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Forecasting Retail Client Flow with LSTMs on Inconsistent Time Series 

 

Pedro Gusmão, José Moreira, Ana Tomé 

 

Abstract 

An important variable in retail future planning is forecasting client flow in stores. This 

research aims at introducing two Long Short-Term Memory network architectures for time 

series forecasting of client flow in retail stores. These models are allied with three main data 

preprocessing approaches: a data imputation method that standardizes store schedules; a  

harmonic regression method that captures and removes the seasonal and trend components of 

the time series and a sliding window sampling method to construct the network’s training 

phase. Results were not extensively optimized but the framework leaves an open door for 

further improvements.  

Keywords: Neural Networks; Long Short-Term Memory; Time Series Forecasting; Data 

Imputation; Sliding Window. 

 

1. INTRODUCTION 

Client flow forecasting can help retail companies optimize labor planning and, thus, reduce costs. 

However, the recording of data done by companies can be quite inconsistent or the working 

schedules can vary immensely.  

This work experiments with two data preprocessing methods for dealing with univariate time 

series (TS) data of two retail stores, one aims to mitigate store schedule inconsistencies and the 

other tries to ease the models’ forecasting task. The evaluated models are two Long Short-Term 

Memory (LSTMs) networks as they were created for modelling sequential data (Hopfield, 1982). 

2. BACKGROUND 

2.1. Time Series  

TS is a genre of data that is present in many fields such as astronomy, signal processing and other 

subjects that deal with temporal measurements. TS data is frequently collected in areas that 

employ forecasting tasks, for example, meteorology with weather forecasting or seismology with 

earthquake predictions. 

Technically, a TS is any collection of values 𝑥(𝑛) observed at successive points in time 𝑛. In order 

to better understand TSs and aid forecasting processes, it is common to separate them in individual 

components, such as: 
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• Trend-Cycle (𝑚(𝑛)): a trend is characterized by when there is a long-term rise or drop in 

the data, it does not need to be linear, and it can change directions. A cyclic pattern refers 

to periodic fluctuations that are not of fixed period (not to be confused with seasonality). 

Cycles can be shorter than a calendar year but commonly describe longer term behaviours 

(more than a year). Cycle is usually considered to be merged with the trend component; 

• Seasonal (𝑠(𝑛)): seasonality takes place when the data demonstrates periodic fluctuations 

that usually occur in particular calendar seasons that recur (e.g., coat sales increase in the 

winter); 

• Noise (𝜀(𝑛)): represented by irregular random sources of level variations or fluctuations. 

Then, presupposing an additive model, a TS 𝑥(𝑛) can be mathematically represented as 

𝑥(𝑛) = 𝑚(𝑛) + 𝑠(𝑛) + 𝜀(𝑛) (1) 

at time 𝑛 ∈ {0, 1, 2, … , 𝑁 − 1} with 𝑁 being the length of the TS. 

2.2. Detrending and Deseasonalizing with Harmonic Regression 

Certain statistical qualities in TSs can be crucial to create skillful forecasts. Stationarity is one of 

those desired features (Oliver & Gujarati, 1993). A TS is stationary when its observations are not 

time-dependent, meaning that they are not greatly described by any trend or seasonality. Therefore, 

a way to aim for stationarity is by removing those components. For that goal, a harmonic 

regression, i.e., a linear regression with trigonometric terms, over Fourier terms can be used. In 

(Dong, Yang, Reindl, & Walsh, 2013), it is shown that there is a higher probability of achieving 

stationarity with such a method than with other popular methods.  

Fourier terms are sine and cosine pairs where each represents one seasonal pattern. This means that 

if a TS is defined by several seasonal patterns, then the same number of terms must be included in 

the model. This is useful as high-frequency TSs are prone to demonstrate multiple seasonalities. 

A linear trend can be expressed by a simple linear regression (Hyndman & Athanasopoulos, 2018), 

such as, 

𝑚(𝑛) = 𝛽0 + 𝛽1𝑛 (2) 

with 𝑛 being the regressor, β0 being the intercept and β1 being the slope. In (Taylor & Letham, 

2018), it is demonstrated that a seasonal component (𝑠(𝑛)) described by a single seasonal period 

(𝑧) can be captured through a harmonic regression over Fourier terms, mathematically,  

𝑠(𝑛) = ∑ (𝑎(𝑘) 𝑐𝑜𝑠 (
2𝜋𝑘𝑛

𝑧
) + 𝑏(𝑘) 𝑠𝑖𝑛 (

2𝜋𝑘𝑛

𝑧
))𝐾

𝑘=1   
(3) 
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where 𝐾 is a smoothing factor, increasing it allows for more fluctuating seasonal patterns, and 𝑎 

and 𝑏 are the regressors. 

Considering the additive model (Equation (1)), the two last equations can be combined to capture 

both trend and seasonality components. For example, assuming 𝐾 = 1, a TS 𝑥(𝑛) that is described 

by two seasonal patterns with periods 𝑧1 and 𝑧2 may be expressed by 

𝑥(𝑛) = 𝛽0 + 𝛽1𝑛 + 𝛽2𝑐𝑜𝑠 (
2𝜋𝑛

𝑧1
) + 𝛽3𝑠𝑖𝑛 (

2𝜋𝑛

𝑧1
) + 𝛽4𝑐𝑜𝑠 (

2𝜋𝑛

𝑧2
) + 𝛽5𝑠𝑖𝑛 (

2𝜋𝑛

𝑧2
) + 𝜀(𝑛)  (4) 

Then, by removing the calculated trend and seasonality the forecasting model is left to 

approximate only the residual component 𝜀(𝑛), i.e., 

𝜀(𝑛) = 𝑥(𝑛) − (𝛽0 + 𝛽1𝑛 + 𝛽2𝑐𝑜𝑠 (
2𝜋𝑛

𝑧1
) + 𝛽3𝑠𝑖𝑛 (

2𝜋𝑛

𝑧1
) + 𝛽4𝑐𝑜𝑠 (

2𝜋𝑛

𝑧2
) + 𝛽5𝑠𝑖𝑛 (

2𝜋𝑛

𝑧2
)) 

(5) 

An important assumption of this model is that the seasonal periods (𝑧) are previously known, 

which may not always be the case. A valid approach for finding out the most relevant periods is 

through the application of a Fast Fourier transform (FFT) on the TS in question. A FFT is an 

algorithm that computes the Discrete Fourier transform converting the TS from a time domain 

representation to a frequency domain representation. 

2.3. Long Short-Term Memory Network 

For the convenience of the reader, the LSTM internal processes are reviewed. A LSTM unit has 

three main concepts: 

• The cell state 𝐜𝑡, that consists of an encoded version of the information gathered from all 

the previously processed steps; 

• The hidden state and output 𝒉𝑡, which is similar to the cell state but its information is more 

focused on the previous step; 

• Three gating mechanisms. An input gate (𝒊𝑡) that determines what information from the 

candidate memory (𝒄
~

𝑡) should be appended to the cell state. A forget gate (𝒇𝑡) that 

determines what information should be removed or "forgotten" from the cell state (𝐜𝑡). 

Lastly, an output gate (𝒐𝑡) that controls which values from the cell state (𝐜𝑡) should be 

appended to 𝒉𝑡.  

The unit can be expressed in three steps, where all gates and the candidate memory share the same 

format. They all deal with a combination of the input 𝒙𝑡, the previous output 𝒉𝑡−1 and their own 

learnable weights 𝑾 and 𝑹. As a first step let the forget gate be defined as 

𝒇𝑡 = 𝜎(𝑾(𝑓)𝒙𝑡 + 𝑹(𝑓)𝒉𝑡−1 + 𝒃(𝑓)),   (6) 
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The symbol σ refers to the sigmoid function, that transforms all values into ]0,1[. If the values are 

close to zero, the data is to be removed, and if they are close to one, then it is to be kept. 

In the second step, the unit decides what information is to be appended to the cell state (𝒄𝑡). The 

input gate (𝒊𝑡) is built to decide which values should be added and the new candidate values (𝒄
~

𝑡) 

for the cell state are created. Formally,  

𝒊𝑡 = 𝜎(𝑾(𝑖)𝒙𝑡 + 𝑹(𝑖)𝒉𝑡−1 + 𝒃(𝑖))   (7) 

𝒄
~

𝑡 = 𝑡𝑎𝑛ℎ (𝑾(𝑐
~

)𝒙𝑡 + 𝑹(𝑐
~

)𝒉𝑡−1 + 𝒃(𝑐
~

)), 
  (8) 

After this, the cell state is updated from 𝒄(𝑡−1) to 𝒄(𝑡) with the element-wise product, 

𝒄𝑡 = 𝑡𝑎𝑛ℎ(𝒇𝑡 ⊙ 𝒄𝑡−1 + 𝒊𝑡 ⊙ 𝒄
~

𝑡), (9) 

The last step assembles the unit's output 𝒉𝑡. First, the output gate decides through the sigmoid 

which values of the updated cell state should be carried on in the hidden state 𝒉𝑡. Then, the 

element-wise product to apply that is done. Mathematically, 

𝒐𝑡 = 𝜎(𝑾(𝑜)𝒙𝑡 + 𝑹(𝑜)𝒉𝑡−1 + 𝒃(𝑜)) (10) 

𝒉𝑡 = 𝒐𝑡 ⊙ 𝒄𝑡, (11) 

The training of standard ANNs is done using the backpropagation algorithm. However, an 

extension is necessary for a RNN such as the LSTM. For that goal, the backpropagation through 

time (BPTT) algorithm was developed (Gers, Schmidhuber, & Cummins, 2000).  

3. CASE STUDY AND DATA PREPARATION 

The data used in the experiments are univariate half-hourly TSs (Figure 1Error! Reference 

source not found.) that belong to two retail stores (A and B). Store A presents records between 

2015-01-02 and 2019-07-23. Concretely, 1649 days were recorded between those dates as 14 days 

are missing (e.g., Christmas days). On the other hand, store B has 976 days registered between 

2017-06-12 and 2020-10-18 (248 missing days). It is also worth noting that the schedules in both 

stores were not the same in all the registered days. 
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Figure 1 – Client flow in store A (first 1400 observations). 

The objective is to predict the number of client entries in the last 30 registered days using only past 

observations of that same variable. The TSs are, therefore, divided into train1 and test set. For store 

A the test set (692 observations) begins in 2020-06-23 and for store B the test set begins in 2020-

09-19 (746 observations), observations before those dates form the training set. It should be 

mentioned that store B displays the effect of the COVID-19 lockdown (Figure 2) which might 

influence forecasting results.  

 

Figure 2 – The effect of the COVID-19 lockdown starts near the beginning of March and lasts until the end 

of April. 

3.1. The Sliding Window Method 

In TS forecasting, future values have their basis on their past values. Because of this, the problem 

of forecasting is classified as a specific regression problem, an autoregression. In ML, regression is 

a type of supervised learning problem that refers to discrete outputs. In this context, supervised 

learning refers to adjusting a model by comparing the forecasted values with the real values. This 

adjustment is possible with a TS' past values and, as such, the data can be framed in that way. 

 

1 In the descriptions of the data preprocessing methods the term TS is sometimes used in reference it to its train set. 
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The sliding window sampling method (Figure 3) was the chosen approach and it consists in 

transforming the data into several fixed-size combined input and output. For that, three parameters 

are considered: 

1. The stride 𝑠 in which the window is to be slid. 

2. The number of lagged values 𝑝 in the input; 

3. The number of values in the outputs that is equal to the forecast horizon 𝐻. 

As this research studies univariate TS problems, then, the inputs are scalars from vectors 𝒙𝑡 

defined as 

𝒙𝑡 = (𝑣(𝑗 − 𝑝 + 1), 𝑣(𝑗 − 𝑝 + 2), … , 𝑣(𝑗))𝑇, (12) 

that were formed by embedding 𝑝 samples using the sliding window. Where 𝑣(𝑗) can either 

represent a TS, 𝑥(𝑗), 𝑗 ∈ 𝑝 − 1, … , 𝐽 − 𝐻 − 1, where 𝐽 is the number of training records, or, if the 

trend and seasonality were removed through the harmonic regression (e.g., Equation (5)), its 

residual component 𝜀(𝑗). The outputs 𝒚𝑡 are similarly defined as,  

𝒚𝑡 = (𝑣(𝑗 + 1), … , 𝑣(𝑗 + 𝐻)), 
(13) 

Knowing this, the number of training samples 𝑔 created by the sliding window method on some 

TS is given by 𝑔 = 𝐽 − 𝑝 −  𝐻 + 1.  

It is worth noting that just as 𝐻, 𝑝 is a sensitive parameter. While windows with few lagged values 

may prove to have insufficient information, large windows can increase complexity and reduce the 

network's learning capabilities. Therefore, if the architecture of the forecasting model allows, 

various 𝑝 values should be tested. In this work, the stride 𝑠 was set to 1 in every experiment in 

order to maximize the number of training samples.  
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Figure 3 – The sliding window technique in training. Adapted from: (Paoli, Voyant, Muselli, & Nivet, 2010) 

3.2. Standardizing the Store Schedules 

As mentioned, the schedules in the stores may vary from day to day. Since the forecasting problem 

is modelled as a univariate forecasting problem no contextual information is given and that 

includes information regarding schedules. Thus, the model does not know for what half-hours in 

the day it is trying to predict. A solution can be achieved with schedule standardization by 

constraining the TSs to a specified schedule. For that, missing samples are imputed and extraneous 

samples are removed.  

So that data integrity is not greatly threatened the chosen schedule is the schedule that is most 

frequent. Curiously, both stores have the same most frequent schedule, which is from 09:00:00 to 

21:00:00 (25 samples). As it is of low complexity, linear interpolation was the chosen imputation 

method. For all the standardized TSs, 𝐻 = 750 as it corresponds to 30 days with 25 samples each. 

This standardization, however, originates two drawbacks. First, the forecasting model is forced to 

forecast a predefined schedule. In second, during the evaluation phase imputed entries cannot be 

considered and, as such, complexity rises in comparing results with unstandardized TSs. 

One option that counters the first drawback is creating more forecasting models that fill remaining 

schedules with predictions. This, however, is not explored in this work. 

Regarding the second point, in order to compare forecasting performance with the imputed 

versions it should be known that artificial samples and samples that are outside the 09:00:00 to 

21:00:00 schedule are invalid for evaluation. Knowing this, store A possesses 679 valid 

observations and store B possesses 743 valid observations.  
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3.3. Discovering the Seasonal Periods 

There are two prerequisites in order to use the harmonic regression method presented in subsection 

2.2: 

1. The TSs schedules must be standardized; 

2. The relevant seasonal periods must be discovered.  

The first condition is satisfied with the already described standardization method. The second is 

met by applying FFTs2 to the TSs and observing the corresponding plots. For both of the 

standardized TSs two seasonal periods are dominant, a daily and half-daily period (Figure 4), i.e., 

𝑧1 = 25 and 𝑧2 = 12.5. 

 

Figure 4 – Store A FFT plot. 

4. EXPERIMENTAL SETUP 

This section further details the data preprocessing methods and the technologies used to develop 

the DL models. 

4.1. Technology and Libraries 

The neural models and related operations were developed using Python 3.7.9 with the following 

libraries: 

• Pandas3 was used to extract the data, split the data into train and test sets and to apply the 

imputation method; 

• Numpy4 provides efficient and optimized functions to deal with multidimensional arrays. It 

was used in various phases; 

• Scikit-Learn5 was used for the preprocessing harmonic regression model; 

 

2 This method should not be used if the TS has a highly expressive trend. 
3 pandas.pydata.org 
4 numpy.org 
5 scikit-learn.org 

https://pandas.pydata.org/
https://numpy.org/
https://scikit-learn.org/stable/
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• TensorFlow6, developed by the Google Brain Team, is an open-source library for 

distributed numerical and auto-differentiable computations. These computations are the 

primary support for many developed deep learning algorithms. It was initially 

implemented in C++, but a native Python API is also available.  

The Tensorflow module has a sub-module containing an API for the Keras library and provides a 

user-friendly interface to compose various deep learning models. 

4.2. LSTM Forecasting Model Architectures  

So that a LSTM model provides a multi-step forecast with a horizon 𝐻 two possibilites are 

considered in this work (Figure 5).  

The first option (LSTM-1) consists in having a linear fully-connected layer (FC) with 𝐻 units 

acting as the output layer (Wang, Zhu, & Li, 2019 and Masum, Liu, & Chiverton, 2018). In this 

output layer, every unit is connected to every element in 𝒉𝑡. Thus, a forecast 𝒚�̂� is described by, 

𝒚�̂� = 𝑾(𝑑)𝒉𝑡 + 𝒃, (14) 

where 𝒉𝑡 is a reduced context representation of 𝒙𝑡 outputted from the LSTM layer at the last 

processing step 𝑡 = 𝑝 − 1, 𝑾(𝑑) is the weights of the FC layer and 𝒃 is the bias parameter. This 

architecture is more popular in classification problems (Rao, Huang, Feng, & Cong, 2018). 

 

Figure 5 – a) The first LSTM model architecture (LSTM-1). The LSTM blocks represent one LSTM unit 

unrolled through 𝑡. b) The second LSTM model architecture (LSTM-2). 

 

6 tensorflow.org 

http://www.tensorflow.org/
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The second architecture (LSTM-2) comprises in constructing one output 𝑦�̂� at each processing 

step. This means that instead of capturing 𝒉𝑡 only at the last step, every constructed 𝒉𝑡 is now 

returned in each one. Then, a FC layer with one unit is applied in every step, one at a time, 

updating its weights only after concluding the last. This approach adds one constraint to its 

functioning: in order to produce a multi-step forecast of size 𝐻 its input needs to be of the same 

size (𝑝 = 𝐻), which makes the training phase computationally costly. In contrast, LSTM-1 has 

more flexibility since different 𝑝 values can be experimented in the first option. 

4.3. Parameter Configuration 

In both models the LSTM layer hyperparameter units was set to 32 in every instance. This 

parameter refers to the size of the LSTM output 𝒉𝑡 and affects the memory capacity of the LSTM. 

In order to keep a low complexity, the rest of the configurations have their default values as 

defined by Keras7 except for the LSTM-2 where the parameter return_sequences is set to True so 

that 𝒉𝑡 is outputted in every processing step of the LSTM section.  

In Table 1, the number of learnable weights plus biases for each model is presented. Since in the 

LSTM-2 the weights of the FC unit are reused in each step it shows a considerable reduction in 

comparison to the FC layer present in the LSTM-1 and the model overall. Yet, despite the 

noticeable difference the LSTM-2 model takes much longer to train due to its input vectors having 

the size of 𝐻.  

Table 1 – Number of learnable parameters (weights and biases). 

Model LSTM FC Total 

LSTM-1  4352 24750 29102 

LSTM-2  4352 33 4385 

In all settings, the network was trained for 50 epochs with early stopping (𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 5) to 

prevent overfitting. The mean square error was assigned as the loss function and ADAM was used 

as the gradient descent optimizer (Kingma & Ba, 2015). No hyperparameter-tuning was conducted 

to improve results.  

5. RESULTS 

In this section, the results for each store are presented. A template is followed where results 

produced from both LSTM models on unstandardized versions of the data are compared with: 

1. Performances obtained from standardized data; 

 

7 www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM 

https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
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2. Performances obtained from standardized data that was also preprocessed with the 

harmonic regression method. For simplicity, a 𝐾 = 1 is assumed. 

The performance of a baseline naive model is also shown to not only compare performances 

between the three data settings but also between the models. This baseline model uses the previous 

𝐻 observations as forecasts and that makes it the same in both the standardized settings.  

The used metrics are the mean absolute error (MAE), the root mean square error (RMSE) and the 

mean arctangent absolute percentage error (MAAPE) (Kim & Kim, 2016). Additionally, 𝑝 values 

of {10, 25, 50, 100, 150, 175}8 (maximum corresponds to a week) were tested with the LSTM-1 

model. 

5.1. Store A 

The following tables ( 

Table 2,  

Table 3 and  

Table 4) present the results for the different store A’s settings. Also, Error! Reference source not 

found. and Error! Reference source not found. display the effects of the first and third data 

settings. 

Table 2 – Results with unstandardized data (Store A). 

Model MAE RMSE MAAPE (%) 

Naive 18.131 21.741 54.379 

LSTM-1 (𝑝 = 150) 11.145 13.594 38.728 

LSTM-2  12.553 14.935 43.684 

 

Table 3 – Results with standardized data (Store A). 

Model MAE RMSE MAAPE (%) 

Naive 8.315 10.899 29.543 

LSTM-1 (𝑝 = 50) 4.859 6.329 18.205 

LSTM-2 6.584 9.401 18.953 

 

Table 4 – Results with standardized data that was detrended and deseasonalized with the harmonic 

regression method (Store A). 

Model MAE RMSE MAAPE (%) 

Naive 8.315 10.899 29.543 

LSTM-1 (𝑝 = 25) 4.795 6.279 17.954 

LSTM-2 5.294 6.908 19.481 

 

8 Greater values were not tested due to computational constraints. 
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Figure 7 – LSTM-1 (p=25) and LSTM-2 performance in store A’s standardized TS that was previously 

deseasonalized and detrended. 

5.2. Store B 

Table 5 to  

Table 7 show the models’ performances in store B. Similarly to the previous subsection, Figure 6 

and Figure 7 display store B’s forecasts. 

Table 5 – Results with unstandardized data (Store B). 

Model MAE RMSE MAAPE (%) 

Naive 6.517 8.428 35.502 

LSTM-1 (𝑝 = 50) 5.824 7.323 34.008 

LSTM-2 7.361 8.842 41.570 

 

Table 6 – Results with standardized data (Store B). 

Model MAE RMSE MAAPE (%) 

Naive 5.983 7.678 32.912 

LSTM-1 (𝑝 = 50) 4.018 5.060 25.690 

LSTM-2 4.646 5.970 28.273 

 

Table 7 – Results with standardized data that was detrended and deseasonalized with the harmonic 

regression method (Store B). 

Model MAE RMSE MAAPE (%) 

Naive 5.983 7.678 32.912 

LSTM-1 (𝑝 = 50) 4.019 5.063 25.489 

LSTM-2 4.341 5.498 27.108 
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Figure 6 – LSTM-1 (𝑝 = 50) and LSTM-2 performance in store B’s unstandardized TS. 

 

Figure 7 – LSTM-1 (𝑝 = 50) and LSTM-2 performance in store B’s standardized TS that was previously 

deseasonalized and detrended. 

5.3. Discussion 

While comparing results between the settings three general conclusions are drawn: 

1. Results with standardized data are always better than with unstandardized data; 
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2. Harmonic regression did not significantly improve the results, especially on store A. This 

is aligned with the intuition that ANNs are able to model TSs in an autonomous fashion 

(Gorr, 1994); 

3. Overall, store A shows better results than store B and that might be justified by the 

negative influence of the COVID-19 lockdown observed in store B or that combined with 

the imputation method being more severe on the integrity of the data. 

In between models some points also take place: 

1. Both LSTM models were in great part better than the baseline model. 

2. The LSTM-1 model configured with its best 𝑝 was the best model in all standardized 

settings. Despite the small difference in performance, a possible reason for the LSTM-2 

model having worse results is the fact that the first predictions (𝑦0̂) in the model do not 

have available any context of the past; 

3. No relationship can be rigorously assumed between 𝑝 and the results obtained with the 

LSTM-1. Despite the need for more research, the crude deduction that p should be greater 

or at least equal to the longest seasonal period (in this case, 𝑧 = 25) can be made.  

6. CONCLUSION 

In this paper, customer flow forecasts for two retail shops with high-frequency TSs were produced 

with two LSTM models on raw data and on two preprocessing setups: both standardize the shops’ 

schedules but one of them also applies a harmonic regression method to remove trend and 

seasonality. Each of the scenarios presents better results than the other but the demonstration of the 

positive impact of data standardization is the major contribution of this work. A disadvantage of 

standardization, however, is the constrainment of predicting a predefined schedule. Although, this 

can be overcome by using models developed for other schedules, this is left for future work, as the 

fine-tuning of the LSTMs and the preprocessing harmonic regression models to obtain preciser 

verdicts.  
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