabled PPC. Func-

tionally, the practical adoption of standardized PHM applications should be fostered. Moreover, it 

should be analyzed how explainable AI, e.g., on mobile or PHM systems, can increase transparency, 

and it should be examined how simulations or digital twins can increase the plausibility of PxM-enabled 

PPC prescriptions. Additionally, organizational changes through PxM should be addressed in research, 

e.g., by investigating the potential of digital upskilling the human-in-the-loop. Lastly, current practical 

challenges regarding successful cross-boundary knowledge sharing (e.g., protectionism) for PxM should 

be investigated.  

While these open questions could lead to further insights, all in all, the PxM-aligned PPC reference 

process developed in this work shows how companies can align PxM with their production planning 

and control process. 
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