
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

SAIS 2022 Proceedings Southern (SAIS)

4-1-2022

What more can software development learn from Agile What more can software development learn from Agile

manufacturing? A roadmap on the 20th anniversary of the Agile manufacturing? A roadmap on the 20th anniversary of the Agile

manifesto manifesto

Akshay Kakar
West Virginia University, akshay.uh@gmail.com

Ashish Kakar
Texas Tech University, ashish.kakar@ttu.edu

Bismita Choudhury
Assam Downtown University, bismitachoudhury@ttu.edu

Adarsh Kumar Kakar
Alabama State University, akakar@alasu.edu

Follow this and additional works at: https://aisel.aisnet.org/sais2022

Recommended Citation Recommended Citation
Kakar, Akshay; Kakar, Ashish; Choudhury, Bismita; and Kakar, Adarsh Kumar, "What more can software
development learn from Agile manufacturing? A roadmap on the 20th anniversary of the Agile manifesto"
(2022). SAIS 2022 Proceedings. 9.
https://aisel.aisnet.org/sais2022/9

This material is brought to you by the Southern (SAIS) at AIS Electronic Library (AISeL). It has been accepted for
inclusion in SAIS 2022 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/sais2022
https://aisel.aisnet.org/sais
https://aisel.aisnet.org/sais2022?utm_source=aisel.aisnet.org%2Fsais2022%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/sais2022/9?utm_source=aisel.aisnet.org%2Fsais2022%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Kakar and Kakar et al., What can software development learn from manufacturing

24th Proceedings of the Southern Association for Information Systems Conference, Myrtle Beach, SC, USA March 18th–19th, 2022 1

What more can software development learn from Agile manufacturing?

A roadmap on the 20th anniversary of the Agile manifesto

Ashish Kakar

Texas Tech University

Ashish.kakar@ttu.edu

Akshay Kakar

West Virginia University

akshay.uh@gmail.com

 Bismita Chaudhary Adarsh Kumar Kakar

 Assam Downtown University Alabama Stare University

 bismitachoudhury@gmail.com akakar@alasu.edu

ABSTRACT

The concept of agility originated in manufacturing and was later adopted by the software development discipline. In

this article we argue that in the process some important aspects of the agility theory have been either ignored or

misinterpreted. A historical review of the evolving paradigms and practices in software development and

manufacturing on the 20th anniversary of the Agile Manifesto (2001) suggests that if the ideas and principles

underlying agility are faithfully implemented it would lead to significant improvement in the software development

process.

KEYWORDS

Software Development, Manufacturing, Agility

INTRODUCTION

For many decades, software engineering was focused on heavy-weight approaches aimed at success in
developing increasingly complex business applications speedily, at lesser costs and of higher quality.
Formal methods based on scientific management principles using a variety of tools and techniques for
measurement and standardization of the software process were adopted in the belief that it would result
in success in software development activities (Kakar and Kakar, 2020). These tools and techniques
included Structured Systems Analysis and Design Methodology, Information Engineering, Unified
Software Development Process) and OPEN. However, in the late 1990s, as disenchantment with the
heavy-weight engineering methods grew, suggestions for improvement came from practitioners
culminating in the Agile manifesto (2001)

The Agile Manifesto caught on quickly with the software development community. By 2007 84% of the
respondent organizations were using agile methods within their organizations which rose to an impressive
97% by 2018 (Hoda, Salleh and Grundy, 2018). Scholars and practitioners are now working to transfer the
success of agile software development methods in other functions and domains, However, in their article
Rigby, Sutherland and Takeuchi (2016) noted that “Agile has indisputably transformed software
development, and many experts believe it is now poised to expand far beyond IT. Ironically, that’s where
it began — outside of IT. “. In this article we examine whether this observation is accurate and ask the
following questions:

Is Agility as defined in manufacturing (AM) and Agile Software Development (ASD) aligned? What if any
are their differences? Is our current understanding of Agility in ASD helpful or is there an opportunity to
learn from manufacturing once again? On the occasion of the 20th anniversary of the Agile Manifesto
(2001) we find by hindsight that with a right understanding of agility in the context of ASD would have
saved us years in its evolution to the present state and would help the Agile movement realize its full
potential in the future quickly without much experimentation.

Kakar and Kakar et al., What can software development learn from manufacturing

2

LITERATURE REVIEW

AM is considered the next logical step in the evolutionary chain from craft production to mass production
and lean manufacturing. Similarly, ASD is the next logical step to the evolutionary chain from cod-and-fix
to plan-driven to lean methods of software development. Further, the change in software development
methods have lagged the change in manufacturing paradigms indicating the source of inspiration for
software development methods is manufacturing and not the other way around (Table 1). The concept of
Agility in software development has also trailed the concept of Agility first introduced in manufacturing
(Conboy, 2009):

Manufacturing Paradigms Software Development Approaches

Craft Production (pre-1910s) Code and Fix (1950s)

Taylorism and Mass Production (1910s)
Plan-driven approaches such as Waterfall or V
Model (1970s)

Lean Manufacturing (1970s) Lean Software Development (1990s)

Agile Manufacturing (1990s) Agile Software Development (2000s)
Table 1. Evolution in software development and manufacturing (Kakar, 2000)

However, a deeper review shows that there are some important differences agility in manufacturing and
software development. The term agile manufacturing can be traced back to the publication of the report
21st Century Manufacturing Enterprise Strategy (Iococca Institute, 1992). The origins of the “agility
movement” stems from US government concerns that domestic defense manufacturing capability would
be diminished following the end of cold war in 1989. The following phenomena underscore the reasons for
putting agility at the core of manufacturing strategy for the twenty-first century (Goldman et al., 1995):
1. Increasing market fragmentation
2. Growth in the need to produce to order
3. Shrinking product life cycles
4. Globalization of production
5. Distribution infrastructures which support greater customization

AM is an organization level strategy designed to respond quickly to changing customer requirements
through mass customization. “It demands a manufacturing system that is able to produce effectively a
large variety of products and to be reconfigurable to accommodate changes in the product mix and
product designs.” (Gunasekaran and Yusuf, 2002). Manufacturing system re-configurability and product
variety are critical aspects of agile manufacturing.

Further in AM organizational business processes are integrated with the production process to avoid local
optimizations at the expense of agility at global level. “In its fully developed form, agility in manufacturing
exemplifies the collaborative capability of an organization to proactively establish virtual manufacturing
where a group of independent geographically distributed firms form suitable and temporary alliances
based on complementary competencies to address customer/ market needs” (Gunasekaran and Yusuf,
2002).

The word agile was first used in ASD when the 17 participants who huddled together for three days at on
February 11-13, 2001, at The Lodge at Snowbird ski resort in the Wasatch mountains of Utah were
searching for the right word to use in their manifesto. It was then that the term Agile was suggested by
one of the participants who was reading the book “Agile Competitors and Virtual Organizations:
Strategies for Enriching the Customer” at that time (Rigby, Sutherland and Takeuchi, 2016).

However, even though the term Agility first used in the context of software development in the Agile
manifesto (2001) was derived from manufacturing it was restricted to the project level. This core
principle of agile manufacturing of implementing agility beyond the production process to the
organization and the supply chain to derive maximum benefits is not so well developed in ASD. Conboy
and Morgan (2010) note that ASD has not focused on the role of other stakeholders besides the customer.
Further, they argued that a single customer/ user representative on the agile development team is too

Kakar and Kakar et al., What can software development learn from manufacturing

3

narrow a focus to adopt. There was also no mention of sub-contractors, suppliers, service providers and
value-added resellers. Therefore, for almost a decade since their introduction agile methods were
considered largely restricted to small, co-located development teams, for noncritical system development
when compared to the plan-driven heavy weight methods they sought to replace (Conboy, 2009).

AM on the other hand did not make a total break from the past during its evolution. For example, agile
manufacturing although advocating organization level flexibility in response to uncertainty in customer/ /
supply chain;/ market requirements never abandoned the useful lean manufacturing and tayloristic
principles and practices such as the assembly line, common parts, modular design and well-defined
production processes. The current trend of integrating the synergistic practices of plan driven and ASD
methods as a way forward was already well understood in AM. However, ASD was presented as
revolutionary with a total disregard of plan-driven practices that came before it (Boehm and Turner,
2003). The summary of significant differences in the concept of agility in AM and ASD is shown in Table
2.

Agile Manufacturing Agile Software Development
Agility in Manufacturing is a philosophy not a set
of practices (Gunasekaran et al. (2002)

The concept of Agility in software development
evolved from a set of practices and was driven by
practitioners (Conboy, 2009, Kakar, 2018abcde)

AM is a busines wide context (Goldman and
Nagel, 1993)

ASD restricted to software development projects
(Conboy and Morgan, 2010; Kakar, 2020)

AM is focused on design (new product
development process), production, sourcing,
distribution and temporary alliances to meet
customer/ supply chain/ market requirements.

ASD focused primarily on production process and
activities of software development (Kakar, 2018ab)

The ideal of AM is virtual manufacturing and
mass customization

The ideal of ASD is the use of light weight processes
for enriching customer and making them more
competitive (Kakar, 2017abcde)

AM was an evolutionary concept; did not disown
the useful Lean and Mass production methods but
further built on them

ASD represented a dichotomic split between agile
and every other method that went before and was
projected as revolutionary (Boehm and Turner,
2003; Kakar, 2013; Kakar, 2015abc))

The concept of Agility in AM has matured
(Conboy, 2009)

The concept of Agility in ASD is still evolving with
the research efforts current trend focused to
address scalability, global agile development,
distributed agile development, Agile-DevOps, Agile
automation, automated testing and continuous
integration (see Ebert, Gallardo Hernantes,
Serrano, 2016; Alqudah and Razali, 2016; Dingsøyr
and Lassenius, 2016)

Table 2. Differences in the concept of Agility in Manufacturing and Software Development

FUTURE ROAD MAP: WHAT ASD CAN STILL LEARN FROM AM

Thus, the concept agility when introduced in software development through the Agile Manifesto (2001)
was a truncated version and is still in the process of coping up to the full level and scope of Agility in AM
from where it originated. Reference disciplines are usually more mature than the software engineering
discipline because they have a longer history (Niederman, Gregor, Grover, Lyytinen and Saunders, 2009).
There is therefore value in learning more from AM. A deeper understanding of agility in AM would have
saved two decades of efforts in reinventing and can help quicken the pace of its future developments in
ASD.

Kakar and Kakar et al., What can software development learn from manufacturing

4

 Figure 1. Schematic of agility in AM

Agility in manufacturing deploys structured and unstructured upstream and downstream processes for
product design and production (see Figures 1). The structured processes include practices for concurrent
engineering, mass customization, product portfolio management and supply chain management, The
structured processes are backed by an organization level culture promoting internal and external
collaboration; cross-functional communication, coordination, and knowledge sharing; customer/ market
focus. Further, an environment is created at team level for enhancing cohesion, reflexivity, self-
organization, and conflict resolution in work groups. Agile organizations recognize the value of both
organic and mechanistic structures in managing uncertainty in customer demand and turbulence in the
competitive landscape by providing variety in products and services aligned with the organization’s
strategic goals. The goal of AM is to design, manufacture, distribute, sell and service a variety of products
at low cost and high quality so that customers find exactly what they want and reap the benefits of
customization.

This broad approach to agility in AM is relevant for ASD and provides a future roadmap for ASD.
Although, attempts have been made in some of these areas in recent years, yet a comprehensive approach
is needed to reap benefits at the organization level whether the organization is a software development
firm or an internal MIS department. For example, although most literature on ASD have tended to be
written with the overriding assumption that the projects are managed as single projects, it does not reflect
the real-life situation as project boundaries are pliable internally within the organization as well as
external to the organization (see Figure 2). Focusing solely on individual project performance is
suboptimal as organization manages a basket of projects each having different priorities within budgeted
resources. The projects include development projects, deployment projects and maintenance projects.
New projects are continually added to the basket and existing projects prematurely discontinued or
retired in alignment with the strategic goals of the organization. Just as an individual project fulfills
customer/ supply chain/ market requirements by building them into a software product to provide value
to the customer, a software organization fulfills its business goals through its products and services using
portfolio management to maximize the business value for the organization.

Further, as Conboy and Morgan (2010) noted a decade earlier, ASD has not focused on the role of other
stakeholders besides the customer. They argued that a single customer/ user representative on the agile
development team is too narrow a focus to adopt. There was also no mention of sub-contractors,
suppliers, service providers and value-added resellers. This lacuna continues to persist today despite other
developments in ASD. The root of this problem can be traced to the misinterpretation that has prevailed
about agility the context of software development. Lean and agile manufacturing focus on creating
processes at the level of supply chain for rapid mass customization of products through modularization
and late differentiation (Huh, 2001). The ultimate goal is flexibility in meeting the needs and desires of
individual customers at low cost and high quality. This ideal of Agility is stated evocatively by Toyota
where Toyota visualizes its ideal plant as “one where a Toyota customer could drive up to a shipping dock,
ask for a customized product or service, and get it at once at the lowest possible price and with no defects.

Kakar and Kakar et al., What can software development learn from manufacturing

5

To the extent that a Toyota plant or a Toyota worker's activity falls short of this ideal, that shortcoming is
a source of creative tension for further improvement efforts” (Spear and Bowen, 1999). Figure 2 provides
guidance and roadmap for agility through supply chain focus and virtual manufacturing in the software
development context.

Figure 2. Schematic for agility in software development

CONCLUSION

On the occasion of the 20th anniversary of the Agile Manifesto (2001) we find by hindsight that with a
deeper understanding of agility in AM would have saved us years in its evolution to the present state. A
correct interpretation of Agility would help the ASD realize its full potential in the future quickly without
reinventing the wheel and without much experimentation. The main obstacle is the narrow project focus
in ASD. Lean and agile manufacturing focus on creating processes at the level of supply chain for rapid
mass customization of products through modularization and late differentiation. The ultimate goal is
flexibility in meeting the needs and desires of individual customers at low cost and high quality. Agile
Software development does not even talk about mass customization as a goal. Until that is done and the
agile processes to accomplish that is understood, agility may not find its full expression in software
develo0pment and efforts in the area of hybrid methods, global software development will either fail or
produce sub-optimal results or achieve maturity through trial and error after another long struggle and
time. Interpreting the concept agility correctly in the context of software development can accelerate
improvements.

REFERENCES

Alqudah, M., & Razali, R. (2016). A review of scaling agile methods in large software

development. International Journal on Advanced Science, Engineering and Information
Technology, 6(6), 828-837

Conboy, K. (2009). “Agility from first principles: reconstructing the concept of agility in information
systems development,” Information Systems Research (20:3), pp. 329–354.

Conboy, K. and Morgan, L. (2010). “Future research in agile systems development: applying open
innovation principles within the agile organization,” In Agile Software Development pp.223-235.

Dingsoyer, T., & Lessensius, C. (2016). Emerging themes in agile software development: Introduction to
the special section on continuous value delivery. Information and Software Technology, 77, 56-
60.

Goldman, S.L., Nagel, R.N. and Preiss, K. (1995). Agile Competitors and Virtual Organizations: Strategies
for Enriching the Customer. Van Nostrand Reinhold, New York, NY, USA.

Gunasekaran, A. and Yusuf, Y.Y. (2002}. “Agile manufacturing: a taxonomy of strategic and technological
imperatives,” International Journal of Production Research (40:6), pp. 1357–1385.

Kakar and Kakar et al., What can software development learn from manufacturing

6

Hoda, R., Salleh, N. and Grundy, J. (2018). The rise and evolution of agile software development. IEEE
software, 35(5), 58-63.

Hofmeister, C., Nord, R. L. and Soni, D. (2000). Applied Software Architecture, Addison-Wesley.
Huh, W. T. (2001). “Software process improvement: operations perspectives,” In Management of

Engineering and Technology, PICMET'01. Portland International Conference (1), pp. 428-429.
Iococca Institute. (1992). 21 st Century manufacturing strategy, Lehigh University, Bethlehem, PA.
Kakar, A. K. (2014). When form and function combine: Hedonizing business information systems for

enhanced ease of use. In 2014 47th Hawaii International Conference on System Sciences (pp. 432-
441). IEEE.

Kakar, A. K. (2015a). Why do users speak more positively about Mac OS X but are more loyal to Windows
7?. Computers in Human Behavior, 44, 166-173.

Kakar, A. K. (2015b). Investigating the penalty reward calculus of software users and its impact on
requirements prioritization. Information and Software Technology, 65, 56-68.

Kakar, A. K. (2015c). Software product features: should we focus on the attractive or the
important?. Journal of Decision Systems, 24(4), 449-469.

Kakar, A. K. (2017a). Do reflexive software development teams perform better?. Business & information
systems engineering, 59(5), 347-359.

Kakar, A. K. (2017b). Investigating the prevalence and performance correlates of vertical versus shared
leadership in emergent software development teams. Information Systems Management, 34(2), 172-
184.

Kakar, A. K. (2017c). Assessing self-organization in agile software development teams. Journal of
computer information systems, 57(3), 208-217.

Kakar, A. K. S. (2017d). Why do users prefer the hedonic but choose the Utilitarian? Investigating user
dilemma of hedonic-utilitarian choice. INTERNATIONAL JOURNAL OF HUMAN-COMPUTER
STUDIES, 108, 50-61.

Kakar, A. K. (2017e). Investigating the relationships between the use contexts, user perceived values, and
loyalty to a software product. ACM Transactions on Management Information Systems (TMIS), 8(1),
1-23.

Kakar, A. K., & Kakar, A. (2018a). GTTA 2: AN EXTENSION OF THE GENERAL THEORY OF
TECHNOLOGY ADOPTION (GTTA), Southern Association of Information Systems.

Kakar, A. K., & Kakar, A. (2018b). GTTA 3: AN EXTENSION OF THE GENERAL THEORY OF
TECHNOLOGY ADOPTION (GTTA), Southern Association of Information Systems.

Kakar, A. K. (2018c). How does the value provided by a software product and users’ psychological needs
interact to impact user loyalty. Information and Software Technology, 97, 135-145.

Kakar, A., & Kakar, A. K. (2018d). Assessing Shopper's Penalty Reward Calculus in Online versus Instore
Shopping. e-Service Journal, 10(3), 24-45.

Kakar, A. K., & Kakar, A. (2018e). IS THE TIME RIPE FOR BRANDING OF SOFTWARE PRODUCTS.
Southern Association of Information Systems.

Kakar, A. K. S. (2018a). Engendering cohesive software development teams: Should we focus on
interdependence or autonomy?. International Journal of Human-Computer Studies, 111, 1-11.

Kakar, A., & kumar Kakar, A. (2018b). Is team cohesion a double edged sword for promoting innovation
in software development projects?. Pacific Asia Journal of the Association for Information
Systems, 10(4).

Kakar, A. and Kakar, A. (2020). A Brief History of Software Development and Manufacturing.
In Proceedings of the Southern Association for Information Systems Conference).

Kakar, A. K. (2020). A Theory of Effectiveness of Agile Software Development. AMCIS (2020) Virtual.
Niederman, F., Gregor, S., Grover, V., Lyytinen, K. and Saunders, C. (2009). ICIS 2008 Panel report: IS

has outgrown the need for reference discipline theories, or has it? Communications of the Association
for Information Systems, (24:1), pp. 37.

Rigby, D. K., Sutherland, J., & Takeuchi, H. (2016). The secret history of agile innovation. Harvard
Business Review, 4.

	What more can software development learn from Agile manufacturing? A roadmap on the 20th anniversary of the Agile manifesto
	Recommended Citation

	tmp.1652199155.pdf.CjG8K

