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Abstract  

Data labels are an integral input to develop machine learning (ML) models. In complex domains, labels 

represent the externalized product of complex knowledge. While prior research discussed labels 

typically as input of ML models, we explore their role in organizational learning (OL). Based on a case 

study of a German car manufacturer, we contextualize a framework of OL to the use of labels in 

organizations informing about organizational members who work with labels, requirements of label-

based tools, label-related tasks, and impediments of label-related task performance. From our findings, 

we derive propositions about the role of labels in OL and outline future research opportunities. Our 

results inform theory about the role of labels in OL and can guide practitioners leveraging labels to 

create and transfer knowledge within organizations. 

Keywords: Knowledge Management, Organizational Learning, Machine Learning, Human-Computer 

Interaction. 

1 Introduction 

Organizations increasingly use data-driven approaches such as machine learning (ML) methods to 

improve organizational processes. For example, in industrial manufacturing, ML models analyze 

hundreds of produced parts and predict their quality (Suschnigg et al., 2020); in engineering, ML models 

use multi-criteria alternatives for rotor designs and suggest the most promising ones to human experts 

(Cibulski et al., 2020); or, in traffic control, models based on transportation data predict traffic flows 

(Boukerche and Wang, 2020). All these ML approaches have one essential key ingredient in common 

to train and evaluate sophisticated supervised and reinforcement learning models: labeled input data 

(hereafter referred to as labels) (Afiouni, 2019) and features (Bishop, 2006).  

This study focuses on labels in the context of supervised and reinforcement learning. Such labels are 

typically created by humans and describe data categories into which data sets are classified. A simple 

example of a label is the tagging of animal pictures with the corresponding label “cat” or “dog”. 

Depending on the domain of interest, labeling can depend on expert knowledge and become a complex 

task. An example is a diagnosis based on CT scans (Fatima and Pasha, 2017) that only specially trained 

experts can perform. When an expert provides a label, the knowledge about this data is retained in the 

label. For instance, a label related to cells can provide knowledge about the analysis subject such as 

“malaria” or “healthy” cells in the image (Morang’a et al., 2020). As such, labels represent an 

externalized knowledge product of complex expert knowledge. Thus, organizations can leverage labels 

not only to create ML models but to create and transfer knowledge and support organizational learning 

(OL).  

OL is the “dynamic process of creating new knowledge and transferring it to where it is needed and 

used, resulting in the creation of new knowledge for later transfer and use” (Kane and Alavi 2005, p. 

796). More recently research stressed the unique capabilities of ML for OL such as that learning happens 

within the ML model and not only through the model (Afiouni, 2019). However, for the ML model to 
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learn, it—in complex domains—highly depends on the knowledge of domain experts. Hence, to develop 

ML models, data analysts need to engage with domain experts for mutual learning processes because 

they need to maintain relevancy to the domain and produce knowledge independently. These processes 

can inform a hybrid practice where ML models and domain experts together perform knowledge work. 

To build models, ML developers need to understand complex domains, such as manufacturing processes 

(Eirich et al., 2022a) by consulting experts while domain experts need to understand the decisions of an 

ML model (van den Broek et al., 2021). The outcome or smallest unit of this mutual learning process 

are labels. The relevancy of labels is undisputed since the quality of ML models depends on the quality 

of labels. However, ML research thus far mostly discussed labels as a means to train ML models. We 

want to dive deeper and understand the role of labels in OL. In particular, we aim to answer the following 

research question:  

How do labels affect organizational learning? 

In answering the research question, we conducted a case study in collaboration with a German 

automotive manufacturer. We draw on the theoretical framework of OL by Argote and Miron-Spektor 

(2011) and contextualize it to the use of labels in organizations. In particular, we analyze how labels 

that are used in three visual analytics (VA) tools (Thomas and Cook, 2005) affect organizational 

members’ tasks and knowledge retention. Our results contribute a contextualized theoretical framework, 

which helps to understand the role of labels in OL. Furthermore, we provide propositions on how labels 

affect OL and outline possible future research opportunities in this context. 

2 Related Work 

In the following section, we explain labeling in the context of ML. This section is followed by a 

description of the OL framework, which serves as an analytical tool for our analyses. Subsequently, we 

discuss information systems literature at the intersection of ML and OL.  

2.1 Labeling 

In the context of ML, a label refers to attaching a certain attribute to an instance in a data set. Examples 

are class labels, relevance scores, similarity judgments (Bernard et al., 2018b), or the annotation of 

specific data spaces in observed data, such as parts of curves or polygons in images (Wang and Hua, 

2011).  

Labels are of categorical or numerical nature (Weber et al., 2016). In ML models, categorical labels are 

more common than continuous labels (Bernard et al., 2018a) and can either be scaled nominally or 

ordinally (Stevens, 1946). Nominally scaled labels represent discrete units of analysis, which neither 

have a quantitative value nor can they be ordered (e.g., male vs. female). Ordinal scaled labels, in 

contrast, are discrete but ordered units of analysis, where the distance between classes is vague (e.g., 

fast vs. slow) (Mann and Lacke, 2013). Furthermore, categorical labels can be of a binary or multi-

valued nature (Bernard et al., 2018a). While binary labels allow simple user feedback, such as “ok” vs. 

“not ok”, multi-valued labels enable broader often more specific tagging of different classes of a data 

instance, such as “dog” vs. “cat” vs. “frog”. Continuous labels are based on interval or ratio scales 

(Stevens, 1946). Interval scales represent ordered units of analysis with the same difference (e.g., 

temperature). Ratio scales are equal to interval scales but contain an absolute zero value (e.g., height) 

(Mann and Lacke, 2013).  

In the domain of ML, a label is the result of human analysis. This analysis can vary in its complexity. 

In very complex domains, specific domain knowledge is required to create a label such as in labeling 

data in the production of highly integrated electrical engines (Eirich et al., 2021) or cell proliferation 

(Berg et al., 2019). Less domain knowledge is required in simple analyses such as for the classification 

of animals (Amershi et al., 2014) or handwritten digits (Bernard et al., 2018a). 
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2.2 A Framework of Organizational Learning 

OL focuses on the dynamic processes through which knowledge is created and consumed within 

organizations (Vera and Crossan, 2003). It can broadly be divided into two forms: exploitation and 

exploration (Kane and Alavi, 2005). The former refers to incremental learning, which focuses on the 

diffusion, reuse, and refinement of existing knowledge (Larsson et al., 1998; March, 1991; Smith and 

Zeithaml, 1996), whereas the latter involves the development of new or the replacement of existing 

knowledge in organizations (Abernathy, 1978; March, 1991; Pentland, 1995).  

In line with the notion of exploration and exploitation of knowledge in organizations, Argote and Miron-

Spektor (2011) provide a conceptualization of OL (see Figure 1). The key elements comprise task 

performance and experience, knowledge, and the active context; the latter depends on the latent 

organizational context. The framework provides an analytical representation of learning in organizations 

in a cyclic relationship between the three key elements, in which task performance and experience create 

or transform knowledge through interaction with the context. While the environmental context 

represents elements outside an organization (e.g., suppliers or customers), the latent context represents 

elements within the organization (e.g., a culture of trust in technologies). Although the latent context 

does not “act” actively, it affects learning through its influence on the active context. In particular, within 

the active context organizational members (e.g., employees) and tools (e.g., ML-based systems) perform 

actions, that is, tasks related to their jobs. 

Figure 1. A framework of organizational learning based on Argote and Miron-Spektor (2011, p. 1125)  

The process in which the active context affects task performance and experience is defined by Argote 

and Miron-Spektor as search. Knowledge is acquired through new experience (knowledge creation) or 

the sharing of existing experience within the organization (knowledge transfer) (Kane et al., 2005). This 

knowledge can either be of tacit or explicit nature (Nonaka and Takeuchi, 1995). While tacit knowledge 

is bound to the individual and difficult to communicate, explicit knowledge can be readily accessed by 

members or tools. Knowledge is retained through the active context, where organizational members or 

tools use it to act. Organizational members and tools, hence, represent knowledge repositories (Alavi 

and Leidner, 2001) and generate new experiences by performing new tasks. 

2.3 ML in the Context of Organizational Learning 

Research on the use of ML models in OL stresses that ML shifts the focus from the human learner to 

the machine. In contrast to traditional knowledge management tools (e.g., expert systems), ML 

technologies not only support human learning but can learn autonomously or learn in form of a hybrid 

practice where humans and algorithms inform each other (Sturm et al., 2021; van den Broek et al., 2021). 

In particular, in supervised ML models, human knowledge is crucial to inform human-in-the-loop 

practices, where domain experts provide inputs for algorithms, for training or debugging models, and 
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for making sense of the results. These supervised and interactive learning approaches not only allow 

integrating human domain knowledge in the design of the ML model but require a huge amount of 

labeled data provided by human experts.  

However, human-generated labels by experts can be error-prone. In knowledge-intensive domains 

characterized by uncertain or ambiguous knowledge work such as in generating diagnosis outputs, 

expert-generated labels may rely on the opinion of a single person and lack external validation. 

Regarding labeling tasks in such domains, the difficulty of identifying false negatives may be 

exacerbated because the outcome of the diagnosis may only be validated long-term, taking months or 

years (Lebovitz et al., 2021). Hence, especially in situations where an objective ground truth is missing, 

it is crucial to diligently monitor and assess the quality of labels and the ML output to avoid damage due 

to wrong decisions based on incorrect predictions of ML models.  

In fact, a key challenge of a hybrid human-machine learning process that builds on feedback is 

identifying and understanding the gap between the actual and reference output. Any supervised and 

reinforcement ML model, hence, requires human auditing when being built, which, in turn, requires a 

reference measure (i.e., the ground truth provided by the domain expert) against which the output is 

compared. Therefore, data analysts and domain experts need to closely collaborate to alter and audit the 

ML model and improve its performance over time (Grønsund and Aanestad, 2020).  

While research in this area focused on the development and adoption of ML models for organizational 

learning and its intricacies (Grønsund and Aanestad, 2020; van den Broek et al., 2021), we know little 

about the role of labels in this process. In response to this gap, this study investigates how labels 

influence OL in the context of a car manufacturer, revealing challenges in building and use of labels as 

well as the effects of labels (and related tools) on the key elements of OL.  

3 Methodology 

A case study is an empirical research approach to analyze a specific phenomenon within its environment. 

We chose a case study approach to study the role of labels for OL because case study designs are useful 

for studying context-rich sociotechnical systems (Yin, 2014), when the status quo in research is not yet 

well developed, when the examination of context and dynamics are important (Darke et al., 1998), and 

when the investigated process is difficult to observe from an outside perspective. We followed a single-

case study approach (Yin, 2014). In particular, we investigated the case of a car manufacturer who 

introduced three ML-based VA systems building on labels. The case is situated in the context of a 

transformation project that many organizations currently pursue to change into a digital company.  

3.1 Context and Scope 

The organization in our case study is a leading German automotive manufacturer (hereafter referred to 

as “AutoCorp”). Like many of its competitors, AutoCorp is currently investing considerable resources 

in the digitization of its manufacturing processes. Therefore, dedicated analytics and engineering teams 

work collaboratively on the development of sophisticated VA tools to improve car production.  

The two expert groups and the analyzed VA tools (see Table 1) represent our units of analysis. We refer 

to the two expert groups as domain experts and data analysts: 

Domain Experts are responsible for specific manufacturing parts (e.g., rotor shafts of electrical engines) 

and have a deep understanding of a part’s physical properties (e.g., sound propagation inside electrical 

engines). These experts are responsible for the development of test benches, which are dedicated stations 

for automated part testing. Since test benches have to test a wide spectrum of a part’s properties, such 

as the electrical behavior of an engine as well as its mechanical attributes, domain experts also have 

deep knowledge about the part and its properties. For instance, two of our study participants are experts 

on the propagation of sound inside electrical engines. They know how an engine performs under specific 

conditions, for instance, in a test bench (e.g., by analyzing its magnetic field) or an electrical vehicle 

(e.g., by observing its acoustic signature during driving). Due to their specific expertise, domain experts 

are the only members of AutoCorp, who can create labels. 
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Data analysts develop data analysis methods, such as the training of sophisticated ML or statistical 

models. Their work relies on labels as they need categorical or numerical labels from domain experts as 

input for developing ML models or label-based tools. Thus, the more labels are available, the easier it 

is to develop ML models and label-based tools. Data analysts are also responsible for the acquisition 

and processing of data. These tasks can range from connecting sensor equipment that records 

measurements to machines to querying datasets from existing organizational databases.  

To provide domain experts with a means to improve the manufacturing process, data analysts are 

currently involved in developing VA tools. Such tools aim to support the analysis of large and often 

unstructured datasets using visual representations and abstractions of the data (Thomas and Cook, 2005). 

Visualizing the data with specifically designed visualization interfaces helps experts to identify patterns 

and derive decisions. Thus, VA tools help in making better, data-driven decisions and—by storing labels 

and visualizing the data—retaining knowledge in organizational knowledge bases.  

VA is closely related to the discipline of business intelligence (BI). Similar to VA, BI uses predefined 

methods (e.g., data aggregation or filtering) to gather, analyze, transform, and abstract data into new 

information via visualization interfaces to inform business decisions (Shollo and Galliers, 2016). 

Nonetheless, VA and BI differ in the following aspects: VA tools are tailormade visual interfaces 

between human experts and ML models to support highly explorative analyses. Examples are the 

analysis of speech data with self-organizing maps (Sacha et al., 2018) or root cause analyses of 

manufacturing errors with causality graphs (Eirich et al., 2022a). Most VA tools are designed to store 

data in the form of formalized user feedback, which can range from simple text inputs to more abstract 

forms such as graphs, to continuously develop a VA tool’s underlying model. In contrast, traditional BI 

tools focus on the visualization of data and do not store expert feedback in dedicated databases.  

 

Tool Name Description Context and aim Role of Labels 

RfX  

(Random Forest 

Explorer)  

 

Visualizes the 

decision-making 

process of a 

random forest.  

The interpretation of a random forest 

requires the analysis of model properties 

and can typically only be performed by 

data analysts. RfX allows domain experts 

to interactively explore the properties of 

a random forest and thus create new 

knowledge by understanding its decision-

making process. 

Uses labels to 

train a random 

forest 

classifier. 

IRVINE 

(Interactive 

Labeling)  

 

Facilitates the 

analysis of acoustic 

signatures of 

electrical engines. 

Acoustic signatures of electrical engines 

contain a complex data structure, which 

only a few domain experts can analyze. 

IRVINE facilitates the analysis of 

acoustic data and helps to externalize and 

share domain knowledge on acoustic 

data in the form of labels. 

Stores labels 

as a result of 

an expert’s 

analysis. 

ManEx 

(Manufacturing 

Explorer)  

Allows analyzing 

sensor data from 

parts across the 

manufacturing 

process. 

Manufacturing data is scattered across 

multiple data sources along the 

manufacturing process. ManEx helps 

domain experts to compare 

measurements from defective parts to 

error-free parts and thus detect the root 

cause of errors. 

Uses labels to 

compare 

measurements 

from 

erroneous 

parts to error-

free ones. 

Table 1. Summary of analyzed label-based tools at AutoCorp 

In our study, we explored the use of three tailormade, in-house VA tools (see Table 1). We hereafter 

refer to them as label-based tools because the VA tools are all interactive visual digital interfaces that 

rely on the input from experts to their underlying statistical models to create, leverage, and/or store 
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knowledge in the form of labels. Hence, these VA tools do not only depend on domain knowledge but 

can also formalize that knowledge with labels through their visual interface.  

3.2 Data Collection and Coding 

We conducted the case study over sixteen months. During this period, the first author was deeply 

involved in the development of all label-based tools. All study participants are current users of the label-

based tools. To develop and evaluate each tool, we collected data from the following sources:  

(1) Semi-structured interviews: After the roll-out of each label-based tool, we interviewed 15 

participants—seven data analysts (DA-1 to DA-7) and eight domain experts (DE-8 to DE-15) of 

AutoCorp. All interviewees were involved in the development of the tools and are current users of each 

label-based tool. They are all male, were on average 34.2 years old, had a mean working experience in 

AutoCorps of 9.7 years, and did not use label-based tools prior to the study. Each interview took on 

average 33 minutes.  

The interview guideline was developed based on our theoretical lens, i.e., the effect of labels on OL. 

First, considering the dimension active context from the original OL framework (Figure 1), we asked 

questions on how participants define labels, the roles of the employees, and how they use the VA-tools 

RfX (Eirich et al., 2022b), IRVINE (Eirich et al., 2021) or ManEx (Eirich et al., 2022a) in terms of 

labels. Second, in the dimension task performance and experience, we asked, for instance, about the 

tasks that are supported by labels or which impediments exist in labeling tasks for organizational 

members and tools. Third, in the knowledge dimension, questions pertained to the storage of labels in 

organizational databases.  

(2) Direct observations: The first author investigated how organizational members use the three label-

based tools (RfX, IRVINE, ManEx) following Someren et al.'s (1994) Think Aloud Method. The 

researcher asked domain experts and data analysts to express their thoughts verbally when using label-

based tools (Someren et al., 1994). The observations helped us to understand how organizational 

members (e.g., domain experts from different organizational units) share and create knowledge in the 

form of labels. Furthermore, the observations helped to contextualize label-based tasks.  

(3) Documentations of design and development iterations: Each label-based tool, introduced in section 

3.1, was designed and developed in several iterations. During each iteration, the on-site researcher 

documented numerous types of information. This information included the tasks users perform while 

using the tools or VA requirements used as design targets for each tool. This data helped to abstract 

high-level system requirements, which label-based tools need to address. The data also informed the 

definition of general tasks, which members and tools perform when using label-based systems.  

Following our theoretical framework, we coded the data along the dimensions of the OL process. In 

particular, we went through a constant comparison analysis (Boeije, 2002). In so doing, we grouped the 

data into themes and gave names to each theme to describe their content. Next, we categorized these 

themes into the dimensions of the OL framework. We went through this process three times to refine 

the coding of the data. 

4 Case Study Results 

The focus of this analysis is on how labels affect each dimension of the OL framework and how they 

circulate along its three dimensions (active context, task performance and experience, and knowledge). 

We summarized our findings in Figure 2, which shows our adapted version of the original OL 

framework (Argote and Miron-Spektor, 2011). 

Additionally, we asked experts how they define labels. From the answers, we derived the following 

definition:  

A label is a categorical or numerical result of a complex data analysis performed by domain experts 

to describe a product’s quality. It is, hence, the representation and aggregation of expert knowledge. 
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Although this definition might not apply to contexts, in which expert knowledge is unnecessary, it 

summarizes the views of AutoCorp’s experts and thus, will be used in the subsequent sections. In the 

active context (Section 4.1), labels affect both members and tools to perform the tasks provide and decide 

(Section 4.2). When performing these tasks new tacit and explicit knowledge (Section 4.3) is created. 

 

 

Figure 2. The organizational learning framework contextualized to labels 

4.1 Active Context 

As outlined in Section 3.1, members who work with labels are either domain experts or data analysts. 

Furthermore, the active context of the framework includes label-based tools, which are developed by 

data analysts in close collaboration with domain experts.  

Labels in the active context represent a semantic, which facilitates the collaboration between domain 

experts and data analysts. As such, labels capture and hence, serve to share explicit knowledge. 

Specifically, domain experts provide and share labels with data analysts. Data analysts can use these 

labels to develop label-based tools or to better comprehend the problems that domain experts are facing. 

Label-based tools also allow domain experts to increase their analytical reasoning and understanding 

because they provide an interactive means to compare complex data structures, such as the production 

quality of different manufacturing stations. Thus, label-based tools allow members to build on each 

other’s knowledge and facilitate OL. Hence, we propose: 

P1a: Labels representing explicit knowledge provide a semantic for organizational members which 

positively affects the comprehension of knowledge-intensive domains and thus positively impacts OL.  

Based on the experts’ opinion of the three label-based tools, we derived the six high-level requirements 

save, map, suggest, explain, validate, and visualize that these tools should address. 

Save: Label-based tools should store labels in organizational databases. This is necessary to make labels 

readily accessible for analyses by other organizational members within the same or different domains. 

IRVINE, for instance, allows saving labels from analyses of acoustic data from electrical engines. These 

labels are also relevant for domain experts outside the domain of acoustics. Engineers, who are 

responsible for the development of novel generations of electrical engines, can use stored labels to reflect 

on the design of electrical engines and include this externalized knowledge in future part generations.  

Map: Label-based tools should provide information about how labels are stored in different 

organizational databases. For example, at each step of the manufacturing process, measurements for 

engines are recorded and stored either locally or scattered across organizational cloud infrastructures. 

Domain experts reported that it is “extremely important to harmonize measurements and labels from 

different steps to understand the relation between them across the manufacturing process” (DE-8). In 
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this regard, DE-10 explained why he uses the tool ManEx: “Fully comprehending the relation of 

measurements and groups of labeled engines is crucial to find the root cause of an error as early as 

possible in the manufacturing process.” 

Suggest: Tools should make recommendations about analysis objects (e.g., electrical engines) that are 

most suitable for labeling. Especially when members analyze large numbers of data, this requirement is 

necessary to reduce the number of analysis objects from the plethora of available options. IRVINE 

addresses this requirement by suggesting groups of most relevant engines for an in-depth analysis using 

ML predictions reducing the time domain experts need to find and analyze particularly relevant engines 

by over 30%. ManEx addresses this requirement by guiding domain experts and data analysts to groups 

of engines with the most deviating measurements along the manufacturing process, which helps 

members to easily locate and label engines with previously unnoticed errors.  

Explain: Since label-based tools often address high-cognition tasks, they also should provide additional 

information about their decision-making process (Rudin, 2019). This helps organizational members to 

better understand a tool’s decision, for instance, a prediction about the quality of a part. DA-2, for 

example, argued that label-based tools “which use ML models should provide data so I can understand 

the reason why it predicted a specific error for a particular engine.” The explanation of a model depends 

on the label type. For example, RfX visualizes predictions of multiple decision trees in a random forest 

for categorical labels as a node-link diagram. In addition, IRVINE outlines regions of interest in time 

series data of acoustic signatures. 

Validate: Label-based tools should provide a quality measure for labels. This is important to ensure 

consistent and standardized labeling processes, which, in turn, allow tools to continually learn from 

labels. ManEx, for instance, addresses this requirement by providing a validation mechanic where 

domain experts can evaluate how different measurements influence groups of labeled engines. 

Furthermore, RfX shows different quality metrics for ML models results, which help to evaluate whether 

more labels are needed to train models or whether the ML model achieves a sufficient prediction 

accuracy. DE-14 argued to establish even more validation mechanisms, for example, that “labels must 

be validated by multiple experts” or that “tools should include wrong predictions as an additional safety 

check, which need to be detected by an expert.”  

Visualize: Label-based tools should include an interactive visualization interface (Thomas and Cook, 

2005). A visualization interface is necessary to relate labels to associated data by giving them a visual 

context. This visualization should enable data analysts and domain experts to comprehend the data or to 

analyze patterns, trends, or errors in large datasets easily. Although all three tools introduced in the case 

description include visualization interfaces, this requirement is undisputed for all new tools, which use 

labels. DE-8 explains why visualization is so important: “If I cannot see the model predictions embedded 

in a visualization interface, I find it hard to make a decision based on the prediction.” 

Search: In the original OL framework (see Figure 1), search is the sub-process that connects the active 

context with task performance and experience. To perform a task, members and tools need to effectively 

locate labels and “need to know where to find them” (DA-3). The easier the locatibility of labels is, the 

easier it is for members and tools to perform a label-related task. Data analysts need to know which type 

of label exists in which database and how to write queries for each database to retrieve labels. Domain 

experts need to know the location of specific file storages to search for labels efficiently. 

Label-based tools, which address the high-level requirements, can increase the knowledge of domain 

experts and data analysts by supporting locating and analyzing interesting data instances. For instance, 

label-based tools that suggest new data instances for labeling reduce the overall amount of data domain 

experts must analyze to a subset of particularly interesting data. These subsets may represent engine 

parts with highly anomalous sensor signals. Such signals, in turn, are particularly helpful in detecting 

and understanding new types of possible errors in the manufacturing process and thus foster the creation 

of new knowledge. Hence, we propose: 

P1b: Label-based tools that save, map, suggest, explain, validate, or visualize labels positively affect 

OL through their property to easily locate and analyze data instances of interest for human analyses. 
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4.2 Task Performance and Experience 

In the dimension task performance and experience, we surfaced the two label-related tasks provide and 

decide that label-based tools and members frequently perform. 

In the task provide, domain experts create labels by a manual analysis that can be supported by label-

based tools, such as IRVINE. An example of a manual labeling task is the analysis of time-series 

measurements, in which a label is created by assigning a property to the measurement. For example, 

DE-10 explained how he manually provides labels: “When the time-series surpasses a certain threshold, 

I assign an error to the data”. Furthermore, providing labels is supported with designated labeling 

systems such as IRVINE. IRVINE facilitates the labeling of multiple engines by clustering engines with 

similar data patterns and presenting them to users for an in-depth analysis.  

In the task decide, members and tools process labels for a specific analysis of manufacturing data and 

make a decision based upon this analysis. Domain experts perform analyses with labels, for instance, 

“to find the exact location of an error in a labeled part” (DE-11) or “to understand the cause of an 

error” (DE-8). Labels support decision-making tasks by “providing a direction that points towards a 

decision” (DA-6). Domain experts, for instance, need to decide on “the adaptation of an existing testing 

procedure” (DE-12). In contrast, data analysts, for example, decide based on “a model recommendation, 

which electric vehicle is best suited for an in-depth analysis” (DA-7). The tool ManEx automatically 

decides when to notify domain experts. For instance, in case of an unexpectedly high number of errors 

in the manufacturing process, the model will alert an expert about the errors.  

Labels shape task performance and experience when the respective tasks either rely on labels or are 

strongly influenced by labels. For example, labels can be used to improve label-based tools to make 

better suggestions of new relevant data instances for labeling. During the process of providing labels, 

domain experts gain a better understanding of the data they analyze and thus, create new knowledge, 

which can be externalized in the form of labels. In terms of the task “decide”, labels can improve 

decision-making and thus result in new knowledge. For example, label-based tools can proactively 

inform domain experts when produced parts contain a large number of anomalies in their sensor data. 

Domain experts then need to decide whether to send these parts to reworking stations or not. By taking 

this label-based decision, domain experts gain a better understanding of sensor data in the manufacturing 

process resulting in new tacit knowledge. Hence, we propose: 

P2a: Label-based tools support domain experts in providing labels and thus have a positive impact on 

the storing and sharing of explicit knowledge in organizations. 

P2b: Label-based tools positively affect decision-making capabilities and thus the creation of new 

knowledge. 

In addition, we identified the five impediments missing incentives, missing knowledge, mistrust, 

insufficient labels quality, and lack of contextual information, which can hinder task performance:  

Missing incentives is a lack of extrinsic or intrinsic motivation of a domain expert to provide a label. 

DE-13, for instance, pointed out that he does “not have enough time to manually analyze hundreds of 

engines and provide a label for every single one.” Missing incentives, however, negatively affect the 

work of data analysts, who rely on labels. To tackle this impediment, data analysts try to run analyses 

with few labels only. However, these analyses do not provide good results as DA-4 explains: “With few 

labels, I can only run simple statistical models, which give little insights about the cause of an error.”  

Missing knowledge is a lack of understanding the domain (e.g., the exact functionality of a 

manufacturing station) by a data analyst or domain expert to perform the tasks provide and decide. By 

missing knowledge, we mean a lack of knowledge about specific domain problems and not the use of 

label-based tools. DA-4 explained how missing domain knowledge slows down his work: “I first have 

to fully comprehend the problem domain and understand how to create labels, which is a very tedious 

process.” In addition, DE-13 found it “particularly difficult to create new labels or use existing labels 

if the problem to solve is new and I do not have the necessary knowledge to understand it.” 

Mistrust is a suspicious attitude of data analysts or domain experts when collaborating with other 

members or working with label-based tools (Thiebes et al., 2021). Trust often relies on personal 
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relationships between members who create and use labels. DE-12 explained how trust in relationships 

affects his work with labels: “I have more trust in a label if it is created by a person I know than in a 

label from a person I do not know. If I do not know the person, I always crosscheck the label myself.” 

Trust also relies on a member’s perception of a domain expert’s or data analyst’s expertise. A data 

analyst’s ability to explain the statistical results of an analysis to a domain expert is an example of that. 

In this context, DA-5 explained: “If I cannot respond to the question of why I believe that the specific 

anomaly is significant, the person for whom I have to perform the analysis does not trust my analysis.” 

Also, a lack of trust in label-based tools can harm task performance as DE-13 noted: “I need some kind 

of information on the trustworthiness of the model’s prediction, for example, a confidence interval. 

Lacking this information, I find it difficult to make an informed decision based on a prediction.” 

Insufficient label quality refers to a label that captures false information about a part. Examples are 

false positives, such as an error-free part labeled as erroneous, or false negatives, such as an erroneous 

part labeled as error-free. Analyses based on false labels can result in incorrect analyses results of data 

analysts and domain experts or false predictions by label-based tools. Decisions based on wrong results 

can have severe negative effects on the work of members and the quality of parts. DA-4 provided the 

following example: “Someone presented an ML model and all thought that it performed well. However, 

after a while, the model did make wrong predictions. It took us a lot of time to identify the reason, which 

was that it was trained with low-quality labels.”  

Lack of contextual information refers to the missing but necessary information to interpret a label 

correctly. Examples of such information are the “location where the label was produced” (DA-1), “who 

provided the label” (DE-12), “the timestamp of a label” (DE-10), or missing/incomplete data (Gashi et 

al., 2021) as described by DA-7 as a “lack of relevant sensor data for a label.” If labels do not include 

relevant context information, members have difficulties in fully comprehending the meaning of a label 

as DE-15 stated: “I need to have additional information, for example, on which day the label was 

provided, to know what it means.” 

Knowledge creation and transfer connects task performance and knowledge. While performing the 

two label-related tasks (provide and decide), members gain new experiences and learn to perform tasks 

more efficiently. For instance, by discussing individual decision trees visualized by RfX, we observed 

that members started to develop a shared meaning for a random forest. A shared meaning of this ML 

model, in turn, enhances the collaboration between domain experts and data analysts to improve RfX. 

P1 provides another example of how he creates new knowledge with labels: “The more I work with 

labels, the better I comprehend the manufacturing process and gain new knowledge about it.” Labels 

also help to transfer knowledge between members and tools; DE-15 stated: “Labels help to exchange 

information since I can pass labels to my colleagues so they can use them for their analyses.” 

The aforementioned impediments can hinder the successful execution of the tasks provide and decide, 

and hence the creation and transfer of knowledge. For example, missing incentives or knowledge to 

provide labels result in fewer labels provided by domain experts. Hence, less explicit knowledge 

captured in labels circulates inside the organization. Furthermore, mistrust, insufficient label quality, 

and a lack of contextual information may result in the negative attitude of members towards label-based 

tools (Chatzimparmpas et al., 2020) and thus, negatively affect knowledge transfer and creation through 

labels. Hence, we propose: 

P2c: Missing incentives and knowledge to provide labels, mistrust in tools, insufficient label quality, 

and a lack of contextual information negatively affect knowledge transfer and creation. 

4.3 Label-based Knowledge 

For the category knowledge, we surfaced the two knowledge types, tacit and explicit knowledge, in the 

context of creating and using labels:  

Tacit knowledge is created in the interaction between members or between members and label-based 

tools. DE-8, for instance, creates knowledge by sharing experiences or discussing labels with other 

experts: “Labels help me in discussions, where my colleagues and I compare error-free parts to 

erroneous parts and collaboratively find the causes of an error.” Members can also interpret the 
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representation of labels and associated data, for example, by using the tools RfX, IRVINE, or ManEx 

and thus continuously learn from them.  

Explicit knowledge is captured in labels (Bernard et al., 2018a), which can be stored and accessed by 

organizational members or tools. For instance, when a domain expert creates a label with IRVINE it is 

saved in an organizational database. Labels can then be used to develop ML models as DE-9 noted: 

“When I run the same analyses with new labels, I can evaluate the quality of my analysis process over 

time and gain new interesting insights.” Furthermore, domain experts, data analysts, or label-based tools 

can combine labels with different data sources into more systematic and comprehensive sets of explicit 

knowledge (Wang et al., 2009).  

Both, a unified semantic and unified syntax are important requirements for storing labels and the storage 

of explicit knowledge.  

Unified semantic refers to the description of labels, as well as their properties and relations by defining 

a set of abstract concepts and categories that represent and relate labels. This is necessary so that labels 

are interpreted the same way by different members of AutoCorp. DE-15 provided one approach to build 

a unified semantic: “different domain experts should decide on a common metric, which fits best to 

create labels.” Furthermore, DA-7 pointed out that “we need to define a common ontology, to 

understand how labels are embedded in the manufacturing process.” A unified semantic is also 

important for the interpretation of labels in label-based tools because “different tools, which all process 

labels with a common data processing routine would make it easier to compare them” (DE-15).  

Unified syntax refers to a common structure and data format for storing and sharing labels within 

organizations. In particular, labels should be available in “numerical interchangeable data formats” 

(DE-9) and be “readable by machines” (DE-7). A unified syntax also includes that labels are 

“compatible with different kinds of data sources” (DE-7) allowing the combination of labels with 

multiple datasets. 

Knowledge retention connects knowledge with the active context. To continually retain knowledge in 

the form of labels and to transfer it from the short-term to long-term organizational memory, labels 

should be “easily accessible to all individuals, who need to work with the labels” (DA-1). Hence, labels 

need to be stored in a central database. Nevertheless, labels that contain sensitive organizational 

knowledge “should only be available to specific members who have to work with these labels” (DE-12). 

Sensitive knowledge can pertain to labels about prototypical parts, which the organization wants to keep 

secret. In the case of sensitive data, label databases should contain only restricted user access.  

That being said, for the efficient retention of label-based knowledge in an organization, labels must be 

stored uniformly with a unified semantic and syntax. IS researchers have stressed that the 

standardization of knowledge is crucial to improve organizational knowledge retention (Förderer et al., 

2014; Hsiao, 2008). To implement a unified semantic, standardization methods for labels such as 

ontologies (Alvarez-Coello and Gomez, 2021) or knowledge graphs (Ehrlinger and Wöß, 2016) can be 

used. To make labels readily accessible across organizational units, a common syntax, for example, 

compatible data types of labels are necessary. Hence, we propose:  

P3a: A unified semantic for labels positively affects the retention of tacit and explicit knowledge.  

P3b: A unified syntax for labels positively affects the retention of tacit and explicit knowledge. 

5 Discussion 

To answer our research question and to gain a better understanding of how labels influence the process 

of OL, we adapted Argote and Miron-Spektor's (2011) theoretical OL framework (see Figure 2). 

Drawing on our results, we propose a set of research questions summarized in Table 2. 

Since labels present explicit knowledge (Wang et al., 2009), they play an important role in OL and 

complement well-established explicit but more generic knowledge products such as images or symbols 

(Peltokorpi et al., 2007). In contrast to such generic knowledge products, labels and related tools 

explicitly shape domain experts’ routine work processes and help to better understand certain domains. 

Hence, sharing labels in organizations can have a positive effect on organizational learning since 
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members can use them to understand knowledge-intensive domains. In our study, we analyzed the role 

of labels inside a single organizational unit. Since the original process model of OL (Kane et al., 2005) 

is also about OL across organizational units and between organizations, our first RQ proposes to 

understand how labels can improve knowledge creation and transfer in these broader contexts (RQ1).  

 

Propositions  Future research opportunities (RQ) 

1a and 1b 

RQ1: How can labels efficiently be used across different organizational units and 

between organizations? 

RQ2: How must label-based tools be designed to improve knowledge creation and 

transfer across different organizational units and between organizations? 

2a, 2b, and 

2c 

RQ3: How can organizations design incentives to foster label-based tasks and roles?  

RQ4: How can organizations overcome impediments related to labels that hinder 

effective task performance?  

RQ5: Is a data labeler a new position that organizations need to incorporate? And if 

so, what are the tasks and what knowledge is required of a labeler? 

3a and 3b 

RQ6: How must labels be modeled in organizational ontologies to support 

organizational knowledge management?  

RQ7: How can ontologies support the development of label-based tools? 

Table 2. Future research opportunities 

A further relevant future research direction is the design and development of label-based tools to support 

the efficient sharing of labels inside and between organizations (RQ2). In so doing, we believe that the 

two stakeholder groups—domain experts and data analysts—are crucial. For instance, data analysts 

should not only consider what data to include when building label-based tools but also how domain 

experts can provide labels during the development of label-based tools. Furthermore, our high-level 

requirements of label-based tools can guide researchers and practitioners with the design of similar 

decision support systems, such as the presented VA tools or similar systems, such as BI.  

In addition, we surfaced impediments, which hinder the execution of the tasks provide and decide. One 

impediment refers to missing incentives to provide labels. Hence, we suggest investigating how 

organizations could design incentives to foster label-based tasks and roles to overcome such 

impediments (RQ3). One strategy to increase the engagement of domain experts in these tasks could be 

to apply gamification (Khakpour and Colomo-Palacios, 2020) or rewards for labeling activities similar 

to rewarding inventions or patents (Giarratana et al., 2018).  

In line with prior research in complex and uncertain domains where high uncertainty and lack of validity 

of labels can lead to wrong predictions in ML models (Lebovith et al. 2021), we found that a lack of 

domain knowledge can affect the quality of ML models. Organizations need to develop strategies to 

overcome such issues, for instance, by flagging labels that are uncertain as well as continuously 

monitoring, assessing, and developing the ML model over time (RQ4).  

Concerning the task provide, a new organizational role similar to established organizational roles, which 

deals with data-related tasks (Crisan et al., 2020) could be introduced. Crisan et al. (2020) summarized 

existing roles, such as the “data engineer”, who is mainly responsible for the development of data 

gathering and processing tasks. In addition to the roles defined by Crisan et al. (2020), organizations 

may consider introducing the “data labeler” (RQ5). This role could include organizational members, 

who have not only knowledge about a specific domain such as electrical engineering but are also 

responsible for providing high-quality labels for label-based tools as part of their job descriptions.  

One way to represent knowledge in organizations should be in a machine-interpretable form. In the field 

of artificial intelligence, researchers investigated the role of knowledge representation with ontologies 

(Studer, 2007) to provide ML models with conceptual abstractions for particular domains of interest 

(Gonçalves et al., 2019; Harispe et al., 2014; Smaili et al., 2019). Future research may focus on the role 
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of labels as knowledge products in the design of ontologies for organizational knowledge representation 

(RQ6). When a unified semantic and syntax for labels in organizational knowledge bases are established, 

another future research avenue is to understand how these affect the creation of label-based tools (RQ7). 

In particular, we assume that access to labels structured by a unified semantic and compatible syntax 

will foster the development of label-based tools by reducing the need to cross-check labels with domain 

experts or to convert and harmonize labels into a consistent data format.  

6 Limitations 

We acknowledge that our study has limitations. First, the study is based on qualitative data drawn from 

analyzing the use of three label-based tools, participant observations, and interviews with experts who 

work all in the same automotive company. Hence, our results are limited to the context of our study and 

the results may have limited validity in other domains. Nevertheless, since labels are such a basic data 

ingredient for any ML model, also other domains may reveal similar patterns regarding the circulation 

of labels between the three dimensions of the OL framework.  

Second, our adapted OL framework does not address the latent organizational context nor the 

environmental context of the original framework by Argote and Miron-Spektor (2011). This was 

because in AutoCorp the role of labels is relatively new and label-based tools are not yet 

institutionalized. Further research can build on our propositions and research opportunities to investigate 

how labels affect OL. 

7 Conclusion 

In this paper, we analyze the impact of labels on OL. In so doing, we conducted a case study in 

collaboration with a German car manufacturer to understand how labels can support OL. The result is 

an adapted framework of OL focusing on the role of labels in OL that informs about organizational 

members who work with labels, requirements of label-based tools, label-related tasks and impediments 

of task performance, and how all these affect OL within an organization. Furthermore, we outline seven 

propositions about the role of labels regarding OL and suggest possible label-related future research 

directions. Practitioners can use the framework to understand labels along different stages of OL and to 

improve learning and knowledge management within their organizations. 
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